convert to_remove_hw_breakpoint
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *);
472 int (*to_insert_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *);
474
475 int (*to_insert_mask_watchpoint) (struct target_ops *,
476 CORE_ADDR, CORE_ADDR, int);
477 int (*to_remove_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_stopped_by_watchpoint) (struct target_ops *)
480 TARGET_DEFAULT_RETURN (0);
481 int to_have_steppable_watchpoint;
482 int to_have_continuable_watchpoint;
483 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
484 TARGET_DEFAULT_RETURN (0);
485 int (*to_watchpoint_addr_within_range) (struct target_ops *,
486 CORE_ADDR, CORE_ADDR, int);
487
488 /* Documentation of this routine is provided with the corresponding
489 target_* macro. */
490 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
491 CORE_ADDR, int);
492
493 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
494 CORE_ADDR, int, int,
495 struct expression *);
496 int (*to_masked_watch_num_registers) (struct target_ops *,
497 CORE_ADDR, CORE_ADDR);
498 void (*to_terminal_init) (struct target_ops *);
499 void (*to_terminal_inferior) (struct target_ops *);
500 void (*to_terminal_ours_for_output) (struct target_ops *);
501 void (*to_terminal_ours) (struct target_ops *);
502 void (*to_terminal_save_ours) (struct target_ops *);
503 void (*to_terminal_info) (struct target_ops *, const char *, int);
504 void (*to_kill) (struct target_ops *);
505 void (*to_load) (struct target_ops *, char *, int);
506 void (*to_create_inferior) (struct target_ops *,
507 char *, char *, char **, int);
508 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
509 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
510 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
511 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
512 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
513 int (*to_follow_fork) (struct target_ops *, int, int);
514 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
515 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
516 int (*to_set_syscall_catchpoint) (struct target_ops *,
517 int, int, int, int, int *);
518 int (*to_has_exited) (struct target_ops *, int, int, int *);
519 void (*to_mourn_inferior) (struct target_ops *);
520 int (*to_can_run) (struct target_ops *);
521
522 /* Documentation of this routine is provided with the corresponding
523 target_* macro. */
524 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
525
526 /* Documentation of this routine is provided with the
527 corresponding target_* function. */
528 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
529
530 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
531 void (*to_find_new_threads) (struct target_ops *);
532 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
533 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
534 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
535 void (*to_stop) (struct target_ops *, ptid_t);
536 void (*to_rcmd) (struct target_ops *,
537 char *command, struct ui_file *output)
538 TARGET_DEFAULT_FUNC (default_rcmd);
539 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
540 void (*to_log_command) (struct target_ops *, const char *);
541 struct target_section_table *(*to_get_section_table) (struct target_ops *);
542 enum strata to_stratum;
543 int (*to_has_all_memory) (struct target_ops *);
544 int (*to_has_memory) (struct target_ops *);
545 int (*to_has_stack) (struct target_ops *);
546 int (*to_has_registers) (struct target_ops *);
547 int (*to_has_execution) (struct target_ops *, ptid_t);
548 int to_has_thread_control; /* control thread execution */
549 int to_attach_no_wait;
550 /* ASYNC target controls */
551 int (*to_can_async_p) (struct target_ops *)
552 TARGET_DEFAULT_FUNC (find_default_can_async_p);
553 int (*to_is_async_p) (struct target_ops *)
554 TARGET_DEFAULT_FUNC (find_default_is_async_p);
555 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
556 TARGET_DEFAULT_NORETURN (tcomplain ());
557 int (*to_supports_non_stop) (struct target_ops *);
558 /* find_memory_regions support method for gcore */
559 int (*to_find_memory_regions) (struct target_ops *,
560 find_memory_region_ftype func, void *data);
561 /* make_corefile_notes support method for gcore */
562 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
563 /* get_bookmark support method for bookmarks */
564 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
565 /* goto_bookmark support method for bookmarks */
566 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
567 /* Return the thread-local address at OFFSET in the
568 thread-local storage for the thread PTID and the shared library
569 or executable file given by OBJFILE. If that block of
570 thread-local storage hasn't been allocated yet, this function
571 may return an error. */
572 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
573 ptid_t ptid,
574 CORE_ADDR load_module_addr,
575 CORE_ADDR offset);
576
577 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
578 OBJECT. The OFFSET, for a seekable object, specifies the
579 starting point. The ANNEX can be used to provide additional
580 data-specific information to the target.
581
582 Return the transferred status, error or OK (an
583 'enum target_xfer_status' value). Save the number of bytes
584 actually transferred in *XFERED_LEN if transfer is successful
585 (TARGET_XFER_OK) or the number unavailable bytes if the requested
586 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
587 smaller than LEN does not indicate the end of the object, only
588 the end of the transfer; higher level code should continue
589 transferring if desired. This is handled in target.c.
590
591 The interface does not support a "retry" mechanism. Instead it
592 assumes that at least one byte will be transfered on each
593 successful call.
594
595 NOTE: cagney/2003-10-17: The current interface can lead to
596 fragmented transfers. Lower target levels should not implement
597 hacks, such as enlarging the transfer, in an attempt to
598 compensate for this. Instead, the target stack should be
599 extended so that it implements supply/collect methods and a
600 look-aside object cache. With that available, the lowest
601 target can safely and freely "push" data up the stack.
602
603 See target_read and target_write for more information. One,
604 and only one, of readbuf or writebuf must be non-NULL. */
605
606 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
607 enum target_object object,
608 const char *annex,
609 gdb_byte *readbuf,
610 const gdb_byte *writebuf,
611 ULONGEST offset, ULONGEST len,
612 ULONGEST *xfered_len)
613 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
614
615 /* Returns the memory map for the target. A return value of NULL
616 means that no memory map is available. If a memory address
617 does not fall within any returned regions, it's assumed to be
618 RAM. The returned memory regions should not overlap.
619
620 The order of regions does not matter; target_memory_map will
621 sort regions by starting address. For that reason, this
622 function should not be called directly except via
623 target_memory_map.
624
625 This method should not cache data; if the memory map could
626 change unexpectedly, it should be invalidated, and higher
627 layers will re-fetch it. */
628 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
629
630 /* Erases the region of flash memory starting at ADDRESS, of
631 length LENGTH.
632
633 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
634 on flash block boundaries, as reported by 'to_memory_map'. */
635 void (*to_flash_erase) (struct target_ops *,
636 ULONGEST address, LONGEST length);
637
638 /* Finishes a flash memory write sequence. After this operation
639 all flash memory should be available for writing and the result
640 of reading from areas written by 'to_flash_write' should be
641 equal to what was written. */
642 void (*to_flash_done) (struct target_ops *);
643
644 /* Describe the architecture-specific features of this target.
645 Returns the description found, or NULL if no description
646 was available. */
647 const struct target_desc *(*to_read_description) (struct target_ops *ops);
648
649 /* Build the PTID of the thread on which a given task is running,
650 based on LWP and THREAD. These values are extracted from the
651 task Private_Data section of the Ada Task Control Block, and
652 their interpretation depends on the target. */
653 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
654 long lwp, long thread);
655
656 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
657 Return 0 if *READPTR is already at the end of the buffer.
658 Return -1 if there is insufficient buffer for a whole entry.
659 Return 1 if an entry was read into *TYPEP and *VALP. */
660 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
661 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
662
663 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
664 sequence of bytes in PATTERN with length PATTERN_LEN.
