2003-04-08 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by John Gilmore.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #if !defined (TARGET_H)
24 #define TARGET_H
25
26 /* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45 #include "bfd.h"
46 #include "symtab.h"
47 #include "dcache.h"
48 #include "memattr.h"
49
50 enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
58 };
59
60 enum thread_control_capabilities
61 {
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
65 };
66
67 /* Stuff for target_wait. */
68
69 /* Generally, what has the program done? */
70 enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
74
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_STOPPED,
78
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
82
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
86
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
91 TARGET_WAITKIND_FORKED,
92
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
96 TARGET_WAITKIND_VFORKED,
97
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
101 TARGET_WAITKIND_EXECD,
102
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
109
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* An event has occured, but we should wait again.
116 Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
123 like for instance the user typing. */
124 TARGET_WAITKIND_IGNORE
125 };
126
127 struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
142
143 /* Possible types of events that the inferior handler will have to
144 deal with. */
145 enum inferior_event_type
146 {
147 /* There is a request to quit the inferior, abandon it. */
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
150 being called. */
151 INF_REG_EVENT,
152 /* Deal with an error on the inferior. */
153 INF_ERROR,
154 /* We are called because a timer went off. */
155 INF_TIMER,
156 /* We are called to do stuff after the inferior stops. */
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
161 'step n' like commands. */
162 INF_EXEC_CONTINUE
163 };
164
165 /* Return the string for a signal. */
166 extern char *target_signal_to_string (enum target_signal);
167
168 /* Return the name (SIGHUP, etc.) for a signal. */
169 extern char *target_signal_to_name (enum target_signal);
170
171 /* Given a name (SIGHUP, etc.), return its signal. */
172 enum target_signal target_signal_from_name (char *);
173 \f
174
175 /* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
178 on TARGET_ACTIVITY_FD. */
179 extern int target_activity_fd;
180 /* Returns zero to leave the inferior alone, one to interrupt it. */
181 extern int (*target_activity_function) (void);
182 \f
183 struct thread_info; /* fwd decl for parameter list below: */
184
185 struct target_ops
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
190 newline, and starts with a one-line descrip-
191 tion (probably similar to to_longname). */
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_detach) (char *, int);
197 void (*to_resume) (ptid_t, int, enum target_signal);
198 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
199 void (*to_post_wait) (ptid_t, int);
200 void (*to_fetch_registers) (int);
201 void (*to_store_registers) (int);
202 void (*to_prepare_to_store) (void);
203
204 /* Transfer LEN bytes of memory between GDB address MYADDR and
205 target address MEMADDR. If WRITE, transfer them to the target, else
206 transfer them from the target. TARGET is the target from which we
207 get this function.
208
209 Return value, N, is one of the following:
210
211 0 means that we can't handle this. If errno has been set, it is the
212 error which prevented us from doing it (FIXME: What about bfd_error?).
213
214 positive (call it N) means that we have transferred N bytes
215 starting at MEMADDR. We might be able to handle more bytes
216 beyond this length, but no promises.
217
218 negative (call its absolute value N) means that we cannot
219 transfer right at MEMADDR, but we could transfer at least
220 something at MEMADDR + N. */
221
222 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
223 int len, int write,
224 struct mem_attrib *attrib,
225 struct target_ops *target);
226
227 #if 0
228 /* Enable this after 4.12. */
229
230 /* Search target memory. Start at STARTADDR and take LEN bytes of
231 target memory, and them with MASK, and compare to DATA. If they
232 match, set *ADDR_FOUND to the address we found it at, store the data
233 we found at LEN bytes starting at DATA_FOUND, and return. If
234 not, add INCREMENT to the search address and keep trying until
235 the search address is outside of the range [LORANGE,HIRANGE).
