convert to_pid_to_exec_file
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *);
565 struct target_section_table *(*to_get_section_table) (struct target_ops *);
566 enum strata to_stratum;
567 int (*to_has_all_memory) (struct target_ops *);
568 int (*to_has_memory) (struct target_ops *);
569 int (*to_has_stack) (struct target_ops *);
570 int (*to_has_registers) (struct target_ops *);
571 int (*to_has_execution) (struct target_ops *, ptid_t);
572 int to_has_thread_control; /* control thread execution */
573 int to_attach_no_wait;
574 /* ASYNC target controls */
575 int (*to_can_async_p) (struct target_ops *)
576 TARGET_DEFAULT_FUNC (find_default_can_async_p);
577 int (*to_is_async_p) (struct target_ops *)
578 TARGET_DEFAULT_FUNC (find_default_is_async_p);
579 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
580 TARGET_DEFAULT_NORETURN (tcomplain ());
581 int (*to_supports_non_stop) (struct target_ops *);
582 /* find_memory_regions support method for gcore */
583 int (*to_find_memory_regions) (struct target_ops *,
584 find_memory_region_ftype func, void *data);
585 /* make_corefile_notes support method for gcore */
586 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
587 /* get_bookmark support method for bookmarks */
588 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
589 /* goto_bookmark support method for bookmarks */
590 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
591 /* Return the thread-local address at OFFSET in the
592 thread-local storage for the thread PTID and the shared library
593 or executable file given by OBJFILE. If that block of
594 thread-local storage hasn't been allocated yet, this function
595 may return an error. */
596 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
597 ptid_t ptid,
598 CORE_ADDR load_module_addr,
599 CORE_ADDR offset);
600
601 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
602 OBJECT. The OFFSET, for a seekable object, specifies the
603 starting point. The ANNEX can be used to provide additional
604 data-specific information to the target.
605
606 Return the transferred status, error or OK (an
607 'enum target_xfer_status' value). Save the number of bytes
608 actually transferred in *XFERED_LEN if transfer is successful
609 (TARGET_XFER_OK) or the number unavailable bytes if the requested
610 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
611 smaller than LEN does not indicate the end of the object, only
612 the end of the transfer; higher level code should continue
613 transferring if desired. This is handled in target.c.
614
615 The interface does not support a "retry" mechanism. Instead it
616 assumes that at least one byte will be transfered on each
617 successful call.
618
619 NOTE: cagney/2003-10-17: The current interface can lead to
620 fragmented transfers. Lower target levels should not implement
621 hacks, such as enlarging the transfer, in an attempt to
622 compensate for this. Instead, the target stack should be
623 extended so that it implements supply/collect methods and a
624 look-aside object cache. With that available, the lowest
625 target can safely and freely "push" data up the stack.
626
627 See target_read and target_write for more information. One,
628 and only one, of readbuf or writebuf must be non-NULL. */
629
630 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
631 enum target_object object,
632 const char *annex,
633 gdb_byte *readbuf,
634 const gdb_byte *writebuf,
635 ULONGEST offset, ULONGEST len,
636 ULONGEST *xfered_len)
637 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
638
639 /* Returns the memory map for the target. A return value of NULL
640 means that no memory map is available. If a memory address
641 does not fall within any returned regions, it's assumed to be
642 RAM. The returned memory regions should not overlap.
643
644 The order of regions does not matter; target_memory_map will
645 sort regions by starting address. For that reason, this
646 function should not be called directly except via
647 target_memory_map.
648
649 This method should not cache data; if the memory map could
650 change unexpectedly, it should be invalidated, and higher
651 layers will re-fetch it. */
652 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
653
654 /* Erases the region of flash memory starting at ADDRESS, of
655 length LENGTH.
656
657 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
658 on flash block boundaries, as reported by 'to_memory_map'. */
659 void (*to_flash_erase) (struct target_ops *,
660 ULONGEST address, LONGEST length);
661
662 /* Finishes a flash memory write sequence. After this operation
663 all flash memory should be available for writing and the result
664 of reading from areas written by 'to_flash_write' should be
665 equal to what was written. */
666 void (*to_flash_done) (struct target_ops *);
667
668 /* Describe the architecture-specific features of this target.
669 Returns the description found, or NULL if no description
670 was available. */
671 const struct target_desc *(*to_read_description) (struct target_ops *ops);
672
673 /* Build the PTID of the thread on which a given task is running,
674 based on LWP and THREAD. These values are extracted from the
675 task Private_Data section of the Ada Task Control Block, and
676 their interpretation depends on the target. */
677 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
678 long lwp, long thread);
679
680 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
681 Return 0 if *READPTR is already at the end of the buffer.
682 Return -1 if there is insufficient buffer for a whole entry.
683 Return 1 if an entry was read into *TYPEP and *VALP. */
684 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
685 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
686
687 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
688 sequence of bytes in PATTERN with length PATTERN_LEN.
689
690 The result is 1 if found, 0 if not found, and -1 if there was an error
691 requiring halting of the search (e.g. memory read error).
692 If the pattern is found the address is recorded in FOUND_ADDRP. */
693 int (*to_search_memory) (struct target_ops *ops,
694 CORE_ADDR start_addr, ULONGEST search_space_len,
695 const gdb_byte *pattern, ULONGEST pattern_len,
696 CORE_ADDR *found_addrp);
697
698 /* Can target execute in reverse? */
699 int (*to_can_execute_reverse) (struct target_ops *);
700
701 /* The direction the target is currently executing. Must be
702 implemented on targets that support reverse execution and async
703 mode. The default simply returns forward execution. */
704 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
705
706 /* Does this target support debugging multiple processes
707 simultaneously? */
708 int (*to_supports_multi_process) (struct target_ops *);
709
710 /* Does this target support enabling and disabling tracepoints while a trace
711 experiment is running? */
712 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
713
714 /* Does this target support disabling address space randomization? */
715 int (*to_supports_disable_randomization) (struct target_ops *);
716
717 /* Does this target support the tracenz bytecode for string collection? */
718 int (*to_supports_string_tracing) (struct target_ops *);
719
720 /* Does this target support evaluation of breakpoint conditions on its
721 end? */
722 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
723
724 /* Does this target support evaluation of breakpoint commands on its
725 end? */
726 int (*to_can_run_breakpoint_commands) (struct target_ops *);
727
728 /* Determine current architecture of thread PTID.
