* sem-ops.h (U{DIV,MOD}[BHSD]I): Use unsigned division.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #if !defined (TARGET_H)
22 #define TARGET_H
23
24 /* This include file defines the interface between the main part
25 of the debugger, and the part which is target-specific, or
26 specific to the communications interface between us and the
27 target.
28
29 A TARGET is an interface between the debugger and a particular
30 kind of file or process. Targets can be STACKED in STRATA,
31 so that more than one target can potentially respond to a request.
32 In particular, memory accesses will walk down the stack of targets
33 until they find a target that is interested in handling that particular
34 address. STRATA are artificial boundaries on the stack, within
35 which particular kinds of targets live. Strata exist so that
36 people don't get confused by pushing e.g. a process target and then
37 a file target, and wondering why they can't see the current values
38 of variables any more (the file target is handling them and they
39 never get to the process target). So when you push a file target,
40 it goes into the file stratum, which is always below the process
41 stratum. */
42
43 #include "bfd.h"
44
45 enum strata {
46 dummy_stratum, /* The lowest of the low */
47 file_stratum, /* Executable files, etc */
48 core_stratum, /* Core dump files */
49 download_stratum, /* Downloading of remote targets */
50 process_stratum /* Executing processes */
51 };
52
53 /* Stuff for target_wait. */
54
55 /* Generally, what has the program done? */
56 enum target_waitkind {
57 /* The program has exited. The exit status is in value.integer. */
58 TARGET_WAITKIND_EXITED,
59
60 /* The program has stopped with a signal. Which signal is in value.sig. */
61 TARGET_WAITKIND_STOPPED,
62
63 /* The program has terminated with a signal. Which signal is in
64 value.sig. */
65 TARGET_WAITKIND_SIGNALLED,
66
67 /* The program is letting us know that it dynamically loaded something
68 (e.g. it called load(2) on AIX). */
69 TARGET_WAITKIND_LOADED,
70
71 /* Nothing happened, but we stopped anyway. This perhaps should be handled
72 within target_wait, but I'm not sure target_wait should be resuming the
73 inferior. */
74 TARGET_WAITKIND_SPURIOUS
75 };
76
77 /* The numbering of these signals is chosen to match traditional unix
78 signals (insofar as various unices use the same numbers, anyway).
79 It is also the numbering of the GDB remote protocol. Other remote
80 protocols, if they use a different numbering, should make sure to
81 translate appropriately. */
82
83 /* This is based strongly on Unix/POSIX signals for several reasons:
84 (1) This set of signals represents a widely-accepted attempt to
85 represent events of this sort in a portable fashion, (2) we want a
86 signal to make it from wait to child_wait to the user intact, (3) many
87 remote protocols use a similar encoding. However, it is
88 recognized that this set of signals has limitations (such as not
89 distinguishing between various kinds of SIGSEGV, or not
90 distinguishing hitting a breakpoint from finishing a single step).
91 So in the future we may get around this either by adding additional
