e03880205666578174206bd6a8dfb5197c9ddfe1
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 /* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44 #include "bfd.h"
45 #include "symtab.h"
46
47 enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
53 process_stratum, /* Executing processes */
54 thread_stratum /* Executing threads */
55 };
56
57 enum thread_control_capabilities
58 {
59 tc_none = 0, /* Default: can't control thread execution. */
60 tc_schedlock = 1, /* Can lock the thread scheduler. */
61 tc_switch = 2 /* Can switch the running thread on demand. */
62 };
63
64 /* Stuff for target_wait. */
65
66 /* Generally, what has the program done? */
67 enum target_waitkind
68 {
69 /* The program has exited. The exit status is in value.integer. */
70 TARGET_WAITKIND_EXITED,
71
72 /* The program has stopped with a signal. Which signal is in value.sig. */
73 TARGET_WAITKIND_STOPPED,
74
75 /* The program has terminated with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_SIGNALLED,
78
79 /* The program is letting us know that it dynamically loaded something
80 (e.g. it called load(2) on AIX). */
81 TARGET_WAITKIND_LOADED,
82
83 /* The program has forked. A "related" process' ID is in value.related_pid.
84 I.e., if the child forks, value.related_pid is the parent's ID.
85 */
86 TARGET_WAITKIND_FORKED,
87
88 /* The program has vforked. A "related" process's ID is in value.related_pid.
89 */
90 TARGET_WAITKIND_VFORKED,
91
92 /* The program has exec'ed a new executable file. The new file's pathname
93 is pointed to by value.execd_pathname.
94 */
95 TARGET_WAITKIND_EXECD,
96
97 /* The program has entered or returned from a system call. On HP-UX, this
98 is used in the hardware watchpoint implementation. The syscall's unique
99 integer ID number is in value.syscall_id;
100 */
101 TARGET_WAITKIND_SYSCALL_ENTRY,
102 TARGET_WAITKIND_SYSCALL_RETURN,
103
104 /* Nothing happened, but we stopped anyway. This perhaps should be handled
105 within target_wait, but I'm not sure target_wait should be resuming the
106 inferior. */
107 TARGET_WAITKIND_SPURIOUS
108 };
109
110 /* The numbering of these signals is chosen to match traditional unix
111 signals (insofar as various unices use the same numbers, anyway).
112 It is also the numbering of the GDB remote protocol. Other remote
113 protocols, if they use a different numbering, should make sure to
114 translate appropriately.
115
116 Since these numbers have actually made it out into other software
117 (stubs, etc.), you mustn't disturb the assigned numbering. If you
118 need to add new signals here, add them to the end of the explicitly
119 numbered signals.
120
121 This is based strongly on Unix/POSIX signals for several reasons:
122 (1) This set of signals represents a widely-accepted attempt to
123 represent events of this sort in a portable fashion, (2) we want a
124 signal to make it from wait to child_wait to the user intact, (3) many
125 remote protocols use a similar encoding. However, it is
126 recognized that this set of signals has limitations (such as not
127 distinguishing between various kinds of SIGSEGV, or not
128 distinguishing hitting a breakpoint from finishing a single step).
129 So in the future we may get around this either by adding additional
130 signals for breakpoint, single-step, etc., or by adding signal
131 codes; the latter seems more in the spirit of what BSD, System V,
132 etc. are doing to address these issues. */
133
134 /* For an explanation of what each signal means, see
135 target_signal_to_string. */
136
137 enum target_signal
138 {
139 /* Used some places (e.g. stop_signal) to record the concept that
140 there is no signal. */
141 TARGET_SIGNAL_0 = 0,
142 TARGET_SIGNAL_FIRST = 0,
143 TARGET_SIGNAL_HUP = 1,
144 TARGET_SIGNAL_INT = 2,
145 TARGET_SIGNAL_QUIT = 3,
146 TARGET_SIGNAL_ILL = 4,
147 TARGET_SIGNAL_TRAP = 5,
148 TARGET_SIGNAL_ABRT = 6,
149 TARGET_SIGNAL_EMT = 7,
150 TARGET_SIGNAL_FPE = 8,
151 TARGET_SIGNAL_KILL = 9,
152 TARGET_SIGNAL_BUS = 10,
153 TARGET_SIGNAL_SEGV = 11,
154 TARGET_SIGNAL_SYS = 12,
155 TARGET_SIGNAL_PIPE = 13,
156 TARGET_SIGNAL_ALRM = 14,
157 TARGET_SIGNAL_TERM = 15,
158 TARGET_SIGNAL_URG = 16,
159 TARGET_SIGNAL_STOP = 17,
160 TARGET_SIGNAL_TSTP = 18,
161 TARGET_SIGNAL_CONT = 19,
162 TARGET_SIGNAL_CHLD = 20,
163 TARGET_SIGNAL_TTIN = 21,
164 TARGET_SIGNAL_TTOU = 22,
165 TARGET_SIGNAL_IO = 23,
166 TARGET_SIGNAL_XCPU = 24,
167 TARGET_SIGNAL_XFSZ = 25,
168 TARGET_SIGNAL_VTALRM = 26,
169 TARGET_SIGNAL_PROF = 27,
170 TARGET_SIGNAL_WINCH = 28,
171 TARGET_SIGNAL_LOST = 29,
172 TARGET_SIGNAL_USR1 = 30,
173 TARGET_SIGNAL_USR2 = 31,
174 TARGET_SIGNAL_PWR = 32,