729
730 The target is supposed to determine the architecture of the code where
731 the target is currently stopped at (on Cell, if a target is in spu_run,
732 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
733 This is architecture used to perform decr_pc_after_break adjustment,
734 and also determines the frame architecture of the innermost frame.
735 ptrace operations need to operate according to target_gdbarch ().
736
737 The default implementation always returns target_gdbarch (). */
738 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
739
740 /* Determine current address space of thread PTID.
741
742 The default implementation always returns the inferior's
743 address space. */
744 struct address_space *(*to_thread_address_space) (struct target_ops *,
745 ptid_t);
746
747 /* Target file operations. */
748
749 /* Open FILENAME on the target, using FLAGS and MODE. Return a
750 target file descriptor, or -1 if an error occurs (and set
751 *TARGET_ERRNO). */
752 int (*to_fileio_open) (struct target_ops *,
753 const char *filename, int flags, int mode,
754 int *target_errno);
755
756 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
757 Return the number of bytes written, or -1 if an error occurs
758 (and set *TARGET_ERRNO). */
759 int (*to_fileio_pwrite) (struct target_ops *,
760 int fd, const gdb_byte *write_buf, int len,
761 ULONGEST offset, int *target_errno);
762
763 /* Read up to LEN bytes FD on the target into READ_BUF.
764 Return the number of bytes read, or -1 if an error occurs
765 (and set *TARGET_ERRNO). */
766 int (*to_fileio_pread) (struct target_ops *,
767 int fd, gdb_byte *read_buf, int len,
768 ULONGEST offset, int *target_errno);
769
770 /* Close FD on the target. Return 0, or -1 if an error occurs
771 (and set *TARGET_ERRNO). */
772 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
773
774 /* Unlink FILENAME on the target. Return 0, or -1 if an error
775 occurs (and set *TARGET_ERRNO). */
776 int (*to_fileio_unlink) (struct target_ops *,
777 const char *filename, int *target_errno);
778
779 /* Read value of symbolic link FILENAME on the target. Return a
780 null-terminated string allocated via xmalloc, or NULL if an error
781 occurs (and set *TARGET_ERRNO). */
782 char *(*to_fileio_readlink) (struct target_ops *,
783 const char *filename, int *target_errno);
784
785
786 /* Implement the "info proc" command. */
787 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
788
789 /* Tracepoint-related operations. */
790
791 /* Prepare the target for a tracing run. */
792 void (*to_trace_init) (struct target_ops *);
793
794 /* Send full details of a tracepoint location to the target. */
795 void (*to_download_tracepoint) (struct target_ops *,
796 struct bp_location *location);
797
798 /* Is the target able to download tracepoint locations in current
799 state? */
800 int (*to_can_download_tracepoint) (struct target_ops *);
801
802 /* Send full details of a trace state variable to the target. */
803 void (*to_download_trace_state_variable) (struct target_ops *,
804 struct trace_state_variable *tsv);
805
806 /* Enable a tracepoint on the target. */
807 void (*to_enable_tracepoint) (struct target_ops *,
808 struct bp_location *location);
809
810 /* Disable a tracepoint on the target. */
811 void (*to_disable_tracepoint) (struct target_ops *,
812 struct bp_location *location);
813
814 /* Inform the target info of memory regions that are readonly
815 (such as text sections), and so it should return data from
816 those rather than look in the trace buffer. */
817 void (*to_trace_set_readonly_regions) (struct target_ops *);
818
819 /* Start a trace run. */
820 void (*to_trace_start) (struct target_ops *);
821
822 /* Get the current status of a tracing run. */
823 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
824
825 void (*to_get_tracepoint_status) (struct target_ops *,
826 struct breakpoint *tp,
827 struct uploaded_tp *utp);
828
829 /* Stop a trace run. */
830 void (*to_trace_stop) (struct target_ops *);
831
832 /* Ask the target to find a trace frame of the given type TYPE,
833 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
834 number of the trace frame, and also the tracepoint number at
835 TPP. If no trace frame matches, return -1. May throw if the
836 operation fails. */
837 int (*to_trace_find) (struct target_ops *,
838 enum trace_find_type type, int num,
839 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
840
841 /* Get the value of the trace state variable number TSV, returning
842 1 if the value is known and writing the value itself into the
843 location pointed to by VAL, else returning 0. */
844 int (*to_get_trace_state_variable_value) (struct target_ops *,
845 int tsv, LONGEST *val);
846
847 int (*to_save_trace_data) (struct target_ops *, const char *filename);
848
849 int (*to_upload_tracepoints) (struct target_ops *,
850 struct uploaded_tp **utpp);
851
852 int (*to_upload_trace_state_variables) (struct target_ops *,
853 struct uploaded_tsv **utsvp);
854
855 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
856 ULONGEST offset, LONGEST len);
857
858 /* Get the minimum length of instruction on which a fast tracepoint
859 may be set on the target. If this operation is unsupported,
860 return -1. If for some reason the minimum length cannot be
861 determined, return 0. */
862 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
863
864 /* Set the target's tracing behavior in response to unexpected
865 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
866 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
867 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
868 /* Set the size of trace buffer in the target. */
869 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
870
871 /* Add/change textual notes about the trace run, returning 1 if
872 successful, 0 otherwise. */
873 int (*to_set_trace_notes) (struct target_ops *,
874 const char *user, const char *notes,
875 const char *stopnotes);
876
877 /* Return the processor core that thread PTID was last seen on.