236
237 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
238 return. */
239
240 void (*to_search) (int len, char *data, char *mask,
241 CORE_ADDR startaddr, int increment,
242 CORE_ADDR lorange, CORE_ADDR hirange,
243 CORE_ADDR * addr_found, char *data_found);
244
245 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
246 (*current_target.to_search) (len, data, mask, startaddr, increment, \
247 lorange, hirange, addr_found, data_found)
248 #endif /* 0 */
249
250 void (*to_files_info) (struct target_ops *);
251 int (*to_insert_breakpoint) (CORE_ADDR, char *);
252 int (*to_remove_breakpoint) (CORE_ADDR, char *);
253 int (*to_can_use_hw_breakpoint) (int, int, int);
254 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
255 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
256 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
257 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
258 int (*to_stopped_by_watchpoint) (void);
259 int to_have_continuable_watchpoint;
260 CORE_ADDR (*to_stopped_data_address) (void);
261 int (*to_region_size_ok_for_hw_watchpoint) (int);
262 void (*to_terminal_init) (void);
263 void (*to_terminal_inferior) (void);
264 void (*to_terminal_ours_for_output) (void);
265 void (*to_terminal_ours) (void);
266 void (*to_terminal_save_ours) (void);
267 void (*to_terminal_info) (char *, int);
268 void (*to_kill) (void);
269 void (*to_load) (char *, int);
270 int (*to_lookup_symbol) (char *, CORE_ADDR *);
271 void (*to_create_inferior) (char *, char *, char **);
272 void (*to_post_startup_inferior) (ptid_t);
273 void (*to_acknowledge_created_inferior) (int);
274 int (*to_insert_fork_catchpoint) (int);
275 int (*to_remove_fork_catchpoint) (int);
276 int (*to_insert_vfork_catchpoint) (int);
277 int (*to_remove_vfork_catchpoint) (int);
278 int (*to_follow_fork) (int);
279 int (*to_insert_exec_catchpoint) (int);
280 int (*to_remove_exec_catchpoint) (int);
281 int (*to_reported_exec_events_per_exec_call) (void);
282 int (*to_has_exited) (int, int, int *);
283 void (*to_mourn_inferior) (void);
284 int (*to_can_run) (void);
285 void (*to_notice_signals) (ptid_t ptid);
286 int (*to_thread_alive) (ptid_t ptid);
287 void (*to_find_new_threads) (void);
288 char *(*to_pid_to_str) (ptid_t);
289 char *(*to_extra_thread_info) (struct thread_info *);
290 void (*to_stop) (void);
291 int (*to_query) (int /*char */ , char *, char *, int *);
292 void (*to_rcmd) (char *command, struct ui_file *output);
293 struct symtab_and_line *(*to_enable_exception_callback) (enum
294 exception_event_kind,
295 int);
296 struct exception_event_record *(*to_get_current_exception_event) (void);
297 char *(*to_pid_to_exec_file) (int pid);
298 enum strata to_stratum;
299 int to_has_all_memory;
300 int to_has_memory;
301 int to_has_stack;
302 int to_has_registers;
303 int to_has_execution;
304 int to_has_thread_control; /* control thread execution */
305 struct section_table
306 *to_sections;
307 struct section_table
308 *to_sections_end;
309 /* ASYNC target controls */
310 int (*to_can_async_p) (void);
311 int (*to_is_async_p) (void);
312 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
313 void *context);
314 int to_async_mask_value;
315 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
316 unsigned long,
317 int, int, int,
318 void *),
319 void *);
320 char * (*to_make_corefile_notes) (bfd *, int *);
321
322 /* Return the thread-local address at OFFSET in the
323 thread-local storage for the thread PTID and the shared library
324 or executable file given by OBJFILE. If that block of
325 thread-local storage hasn't been allocated yet, this function
326 may return an error. */
327 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
328 struct objfile *objfile,
329 CORE_ADDR offset);
330
331 int to_magic;
332 /* Need sub-structure for target machine related rather than comm related?
333 */
334 };
335
336 /* Magic number for checking ops size. If a struct doesn't end with this
337 number, somebody changed the declaration but didn't change all the
338 places that initialize one. */
339
340 #define OPS_MAGIC 3840
341
342 /* The ops structure for our "current" target process. This should
343 never be NULL. If there is no target, it points to the dummy_target. */
344
345 extern struct target_ops current_target;
346
347 /* An item on the target stack. */
348
349 struct target_stack_item
350 {
351 struct target_stack_item *next;
352 struct target_ops *target_ops;
353 };
354
355 /* The target stack. */
356
357 extern struct target_stack_item *target_stack;
358
359 /* Define easy words for doing these operations on our current target. */
360
361 #define target_shortname (current_target.to_shortname)
362 #define target_longname (current_target.to_longname)
363
364 /* The open routine takes the rest of the parameters from the command,
365 and (if successful) pushes a new target onto the stack.
366 Targets should supply this routine, if only to provide an error message. */
367
368 #define target_open(name, from_tty) \
369 do { \
370 dcache_invalidate (target_dcache); \
371 (*current_target.to_open) (name, from_tty); \
372 } while (0)
373
374 /* Does whatever cleanup is required for a target that we are no longer
375 going to be calling. Argument says whether we are quitting gdb and
376 should not get hung in case of errors, or whether we want a clean
377 termination even if it takes a while. This routine is automatically
378 always called just before a routine is popped off the target stack.