175 /* Similar to SIGIO. Perhaps they should have the same number. */
176 TARGET_SIGNAL_POLL = 33,
177 TARGET_SIGNAL_WIND = 34,
178 TARGET_SIGNAL_PHONE = 35,
179 TARGET_SIGNAL_WAITING = 36,
180 TARGET_SIGNAL_LWP = 37,
181 TARGET_SIGNAL_DANGER = 38,
182 TARGET_SIGNAL_GRANT = 39,
183 TARGET_SIGNAL_RETRACT = 40,
184 TARGET_SIGNAL_MSG = 41,
185 TARGET_SIGNAL_SOUND = 42,
186 TARGET_SIGNAL_SAK = 43,
187 TARGET_SIGNAL_PRIO = 44,
188 TARGET_SIGNAL_REALTIME_33 = 45,
189 TARGET_SIGNAL_REALTIME_34 = 46,
190 TARGET_SIGNAL_REALTIME_35 = 47,
191 TARGET_SIGNAL_REALTIME_36 = 48,
192 TARGET_SIGNAL_REALTIME_37 = 49,
193 TARGET_SIGNAL_REALTIME_38 = 50,
194 TARGET_SIGNAL_REALTIME_39 = 51,
195 TARGET_SIGNAL_REALTIME_40 = 52,
196 TARGET_SIGNAL_REALTIME_41 = 53,
197 TARGET_SIGNAL_REALTIME_42 = 54,
198 TARGET_SIGNAL_REALTIME_43 = 55,
199 TARGET_SIGNAL_REALTIME_44 = 56,
200 TARGET_SIGNAL_REALTIME_45 = 57,
201 TARGET_SIGNAL_REALTIME_46 = 58,
202 TARGET_SIGNAL_REALTIME_47 = 59,
203 TARGET_SIGNAL_REALTIME_48 = 60,
204 TARGET_SIGNAL_REALTIME_49 = 61,
205 TARGET_SIGNAL_REALTIME_50 = 62,
206 TARGET_SIGNAL_REALTIME_51 = 63,
207 TARGET_SIGNAL_REALTIME_52 = 64,
208 TARGET_SIGNAL_REALTIME_53 = 65,
209 TARGET_SIGNAL_REALTIME_54 = 66,
210 TARGET_SIGNAL_REALTIME_55 = 67,
211 TARGET_SIGNAL_REALTIME_56 = 68,
212 TARGET_SIGNAL_REALTIME_57 = 69,
213 TARGET_SIGNAL_REALTIME_58 = 70,
214 TARGET_SIGNAL_REALTIME_59 = 71,
215 TARGET_SIGNAL_REALTIME_60 = 72,
216 TARGET_SIGNAL_REALTIME_61 = 73,
217 TARGET_SIGNAL_REALTIME_62 = 74,
218 TARGET_SIGNAL_REALTIME_63 = 75,
219
220 /* Used internally by Solaris threads. See signal(5) on Solaris. */
221 TARGET_SIGNAL_CANCEL = 76,
222
223 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
224 Linux does, and we can't disturb the numbering, since it's part
225 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
226 is number 76. */
227 TARGET_SIGNAL_REALTIME_32,
228
229 #if defined(MACH) || defined(__MACH__)
230 /* Mach exceptions */
231 TARGET_EXC_BAD_ACCESS,
232 TARGET_EXC_BAD_INSTRUCTION,
233 TARGET_EXC_ARITHMETIC,
234 TARGET_EXC_EMULATION,
235 TARGET_EXC_SOFTWARE,
236 TARGET_EXC_BREAKPOINT,
237 #endif
238 TARGET_SIGNAL_INFO,
239
240 /* Some signal we don't know about. */
241 TARGET_SIGNAL_UNKNOWN,
242
243 /* Use whatever signal we use when one is not specifically specified
244 (for passing to proceed and so on). */
245 TARGET_SIGNAL_DEFAULT,
246
247 /* Last and unused enum value, for sizing arrays, etc. */
248 TARGET_SIGNAL_LAST
249 };
250
251 struct target_waitstatus
252 {
253 enum target_waitkind kind;
254
255 /* Forked child pid, execd pathname, exit status or signal number. */
256 union
257 {
258 int integer;
259 enum target_signal sig;
260 int related_pid;
261 char *execd_pathname;
262 int syscall_id;
263 }
264 value;
265 };
266
267 /* Return the string for a signal. */
268 extern char *target_signal_to_string PARAMS ((enum target_signal));
269
270 /* Return the name (SIGHUP, etc.) for a signal. */
271 extern char *target_signal_to_name PARAMS ((enum target_signal));
272
273 /* Given a name (SIGHUP, etc.), return its signal. */
274 enum target_signal target_signal_from_name PARAMS ((char *));
275 \f
276
277 /* If certain kinds of activity happen, target_wait should perform
278 callbacks. */
279 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
280 on TARGET_ACTIVITY_FD. */
281 extern int target_activity_fd;
282 /* Returns zero to leave the inferior alone, one to interrupt it. */
283 extern int (*target_activity_function) PARAMS ((void));
284 \f
285 struct target_ops
286 {
287 char *to_shortname; /* Name this target type */
288 char *to_longname; /* Name for printing */
289 char *to_doc; /* Documentation. Does not include trailing
290 newline, and starts with a one-line descrip-
291 tion (probably similar to to_longname). */
292 void (*to_open) PARAMS ((char *, int));
293 void (*to_close) PARAMS ((int));
294 void (*to_attach) PARAMS ((char *, int));
295 void (*to_post_attach) PARAMS ((int));
296 void (*to_require_attach) PARAMS ((char *, int));
297 void (*to_detach) PARAMS ((char *, int));
298 void (*to_require_detach) PARAMS ((int, char *, int));
299 void (*to_resume) PARAMS ((int, int, enum target_signal));
300 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
301 void (*to_post_wait) PARAMS ((int, int));
302 void (*to_fetch_registers) PARAMS ((int));
303 void (*to_store_registers) PARAMS ((int));
304 void (*to_prepare_to_store) PARAMS ((void));
305
306 /* Transfer LEN bytes of memory between GDB address MYADDR and
307 target address MEMADDR. If WRITE, transfer them to the target, else
308 transfer them from the target. TARGET is the target from which we
309 get this function.
