Return gdb::optional<std::string> from target_fileio_readlink
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum. */
65
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79 #include "tracepoint.h"
80
81 #include "break-common.h" /* For enum target_hw_bp_type. */
82
83 enum strata
84 {
85 dummy_stratum, /* The lowest of the low */
86 file_stratum, /* Executable files, etc */
87 process_stratum, /* Executing processes or core dump files */
88 thread_stratum, /* Executing threads */
89 record_stratum, /* Support record debugging */
90 arch_stratum /* Architecture overrides */
91 };
92
93 enum thread_control_capabilities
94 {
95 tc_none = 0, /* Default: can't control thread execution. */
96 tc_schedlock = 1, /* Can lock the thread scheduler. */
97 };
98
99 /* The structure below stores information about a system call.
100 It is basically used in the "catch syscall" command, and in
101 every function that gives information about a system call.
102
103 It's also good to mention that its fields represent everything
104 that we currently know about a syscall in GDB. */
105 struct syscall
106 {
107 /* The syscall number. */
108 int number;
109
110 /* The syscall name. */
111 const char *name;
112 };
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
121 {
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* Traceframe info, in XML format. */
185 TARGET_OBJECT_TRACEFRAME_INFO,
186 /* Load maps for FDPIC systems. */
187 TARGET_OBJECT_FDPIC,
188 /* Darwin dynamic linker info data. */
189 TARGET_OBJECT_DARWIN_DYLD_INFO,
190 /* OpenVMS Unwind Information Block. */
191 TARGET_OBJECT_OPENVMS_UIB,
192 /* Branch trace data, in XML format. */
193 TARGET_OBJECT_BTRACE,
194 /* Branch trace configuration, in XML format. */
195 TARGET_OBJECT_BTRACE_CONF,
196 /* The pathname of the executable file that was run to create
197 a specified process. ANNEX should be a string representation
198 of the process ID of the process in question, in hexadecimal
199 format. */
200 TARGET_OBJECT_EXEC_FILE,
201 /* Possible future objects: TARGET_OBJECT_FILE, ... */
202 };
203
204 /* Possible values returned by target_xfer_partial, etc. */
205
206 enum target_xfer_status
207 {
208 /* Some bytes are transferred. */
209 TARGET_XFER_OK = 1,
210
211 /* No further transfer is possible. */
212 TARGET_XFER_EOF = 0,
213
214 /* The piece of the object requested is unavailable. */
215 TARGET_XFER_UNAVAILABLE = 2,
216
217 /* Generic I/O error. Note that it's important that this is '-1',
218 as we still have target_xfer-related code returning hardcoded
219 '-1' on error. */
220 TARGET_XFER_E_IO = -1,
221
222 /* Keep list in sync with target_xfer_status_to_string. */
223 };
224
225 /* Return the string form of STATUS. */
226
227 extern const char *
228 target_xfer_status_to_string (enum target_xfer_status status);
229
230 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
231 DEF_VEC_P(static_tracepoint_marker_p);
232
233 typedef enum target_xfer_status
234 target_xfer_partial_ftype (struct target_ops *ops,
235 enum target_object object,
236 const char *annex,
237 gdb_byte *readbuf,
238 const gdb_byte *writebuf,
239 ULONGEST offset,
240 ULONGEST len,
241 ULONGEST *xfered_len);
242
243 enum target_xfer_status
244 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
245 const gdb_byte *writebuf, ULONGEST memaddr,
246 LONGEST len, ULONGEST *xfered_len);
247
248 /* Request that OPS transfer up to LEN addressable units of the target's
249 OBJECT. When reading from a memory object, the size of an addressable unit
250 is architecture dependent and can be found using
251 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
252 byte long. BUF should point to a buffer large enough to hold the read data,
253 taking into account the addressable unit size. The OFFSET, for a seekable
254 object, specifies the starting point. The ANNEX can be used to provide
255 additional data-specific information to the target.
256
257 Return the number of addressable units actually transferred, or a negative
258 error code (an 'enum target_xfer_error' value) if the transfer is not
259 supported or otherwise fails. Return of a positive value less than
260 LEN indicates that no further transfer is possible. Unlike the raw
261 to_xfer_partial interface, callers of these functions do not need
262 to retry partial transfers. */
263
264 extern LONGEST target_read (struct target_ops *ops,
265 enum target_object object,
266 const char *annex, gdb_byte *buf,
267 ULONGEST offset, LONGEST len);
268
269 struct memory_read_result
270 {
271 memory_read_result (ULONGEST begin_, ULONGEST end_,
272 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
273 : begin (begin_),
274 end (end_),
275 data (std::move (data_))
276 {
277 }
278
279 ~memory_read_result () = default;
280
281 memory_read_result (memory_read_result &&other) = default;
282
283 DISABLE_COPY_AND_ASSIGN (memory_read_result);
284
285 /* First address that was read. */
286 ULONGEST begin;
287 /* Past-the-end address. */
288 ULONGEST end;
289 /* The data. */
290 gdb::unique_xmalloc_ptr<gdb_byte> data;
291 };
292
293 extern std::vector<memory_read_result> read_memory_robust
294 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
295
296 /* Request that OPS transfer up to LEN addressable units from BUF to the
297 target's OBJECT. When writing to a memory object, the addressable unit
298 size is architecture dependent and can be found using
299 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
300 byte long. The OFFSET, for a seekable object, specifies the starting point.
301 The ANNEX can be used to provide additional data-specific information to
302 the target.
303
304 Return the number of addressable units actually transferred, or a negative
305 error code (an 'enum target_xfer_status' value) if the transfer is not
306 supported or otherwise fails. Return of a positive value less than
307 LEN indicates that no further transfer is possible. Unlike the raw
308 to_xfer_partial interface, callers of these functions do not need to
309 retry partial transfers. */
310
311 extern LONGEST target_write (struct target_ops *ops,
312 enum target_object object,
313 const char *annex, const gdb_byte *buf,
314 ULONGEST offset, LONGEST len);
315
316 /* Similar to target_write, except that it also calls PROGRESS with
317 the number of bytes written and the opaque BATON after every
318 successful partial write (and before the first write). This is
319 useful for progress reporting and user interaction while writing
320 data. To abort the transfer, the progress callback can throw an
321 exception. */
322
323 LONGEST target_write_with_progress (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, const gdb_byte *buf,
326 ULONGEST offset, LONGEST len,
327 void (*progress) (ULONGEST, void *),
328 void *baton);
329
330 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
331 be read using OPS. The return value will be -1 if the transfer
332 fails or is not supported; 0 if the object is empty; or the length
333 of the object otherwise. If a positive value is returned, a
334 sufficiently large buffer will be allocated using xmalloc and
335 returned in *BUF_P containing the contents of the object.
336
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
341
342 extern LONGEST target_read_alloc (struct target_ops *ops,
343 enum target_object object,
344 const char *annex, gdb_byte **buf_p);
345
346 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
347 returned as a string. If an error occurs or the transfer is
348 unsupported, NULL is returned. Empty objects are returned as
349 allocated but empty strings. A warning is issued if the result
350 contains any embedded NUL bytes. */
351
352 extern gdb::unique_xmalloc_ptr<char> target_read_stralloc
353 (struct target_ops *ops, enum target_object object, const char *annex);
354
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial;
357
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
360
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
364
365 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
366 gdb_byte *buf, LONGEST len);
367 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
368 CORE_ADDR addr, int len,
369 enum bfd_endian byte_order);
370 \f
371 struct thread_info; /* fwd decl for parameter list below: */
372
373 /* The type of the callback to the to_async method. */
374
375 typedef void async_callback_ftype (enum inferior_event_type event_type,
376 void *context);
377
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
385
386 #define TARGET_DEBUG_PRINTER(FUNC)
387
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
391
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
394 'void'.
395
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
399
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
402
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
406
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
411
412 struct target_ops
413 {
414 struct target_ops *beneath; /* To the target under this one. */
415 const char *to_shortname; /* Name this target type */
416 const char *to_longname; /* Name for printing */
417 const char *to_doc; /* Documentation. Does not include trailing
418 newline, and starts with a one-line descrip-
419 tion (probably similar to to_longname). */
420 /* Per-target scratch pad. */
421 void *to_data;
422 /* The open routine takes the rest of the parameters from the
423 command, and (if successful) pushes a new target onto the
424 stack. Targets should supply this routine, if only to provide
425 an error message. */
426 void (*to_open) (const char *, int);
427 /* Old targets with a static target vector provide "to_close".
428 New re-entrant targets provide "to_xclose" and that is expected
429 to xfree everything (including the "struct target_ops"). */
430 void (*to_xclose) (struct target_ops *targ);
431 void (*to_close) (struct target_ops *);
432 /* Attaches to a process on the target side. Arguments are as
433 passed to the `attach' command by the user. This routine can
434 be called when the target is not on the target-stack, if the
435 target_can_run routine returns 1; in that case, it must push
436 itself onto the stack. Upon exit, the target should be ready
437 for normal operations, and should be ready to deliver the
438 status of the process immediately (without waiting) to an
439 upcoming target_wait call. */
440 void (*to_attach) (struct target_ops *ops, const char *, int);
441 void (*to_post_attach) (struct target_ops *, int)
442 TARGET_DEFAULT_IGNORE ();
443 void (*to_detach) (struct target_ops *ops, inferior *, int)
444 TARGET_DEFAULT_IGNORE ();
445 void (*to_disconnect) (struct target_ops *, const char *, int)
446 TARGET_DEFAULT_NORETURN (tcomplain ());
447 void (*to_resume) (struct target_ops *, ptid_t,
448 int TARGET_DEBUG_PRINTER (target_debug_print_step),
449 enum gdb_signal)
450 TARGET_DEFAULT_NORETURN (noprocess ());
451 void (*to_commit_resume) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 ptid_t (*to_wait) (struct target_ops *,
454 ptid_t, struct target_waitstatus *,
455 int TARGET_DEBUG_PRINTER (target_debug_print_options))
456 TARGET_DEFAULT_FUNC (default_target_wait);
457 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
458 TARGET_DEFAULT_IGNORE ();
459 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
460 TARGET_DEFAULT_NORETURN (noprocess ());
461 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
462 TARGET_DEFAULT_NORETURN (noprocess ());
463
464 void (*to_files_info) (struct target_ops *)
465 TARGET_DEFAULT_IGNORE ();
466 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
467 struct bp_target_info *)
468 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
469 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
470 struct bp_target_info *,
471 enum remove_bp_reason)
472 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
473
474 /* Returns true if the target stopped because it executed a
475 software breakpoint. This is necessary for correct background
476 execution / non-stop mode operation, and for correct PC
477 adjustment on targets where the PC needs to be adjusted when a
478 software breakpoint triggers. In these modes, by the time GDB
479 processes a breakpoint event, the breakpoint may already be
480 done from the target, so GDB needs to be able to tell whether
481 it should ignore the event and whether it should adjust the PC.
