convert to_disable_btrace
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *)
521 TARGET_DEFAULT_NORETURN (noprocess ());
522 void (*to_load) (struct target_ops *, char *, int)
523 TARGET_DEFAULT_NORETURN (tcomplain ());
524 void (*to_create_inferior) (struct target_ops *,
525 char *, char *, char **, int);
526 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
527 TARGET_DEFAULT_IGNORE ();
528 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_follow_fork) (struct target_ops *, int, int)
537 TARGET_DEFAULT_FUNC (default_follow_fork);
538 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_set_syscall_catchpoint) (struct target_ops *,
543 int, int, int, int, int *)
544 TARGET_DEFAULT_RETURN (1);
545 int (*to_has_exited) (struct target_ops *, int, int, int *)
546 TARGET_DEFAULT_RETURN (0);
547 void (*to_mourn_inferior) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (default_mourn_inferior);
549 int (*to_can_run) (struct target_ops *);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
554 TARGET_DEFAULT_IGNORE ();
555
556 /* Documentation of this routine is provided with the
557 corresponding target_* function. */
558 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
559 TARGET_DEFAULT_IGNORE ();
560
561 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
562 TARGET_DEFAULT_RETURN (0);
563 void (*to_find_new_threads) (struct target_ops *)
564 TARGET_DEFAULT_IGNORE ();
565 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
566 TARGET_DEFAULT_FUNC (default_pid_to_str);
567 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
568 TARGET_DEFAULT_RETURN (0);
569 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
570 TARGET_DEFAULT_RETURN (0);
571 void (*to_stop) (struct target_ops *, ptid_t)
572 TARGET_DEFAULT_IGNORE ();
573 void (*to_rcmd) (struct target_ops *,
574 char *command, struct ui_file *output)
575 TARGET_DEFAULT_FUNC (default_rcmd);
576 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
577 TARGET_DEFAULT_RETURN (0);
578 void (*to_log_command) (struct target_ops *, const char *)
579 TARGET_DEFAULT_IGNORE ();
580 struct target_section_table *(*to_get_section_table) (struct target_ops *)
581 TARGET_DEFAULT_RETURN (0);
582 enum strata to_stratum;
583 int (*to_has_all_memory) (struct target_ops *);
584 int (*to_has_memory) (struct target_ops *);
585 int (*to_has_stack) (struct target_ops *);
586 int (*to_has_registers) (struct target_ops *);
587 int (*to_has_execution) (struct target_ops *, ptid_t);
588 int to_has_thread_control; /* control thread execution */
589 int to_attach_no_wait;
590 /* ASYNC target controls */
591 int (*to_can_async_p) (struct target_ops *)
592 TARGET_DEFAULT_FUNC (find_default_can_async_p);
593 int (*to_is_async_p) (struct target_ops *)
594 TARGET_DEFAULT_FUNC (find_default_is_async_p);
595 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
596 TARGET_DEFAULT_NORETURN (tcomplain ());
597 int (*to_supports_non_stop) (struct target_ops *);
598 /* find_memory_regions support method for gcore */
599 int (*to_find_memory_regions) (struct target_ops *,
600 find_memory_region_ftype func, void *data)
601 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
602 /* make_corefile_notes support method for gcore */
603 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
604 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
605 /* get_bookmark support method for bookmarks */
606 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
607 TARGET_DEFAULT_NORETURN (tcomplain ());
608 /* goto_bookmark support method for bookmarks */
609 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
610 TARGET_DEFAULT_NORETURN (tcomplain ());
611 /* Return the thread-local address at OFFSET in the
612 thread-local storage for the thread PTID and the shared library
613 or executable file given by OBJFILE. If that block of
614 thread-local storage hasn't been allocated yet, this function
615 may return an error. */
616 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
617 ptid_t ptid,
618 CORE_ADDR load_module_addr,
619 CORE_ADDR offset);
620
621 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
622 OBJECT. The OFFSET, for a seekable object, specifies the
623 starting point. The ANNEX can be used to provide additional
624 data-specific information to the target.
625
626 Return the transferred status, error or OK (an
627 'enum target_xfer_status' value). Save the number of bytes
628 actually transferred in *XFERED_LEN if transfer is successful
629 (TARGET_XFER_OK) or the number unavailable bytes if the requested
630 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
631 smaller than LEN does not indicate the end of the object, only
632 the end of the transfer; higher level code should continue
633 transferring if desired. This is handled in target.c.
634
635 The interface does not support a "retry" mechanism. Instead it
636 assumes that at least one byte will be transfered on each
637 successful call.
638
639 NOTE: cagney/2003-10-17: The current interface can lead to
640 fragmented transfers. Lower target levels should not implement
641 hacks, such as enlarging the transfer, in an attempt to
642 compensate for this. Instead, the target stack should be
643 extended so that it implements supply/collect methods and a
644 look-aside object cache. With that available, the lowest
645 target can safely and freely "push" data up the stack.
646
647 See target_read and target_write for more information. One,
648 and only one, of readbuf or writebuf must be non-NULL. */
649
650 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
651 enum target_object object,
652 const char *annex,
653 gdb_byte *readbuf,
654 const gdb_byte *writebuf,
655 ULONGEST offset, ULONGEST len,
656 ULONGEST *xfered_len)
657 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
658
659 /* Returns the memory map for the target. A return value of NULL
660 means that no memory map is available. If a memory address
661 does not fall within any returned regions, it's assumed to be
662 RAM. The returned memory regions should not overlap.
663
664 The order of regions does not matter; target_memory_map will
665 sort regions by starting address. For that reason, this
666 function should not be called directly except via
667 target_memory_map.
668
669 This method should not cache data; if the memory map could
670 change unexpectedly, it should be invalidated, and higher
671 layers will re-fetch it. */
672 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
673 TARGET_DEFAULT_RETURN (0);
674
675 /* Erases the region of flash memory starting at ADDRESS, of
676 length LENGTH.
677
678 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
679 on flash block boundaries, as reported by 'to_memory_map'. */
680 void (*to_flash_erase) (struct target_ops *,
681 ULONGEST address, LONGEST length)
682 TARGET_DEFAULT_NORETURN (tcomplain ());
683
684 /* Finishes a flash memory write sequence. After this operation
685 all flash memory should be available for writing and the result
686 of reading from areas written by 'to_flash_write' should be
687 equal to what was written. */
688 void (*to_flash_done) (struct target_ops *)
689 TARGET_DEFAULT_NORETURN (tcomplain ());
690
691 /* Describe the architecture-specific features of this target.
692 Returns the description found, or NULL if no description
693 was available. */
694 const struct target_desc *(*to_read_description) (struct target_ops *ops);
695
696 /* Build the PTID of the thread on which a given task is running,
697 based on LWP and THREAD. These values are extracted from the
698 task Private_Data section of the Ada Task Control Block, and
699 their interpretation depends on the target. */
700 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
701 long lwp, long thread)
702 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
703
704 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
705 Return 0 if *READPTR is already at the end of the buffer.
706 Return -1 if there is insufficient buffer for a whole entry.
707 Return 1 if an entry was read into *TYPEP and *VALP. */
708 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
709 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
710 TARGET_DEFAULT_FUNC (default_auxv_parse);
711
712 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
713 sequence of bytes in PATTERN with length PATTERN_LEN.
714
715 The result is 1 if found, 0 if not found, and -1 if there was an error
716 requiring halting of the search (e.g. memory read error).
