convert to_terminal_inferior
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *);
508 void (*to_terminal_ours) (struct target_ops *);
509 void (*to_terminal_save_ours) (struct target_ops *);
510 void (*to_terminal_info) (struct target_ops *, const char *, int);
511 void (*to_kill) (struct target_ops *);
512 void (*to_load) (struct target_ops *, char *, int);
513 void (*to_create_inferior) (struct target_ops *,
514 char *, char *, char **, int);
515 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
516 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
517 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
518 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
519 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
520 int (*to_follow_fork) (struct target_ops *, int, int);
521 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
522 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
523 int (*to_set_syscall_catchpoint) (struct target_ops *,
524 int, int, int, int, int *);
525 int (*to_has_exited) (struct target_ops *, int, int, int *);
526 void (*to_mourn_inferior) (struct target_ops *);
527 int (*to_can_run) (struct target_ops *);
528
529 /* Documentation of this routine is provided with the corresponding
530 target_* macro. */
531 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
532
533 /* Documentation of this routine is provided with the
534 corresponding target_* function. */
535 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
536
537 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
538 void (*to_find_new_threads) (struct target_ops *);
539 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
540 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
541 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
542 void (*to_stop) (struct target_ops *, ptid_t);
543 void (*to_rcmd) (struct target_ops *,
544 char *command, struct ui_file *output)
545 TARGET_DEFAULT_FUNC (default_rcmd);
546 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
547 void (*to_log_command) (struct target_ops *, const char *);
548 struct target_section_table *(*to_get_section_table) (struct target_ops *);
549 enum strata to_stratum;
550 int (*to_has_all_memory) (struct target_ops *);
551 int (*to_has_memory) (struct target_ops *);
552 int (*to_has_stack) (struct target_ops *);
553 int (*to_has_registers) (struct target_ops *);
554 int (*to_has_execution) (struct target_ops *, ptid_t);
555 int to_has_thread_control; /* control thread execution */
556 int to_attach_no_wait;
557 /* ASYNC target controls */
558 int (*to_can_async_p) (struct target_ops *)
559 TARGET_DEFAULT_FUNC (find_default_can_async_p);
560 int (*to_is_async_p) (struct target_ops *)
561 TARGET_DEFAULT_FUNC (find_default_is_async_p);
562 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
563 TARGET_DEFAULT_NORETURN (tcomplain ());
564 int (*to_supports_non_stop) (struct target_ops *);
565 /* find_memory_regions support method for gcore */
566 int (*to_find_memory_regions) (struct target_ops *,
567 find_memory_region_ftype func, void *data);
568 /* make_corefile_notes support method for gcore */
569 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
570 /* get_bookmark support method for bookmarks */
571 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
572 /* goto_bookmark support method for bookmarks */
573 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
574 /* Return the thread-local address at OFFSET in the
575 thread-local storage for the thread PTID and the shared library
576 or executable file given by OBJFILE. If that block of
577 thread-local storage hasn't been allocated yet, this function
578 may return an error. */
579 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
580 ptid_t ptid,
581 CORE_ADDR load_module_addr,
582 CORE_ADDR offset);
583
584 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
585 OBJECT. The OFFSET, for a seekable object, specifies the
586 starting point. The ANNEX can be used to provide additional
587 data-specific information to the target.
588
589 Return the transferred status, error or OK (an
590 'enum target_xfer_status' value). Save the number of bytes
591 actually transferred in *XFERED_LEN if transfer is successful
592 (TARGET_XFER_OK) or the number unavailable bytes if the requested
593 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
594 smaller than LEN does not indicate the end of the object, only
595 the end of the transfer; higher level code should continue
596 transferring if desired. This is handled in target.c.
597
598 The interface does not support a "retry" mechanism. Instead it
599 assumes that at least one byte will be transfered on each
600 successful call.
601
602 NOTE: cagney/2003-10-17: The current interface can lead to
603 fragmented transfers. Lower target levels should not implement
604 hacks, such as enlarging the transfer, in an attempt to
605 compensate for this. Instead, the target stack should be
606 extended so that it implements supply/collect methods and a
607 look-aside object cache. With that available, the lowest
608 target can safely and freely "push" data up the stack.
609
610 See target_read and target_write for more information. One,
611 and only one, of readbuf or writebuf must be non-NULL. */
612
613 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
614 enum target_object object,
615 const char *annex,
616 gdb_byte *readbuf,
617 const gdb_byte *writebuf,
618 ULONGEST offset, ULONGEST len,
619 ULONGEST *xfered_len)
620 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
621
622 /* Returns the memory map for the target. A return value of NULL
623 means that no memory map is available. If a memory address
624 does not fall within any returned regions, it's assumed to be
625 RAM. The returned memory regions should not overlap.
626
627 The order of regions does not matter; target_memory_map will
628 sort regions by starting address. For that reason, this
629 function should not be called directly except via
630 target_memory_map.
631
632 This method should not cache data; if the memory map could
633 change unexpectedly, it should be invalidated, and higher
634 layers will re-fetch it. */
635 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
636
637 /* Erases the region of flash memory starting at ADDRESS, of
638 length LENGTH.
639
640 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
641 on flash block boundaries, as reported by 'to_memory_map'. */
642 void (*to_flash_erase) (struct target_ops *,
643 ULONGEST address, LONGEST length);
644
645 /* Finishes a flash memory write sequence. After this operation
646 all flash memory should be available for writing and the result
647 of reading from areas written by 'to_flash_write' should be
648 equal to what was written. */
649 void (*to_flash_done) (struct target_ops *);
650
651 /* Describe the architecture-specific features of this target.
652 Returns the description found, or NULL if no description
653 was available. */
654 const struct target_desc *(*to_read_description) (struct target_ops *ops);
655
656 /* Build the PTID of the thread on which a given task is running,
657 based on LWP and THREAD. These values are extracted from the
658 task Private_Data section of the Ada Task Control Block, and
659 their interpretation depends on the target. */
660 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
661 long lwp, long thread);
662
663 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
664 Return 0 if *READPTR is already at the end of the buffer.
665 Return -1 if there is insufficient buffer for a whole entry.
666 Return 1 if an entry was read into *TYPEP and *VALP. */
667 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
668 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
669
670 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
671 sequence of bytes in PATTERN with length PATTERN_LEN.
672
673 The result is 1 if found, 0 if not found, and -1 if there was an error
674 requiring halting of the search (e.g. memory read error).
675 If the pattern is found the address is recorded in FOUND_ADDRP. */
676 int (*to_search_memory) (struct target_ops *ops,
677 CORE_ADDR start_addr, ULONGEST search_space_len,
678 const gdb_byte *pattern, ULONGEST pattern_len,
679 CORE_ADDR *found_addrp);
680
681 /* Can target execute in reverse? */
682 int (*to_can_execute_reverse) (struct target_ops *);
683
684 /* The direction the target is currently executing. Must be
685 implemented on targets that support reverse execution and async
686 mode. The default simply returns forward execution. */
687 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
688
689 /* Does this target support debugging multiple processes
690 simultaneously? */
691 int (*to_supports_multi_process) (struct target_ops *);
692
693 /* Does this target support enabling and disabling tracepoints while a trace
694 experiment is running? */
695 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
696
697 /* Does this target support disabling address space randomization? */
698 int (*to_supports_disable_randomization) (struct target_ops *);
699
700 /* Does this target support the tracenz bytecode for string collection? */
701 int (*to_supports_string_tracing) (struct target_ops *);
702
703 /* Does this target support evaluation of breakpoint conditions on its
704 end? */
705 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
706
707 /* Does this target support evaluation of breakpoint commands on its
708 end? */
709 int (*to_can_run_breakpoint_commands) (struct target_ops *);
710
711 /* Determine current architecture of thread PTID.
