Add target_ops argument to to_trace_set_readonly_regions
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int);
407 void (*to_post_attach) (struct target_ops *, int);
408 void (*to_detach) (struct target_ops *ops, const char *, int);
409 void (*to_disconnect) (struct target_ops *, char *, int);
410 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
411 TARGET_DEFAULT_NORETURN (noprocess ());
412 ptid_t (*to_wait) (struct target_ops *,
413 ptid_t, struct target_waitstatus *, int)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
416 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
419
420 /* Transfer LEN bytes of memory between GDB address MYADDR and
421 target address MEMADDR. If WRITE, transfer them to the target, else
422 transfer them from the target. TARGET is the target from which we
423 get this function.
424
425 Return value, N, is one of the following:
426
427 0 means that we can't handle this. If errno has been set, it is the
428 error which prevented us from doing it (FIXME: What about bfd_error?).
429
430 positive (call it N) means that we have transferred N bytes
431 starting at MEMADDR. We might be able to handle more bytes
432 beyond this length, but no promises.
433
434 negative (call its absolute value N) means that we cannot
435 transfer right at MEMADDR, but we could transfer at least
436 something at MEMADDR + N.
437
438 NOTE: cagney/2004-10-01: This has been entirely superseeded by
439 to_xfer_partial and inferior inheritance. */
440
441 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
442 int len, int write,
443 struct mem_attrib *attrib,
444 struct target_ops *target);
445
446 void (*to_files_info) (struct target_ops *);
447 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
448 struct bp_target_info *)
449 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
450 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
451 struct bp_target_info *)
452 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
453 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct target_ops *,
456 struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_hw_breakpoint) (struct target_ops *,
458 struct gdbarch *, struct bp_target_info *);
459
460 /* Documentation of what the two routines below are expected to do is
461 provided with the corresponding target_* macros. */
462 int (*to_remove_watchpoint) (struct target_ops *,
463 CORE_ADDR, int, int, struct expression *);
464 int (*to_insert_watchpoint) (struct target_ops *,
465 CORE_ADDR, int, int, struct expression *);
466
467 int (*to_insert_mask_watchpoint) (struct target_ops *,
468 CORE_ADDR, CORE_ADDR, int);
469 int (*to_remove_mask_watchpoint) (struct target_ops *,
470 CORE_ADDR, CORE_ADDR, int);
471 int (*to_stopped_by_watchpoint) (struct target_ops *)
472 TARGET_DEFAULT_RETURN (0);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
476 TARGET_DEFAULT_RETURN (0);
477 int (*to_watchpoint_addr_within_range) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479
480 /* Documentation of this routine is provided with the corresponding
481 target_* macro. */
482 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
483 CORE_ADDR, int);
484
485 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
486 CORE_ADDR, int, int,
487 struct expression *);
488 int (*to_masked_watch_num_registers) (struct target_ops *,
489 CORE_ADDR, CORE_ADDR);
490 void (*to_terminal_init) (struct target_ops *);
491 void (*to_terminal_inferior) (struct target_ops *);
492 void (*to_terminal_ours_for_output) (struct target_ops *);
493 void (*to_terminal_ours) (struct target_ops *);
494 void (*to_terminal_save_ours) (struct target_ops *);
495 void (*to_terminal_info) (struct target_ops *, const char *, int);
496 void (*to_kill) (struct target_ops *);
497 void (*to_load) (struct target_ops *, char *, int);
498 void (*to_create_inferior) (struct target_ops *,
499 char *, char *, char **, int);
500 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
501 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
502 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
503 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
504 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
505 int (*to_follow_fork) (struct target_ops *, int, int);
506 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
507 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
508 int (*to_set_syscall_catchpoint) (struct target_ops *,
509 int, int, int, int, int *);
510 int (*to_has_exited) (struct target_ops *, int, int, int *);
511 void (*to_mourn_inferior) (struct target_ops *);
512 int (*to_can_run) (struct target_ops *);
513
514 /* Documentation of this routine is provided with the corresponding
515 target_* macro. */
516 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
517
518 /* Documentation of this routine is provided with the
519 corresponding target_* function. */
520 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
521
522 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
523 void (*to_find_new_threads) (struct target_ops *);
524 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
525 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
526 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
527 void (*to_stop) (struct target_ops *, ptid_t);
528 void (*to_rcmd) (struct target_ops *,
529 char *command, struct ui_file *output);
530 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
531 void (*to_log_command) (struct target_ops *, const char *);
532 struct target_section_table *(*to_get_section_table) (struct target_ops *);
533 enum strata to_stratum;
534 int (*to_has_all_memory) (struct target_ops *);
535 int (*to_has_memory) (struct target_ops *);
536 int (*to_has_stack) (struct target_ops *);
537 int (*to_has_registers) (struct target_ops *);
538 int (*to_has_execution) (struct target_ops *, ptid_t);
539 int to_has_thread_control; /* control thread execution */
540 int to_attach_no_wait;
541 /* ASYNC target controls */
542 int (*to_can_async_p) (struct target_ops *)
543 TARGET_DEFAULT_FUNC (find_default_can_async_p);
544 int (*to_is_async_p) (struct target_ops *)
545 TARGET_DEFAULT_FUNC (find_default_is_async_p);
546 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
547 TARGET_DEFAULT_NORETURN (tcomplain ());
548 int (*to_supports_non_stop) (struct target_ops *);
549 /* find_memory_regions support method for gcore */
550 int (*to_find_memory_regions) (struct target_ops *,
551 find_memory_region_ftype func, void *data);
552 /* make_corefile_notes support method for gcore */
553 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
554 /* get_bookmark support method for bookmarks */
555 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
556 /* goto_bookmark support method for bookmarks */
557 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
558 /* Return the thread-local address at OFFSET in the
559 thread-local storage for the thread PTID and the shared library
560 or executable file given by OBJFILE. If that block of
561 thread-local storage hasn't been allocated yet, this function
562 may return an error. */
563 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
564 ptid_t ptid,
565 CORE_ADDR load_module_addr,
566 CORE_ADDR offset);
567
568 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
569 OBJECT. The OFFSET, for a seekable object, specifies the
570 starting point. The ANNEX can be used to provide additional
571 data-specific information to the target.
572
573 Return the transferred status, error or OK (an
574 'enum target_xfer_status' value). Save the number of bytes
575 actually transferred in *XFERED_LEN if transfer is successful
576 (TARGET_XFER_OK) or the number unavailable bytes if the requested
577 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
578 smaller than LEN does not indicate the end of the object, only
579 the end of the transfer; higher level code should continue
580 transferring if desired. This is handled in target.c.
581
582 The interface does not support a "retry" mechanism. Instead it
583 assumes that at least one byte will be transfered on each
584 successful call.
585
586 NOTE: cagney/2003-10-17: The current interface can lead to
587 fragmented transfers. Lower target levels should not implement
588 hacks, such as enlarging the transfer, in an attempt to
589 compensate for this. Instead, the target stack should be
590 extended so that it implements supply/collect methods and a
591 look-aside object cache. With that available, the lowest
592 target can safely and freely "push" data up the stack.
593
594 See target_read and target_write for more information. One,
595 and only one, of readbuf or writebuf must be non-NULL. */
596
597 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
598 enum target_object object,
599 const char *annex,
600 gdb_byte *readbuf,
601 const gdb_byte *writebuf,
602 ULONGEST offset, ULONGEST len,
603 ULONGEST *xfered_len)
604 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
605
606 /* Returns the memory map for the target. A return value of NULL
607 means that no memory map is available. If a memory address
608 does not fall within any returned regions, it's assumed to be
609 RAM. The returned memory regions should not overlap.
610
611 The order of regions does not matter; target_memory_map will
612 sort regions by starting address. For that reason, this
613 function should not be called directly except via
614 target_memory_map.