665
666 The result is 1 if found, 0 if not found, and -1 if there was an error
667 requiring halting of the search (e.g. memory read error).
668 If the pattern is found the address is recorded in FOUND_ADDRP. */
669 int (*to_search_memory) (struct target_ops *ops,
670 CORE_ADDR start_addr, ULONGEST search_space_len,
671 const gdb_byte *pattern, ULONGEST pattern_len,
672 CORE_ADDR *found_addrp);
673
674 /* Can target execute in reverse? */
675 int (*to_can_execute_reverse) (struct target_ops *);
676
677 /* The direction the target is currently executing. Must be
678 implemented on targets that support reverse execution and async
679 mode. The default simply returns forward execution. */
680 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
681
682 /* Does this target support debugging multiple processes
683 simultaneously? */
684 int (*to_supports_multi_process) (struct target_ops *);
685
686 /* Does this target support enabling and disabling tracepoints while a trace
687 experiment is running? */
688 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
689
690 /* Does this target support disabling address space randomization? */
691 int (*to_supports_disable_randomization) (struct target_ops *);
692
693 /* Does this target support the tracenz bytecode for string collection? */
694 int (*to_supports_string_tracing) (struct target_ops *);
695
696 /* Does this target support evaluation of breakpoint conditions on its
697 end? */
698 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
699
700 /* Does this target support evaluation of breakpoint commands on its
701 end? */
702 int (*to_can_run_breakpoint_commands) (struct target_ops *);
703
704 /* Determine current architecture of thread PTID.
705
706 The target is supposed to determine the architecture of the code where
707 the target is currently stopped at (on Cell, if a target is in spu_run,
708 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
709 This is architecture used to perform decr_pc_after_break adjustment,
710 and also determines the frame architecture of the innermost frame.
711 ptrace operations need to operate according to target_gdbarch ().
712
713 The default implementation always returns target_gdbarch (). */
714 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
715
716 /* Determine current address space of thread PTID.
717
718 The default implementation always returns the inferior's
719 address space. */
720 struct address_space *(*to_thread_address_space) (struct target_ops *,
721 ptid_t);
722
723 /* Target file operations. */
724
725 /* Open FILENAME on the target, using FLAGS and MODE. Return a
726 target file descriptor, or -1 if an error occurs (and set
727 *TARGET_ERRNO). */
728 int (*to_fileio_open) (struct target_ops *,
729 const char *filename, int flags, int mode,
730 int *target_errno);
731
732 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
733 Return the number of bytes written, or -1 if an error occurs
734 (and set *TARGET_ERRNO). */
735 int (*to_fileio_pwrite) (struct target_ops *,
736 int fd, const gdb_byte *write_buf, int len,
737 ULONGEST offset, int *target_errno);
738
739 /* Read up to LEN bytes FD on the target into READ_BUF.
740 Return the number of bytes read, or -1 if an error occurs
741 (and set *TARGET_ERRNO). */
742 int (*to_fileio_pread) (struct target_ops *,
743 int fd, gdb_byte *read_buf, int len,
744 ULONGEST offset, int *target_errno);
745
746 /* Close FD on the target. Return 0, or -1 if an error occurs
747 (and set *TARGET_ERRNO). */
748 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
749
750 /* Unlink FILENAME on the target. Return 0, or -1 if an error
751 occurs (and set *TARGET_ERRNO). */
752 int (*to_fileio_unlink) (struct target_ops *,
753 const char *filename, int *target_errno);
754
755 /* Read value of symbolic link FILENAME on the target. Return a
756 null-terminated string allocated via xmalloc, or NULL if an error
757 occurs (and set *TARGET_ERRNO). */
758 char *(*to_fileio_readlink) (struct target_ops *,
759 const char *filename, int *target_errno);
760
761
762 /* Implement the "info proc" command. */
763 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
764
765 /* Tracepoint-related operations. */
766
767 /* Prepare the target for a tracing run. */
768 void (*to_trace_init) (struct target_ops *);
769
770 /* Send full details of a tracepoint location to the target. */
771 void (*to_download_tracepoint) (struct target_ops *,
772 struct bp_location *location);
773
774 /* Is the target able to download tracepoint locations in current
775 state? */
776 int (*to_can_download_tracepoint) (struct target_ops *);
777
778 /* Send full details of a trace state variable to the target. */
779 void (*to_download_trace_state_variable) (struct target_ops *,
780 struct trace_state_variable *tsv);
781
782 /* Enable a tracepoint on the target. */
783 void (*to_enable_tracepoint) (struct target_ops *,
784 struct bp_location *location);
785
786 /* Disable a tracepoint on the target. */
787 void (*to_disable_tracepoint) (struct target_ops *,
788 struct bp_location *location);
789
790 /* Inform the target info of memory regions that are readonly
791 (such as text sections), and so it should return data from
792 those rather than look in the trace buffer. */
793 void (*to_trace_set_readonly_regions) (struct target_ops *);
794
795 /* Start a trace run. */
796 void (*to_trace_start) (struct target_ops *);
797
798 /* Get the current status of a tracing run. */
799 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
800
801 void (*to_get_tracepoint_status) (struct target_ops *,
802 struct breakpoint *tp,
803 struct uploaded_tp *utp);
804
805 /* Stop a trace run. */
806 void (*to_trace_stop) (struct target_ops *);
807
808 /* Ask the target to find a trace frame of the given type TYPE,
809 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
810 number of the trace frame, and also the tracepoint number at
811 TPP. If no trace frame matches, return -1. May throw if the
812 operation fails. */
813 int (*to_trace_find) (struct target_ops *,
814 enum trace_find_type type, int num,
815 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
816
817 /* Get the value of the trace state variable number TSV, returning
818 1 if the value is known and writing the value itself into the
819 location pointed to by VAL, else returning 0. */
820 int (*to_get_trace_state_variable_value) (struct target_ops *,
821 int tsv, LONGEST *val);
822
823 int (*to_save_trace_data) (struct target_ops *, const char *filename);
824
825 int (*to_upload_tracepoints) (struct target_ops *,
826 struct uploaded_tp **utpp);
827
828 int (*to_upload_trace_state_variables) (struct target_ops *,
829 struct uploaded_tsv **utsvp);
830
831 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
832 ULONGEST offset, LONGEST len);
833
834 /* Get the minimum length of instruction on which a fast tracepoint
835 may be set on the target. If this operation is unsupported,
836 return -1. If for some reason the minimum length cannot be
837 determined, return 0. */
838 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
839
840 /* Set the target's tracing behavior in response to unexpected
841 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
842 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
843 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
844 /* Set the size of trace buffer in the target. */
845 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
846
847 /* Add/change textual notes about the trace run, returning 1 if
848 successful, 0 otherwise. */
849 int (*to_set_trace_notes) (struct target_ops *,
850 const char *user, const char *notes,
851 const char *stopnotes);
852
853 /* Return the processor core that thread PTID was last seen on.