712
713 The target is supposed to determine the architecture of the code where
714 the target is currently stopped at (on Cell, if a target is in spu_run,
715 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
716 This is architecture used to perform decr_pc_after_break adjustment,
717 and also determines the frame architecture of the innermost frame.
718 ptrace operations need to operate according to target_gdbarch ().
719
720 The default implementation always returns target_gdbarch (). */
721 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
722
723 /* Determine current address space of thread PTID.
724
725 The default implementation always returns the inferior's
726 address space. */
727 struct address_space *(*to_thread_address_space) (struct target_ops *,
728 ptid_t);
729
730 /* Target file operations. */
731
732 /* Open FILENAME on the target, using FLAGS and MODE. Return a
733 target file descriptor, or -1 if an error occurs (and set
734 *TARGET_ERRNO). */
735 int (*to_fileio_open) (struct target_ops *,
736 const char *filename, int flags, int mode,
737 int *target_errno);
738
739 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
740 Return the number of bytes written, or -1 if an error occurs
741 (and set *TARGET_ERRNO). */
742 int (*to_fileio_pwrite) (struct target_ops *,
743 int fd, const gdb_byte *write_buf, int len,
744 ULONGEST offset, int *target_errno);
745
746 /* Read up to LEN bytes FD on the target into READ_BUF.
747 Return the number of bytes read, or -1 if an error occurs
748 (and set *TARGET_ERRNO). */
749 int (*to_fileio_pread) (struct target_ops *,
750 int fd, gdb_byte *read_buf, int len,
751 ULONGEST offset, int *target_errno);
752
753 /* Close FD on the target. Return 0, or -1 if an error occurs
754 (and set *TARGET_ERRNO). */
755 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
756
757 /* Unlink FILENAME on the target. Return 0, or -1 if an error
758 occurs (and set *TARGET_ERRNO). */
759 int (*to_fileio_unlink) (struct target_ops *,
760 const char *filename, int *target_errno);
761
762 /* Read value of symbolic link FILENAME on the target. Return a
763 null-terminated string allocated via xmalloc, or NULL if an error
764 occurs (and set *TARGET_ERRNO). */
765 char *(*to_fileio_readlink) (struct target_ops *,
766 const char *filename, int *target_errno);
767
768
769 /* Implement the "info proc" command. */
770 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
771
772 /* Tracepoint-related operations. */
773
774 /* Prepare the target for a tracing run. */
775 void (*to_trace_init) (struct target_ops *);
776
777 /* Send full details of a tracepoint location to the target. */
778 void (*to_download_tracepoint) (struct target_ops *,
779 struct bp_location *location);
780
781 /* Is the target able to download tracepoint locations in current
782 state? */
783 int (*to_can_download_tracepoint) (struct target_ops *);
784
785 /* Send full details of a trace state variable to the target. */
786 void (*to_download_trace_state_variable) (struct target_ops *,
787 struct trace_state_variable *tsv);
788
789 /* Enable a tracepoint on the target. */
790 void (*to_enable_tracepoint) (struct target_ops *,
791 struct bp_location *location);
792
793 /* Disable a tracepoint on the target. */
794 void (*to_disable_tracepoint) (struct target_ops *,
795 struct bp_location *location);
796
797 /* Inform the target info of memory regions that are readonly
798 (such as text sections), and so it should return data from
799 those rather than look in the trace buffer. */
800 void (*to_trace_set_readonly_regions) (struct target_ops *);
801
802 /* Start a trace run. */
803 void (*to_trace_start) (struct target_ops *);
804
805 /* Get the current status of a tracing run. */
806 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
807
808 void (*to_get_tracepoint_status) (struct target_ops *,
809 struct breakpoint *tp,
810 struct uploaded_tp *utp);
811
812 /* Stop a trace run. */
813 void (*to_trace_stop) (struct target_ops *);
814
815 /* Ask the target to find a trace frame of the given type TYPE,
816 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
817 number of the trace frame, and also the tracepoint number at
818 TPP. If no trace frame matches, return -1. May throw if the
819 operation fails. */
820 int (*to_trace_find) (struct target_ops *,
821 enum trace_find_type type, int num,
822 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
823
824 /* Get the value of the trace state variable number TSV, returning
825 1 if the value is known and writing the value itself into the
826 location pointed to by VAL, else returning 0. */
827 int (*to_get_trace_state_variable_value) (struct target_ops *,
828 int tsv, LONGEST *val);
829
830 int (*to_save_trace_data) (struct target_ops *, const char *filename);
831
832 int (*to_upload_tracepoints) (struct target_ops *,
833 struct uploaded_tp **utpp);
834
835 int (*to_upload_trace_state_variables) (struct target_ops *,
836 struct uploaded_tsv **utsvp);
837
838 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
839 ULONGEST offset, LONGEST len);
840
841 /* Get the minimum length of instruction on which a fast tracepoint
842 may be set on the target. If this operation is unsupported,
843 return -1. If for some reason the minimum length cannot be
844 determined, return 0. */
845 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
846
847 /* Set the target's tracing behavior in response to unexpected
848 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
849 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
850 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
851 /* Set the size of trace buffer in the target. */
852 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
853
854 /* Add/change textual notes about the trace run, returning 1 if
855 successful, 0 otherwise. */
856 int (*to_set_trace_notes) (struct target_ops *,
857 const char *user, const char *notes,
858 const char *stopnotes);
859
860 /* Return the processor core that thread PTID was last seen on.
861 This information is updated only when:
862 - update_thread_list is called
863 - thread stops
864 If the core cannot be determined -- either for the specified
865 thread, or right now, or in this debug session, or for this
866 target -- return -1. */
867 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
868
869 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
870 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
871 a match, 0 if there's a mismatch, and -1 if an error is
872 encountered while reading memory. */
873 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
874 CORE_ADDR memaddr, ULONGEST size);
875
876 /* Return the address of the start of the Thread Information Block
877 a Windows OS specific feature. */
878 int (*to_get_tib_address) (struct target_ops *,
879 ptid_t ptid, CORE_ADDR *addr);
880
881 /* Send the new settings of write permission variables. */
882 void (*to_set_permissions) (struct target_ops *);
883
884 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
885 with its details. Return 1 on success, 0 on failure. */
886 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
887 struct static_tracepoint_marker *marker);
888
889 /* Return a vector of all tracepoints markers string id ID, or all
890 markers if ID is NULL. */
891 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
892 (struct target_ops *, const char *id);
893
894 /* Return a traceframe info object describing the current
895 traceframe's contents. If the target doesn't support
896 traceframe info, return NULL. If the current traceframe is not
897 selected (the current traceframe number is -1), the target can
898 choose to return either NULL or an empty traceframe info. If
899 NULL is returned, for example in remote target, GDB will read
900 from the live inferior. If an empty traceframe info is
901 returned, for example in tfile target, which means the
902 traceframe info is available, but the requested memory is not
903 available in it. GDB will try to see if the requested memory
904 is available in the read-only sections. This method should not
905 cache data; higher layers take care of caching, invalidating,
906 and re-fetching when necessary. */
907 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
908
909 /* Ask the target to use or not to use agent according to USE. Return 1
910 successful, 0 otherwise. */
911 int (*to_use_agent) (struct target_ops *, int use);
912
913 /* Is the target able to use agent in current state? */
914 int (*to_can_use_agent) (struct target_ops *);
915
916 /* Check whether the target supports branch tracing. */
917 int (*to_supports_btrace) (struct target_ops *)
918 TARGET_DEFAULT_RETURN (0);
919
920 /* Enable branch tracing for PTID and allocate a branch trace target
921 information struct for reading and for disabling branch trace. */
922 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
923 ptid_t ptid);
924
925 /* Disable branch tracing and deallocate TINFO. */
926 void (*to_disable_btrace) (struct target_ops *,
927 struct btrace_target_info *tinfo);
928
929 /* Disable branch tracing and deallocate TINFO. This function is similar
930 to to_disable_btrace, except that it is called during teardown and is
931 only allowed to perform actions that are safe. A counter-example would
932 be attempting to talk to a remote target. */
933 void (*to_teardown_btrace) (struct target_ops *,
934 struct btrace_target_info *tinfo);
935
936 /* Read branch trace data for the thread indicated by BTINFO into DATA.