717 If the pattern is found the address is recorded in FOUND_ADDRP. */
718 int (*to_search_memory) (struct target_ops *ops,
719 CORE_ADDR start_addr, ULONGEST search_space_len,
720 const gdb_byte *pattern, ULONGEST pattern_len,
721 CORE_ADDR *found_addrp)
722 TARGET_DEFAULT_FUNC (default_search_memory);
723
724 /* Can target execute in reverse? */
725 int (*to_can_execute_reverse) (struct target_ops *)
726 TARGET_DEFAULT_RETURN (0);
727
728 /* The direction the target is currently executing. Must be
729 implemented on targets that support reverse execution and async
730 mode. The default simply returns forward execution. */
731 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
732 TARGET_DEFAULT_FUNC (default_execution_direction);
733
734 /* Does this target support debugging multiple processes
735 simultaneously? */
736 int (*to_supports_multi_process) (struct target_ops *)
737 TARGET_DEFAULT_RETURN (0);
738
739 /* Does this target support enabling and disabling tracepoints while a trace
740 experiment is running? */
741 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
742 TARGET_DEFAULT_RETURN (0);
743
744 /* Does this target support disabling address space randomization? */
745 int (*to_supports_disable_randomization) (struct target_ops *);
746
747 /* Does this target support the tracenz bytecode for string collection? */
748 int (*to_supports_string_tracing) (struct target_ops *)
749 TARGET_DEFAULT_RETURN (0);
750
751 /* Does this target support evaluation of breakpoint conditions on its
752 end? */
753 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
754 TARGET_DEFAULT_RETURN (0);
755
756 /* Does this target support evaluation of breakpoint commands on its
757 end? */
758 int (*to_can_run_breakpoint_commands) (struct target_ops *)
759 TARGET_DEFAULT_RETURN (0);
760
761 /* Determine current architecture of thread PTID.
762
763 The target is supposed to determine the architecture of the code where
764 the target is currently stopped at (on Cell, if a target is in spu_run,
765 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
766 This is architecture used to perform decr_pc_after_break adjustment,
767 and also determines the frame architecture of the innermost frame.
768 ptrace operations need to operate according to target_gdbarch ().
769
770 The default implementation always returns target_gdbarch (). */
771 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
772 TARGET_DEFAULT_FUNC (default_thread_architecture);
773
774 /* Determine current address space of thread PTID.
775
776 The default implementation always returns the inferior's
777 address space. */
778 struct address_space *(*to_thread_address_space) (struct target_ops *,
779 ptid_t);
780
781 /* Target file operations. */
782
783 /* Open FILENAME on the target, using FLAGS and MODE. Return a
784 target file descriptor, or -1 if an error occurs (and set
785 *TARGET_ERRNO). */
786 int (*to_fileio_open) (struct target_ops *,
787 const char *filename, int flags, int mode,
788 int *target_errno);
789
790 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
791 Return the number of bytes written, or -1 if an error occurs
792 (and set *TARGET_ERRNO). */
793 int (*to_fileio_pwrite) (struct target_ops *,
794 int fd, const gdb_byte *write_buf, int len,
795 ULONGEST offset, int *target_errno);
796
797 /* Read up to LEN bytes FD on the target into READ_BUF.
798 Return the number of bytes read, or -1 if an error occurs
799 (and set *TARGET_ERRNO). */
800 int (*to_fileio_pread) (struct target_ops *,
801 int fd, gdb_byte *read_buf, int len,
802 ULONGEST offset, int *target_errno);
803
804 /* Close FD on the target. Return 0, or -1 if an error occurs
805 (and set *TARGET_ERRNO). */
806 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
807
808 /* Unlink FILENAME on the target. Return 0, or -1 if an error
809 occurs (and set *TARGET_ERRNO). */
810 int (*to_fileio_unlink) (struct target_ops *,
811 const char *filename, int *target_errno);
812
813 /* Read value of symbolic link FILENAME on the target. Return a
814 null-terminated string allocated via xmalloc, or NULL if an error
815 occurs (and set *TARGET_ERRNO). */
816 char *(*to_fileio_readlink) (struct target_ops *,
817 const char *filename, int *target_errno);
818
819
820 /* Implement the "info proc" command. */
821 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
822
823 /* Tracepoint-related operations. */
824
825 /* Prepare the target for a tracing run. */
826 void (*to_trace_init) (struct target_ops *)
827 TARGET_DEFAULT_NORETURN (tcomplain ());
828
829 /* Send full details of a tracepoint location to the target. */
830 void (*to_download_tracepoint) (struct target_ops *,
831 struct bp_location *location)
832 TARGET_DEFAULT_NORETURN (tcomplain ());
833
834 /* Is the target able to download tracepoint locations in current
835 state? */
836 int (*to_can_download_tracepoint) (struct target_ops *)
837 TARGET_DEFAULT_RETURN (0);
838
839 /* Send full details of a trace state variable to the target. */
840 void (*to_download_trace_state_variable) (struct target_ops *,
841 struct trace_state_variable *tsv)
842 TARGET_DEFAULT_NORETURN (tcomplain ());
843
844 /* Enable a tracepoint on the target. */
845 void (*to_enable_tracepoint) (struct target_ops *,
846 struct bp_location *location)
847 TARGET_DEFAULT_NORETURN (tcomplain ());
848
849 /* Disable a tracepoint on the target. */
850 void (*to_disable_tracepoint) (struct target_ops *,
851 struct bp_location *location)
852 TARGET_DEFAULT_NORETURN (tcomplain ());
853
854 /* Inform the target info of memory regions that are readonly
855 (such as text sections), and so it should return data from
856 those rather than look in the trace buffer. */
857 void (*to_trace_set_readonly_regions) (struct target_ops *)
858 TARGET_DEFAULT_NORETURN (tcomplain ());
859
860 /* Start a trace run. */
861 void (*to_trace_start) (struct target_ops *)
862 TARGET_DEFAULT_NORETURN (tcomplain ());
863
864 /* Get the current status of a tracing run. */
865 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
866 TARGET_DEFAULT_RETURN (-1);
867
868 void (*to_get_tracepoint_status) (struct target_ops *,
869 struct breakpoint *tp,
870 struct uploaded_tp *utp)
871 TARGET_DEFAULT_NORETURN (tcomplain ());
872
873 /* Stop a trace run. */
874 void (*to_trace_stop) (struct target_ops *)
875 TARGET_DEFAULT_NORETURN (tcomplain ());
876
877 /* Ask the target to find a trace frame of the given type TYPE,
878 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
879 number of the trace frame, and also the tracepoint number at
880 TPP. If no trace frame matches, return -1. May throw if the
881 operation fails. */
882 int (*to_trace_find) (struct target_ops *,
883 enum trace_find_type type, int num,
884 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
885 TARGET_DEFAULT_RETURN (-1);
886
887 /* Get the value of the trace state variable number TSV, returning
888 1 if the value is known and writing the value itself into the
889 location pointed to by VAL, else returning 0. */
890 int (*to_get_trace_state_variable_value) (struct target_ops *,
891 int tsv, LONGEST *val)
892 TARGET_DEFAULT_RETURN (0);
893
894 int (*to_save_trace_data) (struct target_ops *, const char *filename)
895 TARGET_DEFAULT_NORETURN (tcomplain ());
896
897 int (*to_upload_tracepoints) (struct target_ops *,
898 struct uploaded_tp **utpp)
899 TARGET_DEFAULT_RETURN (0);
900
901 int (*to_upload_trace_state_variables) (struct target_ops *,
902 struct uploaded_tsv **utsvp)
903 TARGET_DEFAULT_RETURN (0);
904
905 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
906 ULONGEST offset, LONGEST len)
907 TARGET_DEFAULT_NORETURN (tcomplain ());
908
909 /* Get the minimum length of instruction on which a fast tracepoint
910 may be set on the target. If this operation is unsupported,
911 return -1. If for some reason the minimum length cannot be
912 determined, return 0. */
913 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
914 TARGET_DEFAULT_RETURN (-1);
915
916 /* Set the target's tracing behavior in response to unexpected
917 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
918 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
919 TARGET_DEFAULT_IGNORE ();
920 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
921 TARGET_DEFAULT_IGNORE ();
922 /* Set the size of trace buffer in the target. */
923 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
924 TARGET_DEFAULT_IGNORE ();
925
926 /* Add/change textual notes about the trace run, returning 1 if
927 successful, 0 otherwise. */
928 int (*to_set_trace_notes) (struct target_ops *,
929 const char *user, const char *notes,
930 const char *stopnotes)
931 TARGET_DEFAULT_RETURN (0);
932
933 /* Return the processor core that thread PTID was last seen on.