854 This information is updated only when:
855 - update_thread_list is called
856 - thread stops
857 If the core cannot be determined -- either for the specified
858 thread, or right now, or in this debug session, or for this
859 target -- return -1. */
860 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
861
862 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
863 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
864 a match, 0 if there's a mismatch, and -1 if an error is
865 encountered while reading memory. */
866 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
867 CORE_ADDR memaddr, ULONGEST size);
868
869 /* Return the address of the start of the Thread Information Block
870 a Windows OS specific feature. */
871 int (*to_get_tib_address) (struct target_ops *,
872 ptid_t ptid, CORE_ADDR *addr);
873
874 /* Send the new settings of write permission variables. */
875 void (*to_set_permissions) (struct target_ops *);
876
877 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
878 with its details. Return 1 on success, 0 on failure. */
879 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
880 struct static_tracepoint_marker *marker);
881
882 /* Return a vector of all tracepoints markers string id ID, or all
883 markers if ID is NULL. */
884 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
885 (struct target_ops *, const char *id);
886
887 /* Return a traceframe info object describing the current
888 traceframe's contents. If the target doesn't support
889 traceframe info, return NULL. If the current traceframe is not
890 selected (the current traceframe number is -1), the target can
891 choose to return either NULL or an empty traceframe info. If
892 NULL is returned, for example in remote target, GDB will read
893 from the live inferior. If an empty traceframe info is
894 returned, for example in tfile target, which means the
895 traceframe info is available, but the requested memory is not
896 available in it. GDB will try to see if the requested memory
897 is available in the read-only sections. This method should not
898 cache data; higher layers take care of caching, invalidating,
899 and re-fetching when necessary. */
900 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
901
902 /* Ask the target to use or not to use agent according to USE. Return 1
903 successful, 0 otherwise. */
904 int (*to_use_agent) (struct target_ops *, int use);
905
906 /* Is the target able to use agent in current state? */
907 int (*to_can_use_agent) (struct target_ops *);
908
909 /* Check whether the target supports branch tracing. */
910 int (*to_supports_btrace) (struct target_ops *)
911 TARGET_DEFAULT_RETURN (0);
912
913 /* Enable branch tracing for PTID and allocate a branch trace target
914 information struct for reading and for disabling branch trace. */
915 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
916 ptid_t ptid);
917
918 /* Disable branch tracing and deallocate TINFO. */
919 void (*to_disable_btrace) (struct target_ops *,
920 struct btrace_target_info *tinfo);
921
922 /* Disable branch tracing and deallocate TINFO. This function is similar
923 to to_disable_btrace, except that it is called during teardown and is
924 only allowed to perform actions that are safe. A counter-example would
925 be attempting to talk to a remote target. */
926 void (*to_teardown_btrace) (struct target_ops *,
927 struct btrace_target_info *tinfo);
928
929 /* Read branch trace data for the thread indicated by BTINFO into DATA.
930 DATA is cleared before new trace is added.
931 The branch trace will start with the most recent block and continue
932 towards older blocks. */
933 enum btrace_error (*to_read_btrace) (struct target_ops *self,
934 VEC (btrace_block_s) **data,
935 struct btrace_target_info *btinfo,
936 enum btrace_read_type type);
937
938 /* Stop trace recording. */
939 void (*to_stop_recording) (struct target_ops *);
940
941 /* Print information about the recording. */
942 void (*to_info_record) (struct target_ops *);
943
944 /* Save the recorded execution trace into a file. */
945 void (*to_save_record) (struct target_ops *, const char *filename);
946
947 /* Delete the recorded execution trace from the current position onwards. */
948 void (*to_delete_record) (struct target_ops *);
949
950 /* Query if the record target is currently replaying. */
951 int (*to_record_is_replaying) (struct target_ops *);
952
953 /* Go to the begin of the execution trace. */
954 void (*to_goto_record_begin) (struct target_ops *);
955
956 /* Go to the end of the execution trace. */
957 void (*to_goto_record_end) (struct target_ops *);
958
959 /* Go to a specific location in the recorded execution trace. */
960 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
961
962 /* Disassemble SIZE instructions in the recorded execution trace from
963 the current position.
964 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
965 disassemble SIZE succeeding instructions. */
966 void (*to_insn_history) (struct target_ops *, int size, int flags);
967
968 /* Disassemble SIZE instructions in the recorded execution trace around
969 FROM.
970 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
971 disassemble SIZE instructions after FROM. */
972 void (*to_insn_history_from) (struct target_ops *,
973 ULONGEST from, int size, int flags);
974
975 /* Disassemble a section of the recorded execution trace from instruction
976 BEGIN (inclusive) to instruction END (inclusive). */
977 void (*to_insn_history_range) (struct target_ops *,
978 ULONGEST begin, ULONGEST end, int flags);
979
980 /* Print a function trace of the recorded execution trace.
981 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
982 succeeding functions. */
983 void (*to_call_history) (struct target_ops *, int size, int flags);
984
985 /* Print a function trace of the recorded execution trace starting
986 at function FROM.
987 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
988 SIZE functions after FROM. */
989 void (*to_call_history_from) (struct target_ops *,
990 ULONGEST begin, int size, int flags);
991
992 /* Print a function trace of an execution trace section from function BEGIN
993 (inclusive) to function END (inclusive). */
994 void (*to_call_history_range) (struct target_ops *,
995 ULONGEST begin, ULONGEST end, int flags);
996
997 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
998 non-empty annex. */
999 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1000
1001 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1002 it is not used. */
1003 const struct frame_unwind *to_get_unwinder;
1004 const struct frame_unwind *to_get_tailcall_unwinder;
1005
1006 /* Return the number of bytes by which the PC needs to be decremented
1007 after executing a breakpoint instruction.
1008 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1009 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1010 struct gdbarch *gdbarch);
1011
1012 int to_magic;
1013 /* Need sub-structure for target machine related rather than comm related?
1014 */
1015 };
1016
1017 /* Magic number for checking ops size. If a struct doesn't end with this
1018 number, somebody changed the declaration but didn't change all the
1019 places that initialize one. */
1020
1021 #define OPS_MAGIC 3840
1022
1023 /* The ops structure for our "current" target process. This should
1024 never be NULL. If there is no target, it points to the dummy_target. */
1025
1026 extern struct target_ops current_target;
1027
1028 /* Define easy words for doing these operations on our current target. */
1029
1030 #define target_shortname (current_target.to_shortname)
1031 #define target_longname (current_target.to_longname)
1032
1033 /* Does whatever cleanup is required for a target that we are no
1034 longer going to be calling. This routine is automatically always
1035 called after popping the target off the target stack - the target's
1036 own methods are no longer available through the target vector.
1037 Closing file descriptors and freeing all memory allocated memory are
1038 typical things it should do. */
1039
1040 void target_close (struct target_ops *targ);
1041
1042 /* Attaches to a process on the target side. Arguments are as passed
1043 to the `attach' command by the user. This routine can be called
1044 when the target is not on the target-stack, if the target_can_run
1045 routine returns 1; in that case, it must push itself onto the stack.
1046 Upon exit, the target should be ready for normal operations, and
1047 should be ready to deliver the status of the process immediately
1048 (without waiting) to an upcoming target_wait call. */
1049
1050 void target_attach (char *, int);
1051
1052 /* Some targets don't generate traps when attaching to the inferior,
1053 or their target_attach implementation takes care of the waiting.
1054 These targets must set to_attach_no_wait. */
1055
1056 #define target_attach_no_wait \
1057 (current_target.to_attach_no_wait)
1058
1059 /* The target_attach operation places a process under debugger control,
1060 and stops the process.
1061
1062 This operation provides a target-specific hook that allows the
1063 necessary bookkeeping to be performed after an attach completes. */
1064 #define target_post_attach(pid) \
1065 (*current_target.to_post_attach) (&current_target, pid)
1066
1067 /* Takes a program previously attached to and detaches it.