482 See adjust_pc_after_break. */
483 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
484 TARGET_DEFAULT_RETURN (0);
485 /* Returns true if the above method is supported. */
486 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
487 TARGET_DEFAULT_RETURN (0);
488
489 /* Returns true if the target stopped for a hardware breakpoint.
490 Likewise, if the target supports hardware breakpoints, this
491 method is necessary for correct background execution / non-stop
492 mode operation. Even though hardware breakpoints do not
493 require PC adjustment, GDB needs to be able to tell whether the
494 hardware breakpoint event is a delayed event for a breakpoint
495 that is already gone and should thus be ignored. */
496 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
497 TARGET_DEFAULT_RETURN (0);
498 /* Returns true if the above method is supported. */
499 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
500 TARGET_DEFAULT_RETURN (0);
501
502 int (*to_can_use_hw_breakpoint) (struct target_ops *,
503 enum bptype, int, int)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_ranged_break_num_registers) (struct target_ops *)
506 TARGET_DEFAULT_RETURN (-1);
507 int (*to_insert_hw_breakpoint) (struct target_ops *,
508 struct gdbarch *, struct bp_target_info *)
509 TARGET_DEFAULT_RETURN (-1);
510 int (*to_remove_hw_breakpoint) (struct target_ops *,
511 struct gdbarch *, struct bp_target_info *)
512 TARGET_DEFAULT_RETURN (-1);
513
514 /* Documentation of what the two routines below are expected to do is
515 provided with the corresponding target_* macros. */
516 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
517 enum target_hw_bp_type, struct expression *)
518 TARGET_DEFAULT_RETURN (-1);
519 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
520 enum target_hw_bp_type, struct expression *)
521 TARGET_DEFAULT_RETURN (-1);
522
523 int (*to_insert_mask_watchpoint) (struct target_ops *,
524 CORE_ADDR, CORE_ADDR,
525 enum target_hw_bp_type)
526 TARGET_DEFAULT_RETURN (1);
527 int (*to_remove_mask_watchpoint) (struct target_ops *,
528 CORE_ADDR, CORE_ADDR,
529 enum target_hw_bp_type)
530 TARGET_DEFAULT_RETURN (1);
531 int (*to_stopped_by_watchpoint) (struct target_ops *)
532 TARGET_DEFAULT_RETURN (0);
533 int to_have_steppable_watchpoint;
534 int to_have_continuable_watchpoint;
535 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
536 TARGET_DEFAULT_RETURN (0);
537 int (*to_watchpoint_addr_within_range) (struct target_ops *,
538 CORE_ADDR, CORE_ADDR, int)
539 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
540
541 /* Documentation of this routine is provided with the corresponding
542 target_* macro. */
543 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
544 CORE_ADDR, int)
545 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
546
547 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
548 CORE_ADDR, int, int,
549 struct expression *)
550 TARGET_DEFAULT_RETURN (0);
551 int (*to_masked_watch_num_registers) (struct target_ops *,
552 CORE_ADDR, CORE_ADDR)
553 TARGET_DEFAULT_RETURN (-1);
554
555 /* Return 1 for sure target can do single step. Return -1 for
556 unknown. Return 0 for target can't do. */
557 int (*to_can_do_single_step) (struct target_ops *)
558 TARGET_DEFAULT_RETURN (-1);
559
560 void (*to_terminal_init) (struct target_ops *)
561 TARGET_DEFAULT_IGNORE ();
562 void (*to_terminal_inferior) (struct target_ops *)
563 TARGET_DEFAULT_IGNORE ();
564 void (*to_terminal_save_inferior) (struct target_ops *)
565 TARGET_DEFAULT_IGNORE ();
566 void (*to_terminal_ours_for_output) (struct target_ops *)
567 TARGET_DEFAULT_IGNORE ();
568 void (*to_terminal_ours) (struct target_ops *)
569 TARGET_DEFAULT_IGNORE ();
570 void (*to_terminal_info) (struct target_ops *, const char *, int)
571 TARGET_DEFAULT_FUNC (default_terminal_info);
572 void (*to_kill) (struct target_ops *)
573 TARGET_DEFAULT_NORETURN (noprocess ());
574 void (*to_load) (struct target_ops *, const char *, int)
575 TARGET_DEFAULT_NORETURN (tcomplain ());
576 /* Start an inferior process and set inferior_ptid to its pid.
577 EXEC_FILE is the file to run.
578 ALLARGS is a string containing the arguments to the program.
579 ENV is the environment vector to pass. Errors reported with error().
580 On VxWorks and various standalone systems, we ignore exec_file. */
581 void (*to_create_inferior) (struct target_ops *,
582 const char *, const std::string &,
583 char **, int);
584 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
585 TARGET_DEFAULT_IGNORE ();
586 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
587 TARGET_DEFAULT_RETURN (1);
588 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
589 TARGET_DEFAULT_RETURN (1);
590 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
591 TARGET_DEFAULT_RETURN (1);
592 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
593 TARGET_DEFAULT_RETURN (1);
594 int (*to_follow_fork) (struct target_ops *, int, int)
595 TARGET_DEFAULT_FUNC (default_follow_fork);
596 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
597 TARGET_DEFAULT_RETURN (1);
598 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
599 TARGET_DEFAULT_RETURN (1);
600 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
601 TARGET_DEFAULT_IGNORE ();
602 int (*to_set_syscall_catchpoint) (struct target_ops *,
603 int, bool, int,
604 gdb::array_view<const int>)
605 TARGET_DEFAULT_RETURN (1);
606 int (*to_has_exited) (struct target_ops *, int, int, int *)
607 TARGET_DEFAULT_RETURN (0);
608 void (*to_mourn_inferior) (struct target_ops *)
609 TARGET_DEFAULT_FUNC (default_mourn_inferior);
610 /* Note that to_can_run is special and can be invoked on an
611 unpushed target. Targets defining this method must also define
612 to_can_async_p and to_supports_non_stop. */
613 int (*to_can_run) (struct target_ops *)
614 TARGET_DEFAULT_RETURN (0);
615
616 /* Documentation of this routine is provided with the corresponding
617 target_* macro. */
618 void (*to_pass_signals) (struct target_ops *, int,
619 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
620 TARGET_DEFAULT_IGNORE ();
621
622 /* Documentation of this routine is provided with the
623 corresponding target_* function. */
624 void (*to_program_signals) (struct target_ops *, int,
625 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
626 TARGET_DEFAULT_IGNORE ();
627
628 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
629 TARGET_DEFAULT_RETURN (0);
630 void (*to_update_thread_list) (struct target_ops *)
631 TARGET_DEFAULT_IGNORE ();
632 const char *(*to_pid_to_str) (struct target_ops *, ptid_t)
633 TARGET_DEFAULT_FUNC (default_pid_to_str);
634 const char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
635 TARGET_DEFAULT_RETURN (NULL);
636 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
637 TARGET_DEFAULT_RETURN (NULL);
638 struct thread_info *(*to_thread_handle_to_thread_info) (struct target_ops *,
639 const gdb_byte *,
640 int,
641 struct inferior *inf)
642 TARGET_DEFAULT_RETURN (NULL);
643 void (*to_stop) (struct target_ops *, ptid_t)
644 TARGET_DEFAULT_IGNORE ();
645 void (*to_interrupt) (struct target_ops *)
646 TARGET_DEFAULT_IGNORE ();
647 void (*to_pass_ctrlc) (struct target_ops *)
648 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
649 void (*to_rcmd) (struct target_ops *,
650 const char *command, struct ui_file *output)
651 TARGET_DEFAULT_FUNC (default_rcmd);
652 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
653 TARGET_DEFAULT_RETURN (NULL);
654 void (*to_log_command) (struct target_ops *, const char *)
655 TARGET_DEFAULT_IGNORE ();
656 struct target_section_table *(*to_get_section_table) (struct target_ops *)
657 TARGET_DEFAULT_RETURN (NULL);
658 enum strata to_stratum;
659 int (*to_has_all_memory) (struct target_ops *);
660 int (*to_has_memory) (struct target_ops *);
661 int (*to_has_stack) (struct target_ops *);
662 int (*to_has_registers) (struct target_ops *);
663 int (*to_has_execution) (struct target_ops *, ptid_t);
664 int to_has_thread_control; /* control thread execution */
665 int to_attach_no_wait;
666 /* This method must be implemented in some situations. See the
667 comment on 'to_can_run'. */
668 int (*to_can_async_p) (struct target_ops *)
669 TARGET_DEFAULT_RETURN (0);
670 int (*to_is_async_p) (struct target_ops *)
671 TARGET_DEFAULT_RETURN (0);
672 void (*to_async) (struct target_ops *, int)
673 TARGET_DEFAULT_NORETURN (tcomplain ());
674 void (*to_thread_events) (struct target_ops *, int)
675 TARGET_DEFAULT_IGNORE ();
676 /* This method must be implemented in some situations. See the
677 comment on 'to_can_run'. */
678 int (*to_supports_non_stop) (struct target_ops *)
679 TARGET_DEFAULT_RETURN (0);
680 /* Return true if the target operates in non-stop mode even with
681 "set non-stop off". */
682 int (*to_always_non_stop_p) (struct target_ops *)
683 TARGET_DEFAULT_RETURN (0);
684 /* find_memory_regions support method for gcore */
685 int (*to_find_memory_regions) (struct target_ops *,
686 find_memory_region_ftype func, void *data)
687 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
688 /* make_corefile_notes support method for gcore */
689 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
690 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
691 /* get_bookmark support method for bookmarks */
692 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
693 TARGET_DEFAULT_NORETURN (tcomplain ());
694 /* goto_bookmark support method for bookmarks */
695 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
696 TARGET_DEFAULT_NORETURN (tcomplain ());
697 /* Return the thread-local address at OFFSET in the
698 thread-local storage for the thread PTID and the shared library
699 or executable file given by OBJFILE. If that block of
700 thread-local storage hasn't been allocated yet, this function
701 may return an error. LOAD_MODULE_ADDR may be zero for statically
702 linked multithreaded inferiors. */
703 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
704 ptid_t ptid,
705 CORE_ADDR load_module_addr,
706 CORE_ADDR offset)
707 TARGET_DEFAULT_NORETURN (generic_tls_error ());
708
709 /* Request that OPS transfer up to LEN addressable units of the target's
710 OBJECT. When reading from a memory object, the size of an addressable
711 unit is architecture dependent and can be found using
712 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
713 1 byte long. The OFFSET, for a seekable object, specifies the
714 starting point. The ANNEX can be used to provide additional
715 data-specific information to the target.
716
717 Return the transferred status, error or OK (an
718 'enum target_xfer_status' value). Save the number of addressable units
719 actually transferred in *XFERED_LEN if transfer is successful
720 (TARGET_XFER_OK) or the number unavailable units if the requested
721 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
722 smaller than LEN does not indicate the end of the object, only
723 the end of the transfer; higher level code should continue
724 transferring if desired. This is handled in target.c.