934 This information is updated only when:
935 - update_thread_list is called
936 - thread stops
937 If the core cannot be determined -- either for the specified
938 thread, or right now, or in this debug session, or for this
939 target -- return -1. */
940 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
941 TARGET_DEFAULT_RETURN (-1);
942
943 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
944 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
945 a match, 0 if there's a mismatch, and -1 if an error is
946 encountered while reading memory. */
947 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
948 CORE_ADDR memaddr, ULONGEST size)
949 TARGET_DEFAULT_NORETURN (tcomplain ());
950
951 /* Return the address of the start of the Thread Information Block
952 a Windows OS specific feature. */
953 int (*to_get_tib_address) (struct target_ops *,
954 ptid_t ptid, CORE_ADDR *addr)
955 TARGET_DEFAULT_NORETURN (tcomplain ());
956
957 /* Send the new settings of write permission variables. */
958 void (*to_set_permissions) (struct target_ops *)
959 TARGET_DEFAULT_IGNORE ();
960
961 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
962 with its details. Return 1 on success, 0 on failure. */
963 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
964 struct static_tracepoint_marker *marker)
965 TARGET_DEFAULT_RETURN (0);
966
967 /* Return a vector of all tracepoints markers string id ID, or all
968 markers if ID is NULL. */
969 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
970 TARGET_DEFAULT_NORETURN (tcomplain ());
971
972 /* Return a traceframe info object describing the current
973 traceframe's contents. If the target doesn't support
974 traceframe info, return NULL. If the current traceframe is not
975 selected (the current traceframe number is -1), the target can
976 choose to return either NULL or an empty traceframe info. If
977 NULL is returned, for example in remote target, GDB will read
978 from the live inferior. If an empty traceframe info is
979 returned, for example in tfile target, which means the
980 traceframe info is available, but the requested memory is not
981 available in it. GDB will try to see if the requested memory
982 is available in the read-only sections. This method should not
983 cache data; higher layers take care of caching, invalidating,
984 and re-fetching when necessary. */
985 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
986 TARGET_DEFAULT_RETURN (0);
987
988 /* Ask the target to use or not to use agent according to USE. Return 1
989 successful, 0 otherwise. */
990 int (*to_use_agent) (struct target_ops *, int use)
991 TARGET_DEFAULT_NORETURN (tcomplain ());
992
993 /* Is the target able to use agent in current state? */
994 int (*to_can_use_agent) (struct target_ops *)
995 TARGET_DEFAULT_RETURN (0);
996
997 /* Check whether the target supports branch tracing. */
998 int (*to_supports_btrace) (struct target_ops *)
999 TARGET_DEFAULT_RETURN (0);
1000
1001 /* Enable branch tracing for PTID and allocate a branch trace target
1002 information struct for reading and for disabling branch trace. */
1003 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1004 ptid_t ptid);
1005
1006 /* Disable branch tracing and deallocate TINFO. */
1007 void (*to_disable_btrace) (struct target_ops *,
1008 struct btrace_target_info *tinfo)
1009 TARGET_DEFAULT_NORETURN (tcomplain ());
1010
1011 /* Disable branch tracing and deallocate TINFO. This function is similar
1012 to to_disable_btrace, except that it is called during teardown and is
1013 only allowed to perform actions that are safe. A counter-example would
1014 be attempting to talk to a remote target. */
1015 void (*to_teardown_btrace) (struct target_ops *,
1016 struct btrace_target_info *tinfo);
1017
1018 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1019 DATA is cleared before new trace is added.
1020 The branch trace will start with the most recent block and continue
1021 towards older blocks. */
1022 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1023 VEC (btrace_block_s) **data,
1024 struct btrace_target_info *btinfo,
1025 enum btrace_read_type type);
1026
1027 /* Stop trace recording. */
1028 void (*to_stop_recording) (struct target_ops *);
1029
1030 /* Print information about the recording. */
1031 void (*to_info_record) (struct target_ops *);
1032
1033 /* Save the recorded execution trace into a file. */
1034 void (*to_save_record) (struct target_ops *, const char *filename)
1035 TARGET_DEFAULT_NORETURN (tcomplain ());
1036
1037 /* Delete the recorded execution trace from the current position onwards. */
1038 void (*to_delete_record) (struct target_ops *)
1039 TARGET_DEFAULT_NORETURN (tcomplain ());
1040
1041 /* Query if the record target is currently replaying. */
1042 int (*to_record_is_replaying) (struct target_ops *)
1043 TARGET_DEFAULT_RETURN (0);
1044
1045 /* Go to the begin of the execution trace. */
1046 void (*to_goto_record_begin) (struct target_ops *)
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Go to the end of the execution trace. */
1050 void (*to_goto_record_end) (struct target_ops *)
1051 TARGET_DEFAULT_NORETURN (tcomplain ());
1052
1053 /* Go to a specific location in the recorded execution trace. */
1054 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1055 TARGET_DEFAULT_NORETURN (tcomplain ());
1056
1057 /* Disassemble SIZE instructions in the recorded execution trace from
1058 the current position.
1059 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1060 disassemble SIZE succeeding instructions. */
1061 void (*to_insn_history) (struct target_ops *, int size, int flags)
1062 TARGET_DEFAULT_NORETURN (tcomplain ());
1063
1064 /* Disassemble SIZE instructions in the recorded execution trace around
1065 FROM.
1066 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1067 disassemble SIZE instructions after FROM. */
1068 void (*to_insn_history_from) (struct target_ops *,
1069 ULONGEST from, int size, int flags)
1070 TARGET_DEFAULT_NORETURN (tcomplain ());
1071
1072 /* Disassemble a section of the recorded execution trace from instruction
1073 BEGIN (inclusive) to instruction END (inclusive). */
1074 void (*to_insn_history_range) (struct target_ops *,
1075 ULONGEST begin, ULONGEST end, int flags)
1076 TARGET_DEFAULT_NORETURN (tcomplain ());
1077
1078 /* Print a function trace of the recorded execution trace.
1079 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1080 succeeding functions. */
1081 void (*to_call_history) (struct target_ops *, int size, int flags)
1082 TARGET_DEFAULT_NORETURN (tcomplain ());
1083
1084 /* Print a function trace of the recorded execution trace starting
1085 at function FROM.
1086 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1087 SIZE functions after FROM. */
1088 void (*to_call_history_from) (struct target_ops *,
1089 ULONGEST begin, int size, int flags)
1090 TARGET_DEFAULT_NORETURN (tcomplain ());
1091
1092 /* Print a function trace of an execution trace section from function BEGIN
1093 (inclusive) to function END (inclusive). */
1094 void (*to_call_history_range) (struct target_ops *,
1095 ULONGEST begin, ULONGEST end, int flags)
1096 TARGET_DEFAULT_NORETURN (tcomplain ());
1097
1098 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1099 non-empty annex. */
1100 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1101 TARGET_DEFAULT_RETURN (0);
1102
1103 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1104 it is not used. */
1105 const struct frame_unwind *to_get_unwinder;
1106 const struct frame_unwind *to_get_tailcall_unwinder;
1107
1108 /* Return the number of bytes by which the PC needs to be decremented
1109 after executing a breakpoint instruction.
1110 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1111 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1112 struct gdbarch *gdbarch);
1113
1114 int to_magic;
1115 /* Need sub-structure for target machine related rather than comm related?