1068 The program may resume execution (some targets do, some don't) and will
1069 no longer stop on signals, etc. We better not have left any breakpoints
1070 in the program or it'll die when it hits one. ARGS is arguments
1071 typed by the user (e.g. a signal to send the process). FROM_TTY
1072 says whether to be verbose or not. */
1073
1074 extern void target_detach (const char *, int);
1075
1076 /* Disconnect from the current target without resuming it (leaving it
1077 waiting for a debugger). */
1078
1079 extern void target_disconnect (char *, int);
1080
1081 /* Resume execution of the target process PTID (or a group of
1082 threads). STEP says whether to single-step or to run free; SIGGNAL
1083 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1084 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1085 PTID means `step/resume only this process id'. A wildcard PTID
1086 (all threads, or all threads of process) means `step/resume
1087 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1088 matches) resume with their 'thread->suspend.stop_signal' signal
1089 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1090 if in "no pass" state. */
1091
1092 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1093
1094 /* Wait for process pid to do something. PTID = -1 to wait for any
1095 pid to do something. Return pid of child, or -1 in case of error;
1096 store status through argument pointer STATUS. Note that it is
1097 _NOT_ OK to throw_exception() out of target_wait() without popping
1098 the debugging target from the stack; GDB isn't prepared to get back
1099 to the prompt with a debugging target but without the frame cache,
1100 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1101 options. */
1102
1103 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1104 int options);
1105
1106 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1107
1108 extern void target_fetch_registers (struct regcache *regcache, int regno);
1109
1110 /* Store at least register REGNO, or all regs if REGNO == -1.
1111 It can store as many registers as it wants to, so target_prepare_to_store
1112 must have been previously called. Calls error() if there are problems. */
1113
1114 extern void target_store_registers (struct regcache *regcache, int regs);
1115
1116 /* Get ready to modify the registers array. On machines which store
1117 individual registers, this doesn't need to do anything. On machines
1118 which store all the registers in one fell swoop, this makes sure
1119 that REGISTERS contains all the registers from the program being
1120 debugged. */
1121
1122 #define target_prepare_to_store(regcache) \
1123 (*current_target.to_prepare_to_store) (&current_target, regcache)
1124
1125 /* Determine current address space of thread PTID. */
1126
1127 struct address_space *target_thread_address_space (ptid_t);
1128
1129 /* Implement the "info proc" command. This returns one if the request
1130 was handled, and zero otherwise. It can also throw an exception if
1131 an error was encountered while attempting to handle the
1132 request. */
1133
1134 int target_info_proc (char *, enum info_proc_what);
1135
1136 /* Returns true if this target can debug multiple processes
1137 simultaneously. */
1138
1139 #define target_supports_multi_process() \
1140 (*current_target.to_supports_multi_process) (&current_target)
1141
1142 /* Returns true if this target can disable address space randomization. */
1143
1144 int target_supports_disable_randomization (void);
1145
1146 /* Returns true if this target can enable and disable tracepoints
1147 while a trace experiment is running. */
1148
1149 #define target_supports_enable_disable_tracepoint() \
1150 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1151
1152 #define target_supports_string_tracing() \
1153 (*current_target.to_supports_string_tracing) (&current_target)
1154
1155 /* Returns true if this target can handle breakpoint conditions
1156 on its end. */
1157
1158 #define target_supports_evaluation_of_breakpoint_conditions() \
1159 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1160
1161 /* Returns true if this target can handle breakpoint commands
1162 on its end. */
1163
1164 #define target_can_run_breakpoint_commands() \
1165 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1166
1167 extern int target_read_string (CORE_ADDR, char **, int, int *);
1168
1169 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1170 ssize_t len);
1171
1172 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1173 ssize_t len);
1174
1175 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1176
1177 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1178
1179 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1180 ssize_t len);
1181
1182 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1183 ssize_t len);
1184
1185 /* Fetches the target's memory map. If one is found it is sorted
1186 and returned, after some consistency checking. Otherwise, NULL
1187 is returned. */
1188 VEC(mem_region_s) *target_memory_map (void);
1189
1190 /* Erase the specified flash region. */
1191 void target_flash_erase (ULONGEST address, LONGEST length);
1192
1193 /* Finish a sequence of flash operations. */
1194 void target_flash_done (void);
1195
1196 /* Describes a request for a memory write operation. */
1197 struct memory_write_request
1198 {
1199 /* Begining address that must be written. */
1200 ULONGEST begin;
1201 /* Past-the-end address. */
1202 ULONGEST end;
1203 /* The data to write. */
1204 gdb_byte *data;
1205 /* A callback baton for progress reporting for this request. */
1206 void *baton;
1207 };
1208 typedef struct memory_write_request memory_write_request_s;
1209 DEF_VEC_O(memory_write_request_s);
1210
1211 /* Enumeration specifying different flash preservation behaviour. */
1212 enum flash_preserve_mode
1213 {
1214 flash_preserve,
1215 flash_discard
1216 };
1217
1218 /* Write several memory blocks at once. This version can be more
1219 efficient than making several calls to target_write_memory, in
1220 particular because it can optimize accesses to flash memory.
1221
1222 Moreover, this is currently the only memory access function in gdb
1223 that supports writing to flash memory, and it should be used for
1224 all cases where access to flash memory is desirable.
1225
1226 REQUESTS is the vector (see vec.h) of memory_write_request.
1227 PRESERVE_FLASH_P indicates what to do with blocks which must be
1228 erased, but not completely rewritten.
1229 PROGRESS_CB is a function that will be periodically called to provide
1230 feedback to user. It will be called with the baton corresponding
1231 to the request currently being written. It may also be called
1232 with a NULL baton, when preserved flash sectors are being rewritten.
1233
1234 The function returns 0 on success, and error otherwise. */
1235 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1236 enum flash_preserve_mode preserve_flash_p,
1237 void (*progress_cb) (ULONGEST, void *));
1238
1239 /* Print a line about the current target. */
1240
1241 #define target_files_info() \
1242 (*current_target.to_files_info) (&current_target)
1243
1244 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1245 the target machine. Returns 0 for success, and returns non-zero or
1246 throws an error (with a detailed failure reason error code and
1247 message) otherwise. */
1248
1249 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1250 struct bp_target_info *bp_tgt);
1251
1252 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1253 machine. Result is 0 for success, non-zero for error. */
1254
1255 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1256 struct bp_target_info *bp_tgt);
1257
1258 /* Initialize the terminal settings we record for the inferior,
1259 before we actually run the inferior. */
1260
1261 #define target_terminal_init() \
1262 (*current_target.to_terminal_init) (&current_target)
1263
1264 /* Put the inferior's terminal settings into effect.
1265 This is preparation for starting or resuming the inferior. */
1266
1267 extern void target_terminal_inferior (void);
1268
1269 /* Put some of our terminal settings into effect,
1270 enough to get proper results from our output,
1271 but do not change into or out of RAW mode
1272 so that no input is discarded.
1273
1274 After doing this, either terminal_ours or terminal_inferior
1275 should be called to get back to a normal state of affairs. */
1276
1277 #define target_terminal_ours_for_output() \
1278 (*current_target.to_terminal_ours_for_output) (&current_target)
1279
1280 /* Put our terminal settings into effect.
1281 First record the inferior's terminal settings
1282 so they can be restored properly later. */
1283
1284 #define target_terminal_ours() \
1285 (*current_target.to_terminal_ours) (&current_target)
1286
1287 /* Save our terminal settings.