92 signals for breakpoint, single-step, etc., or by adding signal
93 codes; the latter seems more in the spirit of what BSD, System V,
94 etc. are doing to address these issues. */
95
96 /* For an explanation of what each signal means, see
97 target_signal_to_string. */
98
99 enum target_signal {
100 /* Used some places (e.g. stop_signal) to record the concept that
101 there is no signal. */
102 TARGET_SIGNAL_0 = 0,
103 TARGET_SIGNAL_FIRST = 0,
104 TARGET_SIGNAL_HUP = 1,
105 TARGET_SIGNAL_INT = 2,
106 TARGET_SIGNAL_QUIT = 3,
107 TARGET_SIGNAL_ILL = 4,
108 TARGET_SIGNAL_TRAP = 5,
109 TARGET_SIGNAL_ABRT = 6,
110 TARGET_SIGNAL_EMT = 7,
111 TARGET_SIGNAL_FPE = 8,
112 TARGET_SIGNAL_KILL = 9,
113 TARGET_SIGNAL_BUS = 10,
114 TARGET_SIGNAL_SEGV = 11,
115 TARGET_SIGNAL_SYS = 12,
116 TARGET_SIGNAL_PIPE = 13,
117 TARGET_SIGNAL_ALRM = 14,
118 TARGET_SIGNAL_TERM = 15,
119 TARGET_SIGNAL_URG = 16,
120 TARGET_SIGNAL_STOP = 17,
121 TARGET_SIGNAL_TSTP = 18,
122 TARGET_SIGNAL_CONT = 19,
123 TARGET_SIGNAL_CHLD = 20,
124 TARGET_SIGNAL_TTIN = 21,
125 TARGET_SIGNAL_TTOU = 22,
126 TARGET_SIGNAL_IO = 23,
127 TARGET_SIGNAL_XCPU = 24,
128 TARGET_SIGNAL_XFSZ = 25,
129 TARGET_SIGNAL_VTALRM = 26,
130 TARGET_SIGNAL_PROF = 27,
131 TARGET_SIGNAL_WINCH = 28,
132 TARGET_SIGNAL_LOST = 29,
133 TARGET_SIGNAL_USR1 = 30,
134 TARGET_SIGNAL_USR2 = 31,
135 TARGET_SIGNAL_PWR = 32,
136 /* Similar to SIGIO. Perhaps they should have the same number. */
137 TARGET_SIGNAL_POLL = 33,
138 TARGET_SIGNAL_WIND = 34,
139 TARGET_SIGNAL_PHONE = 35,
140 TARGET_SIGNAL_WAITING = 36,
141 TARGET_SIGNAL_LWP = 37,
142 TARGET_SIGNAL_DANGER = 38,
143 TARGET_SIGNAL_GRANT = 39,
144 TARGET_SIGNAL_RETRACT = 40,
145 TARGET_SIGNAL_MSG = 41,
146 TARGET_SIGNAL_SOUND = 42,
147 TARGET_SIGNAL_SAK = 43,
148 TARGET_SIGNAL_PRIO = 44,
149 TARGET_SIGNAL_REALTIME_33 = 45,
150 TARGET_SIGNAL_REALTIME_34 = 46,
151 TARGET_SIGNAL_REALTIME_35 = 47,
152 TARGET_SIGNAL_REALTIME_36 = 48,
153 TARGET_SIGNAL_REALTIME_37 = 49,
154 TARGET_SIGNAL_REALTIME_38 = 50,
155 TARGET_SIGNAL_REALTIME_39 = 51,
156 TARGET_SIGNAL_REALTIME_40 = 52,
157 TARGET_SIGNAL_REALTIME_41 = 53,
158 TARGET_SIGNAL_REALTIME_42 = 54,
159 TARGET_SIGNAL_REALTIME_43 = 55,
160 TARGET_SIGNAL_REALTIME_44 = 56,
161 TARGET_SIGNAL_REALTIME_45 = 57,
162 TARGET_SIGNAL_REALTIME_46 = 58,
163 TARGET_SIGNAL_REALTIME_47 = 59,
164 TARGET_SIGNAL_REALTIME_48 = 60,
165 TARGET_SIGNAL_REALTIME_49 = 61,
166 TARGET_SIGNAL_REALTIME_50 = 62,
167 TARGET_SIGNAL_REALTIME_51 = 63,
168 TARGET_SIGNAL_REALTIME_52 = 64,
169 TARGET_SIGNAL_REALTIME_53 = 65,
170 TARGET_SIGNAL_REALTIME_54 = 66,
171 TARGET_SIGNAL_REALTIME_55 = 67,
172 TARGET_SIGNAL_REALTIME_56 = 68,
173 TARGET_SIGNAL_REALTIME_57 = 69,
174 TARGET_SIGNAL_REALTIME_58 = 70,
175 TARGET_SIGNAL_REALTIME_59 = 71,
176 TARGET_SIGNAL_REALTIME_60 = 72,
177 TARGET_SIGNAL_REALTIME_61 = 73,
178 TARGET_SIGNAL_REALTIME_62 = 74,
179 TARGET_SIGNAL_REALTIME_63 = 75,
180
181 /* Mach exceptions */
182 TARGET_EXC_BAD_ACCESS = 76,
183 TARGET_EXC_BAD_INSTRUCTION = 77,
184 TARGET_EXC_ARITHMETIC = 78,
185 TARGET_EXC_EMULATION = 79,
186 TARGET_EXC_SOFTWARE = 80,
187 TARGET_EXC_BREAKPOINT = 81,
188
189 /* Some signal we don't know about. */
190 TARGET_SIGNAL_UNKNOWN,
191