1116 */
1117 };
1118
1119 /* Magic number for checking ops size. If a struct doesn't end with this
1120 number, somebody changed the declaration but didn't change all the
1121 places that initialize one. */
1122
1123 #define OPS_MAGIC 3840
1124
1125 /* The ops structure for our "current" target process. This should
1126 never be NULL. If there is no target, it points to the dummy_target. */
1127
1128 extern struct target_ops current_target;
1129
1130 /* Define easy words for doing these operations on our current target. */
1131
1132 #define target_shortname (current_target.to_shortname)
1133 #define target_longname (current_target.to_longname)
1134
1135 /* Does whatever cleanup is required for a target that we are no
1136 longer going to be calling. This routine is automatically always
1137 called after popping the target off the target stack - the target's
1138 own methods are no longer available through the target vector.
1139 Closing file descriptors and freeing all memory allocated memory are
1140 typical things it should do. */
1141
1142 void target_close (struct target_ops *targ);
1143
1144 /* Attaches to a process on the target side. Arguments are as passed
1145 to the `attach' command by the user. This routine can be called
1146 when the target is not on the target-stack, if the target_can_run
1147 routine returns 1; in that case, it must push itself onto the stack.
1148 Upon exit, the target should be ready for normal operations, and
1149 should be ready to deliver the status of the process immediately
1150 (without waiting) to an upcoming target_wait call. */
1151
1152 void target_attach (char *, int);
1153
1154 /* Some targets don't generate traps when attaching to the inferior,
1155 or their target_attach implementation takes care of the waiting.
1156 These targets must set to_attach_no_wait. */
1157
1158 #define target_attach_no_wait \
1159 (current_target.to_attach_no_wait)
1160
1161 /* The target_attach operation places a process under debugger control,
1162 and stops the process.
1163
1164 This operation provides a target-specific hook that allows the
1165 necessary bookkeeping to be performed after an attach completes. */
1166 #define target_post_attach(pid) \
1167 (*current_target.to_post_attach) (&current_target, pid)
1168
1169 /* Takes a program previously attached to and detaches it.
1170 The program may resume execution (some targets do, some don't) and will
1171 no longer stop on signals, etc. We better not have left any breakpoints
1172 in the program or it'll die when it hits one. ARGS is arguments
1173 typed by the user (e.g. a signal to send the process). FROM_TTY
1174 says whether to be verbose or not. */
1175
1176 extern void target_detach (const char *, int);
1177
1178 /* Disconnect from the current target without resuming it (leaving it
1179 waiting for a debugger). */
1180
1181 extern void target_disconnect (char *, int);
1182
1183 /* Resume execution of the target process PTID (or a group of
1184 threads). STEP says whether to single-step or to run free; SIGGNAL
1185 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1186 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1187 PTID means `step/resume only this process id'. A wildcard PTID
1188 (all threads, or all threads of process) means `step/resume
1189 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1190 matches) resume with their 'thread->suspend.stop_signal' signal
1191 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1192 if in "no pass" state. */
1193
1194 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1195
1196 /* Wait for process pid to do something. PTID = -1 to wait for any
1197 pid to do something. Return pid of child, or -1 in case of error;
1198 store status through argument pointer STATUS. Note that it is
1199 _NOT_ OK to throw_exception() out of target_wait() without popping
1200 the debugging target from the stack; GDB isn't prepared to get back
1201 to the prompt with a debugging target but without the frame cache,
1202 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1203 options. */
1204
1205 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1206 int options);
1207
1208 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1209
1210 extern void target_fetch_registers (struct regcache *regcache, int regno);
1211
1212 /* Store at least register REGNO, or all regs if REGNO == -1.
1213 It can store as many registers as it wants to, so target_prepare_to_store
1214 must have been previously called. Calls error() if there are problems. */
1215
1216 extern void target_store_registers (struct regcache *regcache, int regs);
1217
1218 /* Get ready to modify the registers array. On machines which store
1219 individual registers, this doesn't need to do anything. On machines
1220 which store all the registers in one fell swoop, this makes sure
1221 that REGISTERS contains all the registers from the program being
1222 debugged. */
1223
1224 #define target_prepare_to_store(regcache) \
1225 (*current_target.to_prepare_to_store) (&current_target, regcache)
1226
1227 /* Determine current address space of thread PTID. */
1228
1229 struct address_space *target_thread_address_space (ptid_t);
1230
1231 /* Implement the "info proc" command. This returns one if the request
1232 was handled, and zero otherwise. It can also throw an exception if
1233 an error was encountered while attempting to handle the
1234 request. */
1235
1236 int target_info_proc (char *, enum info_proc_what);
1237
1238 /* Returns true if this target can debug multiple processes
1239 simultaneously. */
1240
1241 #define target_supports_multi_process() \
1242 (*current_target.to_supports_multi_process) (&current_target)
1243
1244 /* Returns true if this target can disable address space randomization. */
1245
1246 int target_supports_disable_randomization (void);
1247
1248 /* Returns true if this target can enable and disable tracepoints
1249 while a trace experiment is running. */
1250
1251 #define target_supports_enable_disable_tracepoint() \
1252 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1253
1254 #define target_supports_string_tracing() \
1255 (*current_target.to_supports_string_tracing) (&current_target)
1256
1257 /* Returns true if this target can handle breakpoint conditions
1258 on its end. */
1259
1260 #define target_supports_evaluation_of_breakpoint_conditions() \
1261 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1262
1263 /* Returns true if this target can handle breakpoint commands
1264 on its end. */
1265
1266 #define target_can_run_breakpoint_commands() \
1267 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1268
1269 extern int target_read_string (CORE_ADDR, char **, int, int *);
1270
1271 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1272 ssize_t len);
1273
1274 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1275 ssize_t len);
1276
1277 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1278
1279 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1280
1281 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1282 ssize_t len);
1283
1284 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1285 ssize_t len);
1286
1287 /* Fetches the target's memory map. If one is found it is sorted
1288 and returned, after some consistency checking. Otherwise, NULL
1289 is returned. */
1290 VEC(mem_region_s) *target_memory_map (void);
1291
1292 /* Erase the specified flash region. */
1293 void target_flash_erase (ULONGEST address, LONGEST length);
1294
1295 /* Finish a sequence of flash operations. */
1296 void target_flash_done (void);
1297
1298 /* Describes a request for a memory write operation. */
1299 struct memory_write_request
1300 {
1301 /* Begining address that must be written. */
1302 ULONGEST begin;
1303 /* Past-the-end address. */
1304 ULONGEST end;
1305 /* The data to write. */
1306 gdb_byte *data;
1307 /* A callback baton for progress reporting for this request. */
1308 void *baton;
1309 };
1310 typedef struct memory_write_request memory_write_request_s;
1311 DEF_VEC_O(memory_write_request_s);
1312
1313 /* Enumeration specifying different flash preservation behaviour. */
1314 enum flash_preserve_mode
1315 {
1316 flash_preserve,
1317 flash_discard
1318 };
1319
1320 /* Write several memory blocks at once. This version can be more
1321 efficient than making several calls to target_write_memory, in
1322 particular because it can optimize accesses to flash memory.
1323
1324 Moreover, this is currently the only memory access function in gdb
1325 that supports writing to flash memory, and it should be used for
1326 all cases where access to flash memory is desirable.
1327
1328 REQUESTS is the vector (see vec.h) of memory_write_request.
1329 PRESERVE_FLASH_P indicates what to do with blocks which must be
1330 erased, but not completely rewritten.
1331 PROGRESS_CB is a function that will be periodically called to provide
1332 feedback to user. It will be called with the baton corresponding
1333 to the request currently being written. It may also be called
1334 with a NULL baton, when preserved flash sectors are being rewritten.