725
726 The interface does not support a "retry" mechanism. Instead it
727 assumes that at least one addressable unit will be transfered on each
728 successful call.
729
730 NOTE: cagney/2003-10-17: The current interface can lead to
731 fragmented transfers. Lower target levels should not implement
732 hacks, such as enlarging the transfer, in an attempt to
733 compensate for this. Instead, the target stack should be
734 extended so that it implements supply/collect methods and a
735 look-aside object cache. With that available, the lowest
736 target can safely and freely "push" data up the stack.
737
738 See target_read and target_write for more information. One,
739 and only one, of readbuf or writebuf must be non-NULL. */
740
741 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
742 enum target_object object,
743 const char *annex,
744 gdb_byte *readbuf,
745 const gdb_byte *writebuf,
746 ULONGEST offset, ULONGEST len,
747 ULONGEST *xfered_len)
748 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
749
750 /* Return the limit on the size of any single memory transfer
751 for the target. */
752
753 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
754 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
755
756 /* Returns the memory map for the target. A return value of NULL
757 means that no memory map is available. If a memory address
758 does not fall within any returned regions, it's assumed to be
759 RAM. The returned memory regions should not overlap.
760
761 The order of regions does not matter; target_memory_map will
762 sort regions by starting address. For that reason, this
763 function should not be called directly except via
764 target_memory_map.
765
766 This method should not cache data; if the memory map could
767 change unexpectedly, it should be invalidated, and higher
768 layers will re-fetch it. */
769 std::vector<mem_region> (*to_memory_map) (struct target_ops *)
770 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
771
772 /* Erases the region of flash memory starting at ADDRESS, of
773 length LENGTH.
774
775 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
776 on flash block boundaries, as reported by 'to_memory_map'. */
777 void (*to_flash_erase) (struct target_ops *,
778 ULONGEST address, LONGEST length)
779 TARGET_DEFAULT_NORETURN (tcomplain ());
780
781 /* Finishes a flash memory write sequence. After this operation
782 all flash memory should be available for writing and the result
783 of reading from areas written by 'to_flash_write' should be
784 equal to what was written. */
785 void (*to_flash_done) (struct target_ops *)
786 TARGET_DEFAULT_NORETURN (tcomplain ());
787
788 /* Describe the architecture-specific features of this target. If
789 OPS doesn't have a description, this should delegate to the
790 "beneath" target. Returns the description found, or NULL if no
791 description was available. */
792 const struct target_desc *(*to_read_description) (struct target_ops *ops)
793 TARGET_DEFAULT_RETURN (NULL);
794
795 /* Build the PTID of the thread on which a given task is running,
796 based on LWP and THREAD. These values are extracted from the
797 task Private_Data section of the Ada Task Control Block, and
798 their interpretation depends on the target. */
799 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
800 long lwp, long thread)
801 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
802
803 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
804 Return 0 if *READPTR is already at the end of the buffer.
805 Return -1 if there is insufficient buffer for a whole entry.
806 Return 1 if an entry was read into *TYPEP and *VALP. */
807 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
808 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
809 TARGET_DEFAULT_FUNC (default_auxv_parse);
810
811 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
812 sequence of bytes in PATTERN with length PATTERN_LEN.
813
814 The result is 1 if found, 0 if not found, and -1 if there was an error
815 requiring halting of the search (e.g. memory read error).
816 If the pattern is found the address is recorded in FOUND_ADDRP. */
817 int (*to_search_memory) (struct target_ops *ops,
818 CORE_ADDR start_addr, ULONGEST search_space_len,
819 const gdb_byte *pattern, ULONGEST pattern_len,
820 CORE_ADDR *found_addrp)
821 TARGET_DEFAULT_FUNC (default_search_memory);
822
823 /* Can target execute in reverse? */
824 int (*to_can_execute_reverse) (struct target_ops *)
825 TARGET_DEFAULT_RETURN (0);
826
827 /* The direction the target is currently executing. Must be
828 implemented on targets that support reverse execution and async
829 mode. The default simply returns forward execution. */
830 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
831 TARGET_DEFAULT_FUNC (default_execution_direction);
832
833 /* Does this target support debugging multiple processes
834 simultaneously? */
835 int (*to_supports_multi_process) (struct target_ops *)
836 TARGET_DEFAULT_RETURN (0);
837
838 /* Does this target support enabling and disabling tracepoints while a trace
839 experiment is running? */
840 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
841 TARGET_DEFAULT_RETURN (0);
842
843 /* Does this target support disabling address space randomization? */
844 int (*to_supports_disable_randomization) (struct target_ops *);
845
846 /* Does this target support the tracenz bytecode for string collection? */
847 int (*to_supports_string_tracing) (struct target_ops *)
848 TARGET_DEFAULT_RETURN (0);
849
850 /* Does this target support evaluation of breakpoint conditions on its
851 end? */
852 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
853 TARGET_DEFAULT_RETURN (0);
854
855 /* Does this target support evaluation of breakpoint commands on its
856 end? */
857 int (*to_can_run_breakpoint_commands) (struct target_ops *)
858 TARGET_DEFAULT_RETURN (0);
859
860 /* Determine current architecture of thread PTID.
861
862 The target is supposed to determine the architecture of the code where
863 the target is currently stopped at (on Cell, if a target is in spu_run,
864 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
865 This is architecture used to perform decr_pc_after_break adjustment,
866 and also determines the frame architecture of the innermost frame.
867 ptrace operations need to operate according to target_gdbarch ().
868
869 The default implementation always returns target_gdbarch (). */
870 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
871 TARGET_DEFAULT_FUNC (default_thread_architecture);
872
873 /* Determine current address space of thread PTID.
874
875 The default implementation always returns the inferior's
876 address space. */
877 struct address_space *(*to_thread_address_space) (struct target_ops *,
878 ptid_t)
879 TARGET_DEFAULT_FUNC (default_thread_address_space);
880
881 /* Target file operations. */
882
883 /* Return nonzero if the filesystem seen by the current inferior
884 is the local filesystem, zero otherwise. */
885 int (*to_filesystem_is_local) (struct target_ops *)
886 TARGET_DEFAULT_RETURN (1);
887
888 /* Open FILENAME on the target, in the filesystem as seen by INF,
889 using FLAGS and MODE. If INF is NULL, use the filesystem seen
890 by the debugger (GDB or, for remote targets, the remote stub).
891 If WARN_IF_SLOW is nonzero, print a warning message if the file
892 is being accessed over a link that may be slow. Return a
893 target file descriptor, or -1 if an error occurs (and set
894 *TARGET_ERRNO). */
895 int (*to_fileio_open) (struct target_ops *,
896 struct inferior *inf, const char *filename,
897 int flags, int mode, int warn_if_slow,
898 int *target_errno);
899
900 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
901 Return the number of bytes written, or -1 if an error occurs
902 (and set *TARGET_ERRNO). */
903 int (*to_fileio_pwrite) (struct target_ops *,
904 int fd, const gdb_byte *write_buf, int len,
905 ULONGEST offset, int *target_errno);
906
907 /* Read up to LEN bytes FD on the target into READ_BUF.
908 Return the number of bytes read, or -1 if an error occurs
909 (and set *TARGET_ERRNO). */
910 int (*to_fileio_pread) (struct target_ops *,
911 int fd, gdb_byte *read_buf, int len,
912 ULONGEST offset, int *target_errno);
913
914 /* Get information about the file opened as FD and put it in
915 SB. Return 0 on success, or -1 if an error occurs (and set
916 *TARGET_ERRNO). */
917 int (*to_fileio_fstat) (struct target_ops *,
918 int fd, struct stat *sb, int *target_errno);
919
920 /* Close FD on the target. Return 0, or -1 if an error occurs
921 (and set *TARGET_ERRNO). */
922 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
923
924 /* Unlink FILENAME on the target, in the filesystem as seen by
925 INF. If INF is NULL, use the filesystem seen by the debugger
926 (GDB or, for remote targets, the remote stub). Return 0, or
927 -1 if an error occurs (and set *TARGET_ERRNO). */
928 int (*to_fileio_unlink) (struct target_ops *,
929 struct inferior *inf,
930 const char *filename,
931 int *target_errno);
932
933 /* Read value of symbolic link FILENAME on the target, in the
934 filesystem as seen by INF. If INF is NULL, use the filesystem
935 seen by the debugger (GDB or, for remote targets, the remote
936 stub). Return a string, or an empty optional if an error
937 occurs (and set *TARGET_ERRNO). */
938 gdb::optional<std::string> (*to_fileio_readlink) (struct target_ops *,
939 struct inferior *inf,
940 const char *filename,
941 int *target_errno);
942
943
944 /* Implement the "info proc" command. */
945 void (*to_info_proc) (struct target_ops *, const char *,
946 enum info_proc_what);
947
948 /* Tracepoint-related operations. */
949
950 /* Prepare the target for a tracing run. */
951 void (*to_trace_init) (struct target_ops *)
952 TARGET_DEFAULT_NORETURN (tcomplain ());
953
954 /* Send full details of a tracepoint location to the target. */
955 void (*to_download_tracepoint) (struct target_ops *,
956 struct bp_location *location)
957 TARGET_DEFAULT_NORETURN (tcomplain ());
958
959 /* Is the target able to download tracepoint locations in current
960 state? */
961 int (*to_can_download_tracepoint) (struct target_ops *)
962 TARGET_DEFAULT_RETURN (0);
963
964 /* Send full details of a trace state variable to the target. */
965 void (*to_download_trace_state_variable) (struct target_ops *,
966 struct trace_state_variable *tsv)
967 TARGET_DEFAULT_NORETURN (tcomplain ());
968
969 /* Enable a tracepoint on the target. */
970 void (*to_enable_tracepoint) (struct target_ops *,
971 struct bp_location *location)
972 TARGET_DEFAULT_NORETURN (tcomplain ());
973
974 /* Disable a tracepoint on the target. */
975 void (*to_disable_tracepoint) (struct target_ops *,
976 struct bp_location *location)
977 TARGET_DEFAULT_NORETURN (tcomplain ());
978
979 /* Inform the target info of memory regions that are readonly
980 (such as text sections), and so it should return data from
981 those rather than look in the trace buffer. */
982 void (*to_trace_set_readonly_regions) (struct target_ops *)
983 TARGET_DEFAULT_NORETURN (tcomplain ());
984
985 /* Start a trace run. */
986 void (*to_trace_start) (struct target_ops *)
987 TARGET_DEFAULT_NORETURN (tcomplain ());
988
989 /* Get the current status of a tracing run. */
990 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
991 TARGET_DEFAULT_RETURN (-1);
992
993 void (*to_get_tracepoint_status) (struct target_ops *,
994 struct breakpoint *tp,
995 struct uploaded_tp *utp)
996 TARGET_DEFAULT_NORETURN (tcomplain ());
997
998 /* Stop a trace run. */
999 void (*to_trace_stop) (struct target_ops *)
1000 TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002 /* Ask the target to find a trace frame of the given type TYPE,
1003 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1004 number of the trace frame, and also the tracepoint number at
1005 TPP. If no trace frame matches, return -1. May throw if the
1006 operation fails. */
1007 int (*to_trace_find) (struct target_ops *,
1008 enum trace_find_type type, int num,
1009 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1010 TARGET_DEFAULT_RETURN (-1);
1011
1012 /* Get the value of the trace state variable number TSV, returning
1013 1 if the value is known and writing the value itself into the
1014 location pointed to by VAL, else returning 0. */
1015 int (*to_get_trace_state_variable_value) (struct target_ops *,
1016 int tsv, LONGEST *val)
1017 TARGET_DEFAULT_RETURN (0);
1018
1019 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1020 TARGET_DEFAULT_NORETURN (tcomplain ());
1021
1022 int (*to_upload_tracepoints) (struct target_ops *,
1023 struct uploaded_tp **utpp)
1024 TARGET_DEFAULT_RETURN (0);
1025
1026 int (*to_upload_trace_state_variables) (struct target_ops *,
1027 struct uploaded_tsv **utsvp)
1028 TARGET_DEFAULT_RETURN (0);
1029
1030 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1031 ULONGEST offset, LONGEST len)
1032 TARGET_DEFAULT_NORETURN (tcomplain ());
1033
1034 /* Get the minimum length of instruction on which a fast tracepoint
1035 may be set on the target. If this operation is unsupported,
1036 return -1. If for some reason the minimum length cannot be
1037 determined, return 0. */
1038 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1039 TARGET_DEFAULT_RETURN (-1);
1040
1041 /* Set the target's tracing behavior in response to unexpected
1042 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1043 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1044 TARGET_DEFAULT_IGNORE ();
1045 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1046 TARGET_DEFAULT_IGNORE ();
1047 /* Set the size of trace buffer in the target. */
1048 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1049 TARGET_DEFAULT_IGNORE ();
1050
1051 /* Add/change textual notes about the trace run, returning 1 if
1052 successful, 0 otherwise. */
1053 int (*to_set_trace_notes) (struct target_ops *,
1054 const char *user, const char *notes,
1055 const char *stopnotes)
1056 TARGET_DEFAULT_RETURN (0);
1057
1058 /* Return the processor core that thread PTID was last seen on.