937 DATA is cleared before new trace is added.
938 The branch trace will start with the most recent block and continue
939 towards older blocks. */
940 enum btrace_error (*to_read_btrace) (struct target_ops *self,
941 VEC (btrace_block_s) **data,
942 struct btrace_target_info *btinfo,
943 enum btrace_read_type type);
944
945 /* Stop trace recording. */
946 void (*to_stop_recording) (struct target_ops *);
947
948 /* Print information about the recording. */
949 void (*to_info_record) (struct target_ops *);
950
951 /* Save the recorded execution trace into a file. */
952 void (*to_save_record) (struct target_ops *, const char *filename);
953
954 /* Delete the recorded execution trace from the current position onwards. */
955 void (*to_delete_record) (struct target_ops *);
956
957 /* Query if the record target is currently replaying. */
958 int (*to_record_is_replaying) (struct target_ops *);
959
960 /* Go to the begin of the execution trace. */
961 void (*to_goto_record_begin) (struct target_ops *);
962
963 /* Go to the end of the execution trace. */
964 void (*to_goto_record_end) (struct target_ops *);
965
966 /* Go to a specific location in the recorded execution trace. */
967 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
968
969 /* Disassemble SIZE instructions in the recorded execution trace from
970 the current position.
971 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
972 disassemble SIZE succeeding instructions. */
973 void (*to_insn_history) (struct target_ops *, int size, int flags);
974
975 /* Disassemble SIZE instructions in the recorded execution trace around
976 FROM.
977 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
978 disassemble SIZE instructions after FROM. */
979 void (*to_insn_history_from) (struct target_ops *,
980 ULONGEST from, int size, int flags);
981
982 /* Disassemble a section of the recorded execution trace from instruction
983 BEGIN (inclusive) to instruction END (inclusive). */
984 void (*to_insn_history_range) (struct target_ops *,
985 ULONGEST begin, ULONGEST end, int flags);
986
987 /* Print a function trace of the recorded execution trace.
988 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
989 succeeding functions. */
990 void (*to_call_history) (struct target_ops *, int size, int flags);
991
992 /* Print a function trace of the recorded execution trace starting
993 at function FROM.
994 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
995 SIZE functions after FROM. */
996 void (*to_call_history_from) (struct target_ops *,
997 ULONGEST begin, int size, int flags);
998
999 /* Print a function trace of an execution trace section from function BEGIN
1000 (inclusive) to function END (inclusive). */
1001 void (*to_call_history_range) (struct target_ops *,
1002 ULONGEST begin, ULONGEST end, int flags);
1003
1004 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1005 non-empty annex. */
1006 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1007
1008 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1009 it is not used. */
1010 const struct frame_unwind *to_get_unwinder;
1011 const struct frame_unwind *to_get_tailcall_unwinder;
1012
1013 /* Return the number of bytes by which the PC needs to be decremented
1014 after executing a breakpoint instruction.
1015 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1016 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1017 struct gdbarch *gdbarch);
1018
1019 int to_magic;
1020 /* Need sub-structure for target machine related rather than comm related?
1021 */
1022 };
1023
1024 /* Magic number for checking ops size. If a struct doesn't end with this
1025 number, somebody changed the declaration but didn't change all the
1026 places that initialize one. */
1027
1028 #define OPS_MAGIC 3840
1029
1030 /* The ops structure for our "current" target process. This should
1031 never be NULL. If there is no target, it points to the dummy_target. */
1032
1033 extern struct target_ops current_target;
1034
1035 /* Define easy words for doing these operations on our current target. */
1036
1037 #define target_shortname (current_target.to_shortname)
1038 #define target_longname (current_target.to_longname)
1039
1040 /* Does whatever cleanup is required for a target that we are no
1041 longer going to be calling. This routine is automatically always
1042 called after popping the target off the target stack - the target's
1043 own methods are no longer available through the target vector.
1044 Closing file descriptors and freeing all memory allocated memory are
1045 typical things it should do. */
1046
1047 void target_close (struct target_ops *targ);
1048
1049 /* Attaches to a process on the target side. Arguments are as passed
1050 to the `attach' command by the user. This routine can be called
1051 when the target is not on the target-stack, if the target_can_run
1052 routine returns 1; in that case, it must push itself onto the stack.
1053 Upon exit, the target should be ready for normal operations, and
1054 should be ready to deliver the status of the process immediately
1055 (without waiting) to an upcoming target_wait call. */
1056
1057 void target_attach (char *, int);
1058
1059 /* Some targets don't generate traps when attaching to the inferior,
1060 or their target_attach implementation takes care of the waiting.
1061 These targets must set to_attach_no_wait. */
1062
1063 #define target_attach_no_wait \
1064 (current_target.to_attach_no_wait)
1065
1066 /* The target_attach operation places a process under debugger control,
1067 and stops the process.
1068
1069 This operation provides a target-specific hook that allows the
1070 necessary bookkeeping to be performed after an attach completes. */
1071 #define target_post_attach(pid) \
1072 (*current_target.to_post_attach) (&current_target, pid)
1073
1074 /* Takes a program previously attached to and detaches it.
1075 The program may resume execution (some targets do, some don't) and will
1076 no longer stop on signals, etc. We better not have left any breakpoints
1077 in the program or it'll die when it hits one. ARGS is arguments
1078 typed by the user (e.g. a signal to send the process). FROM_TTY
1079 says whether to be verbose or not. */
1080
1081 extern void target_detach (const char *, int);
1082
1083 /* Disconnect from the current target without resuming it (leaving it
1084 waiting for a debugger). */
1085
1086 extern void target_disconnect (char *, int);
1087
1088 /* Resume execution of the target process PTID (or a group of
1089 threads). STEP says whether to single-step or to run free; SIGGNAL
1090 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1091 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1092 PTID means `step/resume only this process id'. A wildcard PTID
1093 (all threads, or all threads of process) means `step/resume
1094 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1095 matches) resume with their 'thread->suspend.stop_signal' signal
1096 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1097 if in "no pass" state. */
1098
1099 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1100
1101 /* Wait for process pid to do something. PTID = -1 to wait for any
1102 pid to do something. Return pid of child, or -1 in case of error;
1103 store status through argument pointer STATUS. Note that it is
1104 _NOT_ OK to throw_exception() out of target_wait() without popping
1105 the debugging target from the stack; GDB isn't prepared to get back
1106 to the prompt with a debugging target but without the frame cache,
1107 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1108 options. */
1109
1110 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1111 int options);
1112
1113 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1114
1115 extern void target_fetch_registers (struct regcache *regcache, int regno);
1116
1117 /* Store at least register REGNO, or all regs if REGNO == -1.