615
616 This method should not cache data; if the memory map could
617 change unexpectedly, it should be invalidated, and higher
618 layers will re-fetch it. */
619 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
620
621 /* Erases the region of flash memory starting at ADDRESS, of
622 length LENGTH.
623
624 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
625 on flash block boundaries, as reported by 'to_memory_map'. */
626 void (*to_flash_erase) (struct target_ops *,
627 ULONGEST address, LONGEST length);
628
629 /* Finishes a flash memory write sequence. After this operation
630 all flash memory should be available for writing and the result
631 of reading from areas written by 'to_flash_write' should be
632 equal to what was written. */
633 void (*to_flash_done) (struct target_ops *);
634
635 /* Describe the architecture-specific features of this target.
636 Returns the description found, or NULL if no description
637 was available. */
638 const struct target_desc *(*to_read_description) (struct target_ops *ops);
639
640 /* Build the PTID of the thread on which a given task is running,
641 based on LWP and THREAD. These values are extracted from the
642 task Private_Data section of the Ada Task Control Block, and
643 their interpretation depends on the target. */
644 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
645 long lwp, long thread);
646
647 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
648 Return 0 if *READPTR is already at the end of the buffer.
649 Return -1 if there is insufficient buffer for a whole entry.
650 Return 1 if an entry was read into *TYPEP and *VALP. */
651 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
652 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
653
654 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
655 sequence of bytes in PATTERN with length PATTERN_LEN.
656
657 The result is 1 if found, 0 if not found, and -1 if there was an error
658 requiring halting of the search (e.g. memory read error).
659 If the pattern is found the address is recorded in FOUND_ADDRP. */
660 int (*to_search_memory) (struct target_ops *ops,
661 CORE_ADDR start_addr, ULONGEST search_space_len,
662 const gdb_byte *pattern, ULONGEST pattern_len,
663 CORE_ADDR *found_addrp);
664
665 /* Can target execute in reverse? */
666 int (*to_can_execute_reverse) (struct target_ops *);
667
668 /* The direction the target is currently executing. Must be
669 implemented on targets that support reverse execution and async
670 mode. The default simply returns forward execution. */
671 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
672
673 /* Does this target support debugging multiple processes
674 simultaneously? */
675 int (*to_supports_multi_process) (struct target_ops *);
676
677 /* Does this target support enabling and disabling tracepoints while a trace
678 experiment is running? */
679 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
680
681 /* Does this target support disabling address space randomization? */
682 int (*to_supports_disable_randomization) (struct target_ops *);
683
684 /* Does this target support the tracenz bytecode for string collection? */
685 int (*to_supports_string_tracing) (struct target_ops *);
686
687 /* Does this target support evaluation of breakpoint conditions on its
688 end? */
689 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
690
691 /* Does this target support evaluation of breakpoint commands on its
692 end? */
693 int (*to_can_run_breakpoint_commands) (struct target_ops *);
694
695 /* Determine current architecture of thread PTID.
696
697 The target is supposed to determine the architecture of the code where
698 the target is currently stopped at (on Cell, if a target is in spu_run,
699 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
700 This is architecture used to perform decr_pc_after_break adjustment,
701 and also determines the frame architecture of the innermost frame.
702 ptrace operations need to operate according to target_gdbarch ().
703
704 The default implementation always returns target_gdbarch (). */
705 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
706
707 /* Determine current address space of thread PTID.
708
709 The default implementation always returns the inferior's
710 address space. */
711 struct address_space *(*to_thread_address_space) (struct target_ops *,
712 ptid_t);
713
714 /* Target file operations. */
715
716 /* Open FILENAME on the target, using FLAGS and MODE. Return a
717 target file descriptor, or -1 if an error occurs (and set
718 *TARGET_ERRNO). */
719 int (*to_fileio_open) (struct target_ops *,
720 const char *filename, int flags, int mode,
721 int *target_errno);
722
723 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
724 Return the number of bytes written, or -1 if an error occurs
725 (and set *TARGET_ERRNO). */
726 int (*to_fileio_pwrite) (struct target_ops *,
727 int fd, const gdb_byte *write_buf, int len,
728 ULONGEST offset, int *target_errno);
729
730 /* Read up to LEN bytes FD on the target into READ_BUF.
731 Return the number of bytes read, or -1 if an error occurs
732 (and set *TARGET_ERRNO). */
733 int (*to_fileio_pread) (struct target_ops *,
734 int fd, gdb_byte *read_buf, int len,
735 ULONGEST offset, int *target_errno);
736
737 /* Close FD on the target. Return 0, or -1 if an error occurs
738 (and set *TARGET_ERRNO). */
739 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
740
741 /* Unlink FILENAME on the target. Return 0, or -1 if an error
742 occurs (and set *TARGET_ERRNO). */
743 int (*to_fileio_unlink) (struct target_ops *,
744 const char *filename, int *target_errno);
745
746 /* Read value of symbolic link FILENAME on the target. Return a
747 null-terminated string allocated via xmalloc, or NULL if an error
748 occurs (and set *TARGET_ERRNO). */
749 char *(*to_fileio_readlink) (struct target_ops *,
750 const char *filename, int *target_errno);
751
752
753 /* Implement the "info proc" command. */
754 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
755
756 /* Tracepoint-related operations. */
757
758 /* Prepare the target for a tracing run. */
759 void (*to_trace_init) (struct target_ops *);
760
761 /* Send full details of a tracepoint location to the target. */
762 void (*to_download_tracepoint) (struct target_ops *,
763 struct bp_location *location);
764
765 /* Is the target able to download tracepoint locations in current
766 state? */
767 int (*to_can_download_tracepoint) (struct target_ops *);
768
769 /* Send full details of a trace state variable to the target. */
770 void (*to_download_trace_state_variable) (struct target_ops *,
771 struct trace_state_variable *tsv);
772
773 /* Enable a tracepoint on the target. */
774 void (*to_enable_tracepoint) (struct target_ops *,
775 struct bp_location *location);
776
777 /* Disable a tracepoint on the target. */
778 void (*to_disable_tracepoint) (struct target_ops *,
779 struct bp_location *location);
780
781 /* Inform the target info of memory regions that are readonly
782 (such as text sections), and so it should return data from
783 those rather than look in the trace buffer. */
784 void (*to_trace_set_readonly_regions) (struct target_ops *);
785
786 /* Start a trace run. */
787 void (*to_trace_start) (void);
788
789 /* Get the current status of a tracing run. */
790 int (*to_get_trace_status) (struct trace_status *ts);
791
792 void (*to_get_tracepoint_status) (struct breakpoint *tp,
793 struct uploaded_tp *utp);
794
795 /* Stop a trace run. */
796 void (*to_trace_stop) (void);
797
798 /* Ask the target to find a trace frame of the given type TYPE,
799 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
800 number of the trace frame, and also the tracepoint number at
801 TPP. If no trace frame matches, return -1. May throw if the
802 operation fails. */
803 int (*to_trace_find) (enum trace_find_type type, int num,
804 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
805
806 /* Get the value of the trace state variable number TSV, returning
807 1 if the value is known and writing the value itself into the
808 location pointed to by VAL, else returning 0. */
809 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
810
811 int (*to_save_trace_data) (const char *filename);
812
813 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
814
815 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
816
817 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
818 ULONGEST offset, LONGEST len);
819
820 /* Get the minimum length of instruction on which a fast tracepoint
821 may be set on the target. If this operation is unsupported,
822 return -1. If for some reason the minimum length cannot be
823 determined, return 0. */
824 int (*to_get_min_fast_tracepoint_insn_len) (void);
825
826 /* Set the target's tracing behavior in response to unexpected
827 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
828 void (*to_set_disconnected_tracing) (int val);
829 void (*to_set_circular_trace_buffer) (int val);
830 /* Set the size of trace buffer in the target. */
831 void (*to_set_trace_buffer_size) (LONGEST val);
832
833 /* Add/change textual notes about the trace run, returning 1 if
834 successful, 0 otherwise. */
835 int (*to_set_trace_notes) (const char *user, const char *notes,
836 const char *stopnotes);
837
838 /* Return the processor core that thread PTID was last seen on.