1059 This information is updated only when:
1060 - update_thread_list is called
1061 - thread stops
1062 If the core cannot be determined -- either for the specified
1063 thread, or right now, or in this debug session, or for this
1064 target -- return -1. */
1065 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1066 TARGET_DEFAULT_RETURN (-1);
1067
1068 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1069 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1070 a match, 0 if there's a mismatch, and -1 if an error is
1071 encountered while reading memory. */
1072 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1073 CORE_ADDR memaddr, ULONGEST size)
1074 TARGET_DEFAULT_FUNC (default_verify_memory);
1075
1076 /* Return the address of the start of the Thread Information Block
1077 a Windows OS specific feature. */
1078 int (*to_get_tib_address) (struct target_ops *,
1079 ptid_t ptid, CORE_ADDR *addr)
1080 TARGET_DEFAULT_NORETURN (tcomplain ());
1081
1082 /* Send the new settings of write permission variables. */
1083 void (*to_set_permissions) (struct target_ops *)
1084 TARGET_DEFAULT_IGNORE ();
1085
1086 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1087 with its details. Return 1 on success, 0 on failure. */
1088 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1089 struct static_tracepoint_marker *marker)
1090 TARGET_DEFAULT_RETURN (0);
1091
1092 /* Return a vector of all tracepoints markers string id ID, or all
1093 markers if ID is NULL. */
1094 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1095 TARGET_DEFAULT_NORETURN (tcomplain ());
1096
1097 /* Return a traceframe info object describing the current
1098 traceframe's contents. This method should not cache data;
1099 higher layers take care of caching, invalidating, and
1100 re-fetching when necessary. */
1101 traceframe_info_up (*to_traceframe_info) (struct target_ops *)
1102 TARGET_DEFAULT_NORETURN (tcomplain ());
1103
1104 /* Ask the target to use or not to use agent according to USE. Return 1
1105 successful, 0 otherwise. */
1106 int (*to_use_agent) (struct target_ops *, int use)
1107 TARGET_DEFAULT_NORETURN (tcomplain ());
1108
1109 /* Is the target able to use agent in current state? */
1110 int (*to_can_use_agent) (struct target_ops *)
1111 TARGET_DEFAULT_RETURN (0);
1112
1113 /* Enable branch tracing for PTID using CONF configuration.
1114 Return a branch trace target information struct for reading and for
1115 disabling branch trace. */
1116 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1117 ptid_t ptid,
1118 const struct btrace_config *conf)
1119 TARGET_DEFAULT_NORETURN (tcomplain ());
1120
1121 /* Disable branch tracing and deallocate TINFO. */
1122 void (*to_disable_btrace) (struct target_ops *,
1123 struct btrace_target_info *tinfo)
1124 TARGET_DEFAULT_NORETURN (tcomplain ());
1125
1126 /* Disable branch tracing and deallocate TINFO. This function is similar
1127 to to_disable_btrace, except that it is called during teardown and is
1128 only allowed to perform actions that are safe. A counter-example would
1129 be attempting to talk to a remote target. */
1130 void (*to_teardown_btrace) (struct target_ops *,
1131 struct btrace_target_info *tinfo)
1132 TARGET_DEFAULT_NORETURN (tcomplain ());
1133
1134 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1135 DATA is cleared before new trace is added. */
1136 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1137 struct btrace_data *data,
1138 struct btrace_target_info *btinfo,
1139 enum btrace_read_type type)
1140 TARGET_DEFAULT_NORETURN (tcomplain ());
1141
1142 /* Get the branch trace configuration. */
1143 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1144 const struct btrace_target_info *)
1145 TARGET_DEFAULT_RETURN (NULL);
1146
1147 /* Current recording method. */
1148 enum record_method (*to_record_method) (struct target_ops *, ptid_t ptid)
1149 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1150
1151 /* Stop trace recording. */
1152 void (*to_stop_recording) (struct target_ops *)
1153 TARGET_DEFAULT_IGNORE ();
1154
1155 /* Print information about the recording. */
1156 void (*to_info_record) (struct target_ops *)
1157 TARGET_DEFAULT_IGNORE ();
1158
1159 /* Save the recorded execution trace into a file. */
1160 void (*to_save_record) (struct target_ops *, const char *filename)
1161 TARGET_DEFAULT_NORETURN (tcomplain ());
1162
1163 /* Delete the recorded execution trace from the current position
1164 onwards. */
1165 void (*to_delete_record) (struct target_ops *)
1166 TARGET_DEFAULT_NORETURN (tcomplain ());
1167
1168 /* Query if the record target is currently replaying PTID. */
1169 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1170 TARGET_DEFAULT_RETURN (0);
1171
1172 /* Query if the record target will replay PTID if it were resumed in
1173 execution direction DIR. */
1174 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1175 TARGET_DEFAULT_RETURN (0);
1176
1177 /* Stop replaying. */
1178 void (*to_record_stop_replaying) (struct target_ops *)
1179 TARGET_DEFAULT_IGNORE ();
1180
1181 /* Go to the begin of the execution trace. */
1182 void (*to_goto_record_begin) (struct target_ops *)
1183 TARGET_DEFAULT_NORETURN (tcomplain ());
1184
1185 /* Go to the end of the execution trace. */
1186 void (*to_goto_record_end) (struct target_ops *)
1187 TARGET_DEFAULT_NORETURN (tcomplain ());
1188
1189 /* Go to a specific location in the recorded execution trace. */
1190 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1191 TARGET_DEFAULT_NORETURN (tcomplain ());
1192
1193 /* Disassemble SIZE instructions in the recorded execution trace from
1194 the current position.
1195 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1196 disassemble SIZE succeeding instructions. */
1197 void (*to_insn_history) (struct target_ops *, int size,
1198 gdb_disassembly_flags flags)
1199 TARGET_DEFAULT_NORETURN (tcomplain ());
1200
1201 /* Disassemble SIZE instructions in the recorded execution trace around
1202 FROM.
1203 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1204 disassemble SIZE instructions after FROM. */
1205 void (*to_insn_history_from) (struct target_ops *,
1206 ULONGEST from, int size,
1207 gdb_disassembly_flags flags)
1208 TARGET_DEFAULT_NORETURN (tcomplain ());
1209
1210 /* Disassemble a section of the recorded execution trace from instruction
1211 BEGIN (inclusive) to instruction END (inclusive). */
1212 void (*to_insn_history_range) (struct target_ops *,
1213 ULONGEST begin, ULONGEST end,
1214 gdb_disassembly_flags flags)
1215 TARGET_DEFAULT_NORETURN (tcomplain ());
1216
1217 /* Print a function trace of the recorded execution trace.
1218 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1219 succeeding functions. */
1220 void (*to_call_history) (struct target_ops *, int size, record_print_flags flags)
1221 TARGET_DEFAULT_NORETURN (tcomplain ());
1222
1223 /* Print a function trace of the recorded execution trace starting
1224 at function FROM.
1225 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1226 SIZE functions after FROM. */
1227 void (*to_call_history_from) (struct target_ops *,
1228 ULONGEST begin, int size, record_print_flags flags)
1229 TARGET_DEFAULT_NORETURN (tcomplain ());
1230
1231 /* Print a function trace of an execution trace section from function BEGIN
1232 (inclusive) to function END (inclusive). */
1233 void (*to_call_history_range) (struct target_ops *,
1234 ULONGEST begin, ULONGEST end, record_print_flags flags)
1235 TARGET_DEFAULT_NORETURN (tcomplain ());
1236
1237 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1238 non-empty annex. */
1239 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1240 TARGET_DEFAULT_RETURN (0);
1241
1242 /* Those unwinders are tried before any other arch unwinders. If
1243 SELF doesn't have unwinders, it should delegate to the
1244 "beneath" target. */
1245 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1246 TARGET_DEFAULT_RETURN (NULL);
1247
1248 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1249 TARGET_DEFAULT_RETURN (NULL);
1250
1251 /* Prepare to generate a core file. */
1252 void (*to_prepare_to_generate_core) (struct target_ops *)
1253 TARGET_DEFAULT_IGNORE ();
1254
1255 /* Cleanup after generating a core file. */
1256 void (*to_done_generating_core) (struct target_ops *)
1257 TARGET_DEFAULT_IGNORE ();
1258
1259 int to_magic;
1260 /* Need sub-structure for target machine related rather than comm related?