192 /* Use whatever signal we use when one is not specifically specified
193 (for passing to proceed and so on). */
194 TARGET_SIGNAL_DEFAULT,
195
196 /* Last and unused enum value, for sizing arrays, etc. */
197 TARGET_SIGNAL_LAST
198 };
199
200 struct target_waitstatus {
201 enum target_waitkind kind;
202
203 /* Exit status or signal number. */
204 union {
205 int integer;
206 enum target_signal sig;
207 } value;
208 };
209
210 /* Return the string for a signal. */
211 extern char *target_signal_to_string PARAMS ((enum target_signal));
212
213 /* Return the name (SIGHUP, etc.) for a signal. */
214 extern char *target_signal_to_name PARAMS ((enum target_signal));
215
216 /* Given a name (SIGHUP, etc.), return its signal. */
217 enum target_signal target_signal_from_name PARAMS ((char *));
218 \f
219 /* If certain kinds of activity happen, target_wait should perform
220 callbacks. */
221 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
222 on TARGET_ACTIVITY_FD. */
223 extern int target_activity_fd;
224 /* Returns zero to leave the inferior alone, one to interrupt it. */
225 extern int (*target_activity_function) PARAMS ((void));
226 \f
227 struct target_ops
228 {
229 char *to_shortname; /* Name this target type */
230 char *to_longname; /* Name for printing */
231 char *to_doc; /* Documentation. Does not include trailing
232 newline, and starts with a one-line descrip-
233 tion (probably similar to to_longname). */
234 void (*to_open) PARAMS ((char *, int));
235 void (*to_close) PARAMS ((int));
236 void (*to_attach) PARAMS ((char *, int));
237 void (*to_detach) PARAMS ((char *, int));
238 void (*to_resume) PARAMS ((int, int, enum target_signal));
239 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
240 void (*to_fetch_registers) PARAMS ((int));
241 void (*to_store_registers) PARAMS ((int));
242 void (*to_prepare_to_store) PARAMS ((void));
243
244 /* Transfer LEN bytes of memory between GDB address MYADDR and
245 target address MEMADDR. If WRITE, transfer them to the target, else
246 transfer them from the target. TARGET is the target from which we
247 get this function.
248
249 Return value, N, is one of the following:
250
251 0 means that we can't handle this. If errno has been set, it is the
252 error which prevented us from doing it (FIXME: What about bfd_error?).
253
254 positive (call it N) means that we have transferred N bytes
255 starting at MEMADDR. We might be able to handle more bytes
256 beyond this length, but no promises.
257
258 negative (call its absolute value N) means that we cannot
259 transfer right at MEMADDR, but we could transfer at least
260 something at MEMADDR + N. */
261
262 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
263 int len, int write,
264 struct target_ops * target));
265
266 #if 0
267 /* Enable this after 4.12. */
268
269 /* Search target memory. Start at STARTADDR and take LEN bytes of
270 target memory, and them with MASK, and compare to DATA. If they
271 match, set *ADDR_FOUND to the address we found it at, store the data
272 we found at LEN bytes starting at DATA_FOUND, and return. If
273 not, add INCREMENT to the search address and keep trying until
274 the search address is outside of the range [LORANGE,HIRANGE).