878 This information is updated only when:
879 - update_thread_list is called
880 - thread stops
881 If the core cannot be determined -- either for the specified
882 thread, or right now, or in this debug session, or for this
883 target -- return -1. */
884 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
885
886 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
887 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
888 a match, 0 if there's a mismatch, and -1 if an error is
889 encountered while reading memory. */
890 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
891 CORE_ADDR memaddr, ULONGEST size);
892
893 /* Return the address of the start of the Thread Information Block
894 a Windows OS specific feature. */
895 int (*to_get_tib_address) (struct target_ops *,
896 ptid_t ptid, CORE_ADDR *addr);
897
898 /* Send the new settings of write permission variables. */
899 void (*to_set_permissions) (struct target_ops *);
900
901 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
902 with its details. Return 1 on success, 0 on failure. */
903 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
904 struct static_tracepoint_marker *marker);
905
906 /* Return a vector of all tracepoints markers string id ID, or all
907 markers if ID is NULL. */
908 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
909 (struct target_ops *, const char *id);
910
911 /* Return a traceframe info object describing the current
912 traceframe's contents. If the target doesn't support
913 traceframe info, return NULL. If the current traceframe is not
914 selected (the current traceframe number is -1), the target can
915 choose to return either NULL or an empty traceframe info. If
916 NULL is returned, for example in remote target, GDB will read
917 from the live inferior. If an empty traceframe info is
918 returned, for example in tfile target, which means the
919 traceframe info is available, but the requested memory is not
920 available in it. GDB will try to see if the requested memory
921 is available in the read-only sections. This method should not
922 cache data; higher layers take care of caching, invalidating,
923 and re-fetching when necessary. */
924 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
925
926 /* Ask the target to use or not to use agent according to USE. Return 1
927 successful, 0 otherwise. */
928 int (*to_use_agent) (struct target_ops *, int use);
929
930 /* Is the target able to use agent in current state? */
931 int (*to_can_use_agent) (struct target_ops *);
932
933 /* Check whether the target supports branch tracing. */
934 int (*to_supports_btrace) (struct target_ops *)
935 TARGET_DEFAULT_RETURN (0);
936
937 /* Enable branch tracing for PTID and allocate a branch trace target
938 information struct for reading and for disabling branch trace. */
939 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
940 ptid_t ptid);
941
942 /* Disable branch tracing and deallocate TINFO. */
943 void (*to_disable_btrace) (struct target_ops *,
944 struct btrace_target_info *tinfo);
945
946 /* Disable branch tracing and deallocate TINFO. This function is similar
947 to to_disable_btrace, except that it is called during teardown and is
948 only allowed to perform actions that are safe. A counter-example would
949 be attempting to talk to a remote target. */
950 void (*to_teardown_btrace) (struct target_ops *,
951 struct btrace_target_info *tinfo);
952
953 /* Read branch trace data for the thread indicated by BTINFO into DATA.
954 DATA is cleared before new trace is added.
955 The branch trace will start with the most recent block and continue
956 towards older blocks. */
957 enum btrace_error (*to_read_btrace) (struct target_ops *self,
958 VEC (btrace_block_s) **data,
959 struct btrace_target_info *btinfo,
960 enum btrace_read_type type);
961
962 /* Stop trace recording. */
963 void (*to_stop_recording) (struct target_ops *);
964
965 /* Print information about the recording. */
966 void (*to_info_record) (struct target_ops *);
967
968 /* Save the recorded execution trace into a file. */
969 void (*to_save_record) (struct target_ops *, const char *filename);
970
971 /* Delete the recorded execution trace from the current position onwards. */
972 void (*to_delete_record) (struct target_ops *);
973
974 /* Query if the record target is currently replaying. */
975 int (*to_record_is_replaying) (struct target_ops *);
976
977 /* Go to the begin of the execution trace. */
978 void (*to_goto_record_begin) (struct target_ops *);
979
980 /* Go to the end of the execution trace. */
981 void (*to_goto_record_end) (struct target_ops *);
982
983 /* Go to a specific location in the recorded execution trace. */
984 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
985
986 /* Disassemble SIZE instructions in the recorded execution trace from
987 the current position.
988 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
989 disassemble SIZE succeeding instructions. */
990 void (*to_insn_history) (struct target_ops *, int size, int flags);
991
992 /* Disassemble SIZE instructions in the recorded execution trace around
993 FROM.
994 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
995 disassemble SIZE instructions after FROM. */
996 void (*to_insn_history_from) (struct target_ops *,
997 ULONGEST from, int size, int flags);
998
999 /* Disassemble a section of the recorded execution trace from instruction
1000 BEGIN (inclusive) to instruction END (inclusive). */
1001 void (*to_insn_history_range) (struct target_ops *,
1002 ULONGEST begin, ULONGEST end, int flags);
1003
1004 /* Print a function trace of the recorded execution trace.
1005 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1006 succeeding functions. */
1007 void (*to_call_history) (struct target_ops *, int size, int flags);
1008
1009 /* Print a function trace of the recorded execution trace starting
1010 at function FROM.
1011 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1012 SIZE functions after FROM. */
1013 void (*to_call_history_from) (struct target_ops *,
1014 ULONGEST begin, int size, int flags);
1015
1016 /* Print a function trace of an execution trace section from function BEGIN
1017 (inclusive) to function END (inclusive). */
1018 void (*to_call_history_range) (struct target_ops *,
1019 ULONGEST begin, ULONGEST end, int flags);
1020
1021 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1022 non-empty annex. */
1023 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1024
1025 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1026 it is not used. */
1027 const struct frame_unwind *to_get_unwinder;
1028 const struct frame_unwind *to_get_tailcall_unwinder;
1029
1030 /* Return the number of bytes by which the PC needs to be decremented
1031 after executing a breakpoint instruction.
1032 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1033 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1034 struct gdbarch *gdbarch);
1035
1036 int to_magic;
1037 /* Need sub-structure for target machine related rather than comm related?
1038 */
1039 };
1040
1041 /* Magic number for checking ops size. If a struct doesn't end with this
1042 number, somebody changed the declaration but didn't change all the
1043 places that initialize one. */
1044
1045 #define OPS_MAGIC 3840
1046
1047 /* The ops structure for our "current" target process. This should
1048 never be NULL. If there is no target, it points to the dummy_target. */
1049
1050 extern struct target_ops current_target;
1051
1052 /* Define easy words for doing these operations on our current target. */
1053
1054 #define target_shortname (current_target.to_shortname)
1055 #define target_longname (current_target.to_longname)
1056
1057 /* Does whatever cleanup is required for a target that we are no
1058 longer going to be calling. This routine is automatically always
1059 called after popping the target off the target stack - the target's
1060 own methods are no longer available through the target vector.