1261 */
1262 };
1263
1264 /* Magic number for checking ops size. If a struct doesn't end with this
1265 number, somebody changed the declaration but didn't change all the
1266 places that initialize one. */
1267
1268 #define OPS_MAGIC 3840
1269
1270 /* The ops structure for our "current" target process. This should
1271 never be NULL. If there is no target, it points to the dummy_target. */
1272
1273 extern struct target_ops current_target;
1274
1275 /* Define easy words for doing these operations on our current target. */
1276
1277 #define target_shortname (current_target.to_shortname)
1278 #define target_longname (current_target.to_longname)
1279
1280 /* Does whatever cleanup is required for a target that we are no
1281 longer going to be calling. This routine is automatically always
1282 called after popping the target off the target stack - the target's
1283 own methods are no longer available through the target vector.
1284 Closing file descriptors and freeing all memory allocated memory are
1285 typical things it should do. */
1286
1287 void target_close (struct target_ops *targ);
1288
1289 /* Find the correct target to use for "attach". If a target on the
1290 current stack supports attaching, then it is returned. Otherwise,
1291 the default run target is returned. */
1292
1293 extern struct target_ops *find_attach_target (void);
1294
1295 /* Find the correct target to use for "run". If a target on the
1296 current stack supports creating a new inferior, then it is
1297 returned. Otherwise, the default run target is returned. */
1298
1299 extern struct target_ops *find_run_target (void);
1300
1301 /* Some targets don't generate traps when attaching to the inferior,
1302 or their target_attach implementation takes care of the waiting.
1303 These targets must set to_attach_no_wait. */
1304
1305 #define target_attach_no_wait \
1306 (current_target.to_attach_no_wait)
1307
1308 /* The target_attach operation places a process under debugger control,
1309 and stops the process.
1310
1311 This operation provides a target-specific hook that allows the
1312 necessary bookkeeping to be performed after an attach completes. */
1313 #define target_post_attach(pid) \
1314 (*current_target.to_post_attach) (&current_target, pid)
1315
1316 /* Display a message indicating we're about to detach from the current
1317 inferior process. */
1318
1319 extern void target_announce_detach (int from_tty);
1320
1321 /* Takes a program previously attached to and detaches it.
1322 The program may resume execution (some targets do, some don't) and will
1323 no longer stop on signals, etc. We better not have left any breakpoints
1324 in the program or it'll die when it hits one. FROM_TTY says whether to be
1325 verbose or not. */
1326
1327 extern void target_detach (inferior *inf, int from_tty);
1328
1329 /* Disconnect from the current target without resuming it (leaving it
1330 waiting for a debugger). */
1331
1332 extern void target_disconnect (const char *, int);
1333
1334 /* Resume execution (or prepare for execution) of a target thread,
1335 process or all processes. STEP says whether to hardware
1336 single-step or to run free; SIGGNAL is the signal to be given to
1337 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1338 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1339 process id'. A wildcard PTID (all threads, or all threads of
1340 process) means `step/resume INFERIOR_PTID, and let other threads
1341 (for which the wildcard PTID matches) resume with their
1342 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1343 is in "pass" state, or with no signal if in "no pass" state.
1344
1345 In order to efficiently handle batches of resumption requests,
1346 targets may implement this method such that it records the
1347 resumption request, but defers the actual resumption to the
1348 target_commit_resume method implementation. See
1349 target_commit_resume below. */
1350 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1351
1352 /* Commit a series of resumption requests previously prepared with
1353 target_resume calls.
1354
1355 GDB always calls target_commit_resume after calling target_resume
1356 one or more times. A target may thus use this method in
1357 coordination with the target_resume method to batch target-side
1358 resumption requests. In that case, the target doesn't actually
1359 resume in its target_resume implementation. Instead, it prepares
1360 the resumption in target_resume, and defers the actual resumption
1361 to target_commit_resume. E.g., the remote target uses this to
1362 coalesce multiple resumption requests in a single vCont packet. */
1363 extern void target_commit_resume ();
1364
1365 /* Setup to defer target_commit_resume calls, and reactivate
1366 target_commit_resume on destruction, if it was previously
1367 active. */
1368 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1369
1370 /* For target_read_memory see target/target.h. */
1371
1372 /* The default target_ops::to_wait implementation. */
1373
1374 extern ptid_t default_target_wait (struct target_ops *ops,
1375 ptid_t ptid,
1376 struct target_waitstatus *status,
1377 int options);
1378
1379 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1380
1381 extern void target_fetch_registers (struct regcache *regcache, int regno);
1382
1383 /* Store at least register REGNO, or all regs if REGNO == -1.
1384 It can store as many registers as it wants to, so target_prepare_to_store
1385 must have been previously called. Calls error() if there are problems. */
1386
1387 extern void target_store_registers (struct regcache *regcache, int regs);
1388
1389 /* Get ready to modify the registers array. On machines which store
1390 individual registers, this doesn't need to do anything. On machines
1391 which store all the registers in one fell swoop, this makes sure
1392 that REGISTERS contains all the registers from the program being
1393 debugged. */
1394
1395 #define target_prepare_to_store(regcache) \
1396 (*current_target.to_prepare_to_store) (&current_target, regcache)
1397
1398 /* Determine current address space of thread PTID. */
1399
1400 struct address_space *target_thread_address_space (ptid_t);
1401
1402 /* Implement the "info proc" command. This returns one if the request
1403 was handled, and zero otherwise. It can also throw an exception if
1404 an error was encountered while attempting to handle the
1405 request. */
1406
1407 int target_info_proc (const char *, enum info_proc_what);
1408
1409 /* Returns true if this target can disable address space randomization. */
1410
1411 int target_supports_disable_randomization (void);
1412
1413 /* Returns true if this target can enable and disable tracepoints
1414 while a trace experiment is running. */
1415
1416 #define target_supports_enable_disable_tracepoint() \
1417 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1418
1419 #define target_supports_string_tracing() \
1420 (*current_target.to_supports_string_tracing) (&current_target)
1421
1422 /* Returns true if this target can handle breakpoint conditions
1423 on its end. */
1424
1425 #define target_supports_evaluation_of_breakpoint_conditions() \
1426 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1427
1428 /* Returns true if this target can handle breakpoint commands
1429 on its end. */
1430
1431 #define target_can_run_breakpoint_commands() \
1432 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1433
1434 extern int target_read_string (CORE_ADDR, char **, int, int *);
1435
1436 /* For target_read_memory see target/target.h. */
1437
1438 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1439 ssize_t len);
1440
1441 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1442
1443 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1444
1445 /* For target_write_memory see target/target.h. */
1446
1447 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1448 ssize_t len);
1449
1450 /* Fetches the target's memory map. If one is found it is sorted
1451 and returned, after some consistency checking. Otherwise, NULL
1452 is returned. */
1453 std::vector<mem_region> target_memory_map (void);
1454
1455 /* Erases all flash memory regions on the target. */
1456 void flash_erase_command (const char *cmd, int from_tty);
1457
1458 /* Erase the specified flash region. */
1459 void target_flash_erase (ULONGEST address, LONGEST length);
1460
1461 /* Finish a sequence of flash operations. */
1462 void target_flash_done (void);
1463
1464 /* Describes a request for a memory write operation. */
1465 struct memory_write_request
1466 {
1467 memory_write_request (ULONGEST begin_, ULONGEST end_,
1468 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1469 : begin (begin_), end (end_), data (data_), baton (baton_)
1470 {}
1471
1472 /* Begining address that must be written. */
1473 ULONGEST begin;
1474 /* Past-the-end address. */
1475 ULONGEST end;
1476 /* The data to write. */
1477 gdb_byte *data;
1478 /* A callback baton for progress reporting for this request. */
1479 void *baton;
1480 };
1481
1482 /* Enumeration specifying different flash preservation behaviour. */
1483 enum flash_preserve_mode
1484 {
1485 flash_preserve,
1486 flash_discard
1487 };
1488
1489 /* Write several memory blocks at once. This version can be more
1490 efficient than making several calls to target_write_memory, in
1491 particular because it can optimize accesses to flash memory.
1492
1493 Moreover, this is currently the only memory access function in gdb
1494 that supports writing to flash memory, and it should be used for
1495 all cases where access to flash memory is desirable.
1496
1497 REQUESTS is the vector (see vec.h) of memory_write_request.
1498 PRESERVE_FLASH_P indicates what to do with blocks which must be
1499 erased, but not completely rewritten.
1500 PROGRESS_CB is a function that will be periodically called to provide
1501 feedback to user. It will be called with the baton corresponding
1502 to the request currently being written. It may also be called
1503 with a NULL baton, when preserved flash sectors are being rewritten.
1504
1505 The function returns 0 on success, and error otherwise. */
1506 int target_write_memory_blocks
1507 (const std::vector<memory_write_request> &requests,
1508 enum flash_preserve_mode preserve_flash_p,
1509 void (*progress_cb) (ULONGEST, void *));
1510
1511 /* Print a line about the current target. */
1512
1513 #define target_files_info() \
1514 (*current_target.to_files_info) (&current_target)
1515
1516 /* Insert a breakpoint at address BP_TGT->placed_address in
1517 the target machine. Returns 0 for success, and returns non-zero or
1518 throws an error (with a detailed failure reason error code and
1519 message) otherwise. */
1520
1521 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1522 struct bp_target_info *bp_tgt);
1523
1524 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1525 machine. Result is 0 for success, non-zero for error. */
1526
1527 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1528 struct bp_target_info *bp_tgt,
1529 enum remove_bp_reason reason);
1530
1531 /* Return true if the target stack has a non-default
1532 "to_terminal_ours" method. */
1533
1534 extern int target_supports_terminal_ours (void);
1535
1536 /* Kill the inferior process. Make it go away. */
1537
1538 extern void target_kill (void);
1539
1540 /* Load an executable file into the target process. This is expected
1541 to not only bring new code into the target process, but also to
1542 update GDB's symbol tables to match.
1543
1544 ARG contains command-line arguments, to be broken down with
1545 buildargv (). The first non-switch argument is the filename to
1546 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1547 0)), which is an offset to apply to the load addresses of FILE's
1548 sections. The target may define switches, or other non-switch
1549 arguments, as it pleases. */
1550
1551 extern void target_load (const char *arg, int from_tty);
1552
1553 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1554 notification of inferior events such as fork and vork immediately
1555 after the inferior is created. (This because of how gdb gets an
1556 inferior created via invoking a shell to do it. In such a scenario,
1557 if the shell init file has commands in it, the shell will fork and
1558 exec for each of those commands, and we will see each such fork
1559 event. Very bad.)
1560
1561 Such targets will supply an appropriate definition for this function. */
1562
1563 #define target_post_startup_inferior(ptid) \
1564 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1565
1566 /* On some targets, we can catch an inferior fork or vfork event when
1567 it occurs. These functions insert/remove an already-created
1568 catchpoint for such events. They return 0 for success, 1 if the
1569 catchpoint type is not supported and -1 for failure. */
1570
1571 #define target_insert_fork_catchpoint(pid) \
1572 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1573
1574 #define target_remove_fork_catchpoint(pid) \
1575 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1576
1577 #define target_insert_vfork_catchpoint(pid) \
1578 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1579
1580 #define target_remove_vfork_catchpoint(pid) \
1581 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1582
1583 /* If the inferior forks or vforks, this function will be called at
1584 the next resume in order to perform any bookkeeping and fiddling
1585 necessary to continue debugging either the parent or child, as
1586 requested, and releasing the other. Information about the fork
1587 or vfork event is available via get_last_target_status ().