379 Closing file descriptors and freeing memory are typical things it should
380 do. */
381
382 #define target_close(quitting) \
383 (*current_target.to_close) (quitting)
384
385 /* Attaches to a process on the target side. Arguments are as passed
386 to the `attach' command by the user. This routine can be called
387 when the target is not on the target-stack, if the target_can_run
388 routine returns 1; in that case, it must push itself onto the stack.
389 Upon exit, the target should be ready for normal operations, and
390 should be ready to deliver the status of the process immediately
391 (without waiting) to an upcoming target_wait call. */
392
393 #define target_attach(args, from_tty) \
394 (*current_target.to_attach) (args, from_tty)
395
396 /* The target_attach operation places a process under debugger control,
397 and stops the process.
398
399 This operation provides a target-specific hook that allows the
400 necessary bookkeeping to be performed after an attach completes. */
401 #define target_post_attach(pid) \
402 (*current_target.to_post_attach) (pid)
403
404 /* Takes a program previously attached to and detaches it.
405 The program may resume execution (some targets do, some don't) and will
406 no longer stop on signals, etc. We better not have left any breakpoints
407 in the program or it'll die when it hits one. ARGS is arguments
408 typed by the user (e.g. a signal to send the process). FROM_TTY
409 says whether to be verbose or not. */
410
411 extern void target_detach (char *, int);
412
413 /* Resume execution of the target process PTID. STEP says whether to
414 single-step or to run free; SIGGNAL is the signal to be given to
415 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
416 pass TARGET_SIGNAL_DEFAULT. */
417
418 #define target_resume(ptid, step, siggnal) \
419 do { \
420 dcache_invalidate(target_dcache); \
421 (*current_target.to_resume) (ptid, step, siggnal); \
422 } while (0)
423
424 /* Wait for process pid to do something. PTID = -1 to wait for any
425 pid to do something. Return pid of child, or -1 in case of error;
426 store status through argument pointer STATUS. Note that it is
427 _NOT_ OK to throw_exception() out of target_wait() without popping
428 the debugging target from the stack; GDB isn't prepared to get back
429 to the prompt with a debugging target but without the frame cache,
430 stop_pc, etc., set up. */
431
432 #define target_wait(ptid, status) \
433 (*current_target.to_wait) (ptid, status)
434
435 /* The target_wait operation waits for a process event to occur, and
436 thereby stop the process.
437
438 On some targets, certain events may happen in sequences. gdb's
439 correct response to any single event of such a sequence may require
440 knowledge of what earlier events in the sequence have been seen.
441
442 This operation provides a target-specific hook that allows the
443 necessary bookkeeping to be performed to track such sequences. */
444
445 #define target_post_wait(ptid, status) \
446 (*current_target.to_post_wait) (ptid, status)
447
448 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
449
450 #define target_fetch_registers(regno) \
451 (*current_target.to_fetch_registers) (regno)
452
453 /* Store at least register REGNO, or all regs if REGNO == -1.
454 It can store as many registers as it wants to, so target_prepare_to_store
455 must have been previously called. Calls error() if there are problems. */
456
457 #define target_store_registers(regs) \
458 (*current_target.to_store_registers) (regs)
459
460 /* Get ready to modify the registers array. On machines which store
461 individual registers, this doesn't need to do anything. On machines
462 which store all the registers in one fell swoop, this makes sure
463 that REGISTERS contains all the registers from the program being
464 debugged. */
465
466 #define target_prepare_to_store() \
467 (*current_target.to_prepare_to_store) ()
468
469 extern DCACHE *target_dcache;
470
471 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
472 struct mem_attrib *attrib);
473
474 extern int target_read_string (CORE_ADDR, char **, int, int *);
475
476 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
477
478 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
479
480 extern int xfer_memory (CORE_ADDR, char *, int, int,
481 struct mem_attrib *, struct target_ops *);
482
483 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
484 struct mem_attrib *, struct target_ops *);
485
486 /* Make a single attempt at transfering LEN bytes. On a successful
487 transfer, the number of bytes actually transfered is returned and
488 ERR is set to 0. When a transfer fails, -1 is returned (the number
489 of bytes actually transfered is not defined) and ERR is set to a
490 non-zero error indication. */
491
492 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
493 int *err);
494
495 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
496 int *err);
497
498 extern char *child_pid_to_exec_file (int);
499
500 extern char *child_core_file_to_sym_file (char *);
501
502 #if defined(CHILD_POST_ATTACH)
503 extern void child_post_attach (int);
504 #endif
505
506 extern void child_post_wait (ptid_t, int);
507
508 extern void child_post_startup_inferior (ptid_t);
509
510 extern void child_acknowledge_created_inferior (int);
511
512 extern int child_insert_fork_catchpoint (int);
513
514 extern int child_remove_fork_catchpoint (int);
515
516 extern int child_insert_vfork_catchpoint (int);
517
518 extern int child_remove_vfork_catchpoint (int);
519
520 extern void child_acknowledge_created_inferior (int);
521
522 extern int child_follow_fork (int);
523
524 extern int child_insert_exec_catchpoint (int);
525
526 extern int child_remove_exec_catchpoint (int);
527
528 extern int child_reported_exec_events_per_exec_call (void);
529
530 extern int child_has_exited (int, int, int *);
531
532 extern int child_thread_alive (ptid_t);
533
534 /* From infrun.c. */
535
536 extern int inferior_has_forked (int pid, int *child_pid);
537
538 extern int inferior_has_vforked (int pid, int *child_pid);
539
540 extern int inferior_has_execd (int pid, char **execd_pathname);
541
542 /* From exec.c */
543
544 extern void print_section_info (struct target_ops *, bfd *);
545
546 /* Print a line about the current target. */
547
548 #define target_files_info() \
549 (*current_target.to_files_info) (&current_target)
550
551 /* Insert a breakpoint at address ADDR in the target machine.