1335
1336 The function returns 0 on success, and error otherwise. */
1337 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1338 enum flash_preserve_mode preserve_flash_p,
1339 void (*progress_cb) (ULONGEST, void *));
1340
1341 /* Print a line about the current target. */
1342
1343 #define target_files_info() \
1344 (*current_target.to_files_info) (&current_target)
1345
1346 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1347 the target machine. Returns 0 for success, and returns non-zero or
1348 throws an error (with a detailed failure reason error code and
1349 message) otherwise. */
1350
1351 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1352 struct bp_target_info *bp_tgt);
1353
1354 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1355 machine. Result is 0 for success, non-zero for error. */
1356
1357 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1358 struct bp_target_info *bp_tgt);
1359
1360 /* Initialize the terminal settings we record for the inferior,
1361 before we actually run the inferior. */
1362
1363 #define target_terminal_init() \
1364 (*current_target.to_terminal_init) (&current_target)
1365
1366 /* Put the inferior's terminal settings into effect.
1367 This is preparation for starting or resuming the inferior. */
1368
1369 extern void target_terminal_inferior (void);
1370
1371 /* Put some of our terminal settings into effect,
1372 enough to get proper results from our output,
1373 but do not change into or out of RAW mode
1374 so that no input is discarded.
1375
1376 After doing this, either terminal_ours or terminal_inferior
1377 should be called to get back to a normal state of affairs. */
1378
1379 #define target_terminal_ours_for_output() \
1380 (*current_target.to_terminal_ours_for_output) (&current_target)
1381
1382 /* Put our terminal settings into effect.
1383 First record the inferior's terminal settings
1384 so they can be restored properly later. */
1385
1386 #define target_terminal_ours() \
1387 (*current_target.to_terminal_ours) (&current_target)
1388
1389 /* Save our terminal settings.
1390 This is called from TUI after entering or leaving the curses
1391 mode. Since curses modifies our terminal this call is here
1392 to take this change into account. */
1393
1394 #define target_terminal_save_ours() \
1395 (*current_target.to_terminal_save_ours) (&current_target)
1396
1397 /* Print useful information about our terminal status, if such a thing
1398 exists. */
1399
1400 #define target_terminal_info(arg, from_tty) \
1401 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1402
1403 /* Kill the inferior process. Make it go away. */
1404
1405 extern void target_kill (void);
1406
1407 /* Load an executable file into the target process. This is expected
1408 to not only bring new code into the target process, but also to
1409 update GDB's symbol tables to match.
1410
1411 ARG contains command-line arguments, to be broken down with
1412 buildargv (). The first non-switch argument is the filename to
1413 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1414 0)), which is an offset to apply to the load addresses of FILE's
1415 sections. The target may define switches, or other non-switch
1416 arguments, as it pleases. */
1417
1418 extern void target_load (char *arg, int from_tty);
1419
1420 /* Start an inferior process and set inferior_ptid to its pid.
1421 EXEC_FILE is the file to run.
1422 ALLARGS is a string containing the arguments to the program.
1423 ENV is the environment vector to pass. Errors reported with error().
1424 On VxWorks and various standalone systems, we ignore exec_file. */
1425
1426 void target_create_inferior (char *exec_file, char *args,
1427 char **env, int from_tty);
1428
1429 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1430 notification of inferior events such as fork and vork immediately
1431 after the inferior is created. (This because of how gdb gets an
1432 inferior created via invoking a shell to do it. In such a scenario,
1433 if the shell init file has commands in it, the shell will fork and
1434 exec for each of those commands, and we will see each such fork
1435 event. Very bad.)
1436
1437 Such targets will supply an appropriate definition for this function. */
1438
1439 #define target_post_startup_inferior(ptid) \
1440 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1441
1442 /* On some targets, we can catch an inferior fork or vfork event when
1443 it occurs. These functions insert/remove an already-created
1444 catchpoint for such events. They return 0 for success, 1 if the
1445 catchpoint type is not supported and -1 for failure. */
1446
1447 #define target_insert_fork_catchpoint(pid) \
1448 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1449
1450 #define target_remove_fork_catchpoint(pid) \
1451 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1452
1453 #define target_insert_vfork_catchpoint(pid) \
1454 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1455
1456 #define target_remove_vfork_catchpoint(pid) \
1457 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1458
1459 /* If the inferior forks or vforks, this function will be called at
1460 the next resume in order to perform any bookkeeping and fiddling
1461 necessary to continue debugging either the parent or child, as
1462 requested, and releasing the other. Information about the fork
1463 or vfork event is available via get_last_target_status ().
1464 This function returns 1 if the inferior should not be resumed
1465 (i.e. there is another event pending). */
1466
1467 int target_follow_fork (int follow_child, int detach_fork);
1468
1469 /* On some targets, we can catch an inferior exec event when it
1470 occurs. These functions insert/remove an already-created
1471 catchpoint for such events. They return 0 for success, 1 if the
1472 catchpoint type is not supported and -1 for failure. */
1473
1474 #define target_insert_exec_catchpoint(pid) \
1475 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1476
1477 #define target_remove_exec_catchpoint(pid) \
1478 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1479
1480 /* Syscall catch.
1481
1482 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1483 If NEEDED is zero, it means the target can disable the mechanism to
1484 catch system calls because there are no more catchpoints of this type.
1485
1486 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1487 being requested. In this case, both TABLE_SIZE and TABLE should
1488 be ignored.
1489
1490 TABLE_SIZE is the number of elements in TABLE. It only matters if
1491 ANY_COUNT is zero.
1492
1493 TABLE is an array of ints, indexed by syscall number. An element in
1494 this array is nonzero if that syscall should be caught. This argument
1495 only matters if ANY_COUNT is zero.
1496
1497 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1498 for failure. */
1499
1500 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1501 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1502 pid, needed, any_count, \
1503 table_size, table)
1504
1505 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1506 exit code of PID, if any. */
1507
1508 #define target_has_exited(pid,wait_status,exit_status) \
1509 (*current_target.to_has_exited) (&current_target, \
1510 pid,wait_status,exit_status)
1511
1512 /* The debugger has completed a blocking wait() call. There is now
1513 some process event that must be processed. This function should
1514 be defined by those targets that require the debugger to perform
1515 cleanup or internal state changes in response to the process event. */
1516
1517 /* The inferior process has died. Do what is right. */
1518
1519 void target_mourn_inferior (void);
1520
1521 /* Does target have enough data to do a run or attach command? */
1522
1523 #define target_can_run(t) \
1524 ((t)->to_can_run) (t)
1525
1526 /* Set list of signals to be handled in the target.
1527
1528 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1529 (enum gdb_signal). For every signal whose entry in this array is
1530 non-zero, the target is allowed -but not required- to skip reporting
1531 arrival of the signal to the GDB core by returning from target_wait,
1532 and to pass the signal directly to the inferior instead.
1533
1534 However, if the target is hardware single-stepping a thread that is
1535 about to receive a signal, it needs to be reported in any case, even
1536 if mentioned in a previous target_pass_signals call. */
1537
1538 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1539
1540 /* Set list of signals the target may pass to the inferior. This
1541 directly maps to the "handle SIGNAL pass/nopass" setting.