1061 Closing file descriptors and freeing all memory allocated memory are
1062 typical things it should do. */
1063
1064 void target_close (struct target_ops *targ);
1065
1066 /* Attaches to a process on the target side. Arguments are as passed
1067 to the `attach' command by the user. This routine can be called
1068 when the target is not on the target-stack, if the target_can_run
1069 routine returns 1; in that case, it must push itself onto the stack.
1070 Upon exit, the target should be ready for normal operations, and
1071 should be ready to deliver the status of the process immediately
1072 (without waiting) to an upcoming target_wait call. */
1073
1074 void target_attach (char *, int);
1075
1076 /* Some targets don't generate traps when attaching to the inferior,
1077 or their target_attach implementation takes care of the waiting.
1078 These targets must set to_attach_no_wait. */
1079
1080 #define target_attach_no_wait \
1081 (current_target.to_attach_no_wait)
1082
1083 /* The target_attach operation places a process under debugger control,
1084 and stops the process.
1085
1086 This operation provides a target-specific hook that allows the
1087 necessary bookkeeping to be performed after an attach completes. */
1088 #define target_post_attach(pid) \
1089 (*current_target.to_post_attach) (&current_target, pid)
1090
1091 /* Takes a program previously attached to and detaches it.
1092 The program may resume execution (some targets do, some don't) and will
1093 no longer stop on signals, etc. We better not have left any breakpoints
1094 in the program or it'll die when it hits one. ARGS is arguments
1095 typed by the user (e.g. a signal to send the process). FROM_TTY
1096 says whether to be verbose or not. */
1097
1098 extern void target_detach (const char *, int);
1099
1100 /* Disconnect from the current target without resuming it (leaving it
1101 waiting for a debugger). */
1102
1103 extern void target_disconnect (char *, int);
1104
1105 /* Resume execution of the target process PTID (or a group of
1106 threads). STEP says whether to single-step or to run free; SIGGNAL
1107 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1108 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1109 PTID means `step/resume only this process id'. A wildcard PTID
1110 (all threads, or all threads of process) means `step/resume
1111 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1112 matches) resume with their 'thread->suspend.stop_signal' signal
1113 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1114 if in "no pass" state. */
1115
1116 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1117
1118 /* Wait for process pid to do something. PTID = -1 to wait for any
1119 pid to do something. Return pid of child, or -1 in case of error;
1120 store status through argument pointer STATUS. Note that it is
1121 _NOT_ OK to throw_exception() out of target_wait() without popping
1122 the debugging target from the stack; GDB isn't prepared to get back
1123 to the prompt with a debugging target but without the frame cache,
1124 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1125 options. */
1126
1127 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1128 int options);
1129
1130 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1131
1132 extern void target_fetch_registers (struct regcache *regcache, int regno);
1133
1134 /* Store at least register REGNO, or all regs if REGNO == -1.
1135 It can store as many registers as it wants to, so target_prepare_to_store
1136 must have been previously called. Calls error() if there are problems. */
1137
1138 extern void target_store_registers (struct regcache *regcache, int regs);
1139
1140 /* Get ready to modify the registers array. On machines which store
1141 individual registers, this doesn't need to do anything. On machines
1142 which store all the registers in one fell swoop, this makes sure
1143 that REGISTERS contains all the registers from the program being
1144 debugged. */
1145
1146 #define target_prepare_to_store(regcache) \
1147 (*current_target.to_prepare_to_store) (&current_target, regcache)
1148
1149 /* Determine current address space of thread PTID. */
1150
1151 struct address_space *target_thread_address_space (ptid_t);
1152
1153 /* Implement the "info proc" command. This returns one if the request
1154 was handled, and zero otherwise. It can also throw an exception if
1155 an error was encountered while attempting to handle the
1156 request. */
1157
1158 int target_info_proc (char *, enum info_proc_what);
1159
1160 /* Returns true if this target can debug multiple processes
1161 simultaneously. */
1162
1163 #define target_supports_multi_process() \
1164 (*current_target.to_supports_multi_process) (&current_target)
1165
1166 /* Returns true if this target can disable address space randomization. */
1167
1168 int target_supports_disable_randomization (void);
1169
1170 /* Returns true if this target can enable and disable tracepoints
1171 while a trace experiment is running. */
1172
1173 #define target_supports_enable_disable_tracepoint() \
1174 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1175
1176 #define target_supports_string_tracing() \
1177 (*current_target.to_supports_string_tracing) (&current_target)
1178
1179 /* Returns true if this target can handle breakpoint conditions
1180 on its end. */
1181
1182 #define target_supports_evaluation_of_breakpoint_conditions() \
1183 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1184
1185 /* Returns true if this target can handle breakpoint commands
1186 on its end. */
1187
1188 #define target_can_run_breakpoint_commands() \
1189 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1190
1191 extern int target_read_string (CORE_ADDR, char **, int, int *);
1192
1193 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1194 ssize_t len);
1195
1196 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1197 ssize_t len);
1198
1199 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1200
1201 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1202
1203 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1204 ssize_t len);
1205
1206 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1207 ssize_t len);
1208
1209 /* Fetches the target's memory map. If one is found it is sorted
1210 and returned, after some consistency checking. Otherwise, NULL
1211 is returned. */
1212 VEC(mem_region_s) *target_memory_map (void);
1213
1214 /* Erase the specified flash region. */
1215 void target_flash_erase (ULONGEST address, LONGEST length);
1216
1217 /* Finish a sequence of flash operations. */
1218 void target_flash_done (void);
1219
1220 /* Describes a request for a memory write operation. */
1221 struct memory_write_request
1222 {
1223 /* Begining address that must be written. */
1224 ULONGEST begin;
1225 /* Past-the-end address. */
1226 ULONGEST end;
1227 /* The data to write. */
1228 gdb_byte *data;
1229 /* A callback baton for progress reporting for this request. */
1230 void *baton;
1231 };
1232 typedef struct memory_write_request memory_write_request_s;
1233 DEF_VEC_O(memory_write_request_s);
1234
1235 /* Enumeration specifying different flash preservation behaviour. */
1236 enum flash_preserve_mode
1237 {
1238 flash_preserve,
1239 flash_discard
1240 };
1241
1242 /* Write several memory blocks at once. This version can be more
1243 efficient than making several calls to target_write_memory, in
1244 particular because it can optimize accesses to flash memory.