1288 This is called from TUI after entering or leaving the curses
1289 mode. Since curses modifies our terminal this call is here
1290 to take this change into account. */
1291
1292 #define target_terminal_save_ours() \
1293 (*current_target.to_terminal_save_ours) (&current_target)
1294
1295 /* Print useful information about our terminal status, if such a thing
1296 exists. */
1297
1298 #define target_terminal_info(arg, from_tty) \
1299 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1300
1301 /* Kill the inferior process. Make it go away. */
1302
1303 extern void target_kill (void);
1304
1305 /* Load an executable file into the target process. This is expected
1306 to not only bring new code into the target process, but also to
1307 update GDB's symbol tables to match.
1308
1309 ARG contains command-line arguments, to be broken down with
1310 buildargv (). The first non-switch argument is the filename to
1311 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1312 0)), which is an offset to apply to the load addresses of FILE's
1313 sections. The target may define switches, or other non-switch
1314 arguments, as it pleases. */
1315
1316 extern void target_load (char *arg, int from_tty);
1317
1318 /* Start an inferior process and set inferior_ptid to its pid.
1319 EXEC_FILE is the file to run.
1320 ALLARGS is a string containing the arguments to the program.
1321 ENV is the environment vector to pass. Errors reported with error().
1322 On VxWorks and various standalone systems, we ignore exec_file. */
1323
1324 void target_create_inferior (char *exec_file, char *args,
1325 char **env, int from_tty);
1326
1327 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1328 notification of inferior events such as fork and vork immediately
1329 after the inferior is created. (This because of how gdb gets an
1330 inferior created via invoking a shell to do it. In such a scenario,
1331 if the shell init file has commands in it, the shell will fork and
1332 exec for each of those commands, and we will see each such fork
1333 event. Very bad.)
1334
1335 Such targets will supply an appropriate definition for this function. */
1336
1337 #define target_post_startup_inferior(ptid) \
1338 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1339
1340 /* On some targets, we can catch an inferior fork or vfork event when
1341 it occurs. These functions insert/remove an already-created
1342 catchpoint for such events. They return 0 for success, 1 if the
1343 catchpoint type is not supported and -1 for failure. */
1344
1345 #define target_insert_fork_catchpoint(pid) \
1346 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1347
1348 #define target_remove_fork_catchpoint(pid) \
1349 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1350
1351 #define target_insert_vfork_catchpoint(pid) \
1352 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1353
1354 #define target_remove_vfork_catchpoint(pid) \
1355 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1356
1357 /* If the inferior forks or vforks, this function will be called at
1358 the next resume in order to perform any bookkeeping and fiddling
1359 necessary to continue debugging either the parent or child, as
1360 requested, and releasing the other. Information about the fork
1361 or vfork event is available via get_last_target_status ().
1362 This function returns 1 if the inferior should not be resumed
1363 (i.e. there is another event pending). */
1364
1365 int target_follow_fork (int follow_child, int detach_fork);
1366
1367 /* On some targets, we can catch an inferior exec event when it
1368 occurs. These functions insert/remove an already-created
1369 catchpoint for such events. They return 0 for success, 1 if the
1370 catchpoint type is not supported and -1 for failure. */
1371
1372 #define target_insert_exec_catchpoint(pid) \
1373 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1374
1375 #define target_remove_exec_catchpoint(pid) \
1376 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1377
1378 /* Syscall catch.
1379
1380 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1381 If NEEDED is zero, it means the target can disable the mechanism to
1382 catch system calls because there are no more catchpoints of this type.
1383
1384 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1385 being requested. In this case, both TABLE_SIZE and TABLE should
1386 be ignored.
1387
1388 TABLE_SIZE is the number of elements in TABLE. It only matters if
1389 ANY_COUNT is zero.
1390
1391 TABLE is an array of ints, indexed by syscall number. An element in
1392 this array is nonzero if that syscall should be caught. This argument
1393 only matters if ANY_COUNT is zero.
1394
1395 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1396 for failure. */
1397
1398 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1399 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1400 pid, needed, any_count, \
1401 table_size, table)
1402
1403 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1404 exit code of PID, if any. */
1405
1406 #define target_has_exited(pid,wait_status,exit_status) \
1407 (*current_target.to_has_exited) (&current_target, \
1408 pid,wait_status,exit_status)
1409
1410 /* The debugger has completed a blocking wait() call. There is now
1411 some process event that must be processed. This function should
1412 be defined by those targets that require the debugger to perform
1413 cleanup or internal state changes in response to the process event. */
1414
1415 /* The inferior process has died. Do what is right. */
1416
1417 void target_mourn_inferior (void);
1418
1419 /* Does target have enough data to do a run or attach command? */
1420
1421 #define target_can_run(t) \
1422 ((t)->to_can_run) (t)
1423
1424 /* Set list of signals to be handled in the target.
1425
1426 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1427 (enum gdb_signal). For every signal whose entry in this array is
1428 non-zero, the target is allowed -but not required- to skip reporting
1429 arrival of the signal to the GDB core by returning from target_wait,
1430 and to pass the signal directly to the inferior instead.
1431
1432 However, if the target is hardware single-stepping a thread that is
1433 about to receive a signal, it needs to be reported in any case, even
1434 if mentioned in a previous target_pass_signals call. */
1435
1436 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1437
1438 /* Set list of signals the target may pass to the inferior. This
1439 directly maps to the "handle SIGNAL pass/nopass" setting.
1440
1441 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1442 number (enum gdb_signal). For every signal whose entry in this
1443 array is non-zero, the target is allowed to pass the signal to the
1444 inferior. Signals not present in the array shall be silently
1445 discarded. This does not influence whether to pass signals to the
1446 inferior as a result of a target_resume call. This is useful in
1447 scenarios where the target needs to decide whether to pass or not a
1448 signal to the inferior without GDB core involvement, such as for
1449 example, when detaching (as threads may have been suspended with
1450 pending signals not reported to GDB). */
1451
1452 extern void target_program_signals (int nsig, unsigned char *program_signals);
1453
1454 /* Check to see if a thread is still alive. */
1455
1456 extern int target_thread_alive (ptid_t ptid);
1457
1458 /* Query for new threads and add them to the thread list. */
1459
1460 extern void target_find_new_threads (void);
1461
1462 /* Make target stop in a continuable fashion. (For instance, under
1463 Unix, this should act like SIGSTOP). This function is normally
1464 used by GUIs to implement a stop button. */
1465
1466 extern void target_stop (ptid_t ptid);
1467
1468 /* Send the specified COMMAND to the target's monitor
1469 (shell,interpreter) for execution. The result of the query is
1470 placed in OUTBUF. */
1471
1472 #define target_rcmd(command, outbuf) \
1473 (*current_target.to_rcmd) (&current_target, command, outbuf)
1474
1475
1476 /* Does the target include all of memory, or only part of it? This
1477 determines whether we look up the target chain for other parts of
1478 memory if this target can't satisfy a request. */
1479
1480 extern int target_has_all_memory_1 (void);
1481 #define target_has_all_memory target_has_all_memory_1 ()
1482
1483 /* Does the target include memory? (Dummy targets don't.) */
1484
1485 extern int target_has_memory_1 (void);
1486 #define target_has_memory target_has_memory_1 ()
1487
1488 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1489 we start a process.) */
1490
1491 extern int target_has_stack_1 (void);
1492 #define target_has_stack target_has_stack_1 ()
1493
1494 /* Does the target have registers? (Exec files don't.) */
1495
1496 extern int target_has_registers_1 (void);
1497 #define target_has_registers target_has_registers_1 ()
1498
1499 /* Does the target have execution? Can we make it jump (through
1500 hoops), or pop its stack a few times? This means that the current
1501 target is currently executing; for some targets, that's the same as
1502 whether or not the target is capable of execution, but there are
1503 also targets which can be current while not executing. In that
1504 case this will become true after target_create_inferior or
1505 target_attach. */
1506
1507 extern int target_has_execution_1 (ptid_t);
1508
1509 /* Like target_has_execution_1, but always passes inferior_ptid. */
1510
1511 extern int target_has_execution_current (void);
1512
1513 #define target_has_execution target_has_execution_current ()
1514
1515 /* Default implementations for process_stratum targets. Return true
1516 if there's a selected inferior, false otherwise. */
1517
1518 extern int default_child_has_all_memory (struct target_ops *ops);
1519 extern int default_child_has_memory (struct target_ops *ops);
1520 extern int default_child_has_stack (struct target_ops *ops);
1521 extern int default_child_has_registers (struct target_ops *ops);
1522 extern int default_child_has_execution (struct target_ops *ops,
1523 ptid_t the_ptid);
1524
1525 /* Can the target support the debugger control of thread execution?