1542
1543 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1544 number (enum gdb_signal). For every signal whose entry in this
1545 array is non-zero, the target is allowed to pass the signal to the
1546 inferior. Signals not present in the array shall be silently
1547 discarded. This does not influence whether to pass signals to the
1548 inferior as a result of a target_resume call. This is useful in
1549 scenarios where the target needs to decide whether to pass or not a
1550 signal to the inferior without GDB core involvement, such as for
1551 example, when detaching (as threads may have been suspended with
1552 pending signals not reported to GDB). */
1553
1554 extern void target_program_signals (int nsig, unsigned char *program_signals);
1555
1556 /* Check to see if a thread is still alive. */
1557
1558 extern int target_thread_alive (ptid_t ptid);
1559
1560 /* Query for new threads and add them to the thread list. */
1561
1562 extern void target_find_new_threads (void);
1563
1564 /* Make target stop in a continuable fashion. (For instance, under
1565 Unix, this should act like SIGSTOP). This function is normally
1566 used by GUIs to implement a stop button. */
1567
1568 extern void target_stop (ptid_t ptid);
1569
1570 /* Send the specified COMMAND to the target's monitor
1571 (shell,interpreter) for execution. The result of the query is
1572 placed in OUTBUF. */
1573
1574 #define target_rcmd(command, outbuf) \
1575 (*current_target.to_rcmd) (&current_target, command, outbuf)
1576
1577
1578 /* Does the target include all of memory, or only part of it? This
1579 determines whether we look up the target chain for other parts of
1580 memory if this target can't satisfy a request. */
1581
1582 extern int target_has_all_memory_1 (void);
1583 #define target_has_all_memory target_has_all_memory_1 ()
1584
1585 /* Does the target include memory? (Dummy targets don't.) */
1586
1587 extern int target_has_memory_1 (void);
1588 #define target_has_memory target_has_memory_1 ()
1589
1590 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1591 we start a process.) */
1592
1593 extern int target_has_stack_1 (void);
1594 #define target_has_stack target_has_stack_1 ()
1595
1596 /* Does the target have registers? (Exec files don't.) */
1597
1598 extern int target_has_registers_1 (void);
1599 #define target_has_registers target_has_registers_1 ()
1600
1601 /* Does the target have execution? Can we make it jump (through
1602 hoops), or pop its stack a few times? This means that the current
1603 target is currently executing; for some targets, that's the same as
1604 whether or not the target is capable of execution, but there are
1605 also targets which can be current while not executing. In that
1606 case this will become true after target_create_inferior or
1607 target_attach. */
1608
1609 extern int target_has_execution_1 (ptid_t);
1610
1611 /* Like target_has_execution_1, but always passes inferior_ptid. */
1612
1613 extern int target_has_execution_current (void);
1614
1615 #define target_has_execution target_has_execution_current ()
1616
1617 /* Default implementations for process_stratum targets. Return true
1618 if there's a selected inferior, false otherwise. */
1619
1620 extern int default_child_has_all_memory (struct target_ops *ops);
1621 extern int default_child_has_memory (struct target_ops *ops);
1622 extern int default_child_has_stack (struct target_ops *ops);
1623 extern int default_child_has_registers (struct target_ops *ops);
1624 extern int default_child_has_execution (struct target_ops *ops,
1625 ptid_t the_ptid);
1626
1627 /* Can the target support the debugger control of thread execution?
1628 Can it lock the thread scheduler? */
1629
1630 #define target_can_lock_scheduler \
1631 (current_target.to_has_thread_control & tc_schedlock)
1632
1633 /* Should the target enable async mode if it is supported? Temporary
1634 cludge until async mode is a strict superset of sync mode. */
1635 extern int target_async_permitted;
1636
1637 /* Can the target support asynchronous execution? */
1638 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1639
1640 /* Is the target in asynchronous execution mode? */
1641 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1642
1643 int target_supports_non_stop (void);
1644
1645 /* Put the target in async mode with the specified callback function. */
1646 #define target_async(CALLBACK,CONTEXT) \
1647 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1648
1649 #define target_execution_direction() \
1650 (current_target.to_execution_direction (&current_target))
1651
1652 /* Converts a process id to a string. Usually, the string just contains
1653 `process xyz', but on some systems it may contain
1654 `process xyz thread abc'. */
1655
1656 extern char *target_pid_to_str (ptid_t ptid);
1657
1658 extern char *normal_pid_to_str (ptid_t ptid);
1659
1660 /* Return a short string describing extra information about PID,
1661 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1662 is okay. */
1663
1664 #define target_extra_thread_info(TP) \
1665 (current_target.to_extra_thread_info (&current_target, TP))
1666
1667 /* Return the thread's name. A NULL result means that the target
1668 could not determine this thread's name. */
1669
1670 extern char *target_thread_name (struct thread_info *);
1671
1672 /* Attempts to find the pathname of the executable file
1673 that was run to create a specified process.
1674
1675 The process PID must be stopped when this operation is used.
1676
1677 If the executable file cannot be determined, NULL is returned.
1678
1679 Else, a pointer to a character string containing the pathname
1680 is returned. This string should be copied into a buffer by
1681 the client if the string will not be immediately used, or if
1682 it must persist. */
1683
1684 #define target_pid_to_exec_file(pid) \
1685 (current_target.to_pid_to_exec_file) (&current_target, pid)
1686
1687 /* See the to_thread_architecture description in struct target_ops. */
1688
1689 #define target_thread_architecture(ptid) \
1690 (current_target.to_thread_architecture (&current_target, ptid))
1691
1692 /*
1693 * Iterator function for target memory regions.
1694 * Calls a callback function once for each memory region 'mapped'
1695 * in the child process. Defined as a simple macro rather than
1696 * as a function macro so that it can be tested for nullity.
1697 */
1698
1699 #define target_find_memory_regions(FUNC, DATA) \
1700 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1701
1702 /*
1703 * Compose corefile .note section.
1704 */
1705
1706 #define target_make_corefile_notes(BFD, SIZE_P) \
1707 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1708
1709 /* Bookmark interfaces. */
1710 #define target_get_bookmark(ARGS, FROM_TTY) \
1711 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1712
1713 #define target_goto_bookmark(ARG, FROM_TTY) \
1714 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1715
1716 /* Hardware watchpoint interfaces. */
1717
1718 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1719 write). Only the INFERIOR_PTID task is being queried. */
1720
1721 #define target_stopped_by_watchpoint() \
1722 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1723
1724 /* Non-zero if we have steppable watchpoints */
1725
1726 #define target_have_steppable_watchpoint \
1727 (current_target.to_have_steppable_watchpoint)
1728
1729 /* Non-zero if we have continuable watchpoints */
1730
1731 #define target_have_continuable_watchpoint \
1732 (current_target.to_have_continuable_watchpoint)
1733
1734 /* Provide defaults for hardware watchpoint functions. */
1735
1736 /* If the *_hw_beakpoint functions have not been defined
1737 elsewhere use the definitions in the target vector. */
1738
1739 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1740 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1741 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1742 (including this one?). OTHERTYPE is who knows what... */
1743
1744 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1745 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1746 TYPE, CNT, OTHERTYPE);
1747
1748 /* Returns the number of debug registers needed to watch the given
1749 memory region, or zero if not supported. */
1750
1751 #define target_region_ok_for_hw_watchpoint(addr, len) \
1752 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1753 addr, len)
1754
1755
1756 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1757 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1758 COND is the expression for its condition, or NULL if there's none.
1759 Returns 0 for success, 1 if the watchpoint type is not supported,
1760 -1 for failure. */
1761
1762 #define target_insert_watchpoint(addr, len, type, cond) \
1763 (*current_target.to_insert_watchpoint) (&current_target, \
1764 addr, len, type, cond)
1765
1766 #define target_remove_watchpoint(addr, len, type, cond) \
1767 (*current_target.to_remove_watchpoint) (&current_target, \
1768 addr, len, type, cond)
1769
1770 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1771 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1772 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1773 masked watchpoints are not supported, -1 for failure. */
1774
1775 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1776
1777 /* Remove a masked watchpoint at ADDR with the mask MASK.