1245
1246 Moreover, this is currently the only memory access function in gdb
1247 that supports writing to flash memory, and it should be used for
1248 all cases where access to flash memory is desirable.
1249
1250 REQUESTS is the vector (see vec.h) of memory_write_request.
1251 PRESERVE_FLASH_P indicates what to do with blocks which must be
1252 erased, but not completely rewritten.
1253 PROGRESS_CB is a function that will be periodically called to provide
1254 feedback to user. It will be called with the baton corresponding
1255 to the request currently being written. It may also be called
1256 with a NULL baton, when preserved flash sectors are being rewritten.
1257
1258 The function returns 0 on success, and error otherwise. */
1259 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1260 enum flash_preserve_mode preserve_flash_p,
1261 void (*progress_cb) (ULONGEST, void *));
1262
1263 /* Print a line about the current target. */
1264
1265 #define target_files_info() \
1266 (*current_target.to_files_info) (&current_target)
1267
1268 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1269 the target machine. Returns 0 for success, and returns non-zero or
1270 throws an error (with a detailed failure reason error code and
1271 message) otherwise. */
1272
1273 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1274 struct bp_target_info *bp_tgt);
1275
1276 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1277 machine. Result is 0 for success, non-zero for error. */
1278
1279 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1280 struct bp_target_info *bp_tgt);
1281
1282 /* Initialize the terminal settings we record for the inferior,
1283 before we actually run the inferior. */
1284
1285 #define target_terminal_init() \
1286 (*current_target.to_terminal_init) (&current_target)
1287
1288 /* Put the inferior's terminal settings into effect.
1289 This is preparation for starting or resuming the inferior. */
1290
1291 extern void target_terminal_inferior (void);
1292
1293 /* Put some of our terminal settings into effect,
1294 enough to get proper results from our output,
1295 but do not change into or out of RAW mode
1296 so that no input is discarded.
1297
1298 After doing this, either terminal_ours or terminal_inferior
1299 should be called to get back to a normal state of affairs. */
1300
1301 #define target_terminal_ours_for_output() \
1302 (*current_target.to_terminal_ours_for_output) (&current_target)
1303
1304 /* Put our terminal settings into effect.
1305 First record the inferior's terminal settings
1306 so they can be restored properly later. */
1307
1308 #define target_terminal_ours() \
1309 (*current_target.to_terminal_ours) (&current_target)
1310
1311 /* Save our terminal settings.
1312 This is called from TUI after entering or leaving the curses
1313 mode. Since curses modifies our terminal this call is here
1314 to take this change into account. */
1315
1316 #define target_terminal_save_ours() \
1317 (*current_target.to_terminal_save_ours) (&current_target)
1318
1319 /* Print useful information about our terminal status, if such a thing
1320 exists. */
1321
1322 #define target_terminal_info(arg, from_tty) \
1323 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1324
1325 /* Kill the inferior process. Make it go away. */
1326
1327 extern void target_kill (void);
1328
1329 /* Load an executable file into the target process. This is expected
1330 to not only bring new code into the target process, but also to
1331 update GDB's symbol tables to match.
1332
1333 ARG contains command-line arguments, to be broken down with
1334 buildargv (). The first non-switch argument is the filename to
1335 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1336 0)), which is an offset to apply to the load addresses of FILE's
1337 sections. The target may define switches, or other non-switch
1338 arguments, as it pleases. */
1339
1340 extern void target_load (char *arg, int from_tty);
1341
1342 /* Start an inferior process and set inferior_ptid to its pid.
1343 EXEC_FILE is the file to run.
1344 ALLARGS is a string containing the arguments to the program.
1345 ENV is the environment vector to pass. Errors reported with error().
1346 On VxWorks and various standalone systems, we ignore exec_file. */
1347
1348 void target_create_inferior (char *exec_file, char *args,
1349 char **env, int from_tty);
1350
1351 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1352 notification of inferior events such as fork and vork immediately
1353 after the inferior is created. (This because of how gdb gets an
1354 inferior created via invoking a shell to do it. In such a scenario,
1355 if the shell init file has commands in it, the shell will fork and
1356 exec for each of those commands, and we will see each such fork
1357 event. Very bad.)
1358
1359 Such targets will supply an appropriate definition for this function. */
1360
1361 #define target_post_startup_inferior(ptid) \
1362 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1363
1364 /* On some targets, we can catch an inferior fork or vfork event when
1365 it occurs. These functions insert/remove an already-created
1366 catchpoint for such events. They return 0 for success, 1 if the
1367 catchpoint type is not supported and -1 for failure. */
1368
1369 #define target_insert_fork_catchpoint(pid) \
1370 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1371
1372 #define target_remove_fork_catchpoint(pid) \
1373 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1374
1375 #define target_insert_vfork_catchpoint(pid) \
1376 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1377
1378 #define target_remove_vfork_catchpoint(pid) \
1379 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1380
1381 /* If the inferior forks or vforks, this function will be called at
1382 the next resume in order to perform any bookkeeping and fiddling
1383 necessary to continue debugging either the parent or child, as
1384 requested, and releasing the other. Information about the fork
1385 or vfork event is available via get_last_target_status ().
1386 This function returns 1 if the inferior should not be resumed
1387 (i.e. there is another event pending). */
1388
1389 int target_follow_fork (int follow_child, int detach_fork);
1390
1391 /* On some targets, we can catch an inferior exec event when it
1392 occurs. These functions insert/remove an already-created
1393 catchpoint for such events. They return 0 for success, 1 if the
1394 catchpoint type is not supported and -1 for failure. */
1395
1396 #define target_insert_exec_catchpoint(pid) \
1397 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1398
1399 #define target_remove_exec_catchpoint(pid) \
1400 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1401
1402 /* Syscall catch.
1403
1404 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1405 If NEEDED is zero, it means the target can disable the mechanism to
1406 catch system calls because there are no more catchpoints of this type.
1407
1408 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1409 being requested. In this case, both TABLE_SIZE and TABLE should
1410 be ignored.