1118 It can store as many registers as it wants to, so target_prepare_to_store
1119 must have been previously called. Calls error() if there are problems. */
1120
1121 extern void target_store_registers (struct regcache *regcache, int regs);
1122
1123 /* Get ready to modify the registers array. On machines which store
1124 individual registers, this doesn't need to do anything. On machines
1125 which store all the registers in one fell swoop, this makes sure
1126 that REGISTERS contains all the registers from the program being
1127 debugged. */
1128
1129 #define target_prepare_to_store(regcache) \
1130 (*current_target.to_prepare_to_store) (&current_target, regcache)
1131
1132 /* Determine current address space of thread PTID. */
1133
1134 struct address_space *target_thread_address_space (ptid_t);
1135
1136 /* Implement the "info proc" command. This returns one if the request
1137 was handled, and zero otherwise. It can also throw an exception if
1138 an error was encountered while attempting to handle the
1139 request. */
1140
1141 int target_info_proc (char *, enum info_proc_what);
1142
1143 /* Returns true if this target can debug multiple processes
1144 simultaneously. */
1145
1146 #define target_supports_multi_process() \
1147 (*current_target.to_supports_multi_process) (&current_target)
1148
1149 /* Returns true if this target can disable address space randomization. */
1150
1151 int target_supports_disable_randomization (void);
1152
1153 /* Returns true if this target can enable and disable tracepoints
1154 while a trace experiment is running. */
1155
1156 #define target_supports_enable_disable_tracepoint() \
1157 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1158
1159 #define target_supports_string_tracing() \
1160 (*current_target.to_supports_string_tracing) (&current_target)
1161
1162 /* Returns true if this target can handle breakpoint conditions
1163 on its end. */
1164
1165 #define target_supports_evaluation_of_breakpoint_conditions() \
1166 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1167
1168 /* Returns true if this target can handle breakpoint commands
1169 on its end. */
1170
1171 #define target_can_run_breakpoint_commands() \
1172 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1173
1174 extern int target_read_string (CORE_ADDR, char **, int, int *);
1175
1176 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1177 ssize_t len);
1178
1179 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1180 ssize_t len);
1181
1182 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1183
1184 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1185
1186 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1187 ssize_t len);
1188
1189 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1190 ssize_t len);
1191
1192 /* Fetches the target's memory map. If one is found it is sorted
1193 and returned, after some consistency checking. Otherwise, NULL
1194 is returned. */
1195 VEC(mem_region_s) *target_memory_map (void);
1196
1197 /* Erase the specified flash region. */
1198 void target_flash_erase (ULONGEST address, LONGEST length);
1199
1200 /* Finish a sequence of flash operations. */
1201 void target_flash_done (void);
1202
1203 /* Describes a request for a memory write operation. */
1204 struct memory_write_request
1205 {
1206 /* Begining address that must be written. */
1207 ULONGEST begin;
1208 /* Past-the-end address. */
1209 ULONGEST end;
1210 /* The data to write. */
1211 gdb_byte *data;
1212 /* A callback baton for progress reporting for this request. */
1213 void *baton;
1214 };
1215 typedef struct memory_write_request memory_write_request_s;
1216 DEF_VEC_O(memory_write_request_s);
1217
1218 /* Enumeration specifying different flash preservation behaviour. */
1219 enum flash_preserve_mode
1220 {
1221 flash_preserve,
1222 flash_discard
1223 };
1224
1225 /* Write several memory blocks at once. This version can be more
1226 efficient than making several calls to target_write_memory, in
1227 particular because it can optimize accesses to flash memory.
1228
1229 Moreover, this is currently the only memory access function in gdb
1230 that supports writing to flash memory, and it should be used for
1231 all cases where access to flash memory is desirable.
1232
1233 REQUESTS is the vector (see vec.h) of memory_write_request.
1234 PRESERVE_FLASH_P indicates what to do with blocks which must be
1235 erased, but not completely rewritten.
1236 PROGRESS_CB is a function that will be periodically called to provide
1237 feedback to user. It will be called with the baton corresponding
1238 to the request currently being written. It may also be called
1239 with a NULL baton, when preserved flash sectors are being rewritten.
1240
1241 The function returns 0 on success, and error otherwise. */
1242 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1243 enum flash_preserve_mode preserve_flash_p,
1244 void (*progress_cb) (ULONGEST, void *));
1245
1246 /* Print a line about the current target. */
1247
1248 #define target_files_info() \
1249 (*current_target.to_files_info) (&current_target)
1250
1251 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1252 the target machine. Returns 0 for success, and returns non-zero or
1253 throws an error (with a detailed failure reason error code and
1254 message) otherwise. */
1255
1256 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1257 struct bp_target_info *bp_tgt);
1258
1259 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1260 machine. Result is 0 for success, non-zero for error. */
1261
1262 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1263 struct bp_target_info *bp_tgt);
1264
1265 /* Initialize the terminal settings we record for the inferior,
1266 before we actually run the inferior. */
1267
1268 #define target_terminal_init() \
1269 (*current_target.to_terminal_init) (&current_target)
1270
1271 /* Put the inferior's terminal settings into effect.
1272 This is preparation for starting or resuming the inferior. */
1273
1274 extern void target_terminal_inferior (void);
1275
1276 /* Put some of our terminal settings into effect,
1277 enough to get proper results from our output,
1278 but do not change into or out of RAW mode
1279 so that no input is discarded.
1280
1281 After doing this, either terminal_ours or terminal_inferior
1282 should be called to get back to a normal state of affairs. */
1283
1284 #define target_terminal_ours_for_output() \
1285 (*current_target.to_terminal_ours_for_output) (&current_target)
1286
1287 /* Put our terminal settings into effect.
1288 First record the inferior's terminal settings
1289 so they can be restored properly later. */
1290
1291 #define target_terminal_ours() \
1292 (*current_target.to_terminal_ours) (&current_target)
1293
1294 /* Save our terminal settings.
1295 This is called from TUI after entering or leaving the curses
1296 mode. Since curses modifies our terminal this call is here
1297 to take this change into account. */
1298
1299 #define target_terminal_save_ours() \
1300 (*current_target.to_terminal_save_ours) (&current_target)
1301
1302 /* Print useful information about our terminal status, if such a thing
1303 exists. */
1304
1305 #define target_terminal_info(arg, from_tty) \
1306 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1307
1308 /* Kill the inferior process. Make it go away. */
1309
1310 extern void target_kill (void);
1311
1312 /* Load an executable file into the target process. This is expected
1313 to not only bring new code into the target process, but also to
1314 update GDB's symbol tables to match.