839 This information is updated only when:
840 - update_thread_list is called
841 - thread stops
842 If the core cannot be determined -- either for the specified
843 thread, or right now, or in this debug session, or for this
844 target -- return -1. */
845 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
846
847 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
848 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
849 a match, 0 if there's a mismatch, and -1 if an error is
850 encountered while reading memory. */
851 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
852 CORE_ADDR memaddr, ULONGEST size);
853
854 /* Return the address of the start of the Thread Information Block
855 a Windows OS specific feature. */
856 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
857
858 /* Send the new settings of write permission variables. */
859 void (*to_set_permissions) (void);
860
861 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
862 with its details. Return 1 on success, 0 on failure. */
863 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
864 struct static_tracepoint_marker *marker);
865
866 /* Return a vector of all tracepoints markers string id ID, or all
867 markers if ID is NULL. */
868 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
869 (const char *id);
870
871 /* Return a traceframe info object describing the current
872 traceframe's contents. If the target doesn't support
873 traceframe info, return NULL. If the current traceframe is not
874 selected (the current traceframe number is -1), the target can
875 choose to return either NULL or an empty traceframe info. If
876 NULL is returned, for example in remote target, GDB will read
877 from the live inferior. If an empty traceframe info is
878 returned, for example in tfile target, which means the
879 traceframe info is available, but the requested memory is not
880 available in it. GDB will try to see if the requested memory
881 is available in the read-only sections. This method should not
882 cache data; higher layers take care of caching, invalidating,
883 and re-fetching when necessary. */
884 struct traceframe_info *(*to_traceframe_info) (void);
885
886 /* Ask the target to use or not to use agent according to USE. Return 1
887 successful, 0 otherwise. */
888 int (*to_use_agent) (int use);
889
890 /* Is the target able to use agent in current state? */
891 int (*to_can_use_agent) (void);
892
893 /* Check whether the target supports branch tracing. */
894 int (*to_supports_btrace) (struct target_ops *)
895 TARGET_DEFAULT_RETURN (0);
896
897 /* Enable branch tracing for PTID and allocate a branch trace target
898 information struct for reading and for disabling branch trace. */
899 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
900
901 /* Disable branch tracing and deallocate TINFO. */
902 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
903
904 /* Disable branch tracing and deallocate TINFO. This function is similar
905 to to_disable_btrace, except that it is called during teardown and is
906 only allowed to perform actions that are safe. A counter-example would
907 be attempting to talk to a remote target. */
908 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
909
910 /* Read branch trace data for the thread indicated by BTINFO into DATA.
911 DATA is cleared before new trace is added.
912 The branch trace will start with the most recent block and continue
913 towards older blocks. */
914 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
915 struct btrace_target_info *btinfo,
916 enum btrace_read_type type);
917
918 /* Stop trace recording. */
919 void (*to_stop_recording) (void);
920
921 /* Print information about the recording. */
922 void (*to_info_record) (void);
923
924 /* Save the recorded execution trace into a file. */
925 void (*to_save_record) (const char *filename);
926
927 /* Delete the recorded execution trace from the current position onwards. */
928 void (*to_delete_record) (void);
929
930 /* Query if the record target is currently replaying. */
931 int (*to_record_is_replaying) (void);
932
933 /* Go to the begin of the execution trace. */
934 void (*to_goto_record_begin) (void);
935
936 /* Go to the end of the execution trace. */
937 void (*to_goto_record_end) (void);
938
939 /* Go to a specific location in the recorded execution trace. */
940 void (*to_goto_record) (ULONGEST insn);
941
942 /* Disassemble SIZE instructions in the recorded execution trace from
943 the current position.
944 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
945 disassemble SIZE succeeding instructions. */
946 void (*to_insn_history) (int size, int flags);
947
948 /* Disassemble SIZE instructions in the recorded execution trace around
949 FROM.
950 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
951 disassemble SIZE instructions after FROM. */
952 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
953
954 /* Disassemble a section of the recorded execution trace from instruction
955 BEGIN (inclusive) to instruction END (inclusive). */
956 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
957
958 /* Print a function trace of the recorded execution trace.
959 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
960 succeeding functions. */
961 void (*to_call_history) (int size, int flags);
962
963 /* Print a function trace of the recorded execution trace starting
964 at function FROM.
965 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
966 SIZE functions after FROM. */
967 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
968
969 /* Print a function trace of an execution trace section from function BEGIN
970 (inclusive) to function END (inclusive). */
971 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
972
973 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
974 non-empty annex. */
975 int (*to_augmented_libraries_svr4_read) (void);
976
977 /* Those unwinders are tried before any other arch unwinders. Use NULL if
978 it is not used. */
979 const struct frame_unwind *to_get_unwinder;
980 const struct frame_unwind *to_get_tailcall_unwinder;
981
982 /* Return the number of bytes by which the PC needs to be decremented
983 after executing a breakpoint instruction.
984 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
985 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
986 struct gdbarch *gdbarch);
987
988 int to_magic;
989 /* Need sub-structure for target machine related rather than comm related?
990 */
991 };
992
993 /* Magic number for checking ops size. If a struct doesn't end with this
994 number, somebody changed the declaration but didn't change all the
995 places that initialize one. */
996
997 #define OPS_MAGIC 3840
998
999 /* The ops structure for our "current" target process. This should
1000 never be NULL. If there is no target, it points to the dummy_target. */
1001
1002 extern struct target_ops current_target;
1003
1004 /* Define easy words for doing these operations on our current target. */
1005
1006 #define target_shortname (current_target.to_shortname)
1007 #define target_longname (current_target.to_longname)
1008
1009 /* Does whatever cleanup is required for a target that we are no
1010 longer going to be calling. This routine is automatically always
1011 called after popping the target off the target stack - the target's
1012 own methods are no longer available through the target vector.
1013 Closing file descriptors and freeing all memory allocated memory are
1014 typical things it should do. */
1015
1016 void target_close (struct target_ops *targ);
1017
1018 /* Attaches to a process on the target side. Arguments are as passed
1019 to the `attach' command by the user. This routine can be called
1020 when the target is not on the target-stack, if the target_can_run
1021 routine returns 1; in that case, it must push itself onto the stack.
1022 Upon exit, the target should be ready for normal operations, and
1023 should be ready to deliver the status of the process immediately
1024 (without waiting) to an upcoming target_wait call. */
1025
1026 void target_attach (char *, int);
1027
1028 /* Some targets don't generate traps when attaching to the inferior,
1029 or their target_attach implementation takes care of the waiting.
1030 These targets must set to_attach_no_wait. */
1031
1032 #define target_attach_no_wait \
1033 (current_target.to_attach_no_wait)
1034
1035 /* The target_attach operation places a process under debugger control,
1036 and stops the process.