1411
1412 TABLE_SIZE is the number of elements in TABLE. It only matters if
1413 ANY_COUNT is zero.
1414
1415 TABLE is an array of ints, indexed by syscall number. An element in
1416 this array is nonzero if that syscall should be caught. This argument
1417 only matters if ANY_COUNT is zero.
1418
1419 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1420 for failure. */
1421
1422 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1423 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1424 pid, needed, any_count, \
1425 table_size, table)
1426
1427 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1428 exit code of PID, if any. */
1429
1430 #define target_has_exited(pid,wait_status,exit_status) \
1431 (*current_target.to_has_exited) (&current_target, \
1432 pid,wait_status,exit_status)
1433
1434 /* The debugger has completed a blocking wait() call. There is now
1435 some process event that must be processed. This function should
1436 be defined by those targets that require the debugger to perform
1437 cleanup or internal state changes in response to the process event. */
1438
1439 /* The inferior process has died. Do what is right. */
1440
1441 void target_mourn_inferior (void);
1442
1443 /* Does target have enough data to do a run or attach command? */
1444
1445 #define target_can_run(t) \
1446 ((t)->to_can_run) (t)
1447
1448 /* Set list of signals to be handled in the target.
1449
1450 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1451 (enum gdb_signal). For every signal whose entry in this array is
1452 non-zero, the target is allowed -but not required- to skip reporting
1453 arrival of the signal to the GDB core by returning from target_wait,
1454 and to pass the signal directly to the inferior instead.
1455
1456 However, if the target is hardware single-stepping a thread that is
1457 about to receive a signal, it needs to be reported in any case, even
1458 if mentioned in a previous target_pass_signals call. */
1459
1460 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1461
1462 /* Set list of signals the target may pass to the inferior. This
1463 directly maps to the "handle SIGNAL pass/nopass" setting.
1464
1465 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1466 number (enum gdb_signal). For every signal whose entry in this
1467 array is non-zero, the target is allowed to pass the signal to the
1468 inferior. Signals not present in the array shall be silently
1469 discarded. This does not influence whether to pass signals to the
1470 inferior as a result of a target_resume call. This is useful in
1471 scenarios where the target needs to decide whether to pass or not a
1472 signal to the inferior without GDB core involvement, such as for
1473 example, when detaching (as threads may have been suspended with
1474 pending signals not reported to GDB). */
1475
1476 extern void target_program_signals (int nsig, unsigned char *program_signals);
1477
1478 /* Check to see if a thread is still alive. */
1479
1480 extern int target_thread_alive (ptid_t ptid);
1481
1482 /* Query for new threads and add them to the thread list. */
1483
1484 extern void target_find_new_threads (void);
1485
1486 /* Make target stop in a continuable fashion. (For instance, under
1487 Unix, this should act like SIGSTOP). This function is normally
1488 used by GUIs to implement a stop button. */
1489
1490 extern void target_stop (ptid_t ptid);
1491
1492 /* Send the specified COMMAND to the target's monitor
1493 (shell,interpreter) for execution. The result of the query is
1494 placed in OUTBUF. */
1495
1496 #define target_rcmd(command, outbuf) \
1497 (*current_target.to_rcmd) (&current_target, command, outbuf)
1498
1499
1500 /* Does the target include all of memory, or only part of it? This
1501 determines whether we look up the target chain for other parts of
1502 memory if this target can't satisfy a request. */
1503
1504 extern int target_has_all_memory_1 (void);
1505 #define target_has_all_memory target_has_all_memory_1 ()
1506
1507 /* Does the target include memory? (Dummy targets don't.) */
1508
1509 extern int target_has_memory_1 (void);
1510 #define target_has_memory target_has_memory_1 ()
1511
1512 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1513 we start a process.) */
1514
1515 extern int target_has_stack_1 (void);
1516 #define target_has_stack target_has_stack_1 ()
1517
1518 /* Does the target have registers? (Exec files don't.) */
1519
1520 extern int target_has_registers_1 (void);
1521 #define target_has_registers target_has_registers_1 ()
1522
1523 /* Does the target have execution? Can we make it jump (through
1524 hoops), or pop its stack a few times? This means that the current
1525 target is currently executing; for some targets, that's the same as
1526 whether or not the target is capable of execution, but there are
1527 also targets which can be current while not executing. In that
1528 case this will become true after target_create_inferior or
1529 target_attach. */
1530
1531 extern int target_has_execution_1 (ptid_t);
1532
1533 /* Like target_has_execution_1, but always passes inferior_ptid. */
1534
1535 extern int target_has_execution_current (void);
1536
1537 #define target_has_execution target_has_execution_current ()
1538
1539 /* Default implementations for process_stratum targets. Return true
1540 if there's a selected inferior, false otherwise. */
1541
1542 extern int default_child_has_all_memory (struct target_ops *ops);
1543 extern int default_child_has_memory (struct target_ops *ops);
1544 extern int default_child_has_stack (struct target_ops *ops);
1545 extern int default_child_has_registers (struct target_ops *ops);
1546 extern int default_child_has_execution (struct target_ops *ops,
1547 ptid_t the_ptid);
1548
1549 /* Can the target support the debugger control of thread execution?
1550 Can it lock the thread scheduler? */
1551
1552 #define target_can_lock_scheduler \
1553 (current_target.to_has_thread_control & tc_schedlock)
1554
1555 /* Should the target enable async mode if it is supported? Temporary
1556 cludge until async mode is a strict superset of sync mode. */
1557 extern int target_async_permitted;
1558
1559 /* Can the target support asynchronous execution? */
1560 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1561
1562 /* Is the target in asynchronous execution mode? */
1563 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1564
1565 int target_supports_non_stop (void);
1566
1567 /* Put the target in async mode with the specified callback function. */
1568 #define target_async(CALLBACK,CONTEXT) \
1569 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1570
1571 #define target_execution_direction() \
1572 (current_target.to_execution_direction (&current_target))
1573
1574 /* Converts a process id to a string. Usually, the string just contains
1575 `process xyz', but on some systems it may contain
1576 `process xyz thread abc'. */
1577
1578 extern char *target_pid_to_str (ptid_t ptid);
1579
1580 extern char *normal_pid_to_str (ptid_t ptid);
1581
1582 /* Return a short string describing extra information about PID,
1583 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1584 is okay. */
1585
1586 #define target_extra_thread_info(TP) \
1587 (current_target.to_extra_thread_info (&current_target, TP))
1588
1589 /* Return the thread's name. A NULL result means that the target
1590 could not determine this thread's name. */
1591
1592 extern char *target_thread_name (struct thread_info *);
1593
1594 /* Attempts to find the pathname of the executable file
1595 that was run to create a specified process.