1315
1316 ARG contains command-line arguments, to be broken down with
1317 buildargv (). The first non-switch argument is the filename to
1318 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1319 0)), which is an offset to apply to the load addresses of FILE's
1320 sections. The target may define switches, or other non-switch
1321 arguments, as it pleases. */
1322
1323 extern void target_load (char *arg, int from_tty);
1324
1325 /* Start an inferior process and set inferior_ptid to its pid.
1326 EXEC_FILE is the file to run.
1327 ALLARGS is a string containing the arguments to the program.
1328 ENV is the environment vector to pass. Errors reported with error().
1329 On VxWorks and various standalone systems, we ignore exec_file. */
1330
1331 void target_create_inferior (char *exec_file, char *args,
1332 char **env, int from_tty);
1333
1334 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1335 notification of inferior events such as fork and vork immediately
1336 after the inferior is created. (This because of how gdb gets an
1337 inferior created via invoking a shell to do it. In such a scenario,
1338 if the shell init file has commands in it, the shell will fork and
1339 exec for each of those commands, and we will see each such fork
1340 event. Very bad.)
1341
1342 Such targets will supply an appropriate definition for this function. */
1343
1344 #define target_post_startup_inferior(ptid) \
1345 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1346
1347 /* On some targets, we can catch an inferior fork or vfork event when
1348 it occurs. These functions insert/remove an already-created
1349 catchpoint for such events. They return 0 for success, 1 if the
1350 catchpoint type is not supported and -1 for failure. */
1351
1352 #define target_insert_fork_catchpoint(pid) \
1353 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1354
1355 #define target_remove_fork_catchpoint(pid) \
1356 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1357
1358 #define target_insert_vfork_catchpoint(pid) \
1359 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1360
1361 #define target_remove_vfork_catchpoint(pid) \
1362 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1363
1364 /* If the inferior forks or vforks, this function will be called at
1365 the next resume in order to perform any bookkeeping and fiddling
1366 necessary to continue debugging either the parent or child, as
1367 requested, and releasing the other. Information about the fork
1368 or vfork event is available via get_last_target_status ().
1369 This function returns 1 if the inferior should not be resumed
1370 (i.e. there is another event pending). */
1371
1372 int target_follow_fork (int follow_child, int detach_fork);
1373
1374 /* On some targets, we can catch an inferior exec event when it
1375 occurs. These functions insert/remove an already-created
1376 catchpoint for such events. They return 0 for success, 1 if the
1377 catchpoint type is not supported and -1 for failure. */
1378
1379 #define target_insert_exec_catchpoint(pid) \
1380 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1381
1382 #define target_remove_exec_catchpoint(pid) \
1383 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1384
1385 /* Syscall catch.
1386
1387 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1388 If NEEDED is zero, it means the target can disable the mechanism to
1389 catch system calls because there are no more catchpoints of this type.
1390
1391 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1392 being requested. In this case, both TABLE_SIZE and TABLE should
1393 be ignored.
1394
1395 TABLE_SIZE is the number of elements in TABLE. It only matters if
1396 ANY_COUNT is zero.
1397
1398 TABLE is an array of ints, indexed by syscall number. An element in
1399 this array is nonzero if that syscall should be caught. This argument
1400 only matters if ANY_COUNT is zero.
1401
1402 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1403 for failure. */
1404
1405 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1406 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1407 pid, needed, any_count, \
1408 table_size, table)
1409
1410 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1411 exit code of PID, if any. */
1412
1413 #define target_has_exited(pid,wait_status,exit_status) \
1414 (*current_target.to_has_exited) (&current_target, \
1415 pid,wait_status,exit_status)
1416
1417 /* The debugger has completed a blocking wait() call. There is now
1418 some process event that must be processed. This function should
1419 be defined by those targets that require the debugger to perform
1420 cleanup or internal state changes in response to the process event. */
1421
1422 /* The inferior process has died. Do what is right. */
1423
1424 void target_mourn_inferior (void);
1425
1426 /* Does target have enough data to do a run or attach command? */
1427
1428 #define target_can_run(t) \
1429 ((t)->to_can_run) (t)
1430
1431 /* Set list of signals to be handled in the target.
1432
1433 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1434 (enum gdb_signal). For every signal whose entry in this array is
1435 non-zero, the target is allowed -but not required- to skip reporting
1436 arrival of the signal to the GDB core by returning from target_wait,
1437 and to pass the signal directly to the inferior instead.
1438
1439 However, if the target is hardware single-stepping a thread that is
1440 about to receive a signal, it needs to be reported in any case, even
1441 if mentioned in a previous target_pass_signals call. */
1442
1443 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1444
1445 /* Set list of signals the target may pass to the inferior. This
1446 directly maps to the "handle SIGNAL pass/nopass" setting.
1447
1448 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1449 number (enum gdb_signal). For every signal whose entry in this
1450 array is non-zero, the target is allowed to pass the signal to the
1451 inferior. Signals not present in the array shall be silently
1452 discarded. This does not influence whether to pass signals to the
1453 inferior as a result of a target_resume call. This is useful in
1454 scenarios where the target needs to decide whether to pass or not a
1455 signal to the inferior without GDB core involvement, such as for
1456 example, when detaching (as threads may have been suspended with
1457 pending signals not reported to GDB). */
1458
1459 extern void target_program_signals (int nsig, unsigned char *program_signals);
1460
1461 /* Check to see if a thread is still alive. */
1462
1463 extern int target_thread_alive (ptid_t ptid);
1464
1465 /* Query for new threads and add them to the thread list. */
1466
1467 extern void target_find_new_threads (void);
1468
1469 /* Make target stop in a continuable fashion. (For instance, under
1470 Unix, this should act like SIGSTOP). This function is normally
1471 used by GUIs to implement a stop button. */
1472
1473 extern void target_stop (ptid_t ptid);
1474
1475 /* Send the specified COMMAND to the target's monitor
1476 (shell,interpreter) for execution. The result of the query is
1477 placed in OUTBUF. */
1478
1479 #define target_rcmd(command, outbuf) \
1480 (*current_target.to_rcmd) (&current_target, command, outbuf)
1481
1482
1483 /* Does the target include all of memory, or only part of it? This
1484 determines whether we look up the target chain for other parts of
1485 memory if this target can't satisfy a request. */
1486
1487 extern int target_has_all_memory_1 (void);
1488 #define target_has_all_memory target_has_all_memory_1 ()
1489
1490 /* Does the target include memory? (Dummy targets don't.) */
1491
1492 extern int target_has_memory_1 (void);
1493 #define target_has_memory target_has_memory_1 ()
1494
1495 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1496 we start a process.) */
1497
1498 extern int target_has_stack_1 (void);
1499 #define target_has_stack target_has_stack_1 ()
1500
1501 /* Does the target have registers? (Exec files don't.) */
1502
1503 extern int target_has_registers_1 (void);
1504 #define target_has_registers target_has_registers_1 ()
1505
1506 /* Does the target have execution? Can we make it jump (through
1507 hoops), or pop its stack a few times? This means that the current
1508 target is currently executing; for some targets, that's the same as
1509 whether or not the target is capable of execution, but there are
1510 also targets which can be current while not executing. In that
1511 case this will become true after target_create_inferior or
1512 target_attach. */
1513
1514 extern int target_has_execution_1 (ptid_t);
1515
1516 /* Like target_has_execution_1, but always passes inferior_ptid. */
1517
1518 extern int target_has_execution_current (void);
1519
1520 #define target_has_execution target_has_execution_current ()
1521
1522 /* Default implementations for process_stratum targets. Return true
1523 if there's a selected inferior, false otherwise. */
1524
1525 extern int default_child_has_all_memory (struct target_ops *ops);
1526 extern int default_child_has_memory (struct target_ops *ops);
1527 extern int default_child_has_stack (struct target_ops *ops);
1528 extern int default_child_has_registers (struct target_ops *ops);
1529 extern int default_child_has_execution (struct target_ops *ops,
1530 ptid_t the_ptid);
1531
1532 /* Can the target support the debugger control of thread execution?