552 SAVE is a pointer to memory allocated for saving the
553 target contents. It is guaranteed by the caller to be long enough
554 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
555 an errno value. */
556
557 #define target_insert_breakpoint(addr, save) \
558 (*current_target.to_insert_breakpoint) (addr, save)
559
560 /* Remove a breakpoint at address ADDR in the target machine.
561 SAVE is a pointer to the same save area
562 that was previously passed to target_insert_breakpoint.
563 Result is 0 for success, or an errno value. */
564
565 #define target_remove_breakpoint(addr, save) \
566 (*current_target.to_remove_breakpoint) (addr, save)
567
568 /* Initialize the terminal settings we record for the inferior,
569 before we actually run the inferior. */
570
571 #define target_terminal_init() \
572 (*current_target.to_terminal_init) ()
573
574 /* Put the inferior's terminal settings into effect.
575 This is preparation for starting or resuming the inferior. */
576
577 #define target_terminal_inferior() \
578 (*current_target.to_terminal_inferior) ()
579
580 /* Put some of our terminal settings into effect,
581 enough to get proper results from our output,
582 but do not change into or out of RAW mode
583 so that no input is discarded.
584
585 After doing this, either terminal_ours or terminal_inferior
586 should be called to get back to a normal state of affairs. */
587
588 #define target_terminal_ours_for_output() \
589 (*current_target.to_terminal_ours_for_output) ()
590
591 /* Put our terminal settings into effect.
592 First record the inferior's terminal settings
593 so they can be restored properly later. */
594
595 #define target_terminal_ours() \
596 (*current_target.to_terminal_ours) ()
597
598 /* Save our terminal settings.
599 This is called from TUI after entering or leaving the curses
600 mode. Since curses modifies our terminal this call is here
601 to take this change into account. */
602
603 #define target_terminal_save_ours() \
604 (*current_target.to_terminal_save_ours) ()
605
606 /* Print useful information about our terminal status, if such a thing
607 exists. */
608
609 #define target_terminal_info(arg, from_tty) \
610 (*current_target.to_terminal_info) (arg, from_tty)
611
612 /* Kill the inferior process. Make it go away. */
613
614 #define target_kill() \
615 (*current_target.to_kill) ()
616
617 /* Load an executable file into the target process. This is expected
618 to not only bring new code into the target process, but also to
619 update GDB's symbol tables to match. */
620
621 extern void target_load (char *arg, int from_tty);
622
623 /* Look up a symbol in the target's symbol table. NAME is the symbol
624 name. ADDRP is a CORE_ADDR * pointing to where the value of the
625 symbol should be returned. The result is 0 if successful, nonzero
626 if the symbol does not exist in the target environment. This
627 function should not call error() if communication with the target
628 is interrupted, since it is called from symbol reading, but should
629 return nonzero, possibly doing a complain(). */
630
631 #define target_lookup_symbol(name, addrp) \
632 (*current_target.to_lookup_symbol) (name, addrp)
633
634 /* Start an inferior process and set inferior_ptid to its pid.
635 EXEC_FILE is the file to run.
636 ALLARGS is a string containing the arguments to the program.
637 ENV is the environment vector to pass. Errors reported with error().
638 On VxWorks and various standalone systems, we ignore exec_file. */
639
640 #define target_create_inferior(exec_file, args, env) \
641 (*current_target.to_create_inferior) (exec_file, args, env)
642
643
644 /* Some targets (such as ttrace-based HPUX) don't allow us to request
645 notification of inferior events such as fork and vork immediately
646 after the inferior is created. (This because of how gdb gets an
647 inferior created via invoking a shell to do it. In such a scenario,
648 if the shell init file has commands in it, the shell will fork and
649 exec for each of those commands, and we will see each such fork
650 event. Very bad.)