1596
1597 The process PID must be stopped when this operation is used.
1598
1599 If the executable file cannot be determined, NULL is returned.
1600
1601 Else, a pointer to a character string containing the pathname
1602 is returned. This string should be copied into a buffer by
1603 the client if the string will not be immediately used, or if
1604 it must persist. */
1605
1606 #define target_pid_to_exec_file(pid) \
1607 (current_target.to_pid_to_exec_file) (&current_target, pid)
1608
1609 /* See the to_thread_architecture description in struct target_ops. */
1610
1611 #define target_thread_architecture(ptid) \
1612 (current_target.to_thread_architecture (&current_target, ptid))
1613
1614 /*
1615 * Iterator function for target memory regions.
1616 * Calls a callback function once for each memory region 'mapped'
1617 * in the child process. Defined as a simple macro rather than
1618 * as a function macro so that it can be tested for nullity.
1619 */
1620
1621 #define target_find_memory_regions(FUNC, DATA) \
1622 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1623
1624 /*
1625 * Compose corefile .note section.
1626 */
1627
1628 #define target_make_corefile_notes(BFD, SIZE_P) \
1629 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1630
1631 /* Bookmark interfaces. */
1632 #define target_get_bookmark(ARGS, FROM_TTY) \
1633 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1634
1635 #define target_goto_bookmark(ARG, FROM_TTY) \
1636 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1637
1638 /* Hardware watchpoint interfaces. */
1639
1640 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1641 write). Only the INFERIOR_PTID task is being queried. */
1642
1643 #define target_stopped_by_watchpoint() \
1644 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1645
1646 /* Non-zero if we have steppable watchpoints */
1647
1648 #define target_have_steppable_watchpoint \
1649 (current_target.to_have_steppable_watchpoint)
1650
1651 /* Non-zero if we have continuable watchpoints */
1652
1653 #define target_have_continuable_watchpoint \
1654 (current_target.to_have_continuable_watchpoint)
1655
1656 /* Provide defaults for hardware watchpoint functions. */
1657
1658 /* If the *_hw_beakpoint functions have not been defined
1659 elsewhere use the definitions in the target vector. */
1660
1661 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1662 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1663 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1664 (including this one?). OTHERTYPE is who knows what... */
1665
1666 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1667 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1668 TYPE, CNT, OTHERTYPE);
1669
1670 /* Returns the number of debug registers needed to watch the given
1671 memory region, or zero if not supported. */
1672
1673 #define target_region_ok_for_hw_watchpoint(addr, len) \
1674 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1675 addr, len)
1676
1677
1678 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1679 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1680 COND is the expression for its condition, or NULL if there's none.
1681 Returns 0 for success, 1 if the watchpoint type is not supported,
1682 -1 for failure. */
1683
1684 #define target_insert_watchpoint(addr, len, type, cond) \
1685 (*current_target.to_insert_watchpoint) (&current_target, \
1686 addr, len, type, cond)
1687
1688 #define target_remove_watchpoint(addr, len, type, cond) \
1689 (*current_target.to_remove_watchpoint) (&current_target, \
1690 addr, len, type, cond)
1691
1692 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1693 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1694 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1695 masked watchpoints are not supported, -1 for failure. */
1696
1697 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1698
1699 /* Remove a masked watchpoint at ADDR with the mask MASK.
1700 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1701 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1702 for failure. */
1703
1704 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1705
1706 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1707 the target machine. Returns 0 for success, and returns non-zero or
1708 throws an error (with a detailed failure reason error code and
1709 message) otherwise. */
1710
1711 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1712 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1713 gdbarch, bp_tgt)
1714
1715 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1716 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1717 gdbarch, bp_tgt)
1718
1719 /* Return number of debug registers needed for a ranged breakpoint,
1720 or -1 if ranged breakpoints are not supported. */
1721
1722 extern int target_ranged_break_num_registers (void);
1723
1724 /* Return non-zero if target knows the data address which triggered this
1725 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1726 INFERIOR_PTID task is being queried. */
1727 #define target_stopped_data_address(target, addr_p) \
1728 (*target.to_stopped_data_address) (target, addr_p)
1729
1730 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1731 LENGTH bytes beginning at START. */
1732 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1733 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1734
1735 /* Return non-zero if the target is capable of using hardware to evaluate
1736 the condition expression. In this case, if the condition is false when
1737 the watched memory location changes, execution may continue without the
1738 debugger being notified.
1739
1740 Due to limitations in the hardware implementation, it may be capable of
1741 avoiding triggering the watchpoint in some cases where the condition
1742 expression is false, but may report some false positives as well.
1743 For this reason, GDB will still evaluate the condition expression when
1744 the watchpoint triggers. */
1745 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1746 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1747 addr, len, type, cond)
1748
1749 /* Return number of debug registers needed for a masked watchpoint,
1750 -1 if masked watchpoints are not supported or -2 if the given address
1751 and mask combination cannot be used. */
1752
1753 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1754
1755 /* Target can execute in reverse? */
1756 #define target_can_execute_reverse \
1757 (current_target.to_can_execute_reverse ? \
1758 current_target.to_can_execute_reverse (&current_target) : 0)
1759
1760 extern const struct target_desc *target_read_description (struct target_ops *);
1761
1762 #define target_get_ada_task_ptid(lwp, tid) \
1763 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1764
1765 /* Utility implementation of searching memory. */
1766 extern int simple_search_memory (struct target_ops* ops,
1767 CORE_ADDR start_addr,
1768 ULONGEST search_space_len,
1769 const gdb_byte *pattern,
1770 ULONGEST pattern_len,
1771 CORE_ADDR *found_addrp);
1772
1773 /* Main entry point for searching memory. */
1774 extern int target_search_memory (CORE_ADDR start_addr,
1775 ULONGEST search_space_len,
1776 const gdb_byte *pattern,
1777 ULONGEST pattern_len,
1778 CORE_ADDR *found_addrp);
1779
1780 /* Target file operations. */
1781
1782 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1783 target file descriptor, or -1 if an error occurs (and set
1784 *TARGET_ERRNO). */
1785 extern int target_fileio_open (const char *filename, int flags, int mode,
1786 int *target_errno);
1787
1788 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1789 Return the number of bytes written, or -1 if an error occurs
1790 (and set *TARGET_ERRNO). */
1791 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1792 ULONGEST offset, int *target_errno);
1793
1794 /* Read up to LEN bytes FD on the target into READ_BUF.