310
311 Return value, N, is one of the following:
312
313 0 means that we can't handle this. If errno has been set, it is the
314 error which prevented us from doing it (FIXME: What about bfd_error?).
315
316 positive (call it N) means that we have transferred N bytes
317 starting at MEMADDR. We might be able to handle more bytes
318 beyond this length, but no promises.
319
320 negative (call its absolute value N) means that we cannot
321 transfer right at MEMADDR, but we could transfer at least
322 something at MEMADDR + N. */
323
324 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
325 int len, int write,
326 struct target_ops * target));
327
328 #if 0
329 /* Enable this after 4.12. */
330
331 /* Search target memory. Start at STARTADDR and take LEN bytes of
332 target memory, and them with MASK, and compare to DATA. If they
333 match, set *ADDR_FOUND to the address we found it at, store the data
334 we found at LEN bytes starting at DATA_FOUND, and return. If
335 not, add INCREMENT to the search address and keep trying until
336 the search address is outside of the range [LORANGE,HIRANGE).
337
338 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
339 void (*to_search) PARAMS ((int len, char *data, char *mask,
340 CORE_ADDR startaddr, int increment,
341 CORE_ADDR lorange, CORE_ADDR hirange,
342 CORE_ADDR * addr_found, char *data_found));
343
344 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
345 (*current_target.to_search) (len, data, mask, startaddr, increment, \
346 lorange, hirange, addr_found, data_found)
347 #endif /* 0 */
348
349 void (*to_files_info) PARAMS ((struct target_ops *));
350 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
351 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
352 void (*to_terminal_init) PARAMS ((void));
353 void (*to_terminal_inferior) PARAMS ((void));
354 void (*to_terminal_ours_for_output) PARAMS ((void));
355 void (*to_terminal_ours) PARAMS ((void));
356 void (*to_terminal_info) PARAMS ((char *, int));
357 void (*to_kill) PARAMS ((void));
358 void (*to_load) PARAMS ((char *, int));
359 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
360 void (*to_create_inferior) PARAMS ((char *, char *, char **));
361 void (*to_post_startup_inferior) PARAMS ((int));
362 void (*to_acknowledge_created_inferior) PARAMS ((int));
363 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
364 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
365 int (*to_insert_fork_catchpoint) PARAMS ((int));
366 int (*to_remove_fork_catchpoint) PARAMS ((int));
367 int (*to_insert_vfork_catchpoint) PARAMS ((int));
368 int (*to_remove_vfork_catchpoint) PARAMS ((int));
369 int (*to_has_forked) PARAMS ((int, int *));
370 int (*to_has_vforked) PARAMS ((int, int *));
371 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
372 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
373 int (*to_insert_exec_catchpoint) PARAMS ((int));
374 int (*to_remove_exec_catchpoint) PARAMS ((int));
375 int (*to_has_execd) PARAMS ((int, char **));
376 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
377 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
378 int (*to_has_exited) PARAMS ((int, int, int *));
379 void (*to_mourn_inferior) PARAMS ((void));
380 int (*to_can_run) PARAMS ((void));
381 void (*to_notice_signals) PARAMS ((int pid));
382 int (*to_thread_alive) PARAMS ((int pid));
383 void (*to_find_new_threads) PARAMS ((void));
384 void (*to_stop) PARAMS ((void));
385 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
386 void (*to_rcmd) (char *command, struct gdb_file *output);
387 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
388 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
389 char *(*to_pid_to_exec_file) PARAMS ((int pid));
390 char *(*to_core_file_to_sym_file) PARAMS ((char *));
391 enum strata to_stratum;
392 struct target_ops
393 *DONT_USE; /* formerly to_next */
394 int to_has_all_memory;
395 int to_has_memory;
396 int to_has_stack;
397 int to_has_registers;
398 int to_has_execution;
399 int to_has_thread_control; /* control thread execution */
400 int to_has_async_exec;
401 struct section_table
402 *to_sections;
403 struct section_table
404 *to_sections_end;
405 int to_magic;
406 /* Need sub-structure for target machine related rather than comm related? */
407 };
408
409 /* Magic number for checking ops size. If a struct doesn't end with this
410 number, somebody changed the declaration but didn't change all the
411 places that initialize one. */
412
413 #define OPS_MAGIC 3840
414
415 /* The ops structure for our "current" target process. This should
416 never be NULL. If there is no target, it points to the dummy_target. */
417
418 extern struct target_ops current_target;
419
420 /* An item on the target stack. */
421
422 struct target_stack_item
423 {
424 struct target_stack_item *next;
425 struct target_ops *target_ops;
426 };
427
428 /* The target stack. */
429
430 extern struct target_stack_item *target_stack;
431
432 /* Define easy words for doing these operations on our current target. */
433
434 #define target_shortname (current_target.to_shortname)
435 #define target_longname (current_target.to_longname)
436
437 /* The open routine takes the rest of the parameters from the command,
438 and (if successful) pushes a new target onto the stack.
439 Targets should supply this routine, if only to provide an error message. */
440 #define target_open(name, from_tty) \
441 (*current_target.to_open) (name, from_tty)
442
443 /* Does whatever cleanup is required for a target that we are no longer
444 going to be calling. Argument says whether we are quitting gdb and
445 should not get hung in case of errors, or whether we want a clean
446 termination even if it takes a while. This routine is automatically
447 always called just before a routine is popped off the target stack.