651
652 Such targets will supply an appropriate definition for this function. */
653
654 #define target_post_startup_inferior(ptid) \
655 (*current_target.to_post_startup_inferior) (ptid)
656
657 /* On some targets, the sequence of starting up an inferior requires
658 some synchronization between gdb and the new inferior process, PID. */
659
660 #define target_acknowledge_created_inferior(pid) \
661 (*current_target.to_acknowledge_created_inferior) (pid)
662
663 /* On some targets, we can catch an inferior fork or vfork event when
664 it occurs. These functions insert/remove an already-created
665 catchpoint for such events. */
666
667 #define target_insert_fork_catchpoint(pid) \
668 (*current_target.to_insert_fork_catchpoint) (pid)
669
670 #define target_remove_fork_catchpoint(pid) \
671 (*current_target.to_remove_fork_catchpoint) (pid)
672
673 #define target_insert_vfork_catchpoint(pid) \
674 (*current_target.to_insert_vfork_catchpoint) (pid)
675
676 #define target_remove_vfork_catchpoint(pid) \
677 (*current_target.to_remove_vfork_catchpoint) (pid)
678
679 /* If the inferior forks or vforks, this function will be called at
680 the next resume in order to perform any bookkeeping and fiddling
681 necessary to continue debugging either the parent or child, as
682 requested, and releasing the other. Information about the fork
683 or vfork event is available via get_last_target_status ().
684 This function returns 1 if the inferior should not be resumed
685 (i.e. there is another event pending). */
686
687 #define target_follow_fork(follow_child) \
688 (*current_target.to_follow_fork) (follow_child)
689
690 /* On some targets, we can catch an inferior exec event when it
691 occurs. These functions insert/remove an already-created
692 catchpoint for such events. */
693
694 #define target_insert_exec_catchpoint(pid) \
695 (*current_target.to_insert_exec_catchpoint) (pid)
696
697 #define target_remove_exec_catchpoint(pid) \
698 (*current_target.to_remove_exec_catchpoint) (pid)
699
700 /* Returns the number of exec events that are reported when a process
701 invokes a flavor of the exec() system call on this target, if exec
702 events are being reported. */
703
704 #define target_reported_exec_events_per_exec_call() \
705 (*current_target.to_reported_exec_events_per_exec_call) ()
706
707 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
708 exit code of PID, if any. */
709
710 #define target_has_exited(pid,wait_status,exit_status) \
711 (*current_target.to_has_exited) (pid,wait_status,exit_status)
712
713 /* The debugger has completed a blocking wait() call. There is now
714 some process event that must be processed. This function should
715 be defined by those targets that require the debugger to perform
716 cleanup or internal state changes in response to the process event. */
717
718 /* The inferior process has died. Do what is right. */
719
720 #define target_mourn_inferior() \
721 (*current_target.to_mourn_inferior) ()
722
723 /* Does target have enough data to do a run or attach command? */
724
725 #define target_can_run(t) \
726 ((t)->to_can_run) ()
727
728 /* post process changes to signal handling in the inferior. */
729
730 #define target_notice_signals(ptid) \
731 (*current_target.to_notice_signals) (ptid)
732
733 /* Check to see if a thread is still alive. */
734
735 #define target_thread_alive(ptid) \
736 (*current_target.to_thread_alive) (ptid)
737
738 /* Query for new threads and add them to the thread list. */
739
740 #define target_find_new_threads() \
741 (*current_target.to_find_new_threads) (); \
742
743 /* Make target stop in a continuable fashion. (For instance, under
744 Unix, this should act like SIGSTOP). This function is normally
745 used by GUIs to implement a stop button. */
746
747 #define target_stop current_target.to_stop
748
749 /* Queries the target side for some information. The first argument is a
750 letter specifying the type of the query, which is used to determine who
751 should process it. The second argument is a string that specifies which
752 information is desired and the third is a buffer that carries back the
753 response from the target side. The fourth parameter is the size of the
754 output buffer supplied. */
755
756 #define target_query(query_type, query, resp_buffer, bufffer_size) \
757 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
758
759 /* Send the specified COMMAND to the target's monitor
760 (shell,interpreter) for execution. The result of the query is
761 placed in OUTBUF. */
762
763 #define target_rcmd(command, outbuf) \
764 (*current_target.to_rcmd) (command, outbuf)
765
766
767 /* Get the symbol information for a breakpointable routine called when
768 an exception event occurs.