1526 Can it lock the thread scheduler? */
1527
1528 #define target_can_lock_scheduler \
1529 (current_target.to_has_thread_control & tc_schedlock)
1530
1531 /* Should the target enable async mode if it is supported? Temporary
1532 cludge until async mode is a strict superset of sync mode. */
1533 extern int target_async_permitted;
1534
1535 /* Can the target support asynchronous execution? */
1536 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1537
1538 /* Is the target in asynchronous execution mode? */
1539 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1540
1541 int target_supports_non_stop (void);
1542
1543 /* Put the target in async mode with the specified callback function. */
1544 #define target_async(CALLBACK,CONTEXT) \
1545 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1546
1547 #define target_execution_direction() \
1548 (current_target.to_execution_direction (&current_target))
1549
1550 /* Converts a process id to a string. Usually, the string just contains
1551 `process xyz', but on some systems it may contain
1552 `process xyz thread abc'. */
1553
1554 extern char *target_pid_to_str (ptid_t ptid);
1555
1556 extern char *normal_pid_to_str (ptid_t ptid);
1557
1558 /* Return a short string describing extra information about PID,
1559 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1560 is okay. */
1561
1562 #define target_extra_thread_info(TP) \
1563 (current_target.to_extra_thread_info (&current_target, TP))
1564
1565 /* Return the thread's name. A NULL result means that the target
1566 could not determine this thread's name. */
1567
1568 extern char *target_thread_name (struct thread_info *);
1569
1570 /* Attempts to find the pathname of the executable file
1571 that was run to create a specified process.
1572
1573 The process PID must be stopped when this operation is used.
1574
1575 If the executable file cannot be determined, NULL is returned.
1576
1577 Else, a pointer to a character string containing the pathname
1578 is returned. This string should be copied into a buffer by
1579 the client if the string will not be immediately used, or if
1580 it must persist. */
1581
1582 #define target_pid_to_exec_file(pid) \
1583 (current_target.to_pid_to_exec_file) (&current_target, pid)
1584
1585 /* See the to_thread_architecture description in struct target_ops. */
1586
1587 #define target_thread_architecture(ptid) \
1588 (current_target.to_thread_architecture (&current_target, ptid))
1589
1590 /*
1591 * Iterator function for target memory regions.
1592 * Calls a callback function once for each memory region 'mapped'
1593 * in the child process. Defined as a simple macro rather than
1594 * as a function macro so that it can be tested for nullity.
1595 */
1596
1597 #define target_find_memory_regions(FUNC, DATA) \
1598 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1599
1600 /*
1601 * Compose corefile .note section.
1602 */
1603
1604 #define target_make_corefile_notes(BFD, SIZE_P) \
1605 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1606
1607 /* Bookmark interfaces. */
1608 #define target_get_bookmark(ARGS, FROM_TTY) \
1609 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1610
1611 #define target_goto_bookmark(ARG, FROM_TTY) \
1612 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1613
1614 /* Hardware watchpoint interfaces. */
1615
1616 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1617 write). Only the INFERIOR_PTID task is being queried. */
1618
1619 #define target_stopped_by_watchpoint() \
1620 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1621
1622 /* Non-zero if we have steppable watchpoints */
1623
1624 #define target_have_steppable_watchpoint \
1625 (current_target.to_have_steppable_watchpoint)
1626
1627 /* Non-zero if we have continuable watchpoints */
1628
1629 #define target_have_continuable_watchpoint \
1630 (current_target.to_have_continuable_watchpoint)
1631
1632 /* Provide defaults for hardware watchpoint functions. */
1633
1634 /* If the *_hw_beakpoint functions have not been defined
1635 elsewhere use the definitions in the target vector. */
1636
1637 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1638 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1639 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1640 (including this one?). OTHERTYPE is who knows what... */
1641
1642 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1643 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1644 TYPE, CNT, OTHERTYPE);
1645
1646 /* Returns the number of debug registers needed to watch the given
1647 memory region, or zero if not supported. */
1648
1649 #define target_region_ok_for_hw_watchpoint(addr, len) \
1650 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1651 addr, len)
1652
1653
1654 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1655 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1656 COND is the expression for its condition, or NULL if there's none.
1657 Returns 0 for success, 1 if the watchpoint type is not supported,
1658 -1 for failure. */
1659
1660 #define target_insert_watchpoint(addr, len, type, cond) \
1661 (*current_target.to_insert_watchpoint) (&current_target, \
1662 addr, len, type, cond)
1663
1664 #define target_remove_watchpoint(addr, len, type, cond) \
1665 (*current_target.to_remove_watchpoint) (&current_target, \
1666 addr, len, type, cond)
1667
1668 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1669 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1670 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1671 masked watchpoints are not supported, -1 for failure. */
1672
1673 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1674
1675 /* Remove a masked watchpoint at ADDR with the mask MASK.
1676 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1677 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1678 for failure. */
1679
1680 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1681
1682 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1683 the target machine. Returns 0 for success, and returns non-zero or
1684 throws an error (with a detailed failure reason error code and
1685 message) otherwise. */
1686
1687 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1688 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1689 gdbarch, bp_tgt)
1690
1691 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1692 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1693 gdbarch, bp_tgt)
1694
1695 /* Return number of debug registers needed for a ranged breakpoint,
1696 or -1 if ranged breakpoints are not supported. */
1697
1698 extern int target_ranged_break_num_registers (void);
1699
1700 /* Return non-zero if target knows the data address which triggered this
1701 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1702 INFERIOR_PTID task is being queried. */
1703 #define target_stopped_data_address(target, addr_p) \
1704 (*target.to_stopped_data_address) (target, addr_p)
1705
1706 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1707 LENGTH bytes beginning at START. */
1708 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1709 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1710
1711 /* Return non-zero if the target is capable of using hardware to evaluate
1712 the condition expression. In this case, if the condition is false when
1713 the watched memory location changes, execution may continue without the
1714 debugger being notified.
1715
1716 Due to limitations in the hardware implementation, it may be capable of
1717 avoiding triggering the watchpoint in some cases where the condition
1718 expression is false, but may report some false positives as well.