448 Closing file descriptors and freeing memory are typical things it should
449 do. */
450
451 #define target_close(quitting) \
452 (*current_target.to_close) (quitting)
453
454 /* Attaches to a process on the target side. Arguments are as passed
455 to the `attach' command by the user. This routine can be called
456 when the target is not on the target-stack, if the target_can_run
457 routine returns 1; in that case, it must push itself onto the stack.
458 Upon exit, the target should be ready for normal operations, and
459 should be ready to deliver the status of the process immediately
460 (without waiting) to an upcoming target_wait call. */
461
462 #define target_attach(args, from_tty) \
463 (*current_target.to_attach) (args, from_tty)
464
465 /* The target_attach operation places a process under debugger control,
466 and stops the process.
467
468 This operation provides a target-specific hook that allows the
469 necessary bookkeeping to be performed after an attach completes.
470 */
471 #define target_post_attach(pid) \
472 (*current_target.to_post_attach) (pid)
473
474 /* Attaches to a process on the target side, if not already attached.
475 (If already attached, takes no action.)
476
477 This operation can be used to follow the child process of a fork.
478 On some targets, such child processes of an original inferior process
479 are automatically under debugger control, and thus do not require an
480 actual attach operation. */
481
482 #define target_require_attach(args, from_tty) \
483 (*current_target.to_require_attach) (args, from_tty)
484
485 /* Takes a program previously attached to and detaches it.
486 The program may resume execution (some targets do, some don't) and will
487 no longer stop on signals, etc. We better not have left any breakpoints
488 in the program or it'll die when it hits one. ARGS is arguments
489 typed by the user (e.g. a signal to send the process). FROM_TTY
490 says whether to be verbose or not. */
491
492 extern void
493 target_detach PARAMS ((char *, int));
494
495 /* Detaches from a process on the target side, if not already dettached.
496 (If already detached, takes no action.)
497
498 This operation can be used to follow the parent process of a fork.
499 On some targets, such child processes of an original inferior process
500 are automatically under debugger control, and thus do require an actual
501 detach operation.
502
503 PID is the process id of the child to detach from.
504 ARGS is arguments typed by the user (e.g. a signal to send the process).
505 FROM_TTY says whether to be verbose or not. */
506
507 #define target_require_detach(pid, args, from_tty) \
508 (*current_target.to_require_detach) (pid, args, from_tty)
509
510 /* Resume execution of the target process PID. STEP says whether to
511 single-step or to run free; SIGGNAL is the signal to be given to
512 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
513 pass TARGET_SIGNAL_DEFAULT. */
514
515 #define target_resume(pid, step, siggnal) \
516 (*current_target.to_resume) (pid, step, siggnal)
517
518 /* Wait for process pid to do something. Pid = -1 to wait for any pid
519 to do something. Return pid of child, or -1 in case of error;
520 store status through argument pointer STATUS. Note that it is
521 *not* OK to return_to_top_level out of target_wait without popping
522 the debugging target from the stack; GDB isn't prepared to get back
523 to the prompt with a debugging target but without the frame cache,
524 stop_pc, etc., set up. */
525
526 #define target_wait(pid, status) \
527 (*current_target.to_wait) (pid, status)
528
529 /* The target_wait operation waits for a process event to occur, and
530 thereby stop the process.
531
532 On some targets, certain events may happen in sequences. gdb's
533 correct response to any single event of such a sequence may require
534 knowledge of what earlier events in the sequence have been seen.
535
536 This operation provides a target-specific hook that allows the
537 necessary bookkeeping to be performed to track such sequences.
538 */
539
540 #define target_post_wait(pid, status) \
541 (*current_target.to_post_wait) (pid, status)
542
543 /* Fetch register REGNO, or all regs if regno == -1. No result. */
544
545 #define target_fetch_registers(regno) \
546 (*current_target.to_fetch_registers) (regno)
547
548 /* Store at least register REGNO, or all regs if REGNO == -1.
549 It can store as many registers as it wants to, so target_prepare_to_store
550 must have been previously called. Calls error() if there are problems. */
551
552 #define target_store_registers(regs) \
553 (*current_target.to_store_registers) (regs)
554
555 /* Get ready to modify the registers array. On machines which store
556 individual registers, this doesn't need to do anything. On machines
557 which store all the registers in one fell swoop, this makes sure
558 that REGISTERS contains all the registers from the program being
559 debugged. */
560
561 #define target_prepare_to_store() \
562 (*current_target.to_prepare_to_store) ()
563
564 extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
565
566 extern int
567 target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
568
569 extern int
570 target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
571 asection * bfd_section));
572
573 extern int
574 target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
575
576 extern int
577 target_write_memory PARAMS ((CORE_ADDR, char *, int));
578
579 extern int
580 xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
581
582 extern int
583 child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
584
585 extern char *
586 child_pid_to_exec_file PARAMS ((int));
587
588 extern char *
589 child_core_file_to_sym_file PARAMS ((char *));
590
591 #if defined(CHILD_POST_ATTACH)
592 extern void
593 child_post_attach PARAMS ((int));
594 #endif
595
596 extern void
597 child_post_wait PARAMS ((int, int));
598
599 extern void
600 child_post_startup_inferior PARAMS ((int));
601
602 extern void
603 child_acknowledge_created_inferior PARAMS ((int));
604
605 extern void
606 child_clone_and_follow_inferior PARAMS ((int, int *));
607
608 extern void
609 child_post_follow_inferior_by_clone PARAMS ((void));
610
611 extern int
612 child_insert_fork_catchpoint PARAMS ((int));
613
614 extern int
615 child_remove_fork_catchpoint PARAMS ((int));
616
617 extern int
618 child_insert_vfork_catchpoint PARAMS ((int));
619
620 extern int
621 child_remove_vfork_catchpoint PARAMS ((int));
622
623 extern int
624 child_has_forked PARAMS ((int, int *));
625
626 extern int
627 child_has_vforked PARAMS ((int, int *));
628
629 extern void
630 child_acknowledge_created_inferior PARAMS ((int));
631
632 extern int
633 child_can_follow_vfork_prior_to_exec PARAMS ((void));
634
635 extern void
636 child_post_follow_vfork PARAMS ((int, int, int, int));
637
638 extern int
639 child_insert_exec_catchpoint PARAMS ((int));
640
641 extern int
642 child_remove_exec_catchpoint PARAMS ((int));
643
644 extern int
645 child_has_execd PARAMS ((int, char **));
646
647 extern int
648 child_reported_exec_events_per_exec_call PARAMS ((void));
649
650 extern int
651 child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
652
653 extern int
654 child_has_exited PARAMS ((int, int, int *));
655
656 extern int
657 child_thread_alive PARAMS ((int));
658
659 /* From exec.c */
660
661 extern void
662 print_section_info PARAMS ((struct target_ops *, bfd *));
663
664 /* Print a line about the current target. */
665
666 #define target_files_info() \
667 (*current_target.to_files_info) (&current_target)
668
669 /* Insert a breakpoint at address ADDR in the target machine.