275
276 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
277 void (*to_search) PARAMS ((int len, char *data, char *mask,
278 CORE_ADDR startaddr, int increment,
279 CORE_ADDR lorange, CORE_ADDR hirange,
280 CORE_ADDR *addr_found, char *data_found));
281
282 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
283 (*current_target.to_search) (len, data, mask, startaddr, increment, \
284 lorange, hirange, addr_found, data_found)
285 #endif /* 0 */
286
287 void (*to_files_info) PARAMS ((struct target_ops *));
288 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
289 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
290 void (*to_terminal_init) PARAMS ((void));
291 void (*to_terminal_inferior) PARAMS ((void));
292 void (*to_terminal_ours_for_output) PARAMS ((void));
293 void (*to_terminal_ours) PARAMS ((void));
294 void (*to_terminal_info) PARAMS ((char *, int));
295 void (*to_kill) PARAMS ((void));
296 void (*to_load) PARAMS ((char *, int));
297 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
298 void (*to_create_inferior) PARAMS ((char *, char *, char **));
299 void (*to_mourn_inferior) PARAMS ((void));
300 int (*to_can_run) PARAMS ((void));
301 void (*to_notice_signals) PARAMS ((int pid));
302 int (*to_thread_alive) PARAMS ((int pid));
303 void (*to_stop) PARAMS ((void));
304 enum strata to_stratum;
305 struct target_ops
306 *DONT_USE; /* formerly to_next */
307 int to_has_all_memory;
308 int to_has_memory;
309 int to_has_stack;
310 int to_has_registers;
311 int to_has_execution;
312 struct section_table
313 *to_sections;
314 struct section_table
315 *to_sections_end;
316 int to_magic;
317 /* Need sub-structure for target machine related rather than comm related? */
318 };
319
320 /* Magic number for checking ops size. If a struct doesn't end with this
321 number, somebody changed the declaration but didn't change all the
322 places that initialize one. */
323
324 #define OPS_MAGIC 3840
325
326 /* The ops structure for our "current" target process. This should
327 never be NULL. If there is no target, it points to the dummy_target. */
328
329 extern struct target_ops current_target;
330
331 /* An item on the target stack. */
332
333 struct target_stack_item
334 {
335 struct target_stack_item *next;
336 struct target_ops *target_ops;
337 };
338
339 /* The target stack. */
340
341 extern struct target_stack_item *target_stack;
342
343 /* Define easy words for doing these operations on our current target. */
344
345 #define target_shortname (current_target.to_shortname)
346 #define target_longname (current_target.to_longname)
347
348 /* The open routine takes the rest of the parameters from the command,
349 and (if successful) pushes a new target onto the stack.
350 Targets should supply this routine, if only to provide an error message. */
351 #define target_open(name, from_tty) \
352 (*current_target.to_open) (name, from_tty)
353
354 /* Does whatever cleanup is required for a target that we are no longer
355 going to be calling. Argument says whether we are quitting gdb and
356 should not get hung in case of errors, or whether we want a clean
357 termination even if it takes a while. This routine is automatically
358 always called just before a routine is popped off the target stack.
359 Closing file descriptors and freeing memory are typical things it should
360 do. */
361
362 #define target_close(quitting) \
363 (*current_target.to_close) (quitting)
364
365 /* Attaches to a process on the target side. Arguments are as passed
366 to the `attach' command by the user. This routine can be called
367 when the target is not on the target-stack, if the target_can_run
368 routine returns 1; in that case, it must push itself onto the stack.
369 Upon exit, the target should be ready for normal operations, and
370 should be ready to deliver the status of the process immediately
371 (without waiting) to an upcoming target_wait call. */
372
373 #define target_attach(args, from_tty) \
374 (*current_target.to_attach) (args, from_tty)
375
376 /* Takes a program previously attached to and detaches it.
377 The program may resume execution (some targets do, some don't) and will
378 no longer stop on signals, etc. We better not have left any breakpoints
379 in the program or it'll die when it hits one. ARGS is arguments
380 typed by the user (e.g. a signal to send the process). FROM_TTY
381 says whether to be verbose or not. */
382
383 extern void
384 target_detach PARAMS ((char *, int));
385
386 /* Resume execution of the target process PID. STEP says whether to
387 single-step or to run free; SIGGNAL is the signal to be given to
388 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
389 pass TARGET_SIGNAL_DEFAULT. */
390
391 #define target_resume(pid, step, siggnal) \
392 (*current_target.to_resume) (pid, step, siggnal)
393
394 /* Wait for process pid to do something. Pid = -1 to wait for any pid
395 to do something. Return pid of child, or -1 in case of error;
396 store status through argument pointer STATUS. Note that it is
397 *not* OK to return_to_top_level out of target_wait without popping
398 the debugging target from the stack; GDB isn't prepared to get back
399 to the prompt with a debugging target but without the frame cache,
400 stop_pc, etc., set up. */
401
402 #define target_wait(pid, status) \
403 (*current_target.to_wait) (pid, status)
404
405 /* Fetch register REGNO, or all regs if regno == -1. No result. */
406
407 #define target_fetch_registers(regno) \
408 (*current_target.to_fetch_registers) (regno)
409
410 /* Store at least register REGNO, or all regs if REGNO == -1.