769 Intended mainly for C++, and for those
770 platforms/implementations where such a callback mechanism is available,
771 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
772 different mechanisms for debugging exceptions. */
773
774 #define target_enable_exception_callback(kind, enable) \
775 (*current_target.to_enable_exception_callback) (kind, enable)
776
777 /* Get the current exception event kind -- throw or catch, etc. */
778
779 #define target_get_current_exception_event() \
780 (*current_target.to_get_current_exception_event) ()
781
782 /* Does the target include all of memory, or only part of it? This
783 determines whether we look up the target chain for other parts of
784 memory if this target can't satisfy a request. */
785
786 #define target_has_all_memory \
787 (current_target.to_has_all_memory)
788
789 /* Does the target include memory? (Dummy targets don't.) */
790
791 #define target_has_memory \
792 (current_target.to_has_memory)
793
794 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
795 we start a process.) */
796
797 #define target_has_stack \
798 (current_target.to_has_stack)
799
800 /* Does the target have registers? (Exec files don't.) */
801
802 #define target_has_registers \
803 (current_target.to_has_registers)
804
805 /* Does the target have execution? Can we make it jump (through
806 hoops), or pop its stack a few times? FIXME: If this is to work that
807 way, it needs to check whether an inferior actually exists.
808 remote-udi.c and probably other targets can be the current target
809 when the inferior doesn't actually exist at the moment. Right now
810 this just tells us whether this target is *capable* of execution. */
811
812 #define target_has_execution \
813 (current_target.to_has_execution)
814
815 /* Can the target support the debugger control of thread execution?
816 a) Can it lock the thread scheduler?
817 b) Can it switch the currently running thread? */
818
819 #define target_can_lock_scheduler \
820 (current_target.to_has_thread_control & tc_schedlock)
821
822 #define target_can_switch_threads \
823 (current_target.to_has_thread_control & tc_switch)
824
825 /* Can the target support asynchronous execution? */
826 #define target_can_async_p() (current_target.to_can_async_p ())
827
828 /* Is the target in asynchronous execution mode? */
829 #define target_is_async_p() (current_target.to_is_async_p())
830
831 /* Put the target in async mode with the specified callback function. */
832 #define target_async(CALLBACK,CONTEXT) \
833 (current_target.to_async((CALLBACK), (CONTEXT)))
834
835 /* This is to be used ONLY within run_stack_dummy(). It
836 provides a workaround, to have inferior function calls done in
837 sychronous mode, even though the target is asynchronous. After
838 target_async_mask(0) is called, calls to target_can_async_p() will
839 return FALSE , so that target_resume() will not try to start the
840 target asynchronously. After the inferior stops, we IMMEDIATELY
841 restore the previous nature of the target, by calling
842 target_async_mask(1). After that, target_can_async_p() will return
843 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
844
845 FIXME ezannoni 1999-12-13: we won't need this once we move
846 the turning async on and off to the single execution commands,
847 from where it is done currently, in remote_resume(). */
848
849 #define target_async_mask_value \
850 (current_target.to_async_mask_value)
851
852 extern int target_async_mask (int mask);
853
854 extern void target_link (char *, CORE_ADDR *);
855
856 /* Converts a process id to a string. Usually, the string just contains
857 `process xyz', but on some systems it may contain
858 `process xyz thread abc'. */
859
860 #undef target_pid_to_str
861 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
862
863 #ifndef target_tid_to_str
864 #define target_tid_to_str(PID) \
865 target_pid_to_str (PID)
866 extern char *normal_pid_to_str (ptid_t ptid);
867 #endif
868
869 /* Return a short string describing extra information about PID,
870 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
871 is okay. */
872
873 #define target_extra_thread_info(TP) \
874 (current_target.to_extra_thread_info (TP))
875
876 /*
877 * New Objfile Event Hook:
878 *
879 * Sometimes a GDB component wants to get notified whenever a new
880 * objfile is loaded. Mainly this is used by thread-debugging
881 * implementations that need to know when symbols for the target
882 * thread implemenation are available.
883 *
884 * The old way of doing this is to define a macro 'target_new_objfile'
885 * that points to the function that you want to be called on every
886 * objfile/shlib load.
887 *
888 * The new way is to grab the function pointer, 'target_new_objfile_hook',
889 * and point it to the function that you want to be called on every
890 * objfile/shlib load.
891 *
892 * If multiple clients are willing to be cooperative, they can each
893 * save a pointer to the previous value of target_new_objfile_hook
894 * before modifying it, and arrange for their function to call the
895 * previous function in the chain. In that way, multiple clients
896 * can receive this notification (something like with signal handlers).