1588 This function returns 1 if the inferior should not be resumed
1589 (i.e. there is another event pending). */
1590
1591 int target_follow_fork (int follow_child, int detach_fork);
1592
1593 /* Handle the target-specific bookkeeping required when the inferior
1594 makes an exec call. INF is the exec'd inferior. */
1595
1596 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1597
1598 /* On some targets, we can catch an inferior exec event when it
1599 occurs. These functions insert/remove an already-created
1600 catchpoint for such events. They return 0 for success, 1 if the
1601 catchpoint type is not supported and -1 for failure. */
1602
1603 #define target_insert_exec_catchpoint(pid) \
1604 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1605
1606 #define target_remove_exec_catchpoint(pid) \
1607 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1608
1609 /* Syscall catch.
1610
1611 NEEDED is true if any syscall catch (of any kind) is requested.
1612 If NEEDED is false, it means the target can disable the mechanism to
1613 catch system calls because there are no more catchpoints of this type.
1614
1615 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1616 being requested. In this case, SYSCALL_COUNTS should be ignored.
1617
1618 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1619 element in this array is nonzero if that syscall should be caught.
1620 This argument only matters if ANY_COUNT is zero.
1621
1622 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1623 for failure. */
1624
1625 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1626 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1627 pid, needed, any_count, \
1628 syscall_counts)
1629
1630 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1631 exit code of PID, if any. */
1632
1633 #define target_has_exited(pid,wait_status,exit_status) \
1634 (*current_target.to_has_exited) (&current_target, \
1635 pid,wait_status,exit_status)
1636
1637 /* The debugger has completed a blocking wait() call. There is now
1638 some process event that must be processed. This function should
1639 be defined by those targets that require the debugger to perform
1640 cleanup or internal state changes in response to the process event. */
1641
1642 /* For target_mourn_inferior see target/target.h. */
1643
1644 /* Does target have enough data to do a run or attach command? */
1645
1646 #define target_can_run(t) \
1647 ((t)->to_can_run) (t)
1648
1649 /* Set list of signals to be handled in the target.
1650
1651 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1652 (enum gdb_signal). For every signal whose entry in this array is
1653 non-zero, the target is allowed -but not required- to skip reporting
1654 arrival of the signal to the GDB core by returning from target_wait,
1655 and to pass the signal directly to the inferior instead.
1656
1657 However, if the target is hardware single-stepping a thread that is
1658 about to receive a signal, it needs to be reported in any case, even
1659 if mentioned in a previous target_pass_signals call. */
1660
1661 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1662
1663 /* Set list of signals the target may pass to the inferior. This
1664 directly maps to the "handle SIGNAL pass/nopass" setting.
1665
1666 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1667 number (enum gdb_signal). For every signal whose entry in this
1668 array is non-zero, the target is allowed to pass the signal to the
1669 inferior. Signals not present in the array shall be silently
1670 discarded. This does not influence whether to pass signals to the
1671 inferior as a result of a target_resume call. This is useful in
1672 scenarios where the target needs to decide whether to pass or not a
1673 signal to the inferior without GDB core involvement, such as for
1674 example, when detaching (as threads may have been suspended with
1675 pending signals not reported to GDB). */
1676
1677 extern void target_program_signals (int nsig, unsigned char *program_signals);
1678
1679 /* Check to see if a thread is still alive. */
1680
1681 extern int target_thread_alive (ptid_t ptid);
1682
1683 /* Sync the target's threads with GDB's thread list. */
1684
1685 extern void target_update_thread_list (void);
1686
1687 /* Make target stop in a continuable fashion. (For instance, under
1688 Unix, this should act like SIGSTOP). Note that this function is
1689 asynchronous: it does not wait for the target to become stopped
1690 before returning. If this is the behavior you want please use
1691 target_stop_and_wait. */
1692
1693 extern void target_stop (ptid_t ptid);
1694
1695 /* Interrupt the target. Unlike target_stop, this does not specify
1696 which thread/process reports the stop. For most target this acts
1697 like raising a SIGINT, though that's not absolutely required. This
1698 function is asynchronous. */
1699
1700 extern void target_interrupt ();
1701
1702 /* Pass a ^C, as determined to have been pressed by checking the quit
1703 flag, to the target, as if the user had typed the ^C on the
1704 inferior's controlling terminal while the inferior was in the
1705 foreground. Remote targets may take the opportunity to detect the
1706 remote side is not responding and offer to disconnect. */
1707
1708 extern void target_pass_ctrlc (void);
1709
1710 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1711 target_interrupt. */
1712 extern void default_target_pass_ctrlc (struct target_ops *ops);
1713
1714 /* Send the specified COMMAND to the target's monitor
1715 (shell,interpreter) for execution. The result of the query is
1716 placed in OUTBUF. */
1717
1718 #define target_rcmd(command, outbuf) \
1719 (*current_target.to_rcmd) (&current_target, command, outbuf)
1720
1721
1722 /* Does the target include all of memory, or only part of it? This
1723 determines whether we look up the target chain for other parts of
1724 memory if this target can't satisfy a request. */
1725
1726 extern int target_has_all_memory_1 (void);
1727 #define target_has_all_memory target_has_all_memory_1 ()
1728
1729 /* Does the target include memory? (Dummy targets don't.) */
1730
1731 extern int target_has_memory_1 (void);
1732 #define target_has_memory target_has_memory_1 ()
1733
1734 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1735 we start a process.) */
1736
1737 extern int target_has_stack_1 (void);
1738 #define target_has_stack target_has_stack_1 ()
1739
1740 /* Does the target have registers? (Exec files don't.) */
1741
1742 extern int target_has_registers_1 (void);
1743 #define target_has_registers target_has_registers_1 ()
1744
1745 /* Does the target have execution? Can we make it jump (through
1746 hoops), or pop its stack a few times? This means that the current
1747 target is currently executing; for some targets, that's the same as
1748 whether or not the target is capable of execution, but there are
1749 also targets which can be current while not executing. In that
1750 case this will become true after to_create_inferior or
1751 to_attach. */
1752
1753 extern int target_has_execution_1 (ptid_t);
1754
1755 /* Like target_has_execution_1, but always passes inferior_ptid. */
1756
1757 extern int target_has_execution_current (void);
1758
1759 #define target_has_execution target_has_execution_current ()
1760
1761 /* Default implementations for process_stratum targets. Return true
1762 if there's a selected inferior, false otherwise. */
1763
1764 extern int default_child_has_all_memory (struct target_ops *ops);
1765 extern int default_child_has_memory (struct target_ops *ops);
1766 extern int default_child_has_stack (struct target_ops *ops);
1767 extern int default_child_has_registers (struct target_ops *ops);
1768 extern int default_child_has_execution (struct target_ops *ops,
1769 ptid_t the_ptid);
1770
1771 /* Can the target support the debugger control of thread execution?
1772 Can it lock the thread scheduler? */
1773
1774 #define target_can_lock_scheduler \
1775 (current_target.to_has_thread_control & tc_schedlock)
1776
1777 /* Controls whether async mode is permitted. */
1778 extern int target_async_permitted;
1779
1780 /* Can the target support asynchronous execution? */
1781 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1782
1783 /* Is the target in asynchronous execution mode? */
1784 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1785
1786 /* Enables/disabled async target events. */
1787 extern void target_async (int enable);
1788
1789 /* Enables/disables thread create and exit events. */
1790 extern void target_thread_events (int enable);
1791
1792 /* Whether support for controlling the target backends always in
1793 non-stop mode is enabled. */
1794 extern enum auto_boolean target_non_stop_enabled;
1795
1796 /* Is the target in non-stop mode? Some targets control the inferior
1797 in non-stop mode even with "set non-stop off". Always true if "set
1798 non-stop" is on. */
1799 extern int target_is_non_stop_p (void);
1800
1801 #define target_execution_direction() \
1802 (current_target.to_execution_direction (&current_target))
1803
1804 /* Converts a process id to a string. Usually, the string just contains
1805 `process xyz', but on some systems it may contain
1806 `process xyz thread abc'. */
1807
1808 extern const char *target_pid_to_str (ptid_t ptid);
1809
1810 extern const char *normal_pid_to_str (ptid_t ptid);
1811
1812 /* Return a short string describing extra information about PID,
1813 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1814 is okay. */
1815
1816 #define target_extra_thread_info(TP) \
1817 (current_target.to_extra_thread_info (&current_target, TP))
1818
1819 /* Return the thread's name, or NULL if the target is unable to determine it.
1820 The returned value must not be freed by the caller. */
1821
1822 extern const char *target_thread_name (struct thread_info *);
1823
1824 /* Given a pointer to a thread library specific thread handle and
1825 its length, return a pointer to the corresponding thread_info struct. */
1826
1827 extern struct thread_info *target_thread_handle_to_thread_info
1828 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1829
1830 /* Attempts to find the pathname of the executable file
1831 that was run to create a specified process.
1832
1833 The process PID must be stopped when this operation is used.
1834
1835 If the executable file cannot be determined, NULL is returned.
1836
1837 Else, a pointer to a character string containing the pathname
1838 is returned. This string should be copied into a buffer by
1839 the client if the string will not be immediately used, or if
1840 it must persist. */
1841
1842 #define target_pid_to_exec_file(pid) \
1843 (current_target.to_pid_to_exec_file) (&current_target, pid)
1844
1845 /* See the to_thread_architecture description in struct target_ops. */
1846
1847 #define target_thread_architecture(ptid) \
1848 (current_target.to_thread_architecture (&current_target, ptid))
1849
1850 /*
1851 * Iterator function for target memory regions.
1852 * Calls a callback function once for each memory region 'mapped'
1853 * in the child process. Defined as a simple macro rather than
1854 * as a function macro so that it can be tested for nullity.
1855 */
1856
1857 #define target_find_memory_regions(FUNC, DATA) \
1858 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1859
1860 /*
1861 * Compose corefile .note section.