1037
1038 This operation provides a target-specific hook that allows the
1039 necessary bookkeeping to be performed after an attach completes. */
1040 #define target_post_attach(pid) \
1041 (*current_target.to_post_attach) (&current_target, pid)
1042
1043 /* Takes a program previously attached to and detaches it.
1044 The program may resume execution (some targets do, some don't) and will
1045 no longer stop on signals, etc. We better not have left any breakpoints
1046 in the program or it'll die when it hits one. ARGS is arguments
1047 typed by the user (e.g. a signal to send the process). FROM_TTY
1048 says whether to be verbose or not. */
1049
1050 extern void target_detach (const char *, int);
1051
1052 /* Disconnect from the current target without resuming it (leaving it
1053 waiting for a debugger). */
1054
1055 extern void target_disconnect (char *, int);
1056
1057 /* Resume execution of the target process PTID (or a group of
1058 threads). STEP says whether to single-step or to run free; SIGGNAL
1059 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1060 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1061 PTID means `step/resume only this process id'. A wildcard PTID
1062 (all threads, or all threads of process) means `step/resume
1063 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1064 matches) resume with their 'thread->suspend.stop_signal' signal
1065 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1066 if in "no pass" state. */
1067
1068 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1069
1070 /* Wait for process pid to do something. PTID = -1 to wait for any
1071 pid to do something. Return pid of child, or -1 in case of error;
1072 store status through argument pointer STATUS. Note that it is
1073 _NOT_ OK to throw_exception() out of target_wait() without popping
1074 the debugging target from the stack; GDB isn't prepared to get back
1075 to the prompt with a debugging target but without the frame cache,
1076 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1077 options. */
1078
1079 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1080 int options);
1081
1082 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1083
1084 extern void target_fetch_registers (struct regcache *regcache, int regno);
1085
1086 /* Store at least register REGNO, or all regs if REGNO == -1.
1087 It can store as many registers as it wants to, so target_prepare_to_store
1088 must have been previously called. Calls error() if there are problems. */
1089
1090 extern void target_store_registers (struct regcache *regcache, int regs);
1091
1092 /* Get ready to modify the registers array. On machines which store
1093 individual registers, this doesn't need to do anything. On machines
1094 which store all the registers in one fell swoop, this makes sure
1095 that REGISTERS contains all the registers from the program being
1096 debugged. */
1097
1098 #define target_prepare_to_store(regcache) \
1099 (*current_target.to_prepare_to_store) (&current_target, regcache)
1100
1101 /* Determine current address space of thread PTID. */
1102
1103 struct address_space *target_thread_address_space (ptid_t);
1104
1105 /* Implement the "info proc" command. This returns one if the request
1106 was handled, and zero otherwise. It can also throw an exception if
1107 an error was encountered while attempting to handle the
1108 request. */
1109
1110 int target_info_proc (char *, enum info_proc_what);
1111
1112 /* Returns true if this target can debug multiple processes
1113 simultaneously. */
1114
1115 #define target_supports_multi_process() \
1116 (*current_target.to_supports_multi_process) (&current_target)
1117
1118 /* Returns true if this target can disable address space randomization. */
1119
1120 int target_supports_disable_randomization (void);
1121
1122 /* Returns true if this target can enable and disable tracepoints
1123 while a trace experiment is running. */
1124
1125 #define target_supports_enable_disable_tracepoint() \
1126 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1127
1128 #define target_supports_string_tracing() \
1129 (*current_target.to_supports_string_tracing) (&current_target)
1130
1131 /* Returns true if this target can handle breakpoint conditions
1132 on its end. */
1133
1134 #define target_supports_evaluation_of_breakpoint_conditions() \
1135 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1136
1137 /* Returns true if this target can handle breakpoint commands
1138 on its end. */
1139
1140 #define target_can_run_breakpoint_commands() \
1141 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1142
1143 extern int target_read_string (CORE_ADDR, char **, int, int *);
1144
1145 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1146 ssize_t len);
1147
1148 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1149 ssize_t len);
1150
1151 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1152
1153 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1154
1155 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1156 ssize_t len);
1157
1158 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1159 ssize_t len);
1160
1161 /* Fetches the target's memory map. If one is found it is sorted
1162 and returned, after some consistency checking. Otherwise, NULL
1163 is returned. */
1164 VEC(mem_region_s) *target_memory_map (void);
1165
1166 /* Erase the specified flash region. */
1167 void target_flash_erase (ULONGEST address, LONGEST length);
1168
1169 /* Finish a sequence of flash operations. */
1170 void target_flash_done (void);
1171
1172 /* Describes a request for a memory write operation. */
1173 struct memory_write_request
1174 {
1175 /* Begining address that must be written. */
1176 ULONGEST begin;
1177 /* Past-the-end address. */
1178 ULONGEST end;
1179 /* The data to write. */
1180 gdb_byte *data;
1181 /* A callback baton for progress reporting for this request. */
1182 void *baton;
1183 };
1184 typedef struct memory_write_request memory_write_request_s;
1185 DEF_VEC_O(memory_write_request_s);
1186
1187 /* Enumeration specifying different flash preservation behaviour. */
1188 enum flash_preserve_mode
1189 {
1190 flash_preserve,
1191 flash_discard
1192 };
1193
1194 /* Write several memory blocks at once. This version can be more
1195 efficient than making several calls to target_write_memory, in
1196 particular because it can optimize accesses to flash memory.
1197
1198 Moreover, this is currently the only memory access function in gdb
1199 that supports writing to flash memory, and it should be used for
1200 all cases where access to flash memory is desirable.
1201
1202 REQUESTS is the vector (see vec.h) of memory_write_request.
1203 PRESERVE_FLASH_P indicates what to do with blocks which must be
1204 erased, but not completely rewritten.
1205 PROGRESS_CB is a function that will be periodically called to provide
1206 feedback to user. It will be called with the baton corresponding
1207 to the request currently being written. It may also be called
1208 with a NULL baton, when preserved flash sectors are being rewritten.
1209
1210 The function returns 0 on success, and error otherwise. */
1211 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1212 enum flash_preserve_mode preserve_flash_p,
1213 void (*progress_cb) (ULONGEST, void *));
1214
1215 /* Print a line about the current target. */
1216
1217 #define target_files_info() \
1218 (*current_target.to_files_info) (&current_target)
1219
1220 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1221 the target machine. Returns 0 for success, and returns non-zero or
1222 throws an error (with a detailed failure reason error code and
1223 message) otherwise. */
1224
1225 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1226 struct bp_target_info *bp_tgt);
1227
1228 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1229 machine. Result is 0 for success, non-zero for error. */
1230
1231 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1232 struct bp_target_info *bp_tgt);
1233
1234 /* Initialize the terminal settings we record for the inferior,
1235 before we actually run the inferior. */
1236
1237 #define target_terminal_init() \
1238 (*current_target.to_terminal_init) (&current_target)
1239
1240 /* Put the inferior's terminal settings into effect.
1241 This is preparation for starting or resuming the inferior. */
1242
1243 extern void target_terminal_inferior (void);
1244
1245 /* Put some of our terminal settings into effect,
1246 enough to get proper results from our output,
1247 but do not change into or out of RAW mode
1248 so that no input is discarded.
1249
1250 After doing this, either terminal_ours or terminal_inferior
1251 should be called to get back to a normal state of affairs. */
1252
1253 #define target_terminal_ours_for_output() \
1254 (*current_target.to_terminal_ours_for_output) (&current_target)
1255
1256 /* Put our terminal settings into effect.