670 SAVE is a pointer to memory allocated for saving the
671 target contents. It is guaranteed by the caller to be long enough
672 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
673 an errno value. */
674
675 #define target_insert_breakpoint(addr, save) \
676 (*current_target.to_insert_breakpoint) (addr, save)
677
678 /* Remove a breakpoint at address ADDR in the target machine.
679 SAVE is a pointer to the same save area
680 that was previously passed to target_insert_breakpoint.
681 Result is 0 for success, or an errno value. */
682
683 #define target_remove_breakpoint(addr, save) \
684 (*current_target.to_remove_breakpoint) (addr, save)
685
686 /* Initialize the terminal settings we record for the inferior,
687 before we actually run the inferior. */
688
689 #define target_terminal_init() \
690 (*current_target.to_terminal_init) ()
691
692 /* Put the inferior's terminal settings into effect.
693 This is preparation for starting or resuming the inferior. */
694
695 #define target_terminal_inferior() \
696 (*current_target.to_terminal_inferior) ()
697
698 /* Put some of our terminal settings into effect,
699 enough to get proper results from our output,
700 but do not change into or out of RAW mode
701 so that no input is discarded.
702
703 After doing this, either terminal_ours or terminal_inferior
704 should be called to get back to a normal state of affairs. */
705
706 #define target_terminal_ours_for_output() \
707 (*current_target.to_terminal_ours_for_output) ()
708
709 /* Put our terminal settings into effect.
710 First record the inferior's terminal settings
711 so they can be restored properly later. */
712
713 #define target_terminal_ours() \
714 (*current_target.to_terminal_ours) ()
715
716 /* Print useful information about our terminal status, if such a thing
717 exists. */
718
719 #define target_terminal_info(arg, from_tty) \
720 (*current_target.to_terminal_info) (arg, from_tty)
721
722 /* Kill the inferior process. Make it go away. */
723
724 #define target_kill() \
725 (*current_target.to_kill) ()
726
727 /* Load an executable file into the target process. This is expected to
728 not only bring new code into the target process, but also to update
729 GDB's symbol tables to match. */
730
731 #define target_load(arg, from_tty) \
732 (*current_target.to_load) (arg, from_tty)
733
734 /* Look up a symbol in the target's symbol table. NAME is the symbol
735 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
736 should be returned. The result is 0 if successful, nonzero if the
737 symbol does not exist in the target environment. This function should
738 not call error() if communication with the target is interrupted, since
739 it is called from symbol reading, but should return nonzero, possibly
740 doing a complain(). */
741
742 #define target_lookup_symbol(name, addrp) \
743 (*current_target.to_lookup_symbol) (name, addrp)
744
745 /* Start an inferior process and set inferior_pid to its pid.
746 EXEC_FILE is the file to run.
747 ALLARGS is a string containing the arguments to the program.
748 ENV is the environment vector to pass. Errors reported with error().
749 On VxWorks and various standalone systems, we ignore exec_file. */
750
751 #define target_create_inferior(exec_file, args, env) \
752 (*current_target.to_create_inferior) (exec_file, args, env)
753
754
755 /* Some targets (such as ttrace-based HPUX) don't allow us to request
756 notification of inferior events such as fork and vork immediately
757 after the inferior is created. (This because of how gdb gets an
758 inferior created via invoking a shell to do it. In such a scenario,
759 if the shell init file has commands in it, the shell will fork and
760 exec for each of those commands, and we will see each such fork
761 event. Very bad.)
762
763 Such targets will supply an appropriate definition for this function.
764 */
765 #define target_post_startup_inferior(pid) \
766 (*current_target.to_post_startup_inferior) (pid)
767
768 /* On some targets, the sequence of starting up an inferior requires
769 some synchronization between gdb and the new inferior process, PID.
770 */
771 #define target_acknowledge_created_inferior(pid) \
772 (*current_target.to_acknowledge_created_inferior) (pid)
773
774 /* An inferior process has been created via a fork() or similar
775 system call. This function will clone the debugger, then ensure
776 that CHILD_PID is attached to by that debugger.
777
778 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
779 and FALSE otherwise. (The original and clone debuggers can use this
780 to determine which they are, if need be.)
781
782 (This is not a terribly useful feature without a GUI to prevent
783 the two debuggers from competing for shell input.)
784 */
785 #define target_clone_and_follow_inferior(child_pid,followed_child) \
786 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
787
788 /* This operation is intended to be used as the last in a sequence of
789 steps taken when following both parent and child of a fork. This
790 is used by a clone of the debugger, which will follow the child.