1862 */
1863
1864 #define target_make_corefile_notes(BFD, SIZE_P) \
1865 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1866
1867 /* Bookmark interfaces. */
1868 #define target_get_bookmark(ARGS, FROM_TTY) \
1869 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1870
1871 #define target_goto_bookmark(ARG, FROM_TTY) \
1872 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1873
1874 /* Hardware watchpoint interfaces. */
1875
1876 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1877 write). Only the INFERIOR_PTID task is being queried. */
1878
1879 #define target_stopped_by_watchpoint() \
1880 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1881
1882 /* Returns non-zero if the target stopped because it executed a
1883 software breakpoint instruction. */
1884
1885 #define target_stopped_by_sw_breakpoint() \
1886 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1887
1888 #define target_supports_stopped_by_sw_breakpoint() \
1889 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1890
1891 #define target_stopped_by_hw_breakpoint() \
1892 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1893
1894 #define target_supports_stopped_by_hw_breakpoint() \
1895 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1896
1897 /* Non-zero if we have steppable watchpoints */
1898
1899 #define target_have_steppable_watchpoint \
1900 (current_target.to_have_steppable_watchpoint)
1901
1902 /* Non-zero if we have continuable watchpoints */
1903
1904 #define target_have_continuable_watchpoint \
1905 (current_target.to_have_continuable_watchpoint)
1906
1907 /* Provide defaults for hardware watchpoint functions. */
1908
1909 /* If the *_hw_beakpoint functions have not been defined
1910 elsewhere use the definitions in the target vector. */
1911
1912 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1913 Returns negative if the target doesn't have enough hardware debug
1914 registers available. Return zero if hardware watchpoint of type
1915 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1916 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1917 CNT is the number of such watchpoints used so far, including this
1918 one. OTHERTYPE is the number of watchpoints of other types than
1919 this one used so far. */
1920
1921 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1922 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1923 TYPE, CNT, OTHERTYPE)
1924
1925 /* Returns the number of debug registers needed to watch the given
1926 memory region, or zero if not supported. */
1927
1928 #define target_region_ok_for_hw_watchpoint(addr, len) \
1929 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1930 addr, len)
1931
1932
1933 #define target_can_do_single_step() \
1934 (*current_target.to_can_do_single_step) (&current_target)
1935
1936 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1937 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1938 COND is the expression for its condition, or NULL if there's none.
1939 Returns 0 for success, 1 if the watchpoint type is not supported,
1940 -1 for failure. */
1941
1942 #define target_insert_watchpoint(addr, len, type, cond) \
1943 (*current_target.to_insert_watchpoint) (&current_target, \
1944 addr, len, type, cond)
1945
1946 #define target_remove_watchpoint(addr, len, type, cond) \
1947 (*current_target.to_remove_watchpoint) (&current_target, \
1948 addr, len, type, cond)
1949
1950 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1951 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1952 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1953 masked watchpoints are not supported, -1 for failure. */
1954
1955 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1956 enum target_hw_bp_type);
1957
1958 /* Remove a masked watchpoint at ADDR with the mask MASK.
1959 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1960 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1961 for failure. */
1962
1963 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1964 enum target_hw_bp_type);
1965
1966 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1967 the target machine. Returns 0 for success, and returns non-zero or
1968 throws an error (with a detailed failure reason error code and
1969 message) otherwise. */
1970
1971 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1972 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1973 gdbarch, bp_tgt)
1974
1975 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1976 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1977 gdbarch, bp_tgt)
1978
1979 /* Return number of debug registers needed for a ranged breakpoint,
1980 or -1 if ranged breakpoints are not supported. */
1981
1982 extern int target_ranged_break_num_registers (void);
1983
1984 /* Return non-zero if target knows the data address which triggered this
1985 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1986 INFERIOR_PTID task is being queried. */
1987 #define target_stopped_data_address(target, addr_p) \
1988 (*(target)->to_stopped_data_address) (target, addr_p)
1989
1990 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1991 LENGTH bytes beginning at START. */
1992 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1993 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1994
1995 /* Return non-zero if the target is capable of using hardware to evaluate
1996 the condition expression. In this case, if the condition is false when
1997 the watched memory location changes, execution may continue without the
1998 debugger being notified.
1999
2000 Due to limitations in the hardware implementation, it may be capable of
2001 avoiding triggering the watchpoint in some cases where the condition
2002 expression is false, but may report some false positives as well.
2003 For this reason, GDB will still evaluate the condition expression when
2004 the watchpoint triggers. */
2005 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2006 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2007 addr, len, type, cond)
2008
2009 /* Return number of debug registers needed for a masked watchpoint,
2010 -1 if masked watchpoints are not supported or -2 if the given address
2011 and mask combination cannot be used. */
2012
2013 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2014
2015 /* Target can execute in reverse? */
2016 #define target_can_execute_reverse \
2017 current_target.to_can_execute_reverse (&current_target)
2018
2019 extern const struct target_desc *target_read_description (struct target_ops *);
2020
2021 #define target_get_ada_task_ptid(lwp, tid) \
2022 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2023
2024 /* Utility implementation of searching memory. */
2025 extern int simple_search_memory (struct target_ops* ops,
2026 CORE_ADDR start_addr,
2027 ULONGEST search_space_len,
2028 const gdb_byte *pattern,
2029 ULONGEST pattern_len,
2030 CORE_ADDR *found_addrp);
2031
2032 /* Main entry point for searching memory. */
2033 extern int target_search_memory (CORE_ADDR start_addr,
2034 ULONGEST search_space_len,
2035 const gdb_byte *pattern,
2036 ULONGEST pattern_len,
2037 CORE_ADDR *found_addrp);
2038
2039 /* Target file operations. */
2040
2041 /* Return nonzero if the filesystem seen by the current inferior
2042 is the local filesystem, zero otherwise. */
2043 #define target_filesystem_is_local() \
2044 current_target.to_filesystem_is_local (&current_target)
2045
2046 /* Open FILENAME on the target, in the filesystem as seen by INF,
2047 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2048 by the debugger (GDB or, for remote targets, the remote stub).
2049 Return a target file descriptor, or -1 if an error occurs (and
2050 set *TARGET_ERRNO). */
2051 extern int target_fileio_open (struct inferior *inf,
2052 const char *filename, int flags,
2053 int mode, int *target_errno);
2054
2055 /* Like target_fileio_open, but print a warning message if the
2056 file is being accessed over a link that may be slow. */
2057 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2058 const char *filename,
2059 int flags,
2060 int mode,
2061 int *target_errno);
2062
2063 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2064 Return the number of bytes written, or -1 if an error occurs
2065 (and set *TARGET_ERRNO). */
2066 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2067 ULONGEST offset, int *target_errno);
2068
2069 /* Read up to LEN bytes FD on the target into READ_BUF.
2070 Return the number of bytes read, or -1 if an error occurs
2071 (and set *TARGET_ERRNO). */
2072 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2073 ULONGEST offset, int *target_errno);
2074
2075 /* Get information about the file opened as FD on the target
2076 and put it in SB. Return 0 on success, or -1 if an error
2077 occurs (and set *TARGET_ERRNO). */
2078 extern int target_fileio_fstat (int fd, struct stat *sb,
2079 int *target_errno);
2080
2081 /* Close FD on the target. Return 0, or -1 if an error occurs
2082 (and set *TARGET_ERRNO). */
2083 extern int target_fileio_close (int fd, int *target_errno);
2084
2085 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2086 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2087 for remote targets, the remote stub). Return 0, or -1 if an error
2088 occurs (and set *TARGET_ERRNO). */
2089 extern int target_fileio_unlink (struct inferior *inf,
2090 const char *filename,
2091 int *target_errno);
2092
2093 /* Read value of symbolic link FILENAME on the target, in the
2094 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2095 by the debugger (GDB or, for remote targets, the remote stub).
2096 Return a null-terminated string allocated via xmalloc, or NULL if
2097 an error occurs (and set *TARGET_ERRNO). */
2098 extern gdb::optional<std::string> target_fileio_readlink
2099 (struct inferior *inf, const char *filename, int *target_errno);
2100
2101 /* Read target file FILENAME, in the filesystem as seen by INF. If
2102 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2103 remote targets, the remote stub). The return value will be -1 if
2104 the transfer fails or is not supported; 0 if the object is empty;
2105 or the length of the object otherwise. If a positive value is
2106 returned, a sufficiently large buffer will be allocated using
2107 xmalloc and returned in *BUF_P containing the contents of the
2108 object.
2109
2110 This method should be used for objects sufficiently small to store
2111 in a single xmalloc'd buffer, when no fixed bound on the object's
2112 size is known in advance. */
2113 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2114 const char *filename,
2115 gdb_byte **buf_p);
2116
2117 /* Read target file FILENAME, in the filesystem as seen by INF. If
2118 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2119 remote targets, the remote stub). The result is NUL-terminated and
2120 returned as a string, allocated using xmalloc. If an error occurs
2121 or the transfer is unsupported, NULL is returned. Empty objects
2122 are returned as allocated but empty strings. A warning is issued
2123 if the result contains any embedded NUL bytes. */
2124 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2125 (struct inferior *inf, const char *filename);
2126
2127
2128 /* Tracepoint-related operations. */
2129
2130 #define target_trace_init() \
2131 (*current_target.to_trace_init) (&current_target)
2132
2133 #define target_download_tracepoint(t) \
2134 (*current_target.to_download_tracepoint) (&current_target, t)
2135
2136 #define target_can_download_tracepoint() \
2137 (*current_target.to_can_download_tracepoint) (&current_target)
2138
2139 #define target_download_trace_state_variable(tsv) \
2140 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2141
2142 #define target_enable_tracepoint(loc) \
2143 (*current_target.to_enable_tracepoint) (&current_target, loc)
2144
2145 #define target_disable_tracepoint(loc) \
2146 (*current_target.to_disable_tracepoint) (&current_target, loc)
2147
2148 #define target_trace_start() \
2149 (*current_target.to_trace_start) (&current_target)
2150
2151 #define target_trace_set_readonly_regions() \
2152 (*current_target.to_trace_set_readonly_regions) (&current_target)
2153
2154 #define target_get_trace_status(ts) \
2155 (*current_target.to_get_trace_status) (&current_target, ts)
2156
2157 #define target_get_tracepoint_status(tp,utp) \
2158 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2159
2160 #define target_trace_stop() \
2161 (*current_target.to_trace_stop) (&current_target)
2162
2163 #define target_trace_find(type,num,addr1,addr2,tpp) \
2164 (*current_target.to_trace_find) (&current_target, \
2165 (type), (num), (addr1), (addr2), (tpp))
2166
2167 #define target_get_trace_state_variable_value(tsv,val) \
2168 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2169 (tsv), (val))
2170
2171 #define target_save_trace_data(filename) \
2172 (*current_target.to_save_trace_data) (&current_target, filename)
2173
2174 #define target_upload_tracepoints(utpp) \
2175 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2176
2177 #define target_upload_trace_state_variables(utsvp) \
2178 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2179
2180 #define target_get_raw_trace_data(buf,offset,len) \
2181 (*current_target.to_get_raw_trace_data) (&current_target, \
2182 (buf), (offset), (len))
2183
2184 #define target_get_min_fast_tracepoint_insn_len() \
2185 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2186
2187 #define target_set_disconnected_tracing(val) \
2188 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2189
2190 #define target_set_circular_trace_buffer(val) \
2191 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2192
2193 #define target_set_trace_buffer_size(val) \
2194 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2195
2196 #define target_set_trace_notes(user,notes,stopnotes) \
2197 (*current_target.to_set_trace_notes) (&current_target, \
2198 (user), (notes), (stopnotes))
2199
2200 #define target_get_tib_address(ptid, addr) \
2201 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2202
2203 #define target_set_permissions() \
2204 (*current_target.to_set_permissions) (&current_target)
2205
2206 #define target_static_tracepoint_marker_at(addr, marker) \
2207 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2208 addr, marker)
2209
2210 #define target_static_tracepoint_markers_by_strid(marker_id) \
2211 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2212 marker_id)
2213
2214 #define target_traceframe_info() \
2215 (*current_target.to_traceframe_info) (&current_target)
2216
2217 #define target_use_agent(use) \
2218 (*current_target.to_use_agent) (&current_target, use)
2219
2220 #define target_can_use_agent() \
2221 (*current_target.to_can_use_agent) (&current_target)
2222
2223 #define target_augmented_libraries_svr4_read() \
2224 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2225
2226 /* Command logging facility. */
2227
2228 #define target_log_command(p) \
2229 (*current_target.to_log_command) (&current_target, p)
2230
2231
2232 extern int target_core_of_thread (ptid_t ptid);
2233
2234 /* See to_get_unwinder in struct target_ops. */
2235 extern const struct frame_unwind *target_get_unwinder (void);
2236
2237 /* See to_get_tailcall_unwinder in struct target_ops. */
2238 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2239
2240 /* This implements basic memory verification, reading target memory
2241 and performing the comparison here (as opposed to accelerated
2242 verification making use of the qCRC packet, for example). */
2243
2244 extern int simple_verify_memory (struct target_ops* ops,
2245 const gdb_byte *data,
2246 CORE_ADDR memaddr, ULONGEST size);
2247
2248 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2249 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2250 if there's a mismatch, and -1 if an error is encountered while
2251 reading memory. Throws an error if the functionality is found not
2252 to be supported by the current target. */
2253 int target_verify_memory (const gdb_byte *data,
2254 CORE_ADDR memaddr, ULONGEST size);
2255
2256 /* Routines for maintenance of the target structures...