411 It can store as many registers as it wants to, so target_prepare_to_store
412 must have been previously called. Calls error() if there are problems. */
413
414 #define target_store_registers(regs) \
415 (*current_target.to_store_registers) (regs)
416
417 /* Get ready to modify the registers array. On machines which store
418 individual registers, this doesn't need to do anything. On machines
419 which store all the registers in one fell swoop, this makes sure
420 that REGISTERS contains all the registers from the program being
421 debugged. */
422
423 #define target_prepare_to_store() \
424 (*current_target.to_prepare_to_store) ()
425
426 extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
427
428 extern int
429 target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
430
431 extern int
432 target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
433 asection *bfd_section));
434
435 extern int
436 target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
437
438 extern int
439 target_write_memory PARAMS ((CORE_ADDR, char *, int));
440
441 extern int
442 xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
443
444 extern int
445 child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
446
447 /* From exec.c */
448
449 extern void
450 print_section_info PARAMS ((struct target_ops *, bfd *));
451
452 /* Print a line about the current target. */
453
454 #define target_files_info() \
455 (*current_target.to_files_info) (&current_target)
456
457 /* Insert a breakpoint at address ADDR in the target machine.
458 SAVE is a pointer to memory allocated for saving the
459 target contents. It is guaranteed by the caller to be long enough
460 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
461 an errno value. */
462
463 #define target_insert_breakpoint(addr, save) \
464 (*current_target.to_insert_breakpoint) (addr, save)
465
466 /* Remove a breakpoint at address ADDR in the target machine.
467 SAVE is a pointer to the same save area
468 that was previously passed to target_insert_breakpoint.
469 Result is 0 for success, or an errno value. */
470
471 #define target_remove_breakpoint(addr, save) \
472 (*current_target.to_remove_breakpoint) (addr, save)
473
474 /* Initialize the terminal settings we record for the inferior,
475 before we actually run the inferior. */
476
477 #define target_terminal_init() \
478 (*current_target.to_terminal_init) ()
479
480 /* Put the inferior's terminal settings into effect.
481 This is preparation for starting or resuming the inferior. */
482
483 #define target_terminal_inferior() \
484 (*current_target.to_terminal_inferior) ()
485
486 /* Put some of our terminal settings into effect,
487 enough to get proper results from our output,
488 but do not change into or out of RAW mode
489 so that no input is discarded.
490
491 After doing this, either terminal_ours or terminal_inferior
492 should be called to get back to a normal state of affairs. */
493
494 #define target_terminal_ours_for_output() \
495 (*current_target.to_terminal_ours_for_output) ()
496
497 /* Put our terminal settings into effect.
498 First record the inferior's terminal settings
499 so they can be restored properly later. */
500
501 #define target_terminal_ours() \
502 (*current_target.to_terminal_ours) ()
503
504 /* Print useful information about our terminal status, if such a thing
505 exists. */
506
507 #define target_terminal_info(arg, from_tty) \
508 (*current_target.to_terminal_info) (arg, from_tty)
509
510 /* Kill the inferior process. Make it go away. */
511
512 #define target_kill() \
513 (*current_target.to_kill) ()
514
515 /* Load an executable file into the target process. This is expected to
516 not only bring new code into the target process, but also to update
517 GDB's symbol tables to match. */
518
519 #define target_load(arg, from_tty) \
520 (*current_target.to_load) (arg, from_tty)
521
522 /* Look up a symbol in the target's symbol table. NAME is the symbol
523 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
524 should be returned. The result is 0 if successful, nonzero if the
525 symbol does not exist in the target environment. This function should
526 not call error() if communication with the target is interrupted, since
527 it is called from symbol reading, but should return nonzero, possibly
528 doing a complain(). */
529
530 #define target_lookup_symbol(name, addrp) \
531 (*current_target.to_lookup_symbol) (name, addrp)
532
533 /* Start an inferior process and set inferior_pid to its pid.