897 */
898
899 extern void (*target_new_objfile_hook) (struct objfile *);
900
901 #ifndef target_pid_or_tid_to_str
902 #define target_pid_or_tid_to_str(ID) \
903 target_pid_to_str (ID)
904 #endif
905
906 /* Attempts to find the pathname of the executable file
907 that was run to create a specified process.
908
909 The process PID must be stopped when this operation is used.
910
911 If the executable file cannot be determined, NULL is returned.
912
913 Else, a pointer to a character string containing the pathname
914 is returned. This string should be copied into a buffer by
915 the client if the string will not be immediately used, or if
916 it must persist. */
917
918 #define target_pid_to_exec_file(pid) \
919 (current_target.to_pid_to_exec_file) (pid)
920
921 /*
922 * Iterator function for target memory regions.
923 * Calls a callback function once for each memory region 'mapped'
924 * in the child process. Defined as a simple macro rather than
925 * as a function macro so that it can be tested for nullity.
926 */
927
928 #define target_find_memory_regions(FUNC, DATA) \
929 (current_target.to_find_memory_regions) (FUNC, DATA)
930
931 /*
932 * Compose corefile .note section.
933 */
934
935 #define target_make_corefile_notes(BFD, SIZE_P) \
936 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
937
938 /* Thread-local values. */
939 #define target_get_thread_local_address \
940 (current_target.to_get_thread_local_address)
941 #define target_get_thread_local_address_p() \
942 (target_get_thread_local_address != NULL)
943
944 /* Hook to call target-dependent code after reading in a new symbol table. */
945
946 #ifndef TARGET_SYMFILE_POSTREAD
947 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
948 #endif
949
950 /* Hook to call target dependent code just after inferior target process has
951 started. */
952
953 #ifndef TARGET_CREATE_INFERIOR_HOOK
954 #define TARGET_CREATE_INFERIOR_HOOK(PID)
955 #endif
956
957 /* Hardware watchpoint interfaces. */
958
959 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
960 write). */
961
962 #ifndef STOPPED_BY_WATCHPOINT
963 #define STOPPED_BY_WATCHPOINT(w) \
964 (*current_target.to_stopped_by_watchpoint) ()
965 #endif
966
967 /* Non-zero if we have continuable watchpoints */
968
969 #ifndef HAVE_CONTINUABLE_WATCHPOINT
970 #define HAVE_CONTINUABLE_WATCHPOINT \
971 (current_target.to_have_continuable_watchpoint)
972 #endif
973
974 /* HP-UX supplies these operations, which respectively disable and enable
975 the memory page-protections that are used to implement hardware watchpoints
976 on that platform. See wait_for_inferior's use of these. */
977
978 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
979 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
980 #endif
981
982 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
983 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
984 #endif
985
986 /* Provide defaults for hardware watchpoint functions. */
987
988 /* If the *_hw_beakpoint functions have not been defined
989 elsewhere use the definitions in the target vector. */
990
991 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
992 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
993 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
994 (including this one?). OTHERTYPE is who knows what... */
995
996 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
997 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
998 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
999 #endif
1000
1001 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1002 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1003 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1004 #endif
1005
1006
1007 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1008 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1009 success, non-zero for failure. */
1010
1011 #ifndef target_insert_watchpoint
1012 #define target_insert_watchpoint(addr, len, type) \
1013 (*current_target.to_insert_watchpoint) (addr, len, type)
1014
1015 #define target_remove_watchpoint(addr, len, type) \
1016 (*current_target.to_remove_watchpoint) (addr, len, type)
1017 #endif
1018
1019 #ifndef target_insert_hw_breakpoint
1020 #define target_insert_hw_breakpoint(addr, save) \
1021 (*current_target.to_insert_hw_breakpoint) (addr, save)
1022
1023 #define target_remove_hw_breakpoint(addr, save) \
1024 (*current_target.to_remove_hw_breakpoint) (addr, save)
1025 #endif
1026
1027 #ifndef target_stopped_data_address
1028 #define target_stopped_data_address() \
1029 (*current_target.to_stopped_data_address) ()
1030 #endif
1031
1032 /* If defined, then we need to decr pc by this much after a hardware break-
1033 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1034
1035 #ifndef DECR_PC_AFTER_HW_BREAK
1036 #define DECR_PC_AFTER_HW_BREAK 0
1037 #endif
1038
1039 /* Sometimes gdb may pick up what appears to be a valid target address
1040 from a minimal symbol, but the value really means, essentially,
1041 "This is an index into a table which is populated when the inferior
1042 is run. Therefore, do not attempt to use this as a PC." */
1043
1044 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1045 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1046 #endif
1047
1048 /* This will only be defined by a target that supports catching vfork events,
1049 such as HP-UX.