791
792 The original debugger has detached from this process, and the
793 clone has attached to it.
794
795 On some targets, this requires a bit of cleanup to make it work
796 correctly.
797 */
798 #define target_post_follow_inferior_by_clone() \
799 (*current_target.to_post_follow_inferior_by_clone) ()
800
801 /* On some targets, we can catch an inferior fork or vfork event when it
802 occurs. These functions insert/remove an already-created catchpoint for
803 such events.
804 */
805 #define target_insert_fork_catchpoint(pid) \
806 (*current_target.to_insert_fork_catchpoint) (pid)
807
808 #define target_remove_fork_catchpoint(pid) \
809 (*current_target.to_remove_fork_catchpoint) (pid)
810
811 #define target_insert_vfork_catchpoint(pid) \
812 (*current_target.to_insert_vfork_catchpoint) (pid)
813
814 #define target_remove_vfork_catchpoint(pid) \
815 (*current_target.to_remove_vfork_catchpoint) (pid)
816
817 /* Returns TRUE if PID has invoked the fork() system call. And,
818 also sets CHILD_PID to the process id of the other ("child")
819 inferior process that was created by that call.
820 */
821 #define target_has_forked(pid,child_pid) \
822 (*current_target.to_has_forked) (pid,child_pid)
823
824 /* Returns TRUE if PID has invoked the vfork() system call. And,
825 also sets CHILD_PID to the process id of the other ("child")
826 inferior process that was created by that call.
827 */
828 #define target_has_vforked(pid,child_pid) \
829 (*current_target.to_has_vforked) (pid,child_pid)
830
831 /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
832 anything to a vforked child before it subsequently calls exec().
833 On such platforms, we say that the debugger cannot "follow" the
834 child until it has vforked.
835
836 This function should be defined to return 1 by those targets
837 which can allow the debugger to immediately follow a vforked
838 child, and 0 if they cannot.
839 */
840 #define target_can_follow_vfork_prior_to_exec() \
841 (*current_target.to_can_follow_vfork_prior_to_exec) ()
842
843 /* An inferior process has been created via a vfork() system call.
844 The debugger has followed the parent, the child, or both. The
845 process of setting up for that follow may have required some
846 target-specific trickery to track the sequence of reported events.
847 If so, this function should be defined by those targets that
848 require the debugger to perform cleanup or initialization after
849 the vfork follow.
850 */
851 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
852 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
853
854 /* On some targets, we can catch an inferior exec event when it
855 occurs. These functions insert/remove an already-created catchpoint
856 for such events.
857 */
858 #define target_insert_exec_catchpoint(pid) \
859 (*current_target.to_insert_exec_catchpoint) (pid)
860
861 #define target_remove_exec_catchpoint(pid) \
862 (*current_target.to_remove_exec_catchpoint) (pid)
863
864 /* Returns TRUE if PID has invoked a flavor of the exec() system call.
865 And, also sets EXECD_PATHNAME to the pathname of the executable file
866 that was passed to exec(), and is now being executed.
867 */
868 #define target_has_execd(pid,execd_pathname) \
869 (*current_target.to_has_execd) (pid,execd_pathname)
870
871 /* Returns the number of exec events that are reported when a process
872 invokes a flavor of the exec() system call on this target, if exec
873 events are being reported.
874 */
875 #define target_reported_exec_events_per_exec_call() \
876 (*current_target.to_reported_exec_events_per_exec_call) ()
877
878 /* Returns TRUE if PID has reported a syscall event. And, also sets
879 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
880 the unique integer ID of the syscall.
881 */
882 #define target_has_syscall_event(pid,kind,syscall_id) \
883 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
884
885 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
886 exit code of PID, if any.
887 */
888 #define target_has_exited(pid,wait_status,exit_status) \
889 (*current_target.to_has_exited) (pid,wait_status,exit_status)
890
891 /* The debugger has completed a blocking wait() call. There is now
892 some process event that must be processed. This function should
893 be defined by those targets that require the debugger to perform
894 cleanup or internal state changes in response to the process event.
895 */
896
897 /* The inferior process has died. Do what is right. */
898
899 #define target_mourn_inferior() \
900 (*current_target.to_mourn_inferior) ()
901
902 /* Does target have enough data to do a run or attach command? */
903
904 #define target_can_run(t) \
905 ((t)->to_can_run) ()
906
907 /* post process changes to signal handling in the inferior. */
908
909 #define target_notice_signals(pid) \
910 (*current_target.to_notice_signals) (pid)
911
912 /* Check to see if a thread is still alive. */
913
914 #define target_thread_alive(pid) \
915 (*current_target.to_thread_alive) (pid)
916
917 /* Query for new threads and add them to the thread list. */
918
919 #define target_find_new_threads() \
920 do { \
921 if (current_target.to_find_new_threads) \
922 (*current_target.to_find_new_threads) (); \
923 } while (0);
924
925 /* Make target stop in a continuable fashion. (For instance, under Unix, this
926 should act like SIGSTOP). This function is normally used by GUIs to
927 implement a stop button. */
928
929 #define target_stop current_target.to_stop
930
931 /* Queries the target side for some information. The first argument is a
932 letter specifying the type of the query, which is used to determine who
933 should process it. The second argument is a string that specifies which
934 information is desired and the third is a buffer that carries back the
935 response from the target side. The fourth parameter is the size of the
936 output buffer supplied. */
937
938 #define target_query(query_type, query, resp_buffer, bufffer_size) \
939 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
940
941 /* Send the specified COMMAND to the target's monitor
942 (shell,interpreter) for execution. The result of the query is
943 placed in OUTBUF. */
944
945 #define target_rcmd(command, outbuf) \
946 (*current_target.to_rcmd) (command, outbuf)
947
948
949 /* Get the symbol information for a breakpointable routine called when
950 an exception event occurs.