1719 For this reason, GDB will still evaluate the condition expression when
1720 the watchpoint triggers. */
1721 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1722 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1723 addr, len, type, cond)
1724
1725 /* Return number of debug registers needed for a masked watchpoint,
1726 -1 if masked watchpoints are not supported or -2 if the given address
1727 and mask combination cannot be used. */
1728
1729 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1730
1731 /* Target can execute in reverse? */
1732 #define target_can_execute_reverse \
1733 (current_target.to_can_execute_reverse ? \
1734 current_target.to_can_execute_reverse (&current_target) : 0)
1735
1736 extern const struct target_desc *target_read_description (struct target_ops *);
1737
1738 #define target_get_ada_task_ptid(lwp, tid) \
1739 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1740
1741 /* Utility implementation of searching memory. */
1742 extern int simple_search_memory (struct target_ops* ops,
1743 CORE_ADDR start_addr,
1744 ULONGEST search_space_len,
1745 const gdb_byte *pattern,
1746 ULONGEST pattern_len,
1747 CORE_ADDR *found_addrp);
1748
1749 /* Main entry point for searching memory. */
1750 extern int target_search_memory (CORE_ADDR start_addr,
1751 ULONGEST search_space_len,
1752 const gdb_byte *pattern,
1753 ULONGEST pattern_len,
1754 CORE_ADDR *found_addrp);
1755
1756 /* Target file operations. */
1757
1758 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1759 target file descriptor, or -1 if an error occurs (and set
1760 *TARGET_ERRNO). */
1761 extern int target_fileio_open (const char *filename, int flags, int mode,
1762 int *target_errno);
1763
1764 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1765 Return the number of bytes written, or -1 if an error occurs
1766 (and set *TARGET_ERRNO). */
1767 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1768 ULONGEST offset, int *target_errno);
1769
1770 /* Read up to LEN bytes FD on the target into READ_BUF.
1771 Return the number of bytes read, or -1 if an error occurs
1772 (and set *TARGET_ERRNO). */
1773 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1774 ULONGEST offset, int *target_errno);
1775
1776 /* Close FD on the target. Return 0, or -1 if an error occurs
1777 (and set *TARGET_ERRNO). */
1778 extern int target_fileio_close (int fd, int *target_errno);
1779
1780 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1781 occurs (and set *TARGET_ERRNO). */
1782 extern int target_fileio_unlink (const char *filename, int *target_errno);
1783
1784 /* Read value of symbolic link FILENAME on the target. Return a
1785 null-terminated string allocated via xmalloc, or NULL if an error
1786 occurs (and set *TARGET_ERRNO). */
1787 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1788
1789 /* Read target file FILENAME. The return value will be -1 if the transfer
1790 fails or is not supported; 0 if the object is empty; or the length
1791 of the object otherwise. If a positive value is returned, a
1792 sufficiently large buffer will be allocated using xmalloc and
1793 returned in *BUF_P containing the contents of the object.
1794
1795 This method should be used for objects sufficiently small to store
1796 in a single xmalloc'd buffer, when no fixed bound on the object's
1797 size is known in advance. */
1798 extern LONGEST target_fileio_read_alloc (const char *filename,
1799 gdb_byte **buf_p);
1800
1801 /* Read target file FILENAME. The result is NUL-terminated and
1802 returned as a string, allocated using xmalloc. If an error occurs
1803 or the transfer is unsupported, NULL is returned. Empty objects
1804 are returned as allocated but empty strings. A warning is issued
1805 if the result contains any embedded NUL bytes. */
1806 extern char *target_fileio_read_stralloc (const char *filename);
1807
1808
1809 /* Tracepoint-related operations. */
1810
1811 #define target_trace_init() \
1812 (*current_target.to_trace_init) (&current_target)
1813
1814 #define target_download_tracepoint(t) \
1815 (*current_target.to_download_tracepoint) (&current_target, t)
1816
1817 #define target_can_download_tracepoint() \
1818 (*current_target.to_can_download_tracepoint) (&current_target)
1819
1820 #define target_download_trace_state_variable(tsv) \
1821 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1822
1823 #define target_enable_tracepoint(loc) \
1824 (*current_target.to_enable_tracepoint) (&current_target, loc)
1825
1826 #define target_disable_tracepoint(loc) \
1827 (*current_target.to_disable_tracepoint) (&current_target, loc)
1828
1829 #define target_trace_start() \
1830 (*current_target.to_trace_start) (&current_target)
1831
1832 #define target_trace_set_readonly_regions() \
1833 (*current_target.to_trace_set_readonly_regions) (&current_target)
1834
1835 #define target_get_trace_status(ts) \
1836 (*current_target.to_get_trace_status) (&current_target, ts)
1837
1838 #define target_get_tracepoint_status(tp,utp) \
1839 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1840
1841 #define target_trace_stop() \
1842 (*current_target.to_trace_stop) (&current_target)
1843
1844 #define target_trace_find(type,num,addr1,addr2,tpp) \
1845 (*current_target.to_trace_find) (&current_target, \
1846 (type), (num), (addr1), (addr2), (tpp))
1847
1848 #define target_get_trace_state_variable_value(tsv,val) \
1849 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1850 (tsv), (val))
1851
1852 #define target_save_trace_data(filename) \
1853 (*current_target.to_save_trace_data) (&current_target, filename)
1854
1855 #define target_upload_tracepoints(utpp) \
1856 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1857
1858 #define target_upload_trace_state_variables(utsvp) \
1859 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1860
1861 #define target_get_raw_trace_data(buf,offset,len) \
1862 (*current_target.to_get_raw_trace_data) (&current_target, \
1863 (buf), (offset), (len))
1864
1865 #define target_get_min_fast_tracepoint_insn_len() \
1866 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1867
1868 #define target_set_disconnected_tracing(val) \
1869 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1870
1871 #define target_set_circular_trace_buffer(val) \
1872 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1873
1874 #define target_set_trace_buffer_size(val) \
1875 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1876
1877 #define target_set_trace_notes(user,notes,stopnotes) \
1878 (*current_target.to_set_trace_notes) (&current_target, \
1879 (user), (notes), (stopnotes))
1880
1881 #define target_get_tib_address(ptid, addr) \
1882 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1883
1884 #define target_set_permissions() \
1885 (*current_target.to_set_permissions) (&current_target)
1886
1887 #define target_static_tracepoint_marker_at(addr, marker) \
1888 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1889 addr, marker)
1890
1891 #define target_static_tracepoint_markers_by_strid(marker_id) \
1892 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1893 marker_id)
1894
1895 #define target_traceframe_info() \
1896 (*current_target.to_traceframe_info) (&current_target)
1897
1898 #define target_use_agent(use) \
1899 (*current_target.to_use_agent) (&current_target, use)
1900
1901 #define target_can_use_agent() \
1902 (*current_target.to_can_use_agent) (&current_target)
1903
1904 #define target_augmented_libraries_svr4_read() \
1905 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1906
1907 /* Command logging facility. */
1908
1909 #define target_log_command(p) \
1910 do \
1911 if (current_target.to_log_command) \
1912 (*current_target.to_log_command) (&current_target, \
1913 p); \
1914 while (0)
1915
1916
1917 extern int target_core_of_thread (ptid_t ptid);
1918
1919 /* See to_get_unwinder in struct target_ops. */
1920 extern const struct frame_unwind *target_get_unwinder (void);
1921
1922 /* See to_get_tailcall_unwinder in struct target_ops. */
1923 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1924
1925 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1926 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1927 if there's a mismatch, and -1 if an error is encountered while
1928 reading memory. Throws an error if the functionality is found not
1929 to be supported by the current target. */
1930 int target_verify_memory (const gdb_byte *data,
1931 CORE_ADDR memaddr, ULONGEST size);
1932
1933 /* Routines for maintenance of the target structures...