534 EXEC_FILE is the file to run.
535 ALLARGS is a string containing the arguments to the program.
536 ENV is the environment vector to pass. Errors reported with error().
537 On VxWorks and various standalone systems, we ignore exec_file. */
538
539 #define target_create_inferior(exec_file, args, env) \
540 (*current_target.to_create_inferior) (exec_file, args, env)
541
542 /* The inferior process has died. Do what is right. */
543
544 #define target_mourn_inferior() \
545 (*current_target.to_mourn_inferior) ()
546
547 /* Does target have enough data to do a run or attach command? */
548
549 #define target_can_run(t) \
550 ((t)->to_can_run) ()
551
552 /* post process changes to signal handling in the inferior. */
553
554 #define target_notice_signals(pid) \
555 (*current_target.to_notice_signals) (pid)
556
557 /* Check to see if a thread is still alive. */
558
559 #define target_thread_alive(pid) \
560 (*current_target.to_thread_alive) (pid)
561
562 /* Make target stop in a continuable fashion. (For instance, under Unix, this
563 should act like SIGSTOP). This function is normally used by GUIs to
564 implement a stop button. */
565
566 #define target_stop() current_target.to_stop ()
567
568 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
569
570 #define target_next \
571 (current_target.to_next)
572
573 /* Does the target include all of memory, or only part of it? This
574 determines whether we look up the target chain for other parts of
575 memory if this target can't satisfy a request. */
576
577 #define target_has_all_memory \
578 (current_target.to_has_all_memory)
579
580 /* Does the target include memory? (Dummy targets don't.) */
581
582 #define target_has_memory \
583 (current_target.to_has_memory)
584
585 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
586 we start a process.) */
587
588 #define target_has_stack \
589 (current_target.to_has_stack)
590
591 /* Does the target have registers? (Exec files don't.) */
592
593 #define target_has_registers \
594 (current_target.to_has_registers)
595
596 /* Does the target have execution? Can we make it jump (through
597 hoops), or pop its stack a few times? FIXME: If this is to work that
598 way, it needs to check whether an inferior actually exists.
599 remote-udi.c and probably other targets can be the current target
600 when the inferior doesn't actually exist at the moment. Right now
601 this just tells us whether this target is *capable* of execution. */
602
603 #define target_has_execution \
604 (current_target.to_has_execution)
605
606 extern void target_link PARAMS ((char *, CORE_ADDR *));
607
608 /* Converts a process id to a string. Usually, the string just contains
609 `process xyz', but on some systems it may contain
610 `process xyz thread abc'. */
611
612 #ifndef target_pid_to_str
613 #define target_pid_to_str(PID) \
614 normal_pid_to_str (PID)
615 extern char *normal_pid_to_str PARAMS ((int pid));
616 #endif
617
618 #ifndef target_new_objfile
619 #define target_new_objfile(OBJFILE)
620 #endif
621
622 /* Hook to call target-dependant code after reading in a new symbol table. */
623
624 #ifndef TARGET_SYMFILE_POSTREAD
625 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
626 #endif
627
628 /* Hook to call target dependant code just after inferior target process has
629 started. */
630
631 #ifndef TARGET_CREATE_INFERIOR_HOOK
632 #define TARGET_CREATE_INFERIOR_HOOK(PID)
633 #endif
634
635 /* Hardware watchpoint interfaces. */
636
637 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
638 write). */
639
640 #ifndef STOPPED_BY_WATCHPOINT
641 #define STOPPED_BY_WATCHPOINT(w) 0
642 #endif
643
644 /* Provide defaults for systems that don't support hardware watchpoints. */
645
646 #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
647
648 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
649 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
650 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
651 (including this one?). OTHERTYPE is who knows what... */
652
653 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
654
655 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
656 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
657 success, non-zero for failure. */
658
659 #define target_remove_watchpoint(ADDR,LEN,TYPE) -1
660 #define target_insert_watchpoint(ADDR,LEN,TYPE) -1
661
662 #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
663
664 #ifndef target_insert_hw_breakpoint
665 #define target_remove_hw_breakpoint(ADDR,SHADOW) -1
666 #define target_insert_hw_breakpoint(ADDR,SHADOW) -1
667 #endif
668
669 #ifndef target_stopped_data_address
670 #define target_stopped_data_address() 0
671 #endif
672
673 /* If defined, then we need to decr pc by this much after a hardware break-
674 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
675
676 #ifndef DECR_PC_AFTER_HW_BREAK
677 #define DECR_PC_AFTER_HW_BREAK 0
678 #endif
679
680 /* Routines for maintenance of the target structures...