1257 First record the inferior's terminal settings
1258 so they can be restored properly later. */
1259
1260 #define target_terminal_ours() \
1261 (*current_target.to_terminal_ours) (&current_target)
1262
1263 /* Save our terminal settings.
1264 This is called from TUI after entering or leaving the curses
1265 mode. Since curses modifies our terminal this call is here
1266 to take this change into account. */
1267
1268 #define target_terminal_save_ours() \
1269 (*current_target.to_terminal_save_ours) (&current_target)
1270
1271 /* Print useful information about our terminal status, if such a thing
1272 exists. */
1273
1274 #define target_terminal_info(arg, from_tty) \
1275 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1276
1277 /* Kill the inferior process. Make it go away. */
1278
1279 extern void target_kill (void);
1280
1281 /* Load an executable file into the target process. This is expected
1282 to not only bring new code into the target process, but also to
1283 update GDB's symbol tables to match.
1284
1285 ARG contains command-line arguments, to be broken down with
1286 buildargv (). The first non-switch argument is the filename to
1287 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1288 0)), which is an offset to apply to the load addresses of FILE's
1289 sections. The target may define switches, or other non-switch
1290 arguments, as it pleases. */
1291
1292 extern void target_load (char *arg, int from_tty);
1293
1294 /* Start an inferior process and set inferior_ptid to its pid.
1295 EXEC_FILE is the file to run.
1296 ALLARGS is a string containing the arguments to the program.
1297 ENV is the environment vector to pass. Errors reported with error().
1298 On VxWorks and various standalone systems, we ignore exec_file. */
1299
1300 void target_create_inferior (char *exec_file, char *args,
1301 char **env, int from_tty);
1302
1303 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1304 notification of inferior events such as fork and vork immediately
1305 after the inferior is created. (This because of how gdb gets an
1306 inferior created via invoking a shell to do it. In such a scenario,
1307 if the shell init file has commands in it, the shell will fork and
1308 exec for each of those commands, and we will see each such fork
1309 event. Very bad.)
1310
1311 Such targets will supply an appropriate definition for this function. */
1312
1313 #define target_post_startup_inferior(ptid) \
1314 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1315
1316 /* On some targets, we can catch an inferior fork or vfork event when
1317 it occurs. These functions insert/remove an already-created
1318 catchpoint for such events. They return 0 for success, 1 if the
1319 catchpoint type is not supported and -1 for failure. */
1320
1321 #define target_insert_fork_catchpoint(pid) \
1322 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1323
1324 #define target_remove_fork_catchpoint(pid) \
1325 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1326
1327 #define target_insert_vfork_catchpoint(pid) \
1328 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1329
1330 #define target_remove_vfork_catchpoint(pid) \
1331 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1332
1333 /* If the inferior forks or vforks, this function will be called at
1334 the next resume in order to perform any bookkeeping and fiddling
1335 necessary to continue debugging either the parent or child, as
1336 requested, and releasing the other. Information about the fork
1337 or vfork event is available via get_last_target_status ().
1338 This function returns 1 if the inferior should not be resumed
1339 (i.e. there is another event pending). */
1340
1341 int target_follow_fork (int follow_child, int detach_fork);
1342
1343 /* On some targets, we can catch an inferior exec event when it
1344 occurs. These functions insert/remove an already-created
1345 catchpoint for such events. They return 0 for success, 1 if the
1346 catchpoint type is not supported and -1 for failure. */
1347
1348 #define target_insert_exec_catchpoint(pid) \
1349 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1350
1351 #define target_remove_exec_catchpoint(pid) \
1352 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1353
1354 /* Syscall catch.
1355
1356 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1357 If NEEDED is zero, it means the target can disable the mechanism to
1358 catch system calls because there are no more catchpoints of this type.
1359
1360 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1361 being requested. In this case, both TABLE_SIZE and TABLE should
1362 be ignored.
1363
1364 TABLE_SIZE is the number of elements in TABLE. It only matters if
1365 ANY_COUNT is zero.
1366
1367 TABLE is an array of ints, indexed by syscall number. An element in
1368 this array is nonzero if that syscall should be caught. This argument
1369 only matters if ANY_COUNT is zero.
1370
1371 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1372 for failure. */
1373
1374 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1375 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1376 pid, needed, any_count, \
1377 table_size, table)
1378
1379 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1380 exit code of PID, if any. */
1381
1382 #define target_has_exited(pid,wait_status,exit_status) \
1383 (*current_target.to_has_exited) (&current_target, \
1384 pid,wait_status,exit_status)
1385
1386 /* The debugger has completed a blocking wait() call. There is now
1387 some process event that must be processed. This function should
1388 be defined by those targets that require the debugger to perform
1389 cleanup or internal state changes in response to the process event. */
1390
1391 /* The inferior process has died. Do what is right. */
1392
1393 void target_mourn_inferior (void);
1394
1395 /* Does target have enough data to do a run or attach command? */
1396
1397 #define target_can_run(t) \
1398 ((t)->to_can_run) (t)
1399
1400 /* Set list of signals to be handled in the target.
1401
1402 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1403 (enum gdb_signal). For every signal whose entry in this array is
1404 non-zero, the target is allowed -but not required- to skip reporting
1405 arrival of the signal to the GDB core by returning from target_wait,
1406 and to pass the signal directly to the inferior instead.
1407
1408 However, if the target is hardware single-stepping a thread that is
1409 about to receive a signal, it needs to be reported in any case, even
1410 if mentioned in a previous target_pass_signals call. */
1411
1412 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1413
1414 /* Set list of signals the target may pass to the inferior. This
1415 directly maps to the "handle SIGNAL pass/nopass" setting.
1416
1417 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1418 number (enum gdb_signal). For every signal whose entry in this
1419 array is non-zero, the target is allowed to pass the signal to the
1420 inferior. Signals not present in the array shall be silently
1421 discarded. This does not influence whether to pass signals to the
1422 inferior as a result of a target_resume call. This is useful in
1423 scenarios where the target needs to decide whether to pass or not a
1424 signal to the inferior without GDB core involvement, such as for
1425 example, when detaching (as threads may have been suspended with
1426 pending signals not reported to GDB). */
1427
1428 extern void target_program_signals (int nsig, unsigned char *program_signals);
1429
1430 /* Check to see if a thread is still alive. */
1431
1432 extern int target_thread_alive (ptid_t ptid);
1433
1434 /* Query for new threads and add them to the thread list. */
1435
1436 extern void target_find_new_threads (void);
1437
1438 /* Make target stop in a continuable fashion. (For instance, under
1439 Unix, this should act like SIGSTOP). This function is normally
1440 used by GUIs to implement a stop button. */
1441
1442 extern void target_stop (ptid_t ptid);
1443
1444 /* Send the specified COMMAND to the target's monitor
1445 (shell,interpreter) for execution. The result of the query is
1446 placed in OUTBUF. */
1447
1448 #define target_rcmd(command, outbuf) \
1449 (*current_target.to_rcmd) (&current_target, command, outbuf)
1450
1451
1452 /* Does the target include all of memory, or only part of it? This
1453 determines whether we look up the target chain for other parts of
1454 memory if this target can't satisfy a request. */
1455
1456 extern int target_has_all_memory_1 (void);
1457 #define target_has_all_memory target_has_all_memory_1 ()
1458
1459 /* Does the target include memory? (Dummy targets don't.) */
1460
1461 extern int target_has_memory_1 (void);
1462 #define target_has_memory target_has_memory_1 ()
1463
1464 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1465 we start a process.) */
1466
1467 extern int target_has_stack_1 (void);
1468 #define target_has_stack target_has_stack_1 ()
1469
1470 /* Does the target have registers? (Exec files don't.) */
1471
1472 extern int target_has_registers_1 (void);
1473 #define target_has_registers target_has_registers_1 ()
1474
1475 /* Does the target have execution? Can we make it jump (through
1476 hoops), or pop its stack a few times? This means that the current
1477 target is currently executing; for some targets, that's the same as
1478 whether or not the target is capable of execution, but there are
1479 also targets which can be current while not executing. In that
1480 case this will become true after target_create_inferior or
1481 target_attach. */
1482
1483 extern int target_has_execution_1 (ptid_t);
1484
1485 /* Like target_has_execution_1, but always passes inferior_ptid. */
1486
1487 extern int target_has_execution_current (void);
1488
1489 #define target_has_execution target_has_execution_current ()
1490
1491 /* Default implementations for process_stratum targets. Return true
1492 if there's a selected inferior, false otherwise. */
1493
1494 extern int default_child_has_all_memory (struct target_ops *ops);
1495 extern int default_child_has_memory (struct target_ops *ops);
1496 extern int default_child_has_stack (struct target_ops *ops);
1497 extern int default_child_has_registers (struct target_ops *ops);
1498 extern int default_child_has_execution (struct target_ops *ops,
1499 ptid_t the_ptid);
1500
1501 /* Can the target support the debugger control of thread execution?