2257
2258 complete_target_initialization: Finalize a target_ops by filling in
2259 any fields needed by the target implementation. Unnecessary for
2260 targets which are registered via add_target, as this part gets
2261 taken care of then.
2262
2263 add_target: Add a target to the list of all possible targets.
2264 This only makes sense for targets that should be activated using
2265 the "target TARGET_NAME ..." command.
2266
2267 push_target: Make this target the top of the stack of currently used
2268 targets, within its particular stratum of the stack. Result
2269 is 0 if now atop the stack, nonzero if not on top (maybe
2270 should warn user).
2271
2272 unpush_target: Remove this from the stack of currently used targets,
2273 no matter where it is on the list. Returns 0 if no
2274 change, 1 if removed from stack. */
2275
2276 extern void add_target (struct target_ops *);
2277
2278 extern void add_target_with_completer (struct target_ops *t,
2279 completer_ftype *completer);
2280
2281 extern void complete_target_initialization (struct target_ops *t);
2282
2283 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2284 for maintaining backwards compatibility when renaming targets. */
2285
2286 extern void add_deprecated_target_alias (struct target_ops *t,
2287 const char *alias);
2288
2289 extern void push_target (struct target_ops *);
2290
2291 extern int unpush_target (struct target_ops *);
2292
2293 extern void target_pre_inferior (int);
2294
2295 extern void target_preopen (int);
2296
2297 /* Does whatever cleanup is required to get rid of all pushed targets. */
2298 extern void pop_all_targets (void);
2299
2300 /* Like pop_all_targets, but pops only targets whose stratum is at or
2301 above STRATUM. */
2302 extern void pop_all_targets_at_and_above (enum strata stratum);
2303
2304 /* Like pop_all_targets, but pops only targets whose stratum is
2305 strictly above ABOVE_STRATUM. */
2306 extern void pop_all_targets_above (enum strata above_stratum);
2307
2308 extern int target_is_pushed (struct target_ops *t);
2309
2310 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2311 CORE_ADDR offset);
2312
2313 /* Struct target_section maps address ranges to file sections. It is
2314 mostly used with BFD files, but can be used without (e.g. for handling
2315 raw disks, or files not in formats handled by BFD). */
2316
2317 struct target_section
2318 {
2319 CORE_ADDR addr; /* Lowest address in section */
2320 CORE_ADDR endaddr; /* 1+highest address in section */
2321
2322 struct bfd_section *the_bfd_section;
2323
2324 /* The "owner" of the section.
2325 It can be any unique value. It is set by add_target_sections
2326 and used by remove_target_sections.
2327 For example, for executables it is a pointer to exec_bfd and
2328 for shlibs it is the so_list pointer. */
2329 void *owner;
2330 };
2331
2332 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2333
2334 struct target_section_table
2335 {
2336 struct target_section *sections;
2337 struct target_section *sections_end;
2338 };
2339
2340 /* Return the "section" containing the specified address. */
2341 struct target_section *target_section_by_addr (struct target_ops *target,
2342 CORE_ADDR addr);
2343
2344 /* Return the target section table this target (or the targets
2345 beneath) currently manipulate. */
2346
2347 extern struct target_section_table *target_get_section_table
2348 (struct target_ops *target);
2349
2350 /* From mem-break.c */
2351
2352 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2353 struct bp_target_info *,
2354 enum remove_bp_reason);
2355
2356 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2357 struct bp_target_info *);
2358
2359 /* Check whether the memory at the breakpoint's placed address still
2360 contains the expected breakpoint instruction. */
2361
2362 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2363 struct bp_target_info *bp_tgt);
2364
2365 extern int default_memory_remove_breakpoint (struct gdbarch *,
2366 struct bp_target_info *);
2367
2368 extern int default_memory_insert_breakpoint (struct gdbarch *,
2369 struct bp_target_info *);
2370
2371
2372 /* From target.c */
2373
2374 extern void initialize_targets (void);
2375
2376 extern void noprocess (void) ATTRIBUTE_NORETURN;
2377
2378 extern void target_require_runnable (void);
2379
2380 extern struct target_ops *find_target_beneath (struct target_ops *);
2381
2382 /* Find the target at STRATUM. If no target is at that stratum,
2383 return NULL. */
2384
2385 struct target_ops *find_target_at (enum strata stratum);
2386
2387 /* Read OS data object of type TYPE from the target, and return it in
2388 XML format. The result is NUL-terminated and returned as a string.
2389 If an error occurs or the transfer is unsupported, NULL is
2390 returned. Empty objects are returned as allocated but empty
2391 strings. */
2392
2393 extern gdb::unique_xmalloc_ptr<char> target_get_osdata (const char *type);
2394
2395 \f
2396 /* Stuff that should be shared among the various remote targets. */
2397
2398 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2399 information (higher values, more information). */
2400 extern int remote_debug;
2401
2402 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2403 extern int baud_rate;
2404
2405 /* Parity for serial port */
2406 extern int serial_parity;
2407
2408 /* Timeout limit for response from target. */
2409 extern int remote_timeout;
2410
2411 \f
2412
2413 /* Set the show memory breakpoints mode to show, and return a
2414 scoped_restore to restore it back to the current value. */
2415 extern scoped_restore_tmpl<int>
2416 make_scoped_restore_show_memory_breakpoints (int show);
2417
2418 extern int may_write_registers;
2419 extern int may_write_memory;
2420 extern int may_insert_breakpoints;
2421 extern int may_insert_tracepoints;
2422 extern int may_insert_fast_tracepoints;
2423 extern int may_stop;
2424
2425 extern void update_target_permissions (void);
2426
2427 \f
2428 /* Imported from machine dependent code. */
2429
2430 /* See to_enable_btrace in struct target_ops. */
2431 extern struct btrace_target_info *
2432 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2433
2434 /* See to_disable_btrace in struct target_ops. */
2435 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2436
2437 /* See to_teardown_btrace in struct target_ops. */
2438 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2439
2440 /* See to_read_btrace in struct target_ops. */
2441 extern enum btrace_error target_read_btrace (struct btrace_data *,
2442 struct btrace_target_info *,
2443 enum btrace_read_type);
2444
2445 /* See to_btrace_conf in struct target_ops. */
2446 extern const struct btrace_config *
2447 target_btrace_conf (const struct btrace_target_info *);
2448
2449 /* See to_stop_recording in struct target_ops. */
2450 extern void target_stop_recording (void);
2451
2452 /* See to_save_record in struct target_ops. */
2453 extern void target_save_record (const char *filename);
2454
2455 /* Query if the target supports deleting the execution log. */
2456 extern int target_supports_delete_record (void);
2457
2458 /* See to_delete_record in struct target_ops. */
2459 extern void target_delete_record (void);
2460
2461 /* See to_record_method. */
2462 extern enum record_method target_record_method (ptid_t ptid);
2463
2464 /* See to_record_is_replaying in struct target_ops. */
2465 extern int target_record_is_replaying (ptid_t ptid);
2466
2467 /* See to_record_will_replay in struct target_ops. */
2468 extern int target_record_will_replay (ptid_t ptid, int dir);
2469
2470 /* See to_record_stop_replaying in struct target_ops. */
2471 extern void target_record_stop_replaying (void);
2472
2473 /* See to_goto_record_begin in struct target_ops. */
2474 extern void target_goto_record_begin (void);
2475
2476 /* See to_goto_record_end in struct target_ops. */
2477 extern void target_goto_record_end (void);
2478
2479 /* See to_goto_record in struct target_ops. */
2480 extern void target_goto_record (ULONGEST insn);
2481
2482 /* See to_insn_history. */
2483 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2484
2485 /* See to_insn_history_from. */
2486 extern void target_insn_history_from (ULONGEST from, int size,
2487 gdb_disassembly_flags flags);
2488
2489 /* See to_insn_history_range. */
2490 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2491 gdb_disassembly_flags flags);
2492
2493 /* See to_call_history. */
2494 extern void target_call_history (int size, record_print_flags flags);
2495
2496 /* See to_call_history_from. */
2497 extern void target_call_history_from (ULONGEST begin, int size,
2498 record_print_flags flags);
2499
2500 /* See to_call_history_range. */
2501 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2502 record_print_flags flags);
2503
2504 /* See to_prepare_to_generate_core. */
2505 extern void target_prepare_to_generate_core (void);
2506
2507 /* See to_done_generating_core. */
2508 extern void target_done_generating_core (void);
2509
2510 #if GDB_SELF_TEST
2511 namespace selftests {
2512
2513 /* A mock process_stratum target_ops that doesn't read/write registers
2514 anywhere. */
2515
2516 class test_target_ops : public target_ops
2517 {
2518 public:
2519 test_target_ops ();
2520 };
2521 } // namespace selftests
2522 #endif /* GDB_SELF_TEST */
2523
2524 #endif /* !defined (TARGET_H) */
This page took 0.07969 seconds and 4 git commands to generate.