1533 Can it lock the thread scheduler? */
1534
1535 #define target_can_lock_scheduler \
1536 (current_target.to_has_thread_control & tc_schedlock)
1537
1538 /* Should the target enable async mode if it is supported? Temporary
1539 cludge until async mode is a strict superset of sync mode. */
1540 extern int target_async_permitted;
1541
1542 /* Can the target support asynchronous execution? */
1543 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1544
1545 /* Is the target in asynchronous execution mode? */
1546 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1547
1548 int target_supports_non_stop (void);
1549
1550 /* Put the target in async mode with the specified callback function. */
1551 #define target_async(CALLBACK,CONTEXT) \
1552 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1553
1554 #define target_execution_direction() \
1555 (current_target.to_execution_direction (&current_target))
1556
1557 /* Converts a process id to a string. Usually, the string just contains
1558 `process xyz', but on some systems it may contain
1559 `process xyz thread abc'. */
1560
1561 extern char *target_pid_to_str (ptid_t ptid);
1562
1563 extern char *normal_pid_to_str (ptid_t ptid);
1564
1565 /* Return a short string describing extra information about PID,
1566 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1567 is okay. */
1568
1569 #define target_extra_thread_info(TP) \
1570 (current_target.to_extra_thread_info (&current_target, TP))
1571
1572 /* Return the thread's name. A NULL result means that the target
1573 could not determine this thread's name. */
1574
1575 extern char *target_thread_name (struct thread_info *);
1576
1577 /* Attempts to find the pathname of the executable file
1578 that was run to create a specified process.
1579
1580 The process PID must be stopped when this operation is used.
1581
1582 If the executable file cannot be determined, NULL is returned.
1583
1584 Else, a pointer to a character string containing the pathname
1585 is returned. This string should be copied into a buffer by
1586 the client if the string will not be immediately used, or if
1587 it must persist. */
1588
1589 #define target_pid_to_exec_file(pid) \
1590 (current_target.to_pid_to_exec_file) (&current_target, pid)
1591
1592 /* See the to_thread_architecture description in struct target_ops. */
1593
1594 #define target_thread_architecture(ptid) \
1595 (current_target.to_thread_architecture (&current_target, ptid))
1596
1597 /*
1598 * Iterator function for target memory regions.
1599 * Calls a callback function once for each memory region 'mapped'
1600 * in the child process. Defined as a simple macro rather than
1601 * as a function macro so that it can be tested for nullity.
1602 */
1603
1604 #define target_find_memory_regions(FUNC, DATA) \
1605 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1606
1607 /*
1608 * Compose corefile .note section.
1609 */
1610
1611 #define target_make_corefile_notes(BFD, SIZE_P) \
1612 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1613
1614 /* Bookmark interfaces. */
1615 #define target_get_bookmark(ARGS, FROM_TTY) \
1616 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1617
1618 #define target_goto_bookmark(ARG, FROM_TTY) \
1619 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1620
1621 /* Hardware watchpoint interfaces. */
1622
1623 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1624 write). Only the INFERIOR_PTID task is being queried. */
1625
1626 #define target_stopped_by_watchpoint() \
1627 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1628
1629 /* Non-zero if we have steppable watchpoints */
1630
1631 #define target_have_steppable_watchpoint \
1632 (current_target.to_have_steppable_watchpoint)
1633
1634 /* Non-zero if we have continuable watchpoints */
1635
1636 #define target_have_continuable_watchpoint \
1637 (current_target.to_have_continuable_watchpoint)
1638
1639 /* Provide defaults for hardware watchpoint functions. */
1640
1641 /* If the *_hw_beakpoint functions have not been defined
1642 elsewhere use the definitions in the target vector. */
1643
1644 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1645 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1646 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1647 (including this one?). OTHERTYPE is who knows what... */
1648
1649 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1650 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1651 TYPE, CNT, OTHERTYPE);
1652
1653 /* Returns the number of debug registers needed to watch the given
1654 memory region, or zero if not supported. */
1655
1656 #define target_region_ok_for_hw_watchpoint(addr, len) \
1657 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1658 addr, len)
1659
1660
1661 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1662 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1663 COND is the expression for its condition, or NULL if there's none.
1664 Returns 0 for success, 1 if the watchpoint type is not supported,
1665 -1 for failure. */
1666
1667 #define target_insert_watchpoint(addr, len, type, cond) \
1668 (*current_target.to_insert_watchpoint) (&current_target, \
1669 addr, len, type, cond)
1670
1671 #define target_remove_watchpoint(addr, len, type, cond) \
1672 (*current_target.to_remove_watchpoint) (&current_target, \
1673 addr, len, type, cond)
1674
1675 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1676 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1677 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1678 masked watchpoints are not supported, -1 for failure. */
1679
1680 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1681
1682 /* Remove a masked watchpoint at ADDR with the mask MASK.
1683 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1684 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1685 for failure. */
1686
1687 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1688
1689 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1690 the target machine. Returns 0 for success, and returns non-zero or
1691 throws an error (with a detailed failure reason error code and
1692 message) otherwise. */
1693
1694 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1695 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1696 gdbarch, bp_tgt)
1697
1698 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1699 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1700 gdbarch, bp_tgt)
1701
1702 /* Return number of debug registers needed for a ranged breakpoint,
1703 or -1 if ranged breakpoints are not supported. */
1704
1705 extern int target_ranged_break_num_registers (void);
1706
1707 /* Return non-zero if target knows the data address which triggered this
1708 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1709 INFERIOR_PTID task is being queried. */
1710 #define target_stopped_data_address(target, addr_p) \
1711 (*target.to_stopped_data_address) (target, addr_p)
1712
1713 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1714 LENGTH bytes beginning at START. */
1715 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1716 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1717
1718 /* Return non-zero if the target is capable of using hardware to evaluate
1719 the condition expression. In this case, if the condition is false when
1720 the watched memory location changes, execution may continue without the
1721 debugger being notified.
1722
1723 Due to limitations in the hardware implementation, it may be capable of
1724 avoiding triggering the watchpoint in some cases where the condition
1725 expression is false, but may report some false positives as well.