1502 Can it lock the thread scheduler? */
1503
1504 #define target_can_lock_scheduler \
1505 (current_target.to_has_thread_control & tc_schedlock)
1506
1507 /* Should the target enable async mode if it is supported? Temporary
1508 cludge until async mode is a strict superset of sync mode. */
1509 extern int target_async_permitted;
1510
1511 /* Can the target support asynchronous execution? */
1512 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1513
1514 /* Is the target in asynchronous execution mode? */
1515 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1516
1517 int target_supports_non_stop (void);
1518
1519 /* Put the target in async mode with the specified callback function. */
1520 #define target_async(CALLBACK,CONTEXT) \
1521 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1522
1523 #define target_execution_direction() \
1524 (current_target.to_execution_direction (&current_target))
1525
1526 /* Converts a process id to a string. Usually, the string just contains
1527 `process xyz', but on some systems it may contain
1528 `process xyz thread abc'. */
1529
1530 extern char *target_pid_to_str (ptid_t ptid);
1531
1532 extern char *normal_pid_to_str (ptid_t ptid);
1533
1534 /* Return a short string describing extra information about PID,
1535 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1536 is okay. */
1537
1538 #define target_extra_thread_info(TP) \
1539 (current_target.to_extra_thread_info (&current_target, TP))
1540
1541 /* Return the thread's name. A NULL result means that the target
1542 could not determine this thread's name. */
1543
1544 extern char *target_thread_name (struct thread_info *);
1545
1546 /* Attempts to find the pathname of the executable file
1547 that was run to create a specified process.
1548
1549 The process PID must be stopped when this operation is used.
1550
1551 If the executable file cannot be determined, NULL is returned.
1552
1553 Else, a pointer to a character string containing the pathname
1554 is returned. This string should be copied into a buffer by
1555 the client if the string will not be immediately used, or if
1556 it must persist. */
1557
1558 #define target_pid_to_exec_file(pid) \
1559 (current_target.to_pid_to_exec_file) (&current_target, pid)
1560
1561 /* See the to_thread_architecture description in struct target_ops. */
1562
1563 #define target_thread_architecture(ptid) \
1564 (current_target.to_thread_architecture (&current_target, ptid))
1565
1566 /*
1567 * Iterator function for target memory regions.
1568 * Calls a callback function once for each memory region 'mapped'
1569 * in the child process. Defined as a simple macro rather than
1570 * as a function macro so that it can be tested for nullity.
1571 */
1572
1573 #define target_find_memory_regions(FUNC, DATA) \
1574 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1575
1576 /*
1577 * Compose corefile .note section.
1578 */
1579
1580 #define target_make_corefile_notes(BFD, SIZE_P) \
1581 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1582
1583 /* Bookmark interfaces. */
1584 #define target_get_bookmark(ARGS, FROM_TTY) \
1585 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1586
1587 #define target_goto_bookmark(ARG, FROM_TTY) \
1588 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1589
1590 /* Hardware watchpoint interfaces. */
1591
1592 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1593 write). Only the INFERIOR_PTID task is being queried. */
1594
1595 #define target_stopped_by_watchpoint() \
1596 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1597
1598 /* Non-zero if we have steppable watchpoints */
1599
1600 #define target_have_steppable_watchpoint \
1601 (current_target.to_have_steppable_watchpoint)
1602
1603 /* Non-zero if we have continuable watchpoints */
1604
1605 #define target_have_continuable_watchpoint \
1606 (current_target.to_have_continuable_watchpoint)
1607
1608 /* Provide defaults for hardware watchpoint functions. */
1609
1610 /* If the *_hw_beakpoint functions have not been defined
1611 elsewhere use the definitions in the target vector. */
1612
1613 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1614 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1615 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1616 (including this one?). OTHERTYPE is who knows what... */
1617
1618 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1619 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1620 TYPE, CNT, OTHERTYPE);
1621
1622 /* Returns the number of debug registers needed to watch the given
1623 memory region, or zero if not supported. */
1624
1625 #define target_region_ok_for_hw_watchpoint(addr, len) \
1626 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1627 addr, len)
1628
1629
1630 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1631 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1632 COND is the expression for its condition, or NULL if there's none.
1633 Returns 0 for success, 1 if the watchpoint type is not supported,
1634 -1 for failure. */
1635
1636 #define target_insert_watchpoint(addr, len, type, cond) \
1637 (*current_target.to_insert_watchpoint) (&current_target, \
1638 addr, len, type, cond)
1639
1640 #define target_remove_watchpoint(addr, len, type, cond) \
1641 (*current_target.to_remove_watchpoint) (&current_target, \
1642 addr, len, type, cond)
1643
1644 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1645 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1646 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1647 masked watchpoints are not supported, -1 for failure. */
1648
1649 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1650
1651 /* Remove a masked watchpoint at ADDR with the mask MASK.
1652 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1653 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1654 for failure. */
1655
1656 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1657
1658 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1659 the target machine. Returns 0 for success, and returns non-zero or
1660 throws an error (with a detailed failure reason error code and
1661 message) otherwise. */
1662
1663 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1664 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1665 gdbarch, bp_tgt)
1666
1667 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1668 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1669 gdbarch, bp_tgt)
1670
1671 /* Return number of debug registers needed for a ranged breakpoint,
1672 or -1 if ranged breakpoints are not supported. */
1673
1674 extern int target_ranged_break_num_registers (void);
1675
1676 /* Return non-zero if target knows the data address which triggered this
1677 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1678 INFERIOR_PTID task is being queried. */
1679 #define target_stopped_data_address(target, addr_p) \
1680 (*target.to_stopped_data_address) (target, addr_p)
1681
1682 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1683 LENGTH bytes beginning at START. */
1684 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1685 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1686
1687 /* Return non-zero if the target is capable of using hardware to evaluate
1688 the condition expression. In this case, if the condition is false when
1689 the watched memory location changes, execution may continue without the
1690 debugger being notified.
1691
1692 Due to limitations in the hardware implementation, it may be capable of
1693 avoiding triggering the watchpoint in some cases where the condition
1694 expression is false, but may report some false positives as well.