1934
1935 complete_target_initialization: Finalize a target_ops by filling in
1936 any fields needed by the target implementation.
1937
1938 add_target: Add a target to the list of all possible targets.
1939
1940 push_target: Make this target the top of the stack of currently used
1941 targets, within its particular stratum of the stack. Result
1942 is 0 if now atop the stack, nonzero if not on top (maybe
1943 should warn user).
1944
1945 unpush_target: Remove this from the stack of currently used targets,
1946 no matter where it is on the list. Returns 0 if no
1947 change, 1 if removed from stack. */
1948
1949 extern void add_target (struct target_ops *);
1950
1951 extern void add_target_with_completer (struct target_ops *t,
1952 completer_ftype *completer);
1953
1954 extern void complete_target_initialization (struct target_ops *t);
1955
1956 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1957 for maintaining backwards compatibility when renaming targets. */
1958
1959 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1960
1961 extern void push_target (struct target_ops *);
1962
1963 extern int unpush_target (struct target_ops *);
1964
1965 extern void target_pre_inferior (int);
1966
1967 extern void target_preopen (int);
1968
1969 /* Does whatever cleanup is required to get rid of all pushed targets. */
1970 extern void pop_all_targets (void);
1971
1972 /* Like pop_all_targets, but pops only targets whose stratum is
1973 strictly above ABOVE_STRATUM. */
1974 extern void pop_all_targets_above (enum strata above_stratum);
1975
1976 extern int target_is_pushed (struct target_ops *t);
1977
1978 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1979 CORE_ADDR offset);
1980
1981 /* Struct target_section maps address ranges to file sections. It is
1982 mostly used with BFD files, but can be used without (e.g. for handling
1983 raw disks, or files not in formats handled by BFD). */
1984
1985 struct target_section
1986 {
1987 CORE_ADDR addr; /* Lowest address in section */
1988 CORE_ADDR endaddr; /* 1+highest address in section */
1989
1990 struct bfd_section *the_bfd_section;
1991
1992 /* The "owner" of the section.
1993 It can be any unique value. It is set by add_target_sections
1994 and used by remove_target_sections.
1995 For example, for executables it is a pointer to exec_bfd and
1996 for shlibs it is the so_list pointer. */
1997 void *owner;
1998 };
1999
2000 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2001
2002 struct target_section_table
2003 {
2004 struct target_section *sections;
2005 struct target_section *sections_end;
2006 };
2007
2008 /* Return the "section" containing the specified address. */
2009 struct target_section *target_section_by_addr (struct target_ops *target,
2010 CORE_ADDR addr);
2011
2012 /* Return the target section table this target (or the targets
2013 beneath) currently manipulate. */
2014
2015 extern struct target_section_table *target_get_section_table
2016 (struct target_ops *target);
2017
2018 /* From mem-break.c */
2019
2020 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2021 struct bp_target_info *);
2022
2023 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2024 struct bp_target_info *);
2025
2026 extern int default_memory_remove_breakpoint (struct gdbarch *,
2027 struct bp_target_info *);
2028
2029 extern int default_memory_insert_breakpoint (struct gdbarch *,
2030 struct bp_target_info *);
2031
2032
2033 /* From target.c */
2034
2035 extern void initialize_targets (void);
2036
2037 extern void noprocess (void) ATTRIBUTE_NORETURN;
2038
2039 extern void target_require_runnable (void);
2040
2041 extern void find_default_attach (struct target_ops *, char *, int);
2042
2043 extern void find_default_create_inferior (struct target_ops *,
2044 char *, char *, char **, int);
2045
2046 extern struct target_ops *find_target_beneath (struct target_ops *);
2047
2048 /* Find the target at STRATUM. If no target is at that stratum,
2049 return NULL. */
2050
2051 struct target_ops *find_target_at (enum strata stratum);
2052
2053 /* Read OS data object of type TYPE from the target, and return it in
2054 XML format. The result is NUL-terminated and returned as a string,
2055 allocated using xmalloc. If an error occurs or the transfer is
2056 unsupported, NULL is returned. Empty objects are returned as
2057 allocated but empty strings. */
2058
2059 extern char *target_get_osdata (const char *type);
2060
2061 \f
2062 /* Stuff that should be shared among the various remote targets. */
2063
2064 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2065 information (higher values, more information). */
2066 extern int remote_debug;
2067
2068 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2069 extern int baud_rate;
2070 /* Timeout limit for response from target. */
2071 extern int remote_timeout;
2072
2073 \f
2074
2075 /* Set the show memory breakpoints mode to show, and installs a cleanup
2076 to restore it back to the current value. */
2077 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2078
2079 extern int may_write_registers;
2080 extern int may_write_memory;
2081 extern int may_insert_breakpoints;
2082 extern int may_insert_tracepoints;
2083 extern int may_insert_fast_tracepoints;
2084 extern int may_stop;
2085
2086 extern void update_target_permissions (void);
2087
2088 \f
2089 /* Imported from machine dependent code. */
2090
2091 /* Blank target vector entries are initialized to target_ignore. */
2092 void target_ignore (void);
2093
2094 /* See to_supports_btrace in struct target_ops. */
2095 #define target_supports_btrace() \
2096 (current_target.to_supports_btrace (&current_target))
2097
2098 /* See to_enable_btrace in struct target_ops. */
2099 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2100
2101 /* See to_disable_btrace in struct target_ops. */
2102 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2103
2104 /* See to_teardown_btrace in struct target_ops. */
2105 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2106
2107 /* See to_read_btrace in struct target_ops. */
2108 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2109 struct btrace_target_info *,
2110 enum btrace_read_type);
2111
2112 /* See to_stop_recording in struct target_ops. */
2113 extern void target_stop_recording (void);
2114
2115 /* See to_info_record in struct target_ops. */
2116 extern void target_info_record (void);
2117
2118 /* See to_save_record in struct target_ops. */
2119 extern void target_save_record (const char *filename);
2120
2121 /* Query if the target supports deleting the execution log. */
2122 extern int target_supports_delete_record (void);
2123
2124 /* See to_delete_record in struct target_ops. */
2125 extern void target_delete_record (void);
2126
2127 /* See to_record_is_replaying in struct target_ops. */
2128 extern int target_record_is_replaying (void);
2129
2130 /* See to_goto_record_begin in struct target_ops. */
2131 extern void target_goto_record_begin (void);
2132
2133 /* See to_goto_record_end in struct target_ops. */
2134 extern void target_goto_record_end (void);
2135
2136 /* See to_goto_record in struct target_ops. */
2137 extern void target_goto_record (ULONGEST insn);
2138
2139 /* See to_insn_history. */
2140 extern void target_insn_history (int size, int flags);
2141
2142 /* See to_insn_history_from. */
2143 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2144
2145 /* See to_insn_history_range. */
2146 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2147
2148 /* See to_call_history. */
2149 extern void target_call_history (int size, int flags);
2150
2151 /* See to_call_history_from. */
2152 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2153
2154 /* See to_call_history_range. */
2155 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2156
2157 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2158 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2159 struct gdbarch *gdbarch);
2160
2161 /* See to_decr_pc_after_break. */
2162 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2163
2164 #endif /* !defined (TARGET_H) */
This page took 0.130607 seconds and 5 git commands to generate.