951 Intended mainly for C++, and for those
952 platforms/implementations where such a callback mechanism is available,
953 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
954 different mechanisms for debugging exceptions. */
955
956 #define target_enable_exception_callback(kind, enable) \
957 (*current_target.to_enable_exception_callback) (kind, enable)
958
959 /* Get the current exception event kind -- throw or catch, etc. */
960
961 #define target_get_current_exception_event() \
962 (*current_target.to_get_current_exception_event) ()
963
964 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
965
966 #define target_next \
967 (current_target.to_next)
968
969 /* Does the target include all of memory, or only part of it? This
970 determines whether we look up the target chain for other parts of
971 memory if this target can't satisfy a request. */
972
973 #define target_has_all_memory \
974 (current_target.to_has_all_memory)
975
976 /* Does the target include memory? (Dummy targets don't.) */
977
978 #define target_has_memory \
979 (current_target.to_has_memory)
980
981 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
982 we start a process.) */
983
984 #define target_has_stack \
985 (current_target.to_has_stack)
986
987 /* Does the target have registers? (Exec files don't.) */
988
989 #define target_has_registers \
990 (current_target.to_has_registers)
991
992 /* Does the target have execution? Can we make it jump (through
993 hoops), or pop its stack a few times? FIXME: If this is to work that
994 way, it needs to check whether an inferior actually exists.
995 remote-udi.c and probably other targets can be the current target
996 when the inferior doesn't actually exist at the moment. Right now
997 this just tells us whether this target is *capable* of execution. */
998
999 #define target_has_execution \
1000 (current_target.to_has_execution)
1001
1002 /* Can the target support the debugger control of thread execution?
1003 a) Can it lock the thread scheduler?
1004 b) Can it switch the currently running thread? */
1005
1006 #define target_can_lock_scheduler \
1007 (current_target.to_has_thread_control & tc_schedlock)
1008
1009 #define target_can_switch_threads \
1010 (current_target.to_has_thread_control & tc_switch)
1011
1012 /* Does the target support asynchronous execution? */
1013 #define target_has_async \
1014 (current_target.to_has_async_exec)
1015
1016 extern void target_link PARAMS ((char *, CORE_ADDR *));
1017
1018 /* Converts a process id to a string. Usually, the string just contains
1019 `process xyz', but on some systems it may contain
1020 `process xyz thread abc'. */
1021
1022 #ifndef target_pid_to_str
1023 #define target_pid_to_str(PID) \
1024 normal_pid_to_str (PID)
1025 extern char *normal_pid_to_str PARAMS ((int pid));
1026 #endif
1027
1028 #ifndef target_tid_to_str
1029 #define target_tid_to_str(PID) \
1030 normal_pid_to_str (PID)
1031 extern char *normal_pid_to_str PARAMS ((int pid));
1032 #endif
1033
1034
1035 #ifndef target_new_objfile
1036 #define target_new_objfile(OBJFILE)
1037 #endif
1038
1039 #ifndef target_pid_or_tid_to_str
1040 #define target_pid_or_tid_to_str(ID) \
1041 normal_pid_to_str (ID)
1042 #endif
1043
1044 /* Attempts to find the pathname of the executable file
1045 that was run to create a specified process.
1046
1047 The process PID must be stopped when this operation is used.
1048
1049 If the executable file cannot be determined, NULL is returned.
1050
1051 Else, a pointer to a character string containing the pathname
1052 is returned. This string should be copied into a buffer by
1053 the client if the string will not be immediately used, or if
1054 it must persist.
1055 */
1056
1057 #define target_pid_to_exec_file(pid) \
1058 (current_target.to_pid_to_exec_file) (pid)
1059
1060 /* Hook to call target-dependant code after reading in a new symbol table. */
1061
1062 #ifndef TARGET_SYMFILE_POSTREAD
1063 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
1064 #endif
1065
1066 /* Hook to call target dependant code just after inferior target process has
1067 started. */
1068
1069 #ifndef TARGET_CREATE_INFERIOR_HOOK
1070 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1071 #endif
1072
1073 /* Hardware watchpoint interfaces. */
1074
1075 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1076 write). */
1077
1078 #ifndef STOPPED_BY_WATCHPOINT
1079 #define STOPPED_BY_WATCHPOINT(w) 0
1080 #endif
1081
1082 /* HP-UX supplies these operations, which respectively disable and enable
1083 the memory page-protections that are used to implement hardware watchpoints
1084 on that platform. See wait_for_inferior's use of these.
1085 */
1086 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1087 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1088 #endif
1089
1090 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1091 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1092 #endif
1093
1094 /* Provide defaults for systems that don't support hardware watchpoints. */
1095
1096 #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1097
1098 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1099 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1100 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1101 (including this one?). OTHERTYPE is who knows what... */
1102
1103 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1104
1105 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1106 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1107 (LONGEST)(byte_count) <= REGISTER_SIZE
1108 #endif
1109
1110 /* However, some addresses may not be profitable to use hardware to watch,
1111 or may be difficult to understand when the addressed object is out of
1112 scope, and hence should be unwatched. On some targets, this may have
1113 severe performance penalties, such that we might as well use regular
1114 watchpoints, and save (possibly precious) hardware watchpoints for other
1115 locations.