1695 For this reason, GDB will still evaluate the condition expression when
1696 the watchpoint triggers. */
1697 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1698 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1699 addr, len, type, cond)
1700
1701 /* Return number of debug registers needed for a masked watchpoint,
1702 -1 if masked watchpoints are not supported or -2 if the given address
1703 and mask combination cannot be used. */
1704
1705 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1706
1707 /* Target can execute in reverse? */
1708 #define target_can_execute_reverse \
1709 (current_target.to_can_execute_reverse ? \
1710 current_target.to_can_execute_reverse (&current_target) : 0)
1711
1712 extern const struct target_desc *target_read_description (struct target_ops *);
1713
1714 #define target_get_ada_task_ptid(lwp, tid) \
1715 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1716
1717 /* Utility implementation of searching memory. */
1718 extern int simple_search_memory (struct target_ops* ops,
1719 CORE_ADDR start_addr,
1720 ULONGEST search_space_len,
1721 const gdb_byte *pattern,
1722 ULONGEST pattern_len,
1723 CORE_ADDR *found_addrp);
1724
1725 /* Main entry point for searching memory. */
1726 extern int target_search_memory (CORE_ADDR start_addr,
1727 ULONGEST search_space_len,
1728 const gdb_byte *pattern,
1729 ULONGEST pattern_len,
1730 CORE_ADDR *found_addrp);
1731
1732 /* Target file operations. */
1733
1734 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1735 target file descriptor, or -1 if an error occurs (and set
1736 *TARGET_ERRNO). */
1737 extern int target_fileio_open (const char *filename, int flags, int mode,
1738 int *target_errno);
1739
1740 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1741 Return the number of bytes written, or -1 if an error occurs
1742 (and set *TARGET_ERRNO). */
1743 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1744 ULONGEST offset, int *target_errno);
1745
1746 /* Read up to LEN bytes FD on the target into READ_BUF.
1747 Return the number of bytes read, or -1 if an error occurs
1748 (and set *TARGET_ERRNO). */
1749 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1750 ULONGEST offset, int *target_errno);
1751
1752 /* Close FD on the target. Return 0, or -1 if an error occurs
1753 (and set *TARGET_ERRNO). */
1754 extern int target_fileio_close (int fd, int *target_errno);
1755
1756 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1757 occurs (and set *TARGET_ERRNO). */
1758 extern int target_fileio_unlink (const char *filename, int *target_errno);
1759
1760 /* Read value of symbolic link FILENAME on the target. Return a
1761 null-terminated string allocated via xmalloc, or NULL if an error
1762 occurs (and set *TARGET_ERRNO). */
1763 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1764
1765 /* Read target file FILENAME. The return value will be -1 if the transfer
1766 fails or is not supported; 0 if the object is empty; or the length
1767 of the object otherwise. If a positive value is returned, a
1768 sufficiently large buffer will be allocated using xmalloc and
1769 returned in *BUF_P containing the contents of the object.
1770
1771 This method should be used for objects sufficiently small to store
1772 in a single xmalloc'd buffer, when no fixed bound on the object's
1773 size is known in advance. */
1774 extern LONGEST target_fileio_read_alloc (const char *filename,
1775 gdb_byte **buf_p);
1776
1777 /* Read target file FILENAME. The result is NUL-terminated and
1778 returned as a string, allocated using xmalloc. If an error occurs
1779 or the transfer is unsupported, NULL is returned. Empty objects
1780 are returned as allocated but empty strings. A warning is issued
1781 if the result contains any embedded NUL bytes. */
1782 extern char *target_fileio_read_stralloc (const char *filename);
1783
1784
1785 /* Tracepoint-related operations. */
1786
1787 #define target_trace_init() \
1788 (*current_target.to_trace_init) (&current_target)
1789
1790 #define target_download_tracepoint(t) \
1791 (*current_target.to_download_tracepoint) (&current_target, t)
1792
1793 #define target_can_download_tracepoint() \
1794 (*current_target.to_can_download_tracepoint) (&current_target)
1795
1796 #define target_download_trace_state_variable(tsv) \
1797 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1798
1799 #define target_enable_tracepoint(loc) \
1800 (*current_target.to_enable_tracepoint) (&current_target, loc)
1801
1802 #define target_disable_tracepoint(loc) \
1803 (*current_target.to_disable_tracepoint) (&current_target, loc)
1804
1805 #define target_trace_start() \
1806 (*current_target.to_trace_start) ()
1807
1808 #define target_trace_set_readonly_regions() \
1809 (*current_target.to_trace_set_readonly_regions) (&current_target)
1810
1811 #define target_get_trace_status(ts) \
1812 (*current_target.to_get_trace_status) (ts)
1813
1814 #define target_get_tracepoint_status(tp,utp) \
1815 (*current_target.to_get_tracepoint_status) (tp, utp)
1816
1817 #define target_trace_stop() \
1818 (*current_target.to_trace_stop) ()
1819
1820 #define target_trace_find(type,num,addr1,addr2,tpp) \
1821 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1822
1823 #define target_get_trace_state_variable_value(tsv,val) \
1824 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1825
1826 #define target_save_trace_data(filename) \
1827 (*current_target.to_save_trace_data) (filename)
1828
1829 #define target_upload_tracepoints(utpp) \
1830 (*current_target.to_upload_tracepoints) (utpp)
1831
1832 #define target_upload_trace_state_variables(utsvp) \
1833 (*current_target.to_upload_trace_state_variables) (utsvp)
1834
1835 #define target_get_raw_trace_data(buf,offset,len) \
1836 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1837
1838 #define target_get_min_fast_tracepoint_insn_len() \
1839 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1840
1841 #define target_set_disconnected_tracing(val) \
1842 (*current_target.to_set_disconnected_tracing) (val)
1843
1844 #define target_set_circular_trace_buffer(val) \
1845 (*current_target.to_set_circular_trace_buffer) (val)
1846
1847 #define target_set_trace_buffer_size(val) \
1848 (*current_target.to_set_trace_buffer_size) (val)
1849
1850 #define target_set_trace_notes(user,notes,stopnotes) \
1851 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1852
1853 #define target_get_tib_address(ptid, addr) \
1854 (*current_target.to_get_tib_address) ((ptid), (addr))
1855
1856 #define target_set_permissions() \
1857 (*current_target.to_set_permissions) ()
1858
1859 #define target_static_tracepoint_marker_at(addr, marker) \
1860 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1861
1862 #define target_static_tracepoint_markers_by_strid(marker_id) \
1863 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1864
1865 #define target_traceframe_info() \
1866 (*current_target.to_traceframe_info) ()
1867
1868 #define target_use_agent(use) \
1869 (*current_target.to_use_agent) (use)
1870
1871 #define target_can_use_agent() \
1872 (*current_target.to_can_use_agent) ()
1873
1874 #define target_augmented_libraries_svr4_read() \
1875 (*current_target.to_augmented_libraries_svr4_read) ()
1876
1877 /* Command logging facility. */
1878
1879 #define target_log_command(p) \
1880 do \
1881 if (current_target.to_log_command) \
1882 (*current_target.to_log_command) (&current_target, \
1883 p); \
1884 while (0)
1885
1886
1887 extern int target_core_of_thread (ptid_t ptid);
1888
1889 /* See to_get_unwinder in struct target_ops. */
1890 extern const struct frame_unwind *target_get_unwinder (void);
1891
1892 /* See to_get_tailcall_unwinder in struct target_ops. */
1893 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1894
1895 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1896 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1897 if there's a mismatch, and -1 if an error is encountered while
1898 reading memory. Throws an error if the functionality is found not
1899 to be supported by the current target. */
1900 int target_verify_memory (const gdb_byte *data,
1901 CORE_ADDR memaddr, ULONGEST size);
1902
1903 /* Routines for maintenance of the target structures...