1726 For this reason, GDB will still evaluate the condition expression when
1727 the watchpoint triggers. */
1728 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1729 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1730 addr, len, type, cond)
1731
1732 /* Return number of debug registers needed for a masked watchpoint,
1733 -1 if masked watchpoints are not supported or -2 if the given address
1734 and mask combination cannot be used. */
1735
1736 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1737
1738 /* Target can execute in reverse? */
1739 #define target_can_execute_reverse \
1740 (current_target.to_can_execute_reverse ? \
1741 current_target.to_can_execute_reverse (&current_target) : 0)
1742
1743 extern const struct target_desc *target_read_description (struct target_ops *);
1744
1745 #define target_get_ada_task_ptid(lwp, tid) \
1746 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1747
1748 /* Utility implementation of searching memory. */
1749 extern int simple_search_memory (struct target_ops* ops,
1750 CORE_ADDR start_addr,
1751 ULONGEST search_space_len,
1752 const gdb_byte *pattern,
1753 ULONGEST pattern_len,
1754 CORE_ADDR *found_addrp);
1755
1756 /* Main entry point for searching memory. */
1757 extern int target_search_memory (CORE_ADDR start_addr,
1758 ULONGEST search_space_len,
1759 const gdb_byte *pattern,
1760 ULONGEST pattern_len,
1761 CORE_ADDR *found_addrp);
1762
1763 /* Target file operations. */
1764
1765 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1766 target file descriptor, or -1 if an error occurs (and set
1767 *TARGET_ERRNO). */
1768 extern int target_fileio_open (const char *filename, int flags, int mode,
1769 int *target_errno);
1770
1771 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1772 Return the number of bytes written, or -1 if an error occurs
1773 (and set *TARGET_ERRNO). */
1774 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1775 ULONGEST offset, int *target_errno);
1776
1777 /* Read up to LEN bytes FD on the target into READ_BUF.
1778 Return the number of bytes read, or -1 if an error occurs
1779 (and set *TARGET_ERRNO). */
1780 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1781 ULONGEST offset, int *target_errno);
1782
1783 /* Close FD on the target. Return 0, or -1 if an error occurs
1784 (and set *TARGET_ERRNO). */
1785 extern int target_fileio_close (int fd, int *target_errno);
1786
1787 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1788 occurs (and set *TARGET_ERRNO). */
1789 extern int target_fileio_unlink (const char *filename, int *target_errno);
1790
1791 /* Read value of symbolic link FILENAME on the target. Return a
1792 null-terminated string allocated via xmalloc, or NULL if an error
1793 occurs (and set *TARGET_ERRNO). */
1794 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1795
1796 /* Read target file FILENAME. The return value will be -1 if the transfer
1797 fails or is not supported; 0 if the object is empty; or the length
1798 of the object otherwise. If a positive value is returned, a
1799 sufficiently large buffer will be allocated using xmalloc and
1800 returned in *BUF_P containing the contents of the object.
1801
1802 This method should be used for objects sufficiently small to store
1803 in a single xmalloc'd buffer, when no fixed bound on the object's
1804 size is known in advance. */
1805 extern LONGEST target_fileio_read_alloc (const char *filename,
1806 gdb_byte **buf_p);
1807
1808 /* Read target file FILENAME. The result is NUL-terminated and
1809 returned as a string, allocated using xmalloc. If an error occurs
1810 or the transfer is unsupported, NULL is returned. Empty objects
1811 are returned as allocated but empty strings. A warning is issued
1812 if the result contains any embedded NUL bytes. */
1813 extern char *target_fileio_read_stralloc (const char *filename);
1814
1815
1816 /* Tracepoint-related operations. */
1817
1818 #define target_trace_init() \
1819 (*current_target.to_trace_init) (&current_target)
1820
1821 #define target_download_tracepoint(t) \
1822 (*current_target.to_download_tracepoint) (&current_target, t)
1823
1824 #define target_can_download_tracepoint() \
1825 (*current_target.to_can_download_tracepoint) (&current_target)
1826
1827 #define target_download_trace_state_variable(tsv) \
1828 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1829
1830 #define target_enable_tracepoint(loc) \
1831 (*current_target.to_enable_tracepoint) (&current_target, loc)
1832
1833 #define target_disable_tracepoint(loc) \
1834 (*current_target.to_disable_tracepoint) (&current_target, loc)
1835
1836 #define target_trace_start() \
1837 (*current_target.to_trace_start) (&current_target)
1838
1839 #define target_trace_set_readonly_regions() \
1840 (*current_target.to_trace_set_readonly_regions) (&current_target)
1841
1842 #define target_get_trace_status(ts) \
1843 (*current_target.to_get_trace_status) (&current_target, ts)
1844
1845 #define target_get_tracepoint_status(tp,utp) \
1846 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1847
1848 #define target_trace_stop() \
1849 (*current_target.to_trace_stop) (&current_target)
1850
1851 #define target_trace_find(type,num,addr1,addr2,tpp) \
1852 (*current_target.to_trace_find) (&current_target, \
1853 (type), (num), (addr1), (addr2), (tpp))
1854
1855 #define target_get_trace_state_variable_value(tsv,val) \
1856 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1857 (tsv), (val))
1858
1859 #define target_save_trace_data(filename) \
1860 (*current_target.to_save_trace_data) (&current_target, filename)
1861
1862 #define target_upload_tracepoints(utpp) \
1863 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1864
1865 #define target_upload_trace_state_variables(utsvp) \
1866 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1867
1868 #define target_get_raw_trace_data(buf,offset,len) \
1869 (*current_target.to_get_raw_trace_data) (&current_target, \
1870 (buf), (offset), (len))
1871
1872 #define target_get_min_fast_tracepoint_insn_len() \
1873 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1874
1875 #define target_set_disconnected_tracing(val) \
1876 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1877
1878 #define target_set_circular_trace_buffer(val) \
1879 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1880
1881 #define target_set_trace_buffer_size(val) \
1882 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1883
1884 #define target_set_trace_notes(user,notes,stopnotes) \
1885 (*current_target.to_set_trace_notes) (&current_target, \
1886 (user), (notes), (stopnotes))
1887
1888 #define target_get_tib_address(ptid, addr) \
1889 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1890
1891 #define target_set_permissions() \
1892 (*current_target.to_set_permissions) (&current_target)
1893
1894 #define target_static_tracepoint_marker_at(addr, marker) \
1895 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1896 addr, marker)
1897
1898 #define target_static_tracepoint_markers_by_strid(marker_id) \
1899 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1900 marker_id)
1901
1902 #define target_traceframe_info() \
1903 (*current_target.to_traceframe_info) (&current_target)
1904
1905 #define target_use_agent(use) \
1906 (*current_target.to_use_agent) (&current_target, use)
1907
1908 #define target_can_use_agent() \
1909 (*current_target.to_can_use_agent) (&current_target)
1910
1911 #define target_augmented_libraries_svr4_read() \
1912 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1913
1914 /* Command logging facility. */
1915
1916 #define target_log_command(p) \
1917 do \
1918 if (current_target.to_log_command) \
1919 (*current_target.to_log_command) (&current_target, \
1920 p); \
1921 while (0)
1922
1923
1924 extern int target_core_of_thread (ptid_t ptid);
1925
1926 /* See to_get_unwinder in struct target_ops. */
1927 extern const struct frame_unwind *target_get_unwinder (void);
1928
1929 /* See to_get_tailcall_unwinder in struct target_ops. */
1930 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1931
1932 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1933 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1934 if there's a mismatch, and -1 if an error is encountered while
1935 reading memory. Throws an error if the functionality is found not
1936 to be supported by the current target. */
1937 int target_verify_memory (const gdb_byte *data,
1938 CORE_ADDR memaddr, ULONGEST size);
1939
1940 /* Routines for maintenance of the target structures...