1778 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1779 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1780 for failure. */
1781
1782 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1783
1784 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1785 the target machine. Returns 0 for success, and returns non-zero or
1786 throws an error (with a detailed failure reason error code and
1787 message) otherwise. */
1788
1789 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1790 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1791 gdbarch, bp_tgt)
1792
1793 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1794 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1795 gdbarch, bp_tgt)
1796
1797 /* Return number of debug registers needed for a ranged breakpoint,
1798 or -1 if ranged breakpoints are not supported. */
1799
1800 extern int target_ranged_break_num_registers (void);
1801
1802 /* Return non-zero if target knows the data address which triggered this
1803 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1804 INFERIOR_PTID task is being queried. */
1805 #define target_stopped_data_address(target, addr_p) \
1806 (*target.to_stopped_data_address) (target, addr_p)
1807
1808 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1809 LENGTH bytes beginning at START. */
1810 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1811 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1812
1813 /* Return non-zero if the target is capable of using hardware to evaluate
1814 the condition expression. In this case, if the condition is false when
1815 the watched memory location changes, execution may continue without the
1816 debugger being notified.
1817
1818 Due to limitations in the hardware implementation, it may be capable of
1819 avoiding triggering the watchpoint in some cases where the condition
1820 expression is false, but may report some false positives as well.
1821 For this reason, GDB will still evaluate the condition expression when
1822 the watchpoint triggers. */
1823 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1824 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1825 addr, len, type, cond)
1826
1827 /* Return number of debug registers needed for a masked watchpoint,
1828 -1 if masked watchpoints are not supported or -2 if the given address
1829 and mask combination cannot be used. */
1830
1831 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1832
1833 /* Target can execute in reverse? */
1834 #define target_can_execute_reverse \
1835 current_target.to_can_execute_reverse (&current_target)
1836
1837 extern const struct target_desc *target_read_description (struct target_ops *);
1838
1839 #define target_get_ada_task_ptid(lwp, tid) \
1840 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1841
1842 /* Utility implementation of searching memory. */
1843 extern int simple_search_memory (struct target_ops* ops,
1844 CORE_ADDR start_addr,
1845 ULONGEST search_space_len,
1846 const gdb_byte *pattern,
1847 ULONGEST pattern_len,
1848 CORE_ADDR *found_addrp);
1849
1850 /* Main entry point for searching memory. */
1851 extern int target_search_memory (CORE_ADDR start_addr,
1852 ULONGEST search_space_len,
1853 const gdb_byte *pattern,
1854 ULONGEST pattern_len,
1855 CORE_ADDR *found_addrp);
1856
1857 /* Target file operations. */
1858
1859 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1860 target file descriptor, or -1 if an error occurs (and set
1861 *TARGET_ERRNO). */
1862 extern int target_fileio_open (const char *filename, int flags, int mode,
1863 int *target_errno);
1864
1865 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1866 Return the number of bytes written, or -1 if an error occurs
1867 (and set *TARGET_ERRNO). */
1868 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1869 ULONGEST offset, int *target_errno);
1870
1871 /* Read up to LEN bytes FD on the target into READ_BUF.
1872 Return the number of bytes read, or -1 if an error occurs
1873 (and set *TARGET_ERRNO). */
1874 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1875 ULONGEST offset, int *target_errno);
1876
1877 /* Close FD on the target. Return 0, or -1 if an error occurs
1878 (and set *TARGET_ERRNO). */
1879 extern int target_fileio_close (int fd, int *target_errno);
1880
1881 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1882 occurs (and set *TARGET_ERRNO). */
1883 extern int target_fileio_unlink (const char *filename, int *target_errno);
1884
1885 /* Read value of symbolic link FILENAME on the target. Return a
1886 null-terminated string allocated via xmalloc, or NULL if an error
1887 occurs (and set *TARGET_ERRNO). */
1888 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1889
1890 /* Read target file FILENAME. The return value will be -1 if the transfer
1891 fails or is not supported; 0 if the object is empty; or the length
1892 of the object otherwise. If a positive value is returned, a
1893 sufficiently large buffer will be allocated using xmalloc and
1894 returned in *BUF_P containing the contents of the object.
1895
1896 This method should be used for objects sufficiently small to store
1897 in a single xmalloc'd buffer, when no fixed bound on the object's
1898 size is known in advance. */
1899 extern LONGEST target_fileio_read_alloc (const char *filename,
1900 gdb_byte **buf_p);
1901
1902 /* Read target file FILENAME. The result is NUL-terminated and
1903 returned as a string, allocated using xmalloc. If an error occurs
1904 or the transfer is unsupported, NULL is returned. Empty objects
1905 are returned as allocated but empty strings. A warning is issued
1906 if the result contains any embedded NUL bytes. */
1907 extern char *target_fileio_read_stralloc (const char *filename);
1908
1909
1910 /* Tracepoint-related operations. */
1911
1912 #define target_trace_init() \
1913 (*current_target.to_trace_init) (&current_target)
1914
1915 #define target_download_tracepoint(t) \
1916 (*current_target.to_download_tracepoint) (&current_target, t)
1917
1918 #define target_can_download_tracepoint() \
1919 (*current_target.to_can_download_tracepoint) (&current_target)
1920
1921 #define target_download_trace_state_variable(tsv) \
1922 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1923
1924 #define target_enable_tracepoint(loc) \
1925 (*current_target.to_enable_tracepoint) (&current_target, loc)
1926
1927 #define target_disable_tracepoint(loc) \
1928 (*current_target.to_disable_tracepoint) (&current_target, loc)
1929
1930 #define target_trace_start() \
1931 (*current_target.to_trace_start) (&current_target)
1932
1933 #define target_trace_set_readonly_regions() \
1934 (*current_target.to_trace_set_readonly_regions) (&current_target)
1935
1936 #define target_get_trace_status(ts) \
1937 (*current_target.to_get_trace_status) (&current_target, ts)
1938
1939 #define target_get_tracepoint_status(tp,utp) \
1940 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1941
1942 #define target_trace_stop() \
1943 (*current_target.to_trace_stop) (&current_target)
1944
1945 #define target_trace_find(type,num,addr1,addr2,tpp) \
1946 (*current_target.to_trace_find) (&current_target, \
1947 (type), (num), (addr1), (addr2), (tpp))
1948
1949 #define target_get_trace_state_variable_value(tsv,val) \
1950 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1951 (tsv), (val))
1952
1953 #define target_save_trace_data(filename) \
1954 (*current_target.to_save_trace_data) (&current_target, filename)
1955
1956 #define target_upload_tracepoints(utpp) \
1957 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1958
1959 #define target_upload_trace_state_variables(utsvp) \
1960 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1961
1962 #define target_get_raw_trace_data(buf,offset,len) \
1963 (*current_target.to_get_raw_trace_data) (&current_target, \
1964 (buf), (offset), (len))
1965
1966 #define target_get_min_fast_tracepoint_insn_len() \
1967 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1968
1969 #define target_set_disconnected_tracing(val) \
1970 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1971
1972 #define target_set_circular_trace_buffer(val) \
1973 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1974
1975 #define target_set_trace_buffer_size(val) \
1976 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1977
1978 #define target_set_trace_notes(user,notes,stopnotes) \
1979 (*current_target.to_set_trace_notes) (&current_target, \
1980 (user), (notes), (stopnotes))
1981
1982 #define target_get_tib_address(ptid, addr) \
1983 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1984
1985 #define target_set_permissions() \
1986 (*current_target.to_set_permissions) (&current_target)
1987
1988 #define target_static_tracepoint_marker_at(addr, marker) \
1989 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1990 addr, marker)
1991
1992 #define target_static_tracepoint_markers_by_strid(marker_id) \
1993 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1994 marker_id)
1995
1996 #define target_traceframe_info() \
1997 (*current_target.to_traceframe_info) (&current_target)
1998
1999 #define target_use_agent(use) \
2000 (*current_target.to_use_agent) (&current_target, use)
2001
2002 #define target_can_use_agent() \
2003 (*current_target.to_can_use_agent) (&current_target)
2004
2005 #define target_augmented_libraries_svr4_read() \
2006 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2007
2008 /* Command logging facility. */
2009
2010 #define target_log_command(p) \
2011 (*current_target.to_log_command) (&current_target, p)
2012
2013
2014 extern int target_core_of_thread (ptid_t ptid);
2015
2016 /* See to_get_unwinder in struct target_ops. */
2017 extern const struct frame_unwind *target_get_unwinder (void);
2018
2019 /* See to_get_tailcall_unwinder in struct target_ops. */
2020 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2021
2022 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2023 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2024 if there's a mismatch, and -1 if an error is encountered while
2025 reading memory. Throws an error if the functionality is found not
2026 to be supported by the current target. */
2027 int target_verify_memory (const gdb_byte *data,
2028 CORE_ADDR memaddr, ULONGEST size);
2029
2030 /* Routines for maintenance of the target structures...