1050
1051 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1052 child process after it has exec'd, causes the parent process to resume as
1053 well. To prevent the parent from running spontaneously, such targets should
1054 define this to a function that prevents that from happening. */
1055 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1056 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1057 #endif
1058
1059 /* This will only be defined by a target that supports catching vfork events,
1060 such as HP-UX.
1061
1062 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1063 process must be resumed when it delivers its exec event, before the parent
1064 vfork event will be delivered to us. */
1065
1066 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1067 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1068 #endif
1069
1070 /* Routines for maintenance of the target structures...
1071
1072 add_target: Add a target to the list of all possible targets.
1073
1074 push_target: Make this target the top of the stack of currently used
1075 targets, within its particular stratum of the stack. Result
1076 is 0 if now atop the stack, nonzero if not on top (maybe
1077 should warn user).
1078
1079 unpush_target: Remove this from the stack of currently used targets,
1080 no matter where it is on the list. Returns 0 if no
1081 change, 1 if removed from stack.
1082
1083 pop_target: Remove the top thing on the stack of current targets. */
1084
1085 extern void add_target (struct target_ops *);
1086
1087 extern int push_target (struct target_ops *);
1088
1089 extern int unpush_target (struct target_ops *);
1090
1091 extern void target_preopen (int);
1092
1093 extern void pop_target (void);
1094
1095 /* Struct section_table maps address ranges to file sections. It is
1096 mostly used with BFD files, but can be used without (e.g. for handling
1097 raw disks, or files not in formats handled by BFD). */
1098
1099 struct section_table
1100 {
1101 CORE_ADDR addr; /* Lowest address in section */
1102 CORE_ADDR endaddr; /* 1+highest address in section */
1103
1104 sec_ptr the_bfd_section;
1105
1106 bfd *bfd; /* BFD file pointer */
1107 };
1108
1109 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1110 Returns 0 if OK, 1 on error. */
1111
1112 extern int build_section_table (bfd *, struct section_table **,
1113 struct section_table **);
1114
1115 /* From mem-break.c */
1116
1117 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1118
1119 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1120
1121 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1122
1123 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1124
1125 extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1126 int *lenptr);
1127
1128
1129 /* From target.c */
1130
1131 extern void initialize_targets (void);
1132
1133 extern void noprocess (void);
1134
1135 extern void find_default_attach (char *, int);
1136
1137 extern void find_default_create_inferior (char *, char *, char **);
1138
1139 extern struct target_ops *find_run_target (void);
1140
1141 extern struct target_ops *find_core_target (void);
1142
1143 extern struct target_ops *find_target_beneath (struct target_ops *);
1144
1145 extern int target_resize_to_sections (struct target_ops *target,
1146 int num_added);
1147
1148 extern void remove_target_sections (bfd *abfd);
1149
1150 \f
1151 /* Stuff that should be shared among the various remote targets. */
1152
1153 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1154 information (higher values, more information). */
1155 extern int remote_debug;
1156
1157 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1158 extern int baud_rate;
1159 /* Timeout limit for response from target. */
1160 extern int remote_timeout;
1161
1162 \f
1163 /* Functions for helping to write a native target. */
1164
1165 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1166 extern void store_waitstatus (struct target_waitstatus *, int);
1167
1168 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1169 targ_signal SIGNO has an equivalent ``host'' representation. */
1170 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1171 to the shorter target_signal_p() because it is far less ambigious.
1172 In this context ``target_signal'' refers to GDB's internal
1173 representation of the target's set of signals while ``host signal''
1174 refers to the target operating system's signal. Confused? */
1175
1176 extern int target_signal_to_host_p (enum target_signal signo);
1177
1178 /* Convert between host signal numbers and enum target_signal's.
1179 target_signal_to_host() returns 0 and prints a warning() on GDB's
1180 console if SIGNO has no equivalent host representation. */
1181 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1182 refering to the target operating system's signal numbering.
1183 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1184 gdb_signal'' would probably be better as it is refering to GDB's
1185 internal representation of a target operating system's signal. */
1186
1187 extern enum target_signal target_signal_from_host (int);
1188 extern int target_signal_to_host (enum target_signal);
1189
1190 /* Convert from a number used in a GDB command to an enum target_signal. */
1191 extern enum target_signal target_signal_from_command (int);
1192
1193 /* Any target can call this to switch to remote protocol (in remote.c). */
1194 extern void push_remote_target (char *name, int from_tty);
1195 \f
1196 /* Imported from machine dependent code */
1197
1198 /* Blank target vector entries are initialized to target_ignore. */
1199 void target_ignore (void);
1200
1201 #endif /* !defined (TARGET_H) */
This page took 0.055012 seconds and 4 git commands to generate.