1941
1942 complete_target_initialization: Finalize a target_ops by filling in
1943 any fields needed by the target implementation.
1944
1945 add_target: Add a target to the list of all possible targets.
1946
1947 push_target: Make this target the top of the stack of currently used
1948 targets, within its particular stratum of the stack. Result
1949 is 0 if now atop the stack, nonzero if not on top (maybe
1950 should warn user).
1951
1952 unpush_target: Remove this from the stack of currently used targets,
1953 no matter where it is on the list. Returns 0 if no
1954 change, 1 if removed from stack. */
1955
1956 extern void add_target (struct target_ops *);
1957
1958 extern void add_target_with_completer (struct target_ops *t,
1959 completer_ftype *completer);
1960
1961 extern void complete_target_initialization (struct target_ops *t);
1962
1963 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1964 for maintaining backwards compatibility when renaming targets. */
1965
1966 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1967
1968 extern void push_target (struct target_ops *);
1969
1970 extern int unpush_target (struct target_ops *);
1971
1972 extern void target_pre_inferior (int);
1973
1974 extern void target_preopen (int);
1975
1976 /* Does whatever cleanup is required to get rid of all pushed targets. */
1977 extern void pop_all_targets (void);
1978
1979 /* Like pop_all_targets, but pops only targets whose stratum is
1980 strictly above ABOVE_STRATUM. */
1981 extern void pop_all_targets_above (enum strata above_stratum);
1982
1983 extern int target_is_pushed (struct target_ops *t);
1984
1985 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1986 CORE_ADDR offset);
1987
1988 /* Struct target_section maps address ranges to file sections. It is
1989 mostly used with BFD files, but can be used without (e.g. for handling
1990 raw disks, or files not in formats handled by BFD). */
1991
1992 struct target_section
1993 {
1994 CORE_ADDR addr; /* Lowest address in section */
1995 CORE_ADDR endaddr; /* 1+highest address in section */
1996
1997 struct bfd_section *the_bfd_section;
1998
1999 /* The "owner" of the section.
2000 It can be any unique value. It is set by add_target_sections
2001 and used by remove_target_sections.
2002 For example, for executables it is a pointer to exec_bfd and
2003 for shlibs it is the so_list pointer. */
2004 void *owner;
2005 };
2006
2007 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2008
2009 struct target_section_table
2010 {
2011 struct target_section *sections;
2012 struct target_section *sections_end;
2013 };
2014
2015 /* Return the "section" containing the specified address. */
2016 struct target_section *target_section_by_addr (struct target_ops *target,
2017 CORE_ADDR addr);
2018
2019 /* Return the target section table this target (or the targets
2020 beneath) currently manipulate. */
2021
2022 extern struct target_section_table *target_get_section_table
2023 (struct target_ops *target);
2024
2025 /* From mem-break.c */
2026
2027 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2028 struct bp_target_info *);
2029
2030 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2031 struct bp_target_info *);
2032
2033 extern int default_memory_remove_breakpoint (struct gdbarch *,
2034 struct bp_target_info *);
2035
2036 extern int default_memory_insert_breakpoint (struct gdbarch *,
2037 struct bp_target_info *);
2038
2039
2040 /* From target.c */
2041
2042 extern void initialize_targets (void);
2043
2044 extern void noprocess (void) ATTRIBUTE_NORETURN;
2045
2046 extern void target_require_runnable (void);
2047
2048 extern void find_default_attach (struct target_ops *, char *, int);
2049
2050 extern void find_default_create_inferior (struct target_ops *,
2051 char *, char *, char **, int);
2052
2053 extern struct target_ops *find_target_beneath (struct target_ops *);
2054
2055 /* Find the target at STRATUM. If no target is at that stratum,
2056 return NULL. */
2057
2058 struct target_ops *find_target_at (enum strata stratum);
2059
2060 /* Read OS data object of type TYPE from the target, and return it in
2061 XML format. The result is NUL-terminated and returned as a string,
2062 allocated using xmalloc. If an error occurs or the transfer is
2063 unsupported, NULL is returned. Empty objects are returned as
2064 allocated but empty strings. */
2065
2066 extern char *target_get_osdata (const char *type);
2067
2068 \f
2069 /* Stuff that should be shared among the various remote targets. */
2070
2071 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2072 information (higher values, more information). */
2073 extern int remote_debug;
2074
2075 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2076 extern int baud_rate;
2077 /* Timeout limit for response from target. */
2078 extern int remote_timeout;
2079
2080 \f
2081
2082 /* Set the show memory breakpoints mode to show, and installs a cleanup
2083 to restore it back to the current value. */
2084 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2085
2086 extern int may_write_registers;
2087 extern int may_write_memory;
2088 extern int may_insert_breakpoints;
2089 extern int may_insert_tracepoints;
2090 extern int may_insert_fast_tracepoints;
2091 extern int may_stop;
2092
2093 extern void update_target_permissions (void);
2094
2095 \f
2096 /* Imported from machine dependent code. */
2097
2098 /* Blank target vector entries are initialized to target_ignore. */
2099 void target_ignore (void);
2100
2101 /* See to_supports_btrace in struct target_ops. */
2102 #define target_supports_btrace() \
2103 (current_target.to_supports_btrace (&current_target))
2104
2105 /* See to_enable_btrace in struct target_ops. */
2106 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2107
2108 /* See to_disable_btrace in struct target_ops. */
2109 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2110
2111 /* See to_teardown_btrace in struct target_ops. */
2112 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2113
2114 /* See to_read_btrace in struct target_ops. */
2115 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2116 struct btrace_target_info *,
2117 enum btrace_read_type);
2118
2119 /* See to_stop_recording in struct target_ops. */
2120 extern void target_stop_recording (void);
2121
2122 /* See to_info_record in struct target_ops. */
2123 extern void target_info_record (void);
2124
2125 /* See to_save_record in struct target_ops. */
2126 extern void target_save_record (const char *filename);
2127
2128 /* Query if the target supports deleting the execution log. */
2129 extern int target_supports_delete_record (void);
2130
2131 /* See to_delete_record in struct target_ops. */
2132 extern void target_delete_record (void);
2133
2134 /* See to_record_is_replaying in struct target_ops. */
2135 extern int target_record_is_replaying (void);
2136
2137 /* See to_goto_record_begin in struct target_ops. */
2138 extern void target_goto_record_begin (void);
2139
2140 /* See to_goto_record_end in struct target_ops. */
2141 extern void target_goto_record_end (void);
2142
2143 /* See to_goto_record in struct target_ops. */
2144 extern void target_goto_record (ULONGEST insn);
2145
2146 /* See to_insn_history. */
2147 extern void target_insn_history (int size, int flags);
2148
2149 /* See to_insn_history_from. */
2150 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2151
2152 /* See to_insn_history_range. */
2153 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2154
2155 /* See to_call_history. */
2156 extern void target_call_history (int size, int flags);
2157
2158 /* See to_call_history_from. */
2159 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2160
2161 /* See to_call_history_range. */
2162 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2163
2164 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2165 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2166 struct gdbarch *gdbarch);
2167
2168 /* See to_decr_pc_after_break. */
2169 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2170
2171 #endif /* !defined (TARGET_H) */
This page took 0.07648 seconds and 4 git commands to generate.