2031
2032 complete_target_initialization: Finalize a target_ops by filling in
2033 any fields needed by the target implementation.
2034
2035 add_target: Add a target to the list of all possible targets.
2036
2037 push_target: Make this target the top of the stack of currently used
2038 targets, within its particular stratum of the stack. Result
2039 is 0 if now atop the stack, nonzero if not on top (maybe
2040 should warn user).
2041
2042 unpush_target: Remove this from the stack of currently used targets,
2043 no matter where it is on the list. Returns 0 if no
2044 change, 1 if removed from stack. */
2045
2046 extern void add_target (struct target_ops *);
2047
2048 extern void add_target_with_completer (struct target_ops *t,
2049 completer_ftype *completer);
2050
2051 extern void complete_target_initialization (struct target_ops *t);
2052
2053 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2054 for maintaining backwards compatibility when renaming targets. */
2055
2056 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2057
2058 extern void push_target (struct target_ops *);
2059
2060 extern int unpush_target (struct target_ops *);
2061
2062 extern void target_pre_inferior (int);
2063
2064 extern void target_preopen (int);
2065
2066 /* Does whatever cleanup is required to get rid of all pushed targets. */
2067 extern void pop_all_targets (void);
2068
2069 /* Like pop_all_targets, but pops only targets whose stratum is
2070 strictly above ABOVE_STRATUM. */
2071 extern void pop_all_targets_above (enum strata above_stratum);
2072
2073 extern int target_is_pushed (struct target_ops *t);
2074
2075 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2076 CORE_ADDR offset);
2077
2078 /* Struct target_section maps address ranges to file sections. It is
2079 mostly used with BFD files, but can be used without (e.g. for handling
2080 raw disks, or files not in formats handled by BFD). */
2081
2082 struct target_section
2083 {
2084 CORE_ADDR addr; /* Lowest address in section */
2085 CORE_ADDR endaddr; /* 1+highest address in section */
2086
2087 struct bfd_section *the_bfd_section;
2088
2089 /* The "owner" of the section.
2090 It can be any unique value. It is set by add_target_sections
2091 and used by remove_target_sections.
2092 For example, for executables it is a pointer to exec_bfd and
2093 for shlibs it is the so_list pointer. */
2094 void *owner;
2095 };
2096
2097 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2098
2099 struct target_section_table
2100 {
2101 struct target_section *sections;
2102 struct target_section *sections_end;
2103 };
2104
2105 /* Return the "section" containing the specified address. */
2106 struct target_section *target_section_by_addr (struct target_ops *target,
2107 CORE_ADDR addr);
2108
2109 /* Return the target section table this target (or the targets
2110 beneath) currently manipulate. */
2111
2112 extern struct target_section_table *target_get_section_table
2113 (struct target_ops *target);
2114
2115 /* From mem-break.c */
2116
2117 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2118 struct bp_target_info *);
2119
2120 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2121 struct bp_target_info *);
2122
2123 extern int default_memory_remove_breakpoint (struct gdbarch *,
2124 struct bp_target_info *);
2125
2126 extern int default_memory_insert_breakpoint (struct gdbarch *,
2127 struct bp_target_info *);
2128
2129
2130 /* From target.c */
2131
2132 extern void initialize_targets (void);
2133
2134 extern void noprocess (void) ATTRIBUTE_NORETURN;
2135
2136 extern void target_require_runnable (void);
2137
2138 extern void find_default_attach (struct target_ops *, char *, int);
2139
2140 extern void find_default_create_inferior (struct target_ops *,
2141 char *, char *, char **, int);
2142
2143 extern struct target_ops *find_target_beneath (struct target_ops *);
2144
2145 /* Find the target at STRATUM. If no target is at that stratum,
2146 return NULL. */
2147
2148 struct target_ops *find_target_at (enum strata stratum);
2149
2150 /* Read OS data object of type TYPE from the target, and return it in
2151 XML format. The result is NUL-terminated and returned as a string,
2152 allocated using xmalloc. If an error occurs or the transfer is
2153 unsupported, NULL is returned. Empty objects are returned as
2154 allocated but empty strings. */
2155
2156 extern char *target_get_osdata (const char *type);
2157
2158 \f
2159 /* Stuff that should be shared among the various remote targets. */
2160
2161 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2162 information (higher values, more information). */
2163 extern int remote_debug;
2164
2165 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2166 extern int baud_rate;
2167 /* Timeout limit for response from target. */
2168 extern int remote_timeout;
2169
2170 \f
2171
2172 /* Set the show memory breakpoints mode to show, and installs a cleanup
2173 to restore it back to the current value. */
2174 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2175
2176 extern int may_write_registers;
2177 extern int may_write_memory;
2178 extern int may_insert_breakpoints;
2179 extern int may_insert_tracepoints;
2180 extern int may_insert_fast_tracepoints;
2181 extern int may_stop;
2182
2183 extern void update_target_permissions (void);
2184
2185 \f
2186 /* Imported from machine dependent code. */
2187
2188 /* Blank target vector entries are initialized to target_ignore. */
2189 void target_ignore (void);
2190
2191 /* See to_supports_btrace in struct target_ops. */
2192 #define target_supports_btrace() \
2193 (current_target.to_supports_btrace (&current_target))
2194
2195 /* See to_enable_btrace in struct target_ops. */
2196 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2197
2198 /* See to_disable_btrace in struct target_ops. */
2199 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2200
2201 /* See to_teardown_btrace in struct target_ops. */
2202 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2203
2204 /* See to_read_btrace in struct target_ops. */
2205 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2206 struct btrace_target_info *,
2207 enum btrace_read_type);
2208
2209 /* See to_stop_recording in struct target_ops. */
2210 extern void target_stop_recording (void);
2211
2212 /* See to_info_record in struct target_ops. */
2213 extern void target_info_record (void);
2214
2215 /* See to_save_record in struct target_ops. */
2216 extern void target_save_record (const char *filename);
2217
2218 /* Query if the target supports deleting the execution log. */
2219 extern int target_supports_delete_record (void);
2220
2221 /* See to_delete_record in struct target_ops. */
2222 extern void target_delete_record (void);
2223
2224 /* See to_record_is_replaying in struct target_ops. */
2225 extern int target_record_is_replaying (void);
2226
2227 /* See to_goto_record_begin in struct target_ops. */
2228 extern void target_goto_record_begin (void);
2229
2230 /* See to_goto_record_end in struct target_ops. */
2231 extern void target_goto_record_end (void);
2232
2233 /* See to_goto_record in struct target_ops. */
2234 extern void target_goto_record (ULONGEST insn);
2235
2236 /* See to_insn_history. */
2237 extern void target_insn_history (int size, int flags);
2238
2239 /* See to_insn_history_from. */
2240 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2241
2242 /* See to_insn_history_range. */
2243 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2244
2245 /* See to_call_history. */
2246 extern void target_call_history (int size, int flags);
2247
2248 /* See to_call_history_from. */
2249 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2250
2251 /* See to_call_history_range. */
2252 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2253
2254 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2255 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2256 struct gdbarch *gdbarch);
2257
2258 /* See to_decr_pc_after_break. */
2259 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2260
2261 #endif /* !defined (TARGET_H) */
This page took 0.078763 seconds and 4 git commands to generate.