681
682 add_target: Add a target to the list of all possible targets.
683
684 push_target: Make this target the top of the stack of currently used
685 targets, within its particular stratum of the stack. Result
686 is 0 if now atop the stack, nonzero if not on top (maybe
687 should warn user).
688
689 unpush_target: Remove this from the stack of currently used targets,
690 no matter where it is on the list. Returns 0 if no
691 change, 1 if removed from stack.
692
693 pop_target: Remove the top thing on the stack of current targets. */
694
695 extern void
696 add_target PARAMS ((struct target_ops *));
697
698 extern int
699 push_target PARAMS ((struct target_ops *));
700
701 extern int
702 unpush_target PARAMS ((struct target_ops *));
703
704 extern void
705 target_preopen PARAMS ((int));
706
707 extern void
708 pop_target PARAMS ((void));
709
710 /* Struct section_table maps address ranges to file sections. It is
711 mostly used with BFD files, but can be used without (e.g. for handling
712 raw disks, or files not in formats handled by BFD). */
713
714 struct section_table {
715 CORE_ADDR addr; /* Lowest address in section */
716 CORE_ADDR endaddr; /* 1+highest address in section */
717
718 sec_ptr the_bfd_section;
719
720 bfd *bfd; /* BFD file pointer */
721 };
722
723 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
724 Returns 0 if OK, 1 on error. */
725
726 extern int
727 build_section_table PARAMS ((bfd *, struct section_table **,
728 struct section_table **));
729
730 /* From mem-break.c */
731
732 extern int
733 memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
734
735 extern int
736 memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
737
738 unsigned char *
739 memory_breakpoint_from_pc PARAMS ((CORE_ADDR *pcptr, int *lenptr));
740
741 /* From target.c */
742
743 extern void
744 initialize_targets PARAMS ((void));
745
746 extern void
747 noprocess PARAMS ((void));
748
749 extern void
750 find_default_attach PARAMS ((char *, int));
751
752 extern void
753 find_default_create_inferior PARAMS ((char *, char *, char **));
754
755 extern struct target_ops *
756 find_core_target PARAMS ((void));
757 \f
758 /* Stuff that should be shared among the various remote targets. */
759
760 /* Debugging level. 0 is off, and non-zero values mean to print some debug
761 information (higher values, more information). */
762 extern int remote_debug;
763
764 /* Speed in bits per second, or -1 which means don't mess with the speed. */
765 extern int baud_rate;
766 /* Timeout limit for response from target. */
767 extern int remote_timeout;
768
769 extern asection *target_memory_bfd_section;
770 \f
771 /* Functions for helping to write a native target. */
772
773 /* This is for native targets which use a unix/POSIX-style waitstatus. */
774 extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
775
776 /* Convert between host signal numbers and enum target_signal's. */
777 extern enum target_signal target_signal_from_host PARAMS ((int));
778 extern int target_signal_to_host PARAMS ((enum target_signal));
779
780 /* Convert from a number used in a GDB command to an enum target_signal. */
781 extern enum target_signal target_signal_from_command PARAMS ((int));
782
783 /* Any target can call this to switch to remote protocol (in remote.c). */
784 extern void push_remote_target PARAMS ((char *name, int from_tty));
785 \f
786 /* Imported from machine dependent code */
787
788 #ifdef NO_SINGLE_STEP
789 extern int one_stepped;
790 extern void single_step PARAMS ((enum target_signal));
791 #endif /* NO_SINGLE_STEP */
792
793 #endif /* !defined (TARGET_H) */
This page took 0.044515 seconds and 4 git commands to generate.