1904
1905 complete_target_initialization: Finalize a target_ops by filling in
1906 any fields needed by the target implementation.
1907
1908 add_target: Add a target to the list of all possible targets.
1909
1910 push_target: Make this target the top of the stack of currently used
1911 targets, within its particular stratum of the stack. Result
1912 is 0 if now atop the stack, nonzero if not on top (maybe
1913 should warn user).
1914
1915 unpush_target: Remove this from the stack of currently used targets,
1916 no matter where it is on the list. Returns 0 if no
1917 change, 1 if removed from stack. */
1918
1919 extern void add_target (struct target_ops *);
1920
1921 extern void add_target_with_completer (struct target_ops *t,
1922 completer_ftype *completer);
1923
1924 extern void complete_target_initialization (struct target_ops *t);
1925
1926 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1927 for maintaining backwards compatibility when renaming targets. */
1928
1929 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1930
1931 extern void push_target (struct target_ops *);
1932
1933 extern int unpush_target (struct target_ops *);
1934
1935 extern void target_pre_inferior (int);
1936
1937 extern void target_preopen (int);
1938
1939 /* Does whatever cleanup is required to get rid of all pushed targets. */
1940 extern void pop_all_targets (void);
1941
1942 /* Like pop_all_targets, but pops only targets whose stratum is
1943 strictly above ABOVE_STRATUM. */
1944 extern void pop_all_targets_above (enum strata above_stratum);
1945
1946 extern int target_is_pushed (struct target_ops *t);
1947
1948 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1949 CORE_ADDR offset);
1950
1951 /* Struct target_section maps address ranges to file sections. It is
1952 mostly used with BFD files, but can be used without (e.g. for handling
1953 raw disks, or files not in formats handled by BFD). */
1954
1955 struct target_section
1956 {
1957 CORE_ADDR addr; /* Lowest address in section */
1958 CORE_ADDR endaddr; /* 1+highest address in section */
1959
1960 struct bfd_section *the_bfd_section;
1961
1962 /* The "owner" of the section.
1963 It can be any unique value. It is set by add_target_sections
1964 and used by remove_target_sections.
1965 For example, for executables it is a pointer to exec_bfd and
1966 for shlibs it is the so_list pointer. */
1967 void *owner;
1968 };
1969
1970 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1971
1972 struct target_section_table
1973 {
1974 struct target_section *sections;
1975 struct target_section *sections_end;
1976 };
1977
1978 /* Return the "section" containing the specified address. */
1979 struct target_section *target_section_by_addr (struct target_ops *target,
1980 CORE_ADDR addr);
1981
1982 /* Return the target section table this target (or the targets
1983 beneath) currently manipulate. */
1984
1985 extern struct target_section_table *target_get_section_table
1986 (struct target_ops *target);
1987
1988 /* From mem-break.c */
1989
1990 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1991 struct bp_target_info *);
1992
1993 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1994 struct bp_target_info *);
1995
1996 extern int default_memory_remove_breakpoint (struct gdbarch *,
1997 struct bp_target_info *);
1998
1999 extern int default_memory_insert_breakpoint (struct gdbarch *,
2000 struct bp_target_info *);
2001
2002
2003 /* From target.c */
2004
2005 extern void initialize_targets (void);
2006
2007 extern void noprocess (void) ATTRIBUTE_NORETURN;
2008
2009 extern void target_require_runnable (void);
2010
2011 extern void find_default_attach (struct target_ops *, char *, int);
2012
2013 extern void find_default_create_inferior (struct target_ops *,
2014 char *, char *, char **, int);
2015
2016 extern struct target_ops *find_target_beneath (struct target_ops *);
2017
2018 /* Find the target at STRATUM. If no target is at that stratum,
2019 return NULL. */
2020
2021 struct target_ops *find_target_at (enum strata stratum);
2022
2023 /* Read OS data object of type TYPE from the target, and return it in
2024 XML format. The result is NUL-terminated and returned as a string,
2025 allocated using xmalloc. If an error occurs or the transfer is
2026 unsupported, NULL is returned. Empty objects are returned as
2027 allocated but empty strings. */
2028
2029 extern char *target_get_osdata (const char *type);
2030
2031 \f
2032 /* Stuff that should be shared among the various remote targets. */
2033
2034 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2035 information (higher values, more information). */
2036 extern int remote_debug;
2037
2038 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2039 extern int baud_rate;
2040 /* Timeout limit for response from target. */
2041 extern int remote_timeout;
2042
2043 \f
2044
2045 /* Set the show memory breakpoints mode to show, and installs a cleanup
2046 to restore it back to the current value. */
2047 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2048
2049 extern int may_write_registers;
2050 extern int may_write_memory;
2051 extern int may_insert_breakpoints;
2052 extern int may_insert_tracepoints;
2053 extern int may_insert_fast_tracepoints;
2054 extern int may_stop;
2055
2056 extern void update_target_permissions (void);
2057
2058 \f
2059 /* Imported from machine dependent code. */
2060
2061 /* Blank target vector entries are initialized to target_ignore. */
2062 void target_ignore (void);
2063
2064 /* See to_supports_btrace in struct target_ops. */
2065 #define target_supports_btrace() \
2066 (current_target.to_supports_btrace (&current_target))
2067
2068 /* See to_enable_btrace in struct target_ops. */
2069 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2070
2071 /* See to_disable_btrace in struct target_ops. */
2072 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2073
2074 /* See to_teardown_btrace in struct target_ops. */
2075 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2076
2077 /* See to_read_btrace in struct target_ops. */
2078 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2079 struct btrace_target_info *,
2080 enum btrace_read_type);
2081
2082 /* See to_stop_recording in struct target_ops. */
2083 extern void target_stop_recording (void);
2084
2085 /* See to_info_record in struct target_ops. */
2086 extern void target_info_record (void);
2087
2088 /* See to_save_record in struct target_ops. */
2089 extern void target_save_record (const char *filename);
2090
2091 /* Query if the target supports deleting the execution log. */
2092 extern int target_supports_delete_record (void);
2093
2094 /* See to_delete_record in struct target_ops. */
2095 extern void target_delete_record (void);
2096
2097 /* See to_record_is_replaying in struct target_ops. */
2098 extern int target_record_is_replaying (void);
2099
2100 /* See to_goto_record_begin in struct target_ops. */
2101 extern void target_goto_record_begin (void);
2102
2103 /* See to_goto_record_end in struct target_ops. */
2104 extern void target_goto_record_end (void);
2105
2106 /* See to_goto_record in struct target_ops. */
2107 extern void target_goto_record (ULONGEST insn);
2108
2109 /* See to_insn_history. */
2110 extern void target_insn_history (int size, int flags);
2111
2112 /* See to_insn_history_from. */
2113 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2114
2115 /* See to_insn_history_range. */
2116 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2117
2118 /* See to_call_history. */
2119 extern void target_call_history (int size, int flags);
2120
2121 /* See to_call_history_from. */
2122 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2123
2124 /* See to_call_history_range. */
2125 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2126
2127 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2128 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2129 struct gdbarch *gdbarch);
2130
2131 /* See to_decr_pc_after_break. */
2132 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2133
2134 #endif /* !defined (TARGET_H) */
This page took 0.076481 seconds and 5 git commands to generate.