1116 */
1117 #if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1118 #define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1119 #endif
1120
1121
1122 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1123 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1124 success, non-zero for failure. */
1125
1126 #define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1127 #define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1128
1129 #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1130
1131 #ifndef target_insert_hw_breakpoint
1132 #define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1133 #define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1134 #endif
1135
1136 #ifndef target_stopped_data_address
1137 #define target_stopped_data_address() 0
1138 #endif
1139
1140 /* If defined, then we need to decr pc by this much after a hardware break-
1141 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1142
1143 #ifndef DECR_PC_AFTER_HW_BREAK
1144 #define DECR_PC_AFTER_HW_BREAK 0
1145 #endif
1146
1147 /* Sometimes gdb may pick up what appears to be a valid target address
1148 from a minimal symbol, but the value really means, essentially,
1149 "This is an index into a table which is populated when the inferior
1150 is run. Therefore, do not attempt to use this as a PC."
1151 */
1152 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1153 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1154 #endif
1155
1156 /* This will only be defined by a target that supports catching vfork events,
1157 such as HP-UX.
1158
1159 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1160 child process after it has exec'd, causes the parent process to resume as
1161 well. To prevent the parent from running spontaneously, such targets should
1162 define this to a function that prevents that from happening.
1163 */
1164 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1165 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1166 #endif
1167
1168 /* This will only be defined by a target that supports catching vfork events,
1169 such as HP-UX.
1170
1171 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1172 process must be resumed when it delivers its exec event, before the parent
1173 vfork event will be delivered to us.
1174 */
1175 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1176 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1177 #endif
1178
1179 /* Routines for maintenance of the target structures...
1180
1181 add_target: Add a target to the list of all possible targets.
1182
1183 push_target: Make this target the top of the stack of currently used
1184 targets, within its particular stratum of the stack. Result
1185 is 0 if now atop the stack, nonzero if not on top (maybe
1186 should warn user).
1187
1188 unpush_target: Remove this from the stack of currently used targets,
1189 no matter where it is on the list. Returns 0 if no
1190 change, 1 if removed from stack.
1191
1192 pop_target: Remove the top thing on the stack of current targets. */
1193
1194 extern void
1195 add_target PARAMS ((struct target_ops *));
1196
1197 extern int
1198 push_target PARAMS ((struct target_ops *));
1199
1200 extern int
1201 unpush_target PARAMS ((struct target_ops *));
1202
1203 extern void
1204 target_preopen PARAMS ((int));
1205
1206 extern void
1207 pop_target PARAMS ((void));
1208
1209 /* Struct section_table maps address ranges to file sections. It is
1210 mostly used with BFD files, but can be used without (e.g. for handling
1211 raw disks, or files not in formats handled by BFD). */
1212
1213 struct section_table
1214 {
1215 CORE_ADDR addr; /* Lowest address in section */
1216 CORE_ADDR endaddr; /* 1+highest address in section */
1217
1218 sec_ptr the_bfd_section;
1219
1220 bfd *bfd; /* BFD file pointer */
1221 };
1222
1223 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1224 Returns 0 if OK, 1 on error. */
1225
1226 extern int
1227 build_section_table PARAMS ((bfd *, struct section_table **,
1228 struct section_table **));
1229
1230 /* From mem-break.c */
1231
1232 extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1233
1234 extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1235
1236 extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1237 #ifndef BREAKPOINT_FROM_PC
1238 #define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1239 #endif
1240
1241
1242 /* From target.c */
1243
1244 extern void
1245 initialize_targets PARAMS ((void));
1246
1247 extern void
1248 noprocess PARAMS ((void));
1249
1250 extern void
1251 find_default_attach PARAMS ((char *, int));
1252
1253 void
1254 find_default_require_attach PARAMS ((char *, int));
1255
1256 void
1257 find_default_require_detach PARAMS ((int, char *, int));
1258
1259 extern void
1260 find_default_create_inferior PARAMS ((char *, char *, char **));
1261
1262 void
1263 find_default_clone_and_follow_inferior PARAMS ((int, int *));
1264
1265 extern struct target_ops *find_run_target PARAMS ((void));
1266
1267 extern struct target_ops *
1268 find_core_target PARAMS ((void));
1269 \f
1270 /* Stuff that should be shared among the various remote targets. */
1271
1272 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1273 information (higher values, more information). */
1274 extern int remote_debug;
1275
1276 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1277 extern int baud_rate;
1278 /* Timeout limit for response from target. */
1279 extern int remote_timeout;
1280
1281 extern asection *target_memory_bfd_section;
1282 \f
1283 /* Functions for helping to write a native target. */
1284
1285 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1286 extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1287
1288 /* Convert between host signal numbers and enum target_signal's. */
1289 extern enum target_signal target_signal_from_host PARAMS ((int));
1290 extern int target_signal_to_host PARAMS ((enum target_signal));
1291
1292 /* Convert from a number used in a GDB command to an enum target_signal. */
1293 extern enum target_signal target_signal_from_command PARAMS ((int));
1294
1295 /* Any target can call this to switch to remote protocol (in remote.c). */
1296 extern void push_remote_target PARAMS ((char *name, int from_tty));
1297 \f
1298 /* Imported from machine dependent code */
1299
1300 #ifndef SOFTWARE_SINGLE_STEP_P
1301 #define SOFTWARE_SINGLE_STEP_P 0
1302 #define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1303 #endif /* SOFTWARE_SINGLE_STEP_P */
1304
1305 /* Blank target vector entries are initialized to target_ignore. */
1306 void target_ignore PARAMS ((void));
1307
1308 /* Macro for getting target's idea of a frame pointer.
1309 FIXME: GDB's whole scheme for dealing with "frames" and
1310 "frame pointers" needs a serious shakedown. */
1311 #ifndef TARGET_VIRTUAL_FRAME_POINTER
1312 #define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1313 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1314 #endif /* TARGET_VIRTUAL_FRAME_POINTER */
1315
1316 #endif /* !defined (TARGET_H) */
This page took 0.05395 seconds and 3 git commands to generate.