1795 Return the number of bytes read, or -1 if an error occurs
1796 (and set *TARGET_ERRNO). */
1797 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1798 ULONGEST offset, int *target_errno);
1799
1800 /* Close FD on the target. Return 0, or -1 if an error occurs
1801 (and set *TARGET_ERRNO). */
1802 extern int target_fileio_close (int fd, int *target_errno);
1803
1804 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1805 occurs (and set *TARGET_ERRNO). */
1806 extern int target_fileio_unlink (const char *filename, int *target_errno);
1807
1808 /* Read value of symbolic link FILENAME on the target. Return a
1809 null-terminated string allocated via xmalloc, or NULL if an error
1810 occurs (and set *TARGET_ERRNO). */
1811 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1812
1813 /* Read target file FILENAME. The return value will be -1 if the transfer
1814 fails or is not supported; 0 if the object is empty; or the length
1815 of the object otherwise. If a positive value is returned, a
1816 sufficiently large buffer will be allocated using xmalloc and
1817 returned in *BUF_P containing the contents of the object.
1818
1819 This method should be used for objects sufficiently small to store
1820 in a single xmalloc'd buffer, when no fixed bound on the object's
1821 size is known in advance. */
1822 extern LONGEST target_fileio_read_alloc (const char *filename,
1823 gdb_byte **buf_p);
1824
1825 /* Read target file FILENAME. The result is NUL-terminated and
1826 returned as a string, allocated using xmalloc. If an error occurs
1827 or the transfer is unsupported, NULL is returned. Empty objects
1828 are returned as allocated but empty strings. A warning is issued
1829 if the result contains any embedded NUL bytes. */
1830 extern char *target_fileio_read_stralloc (const char *filename);
1831
1832
1833 /* Tracepoint-related operations. */
1834
1835 #define target_trace_init() \
1836 (*current_target.to_trace_init) (&current_target)
1837
1838 #define target_download_tracepoint(t) \
1839 (*current_target.to_download_tracepoint) (&current_target, t)
1840
1841 #define target_can_download_tracepoint() \
1842 (*current_target.to_can_download_tracepoint) (&current_target)
1843
1844 #define target_download_trace_state_variable(tsv) \
1845 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1846
1847 #define target_enable_tracepoint(loc) \
1848 (*current_target.to_enable_tracepoint) (&current_target, loc)
1849
1850 #define target_disable_tracepoint(loc) \
1851 (*current_target.to_disable_tracepoint) (&current_target, loc)
1852
1853 #define target_trace_start() \
1854 (*current_target.to_trace_start) (&current_target)
1855
1856 #define target_trace_set_readonly_regions() \
1857 (*current_target.to_trace_set_readonly_regions) (&current_target)
1858
1859 #define target_get_trace_status(ts) \
1860 (*current_target.to_get_trace_status) (&current_target, ts)
1861
1862 #define target_get_tracepoint_status(tp,utp) \
1863 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1864
1865 #define target_trace_stop() \
1866 (*current_target.to_trace_stop) (&current_target)
1867
1868 #define target_trace_find(type,num,addr1,addr2,tpp) \
1869 (*current_target.to_trace_find) (&current_target, \
1870 (type), (num), (addr1), (addr2), (tpp))
1871
1872 #define target_get_trace_state_variable_value(tsv,val) \
1873 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1874 (tsv), (val))
1875
1876 #define target_save_trace_data(filename) \
1877 (*current_target.to_save_trace_data) (&current_target, filename)
1878
1879 #define target_upload_tracepoints(utpp) \
1880 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1881
1882 #define target_upload_trace_state_variables(utsvp) \
1883 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1884
1885 #define target_get_raw_trace_data(buf,offset,len) \
1886 (*current_target.to_get_raw_trace_data) (&current_target, \
1887 (buf), (offset), (len))
1888
1889 #define target_get_min_fast_tracepoint_insn_len() \
1890 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1891
1892 #define target_set_disconnected_tracing(val) \
1893 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1894
1895 #define target_set_circular_trace_buffer(val) \
1896 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1897
1898 #define target_set_trace_buffer_size(val) \
1899 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1900
1901 #define target_set_trace_notes(user,notes,stopnotes) \
1902 (*current_target.to_set_trace_notes) (&current_target, \
1903 (user), (notes), (stopnotes))
1904
1905 #define target_get_tib_address(ptid, addr) \
1906 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1907
1908 #define target_set_permissions() \
1909 (*current_target.to_set_permissions) (&current_target)
1910
1911 #define target_static_tracepoint_marker_at(addr, marker) \
1912 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1913 addr, marker)
1914
1915 #define target_static_tracepoint_markers_by_strid(marker_id) \
1916 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1917 marker_id)
1918
1919 #define target_traceframe_info() \
1920 (*current_target.to_traceframe_info) (&current_target)
1921
1922 #define target_use_agent(use) \
1923 (*current_target.to_use_agent) (&current_target, use)
1924
1925 #define target_can_use_agent() \
1926 (*current_target.to_can_use_agent) (&current_target)
1927
1928 #define target_augmented_libraries_svr4_read() \
1929 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1930
1931 /* Command logging facility. */
1932
1933 #define target_log_command(p) \
1934 do \
1935 if (current_target.to_log_command) \
1936 (*current_target.to_log_command) (&current_target, \
1937 p); \
1938 while (0)
1939
1940
1941 extern int target_core_of_thread (ptid_t ptid);
1942
1943 /* See to_get_unwinder in struct target_ops. */
1944 extern const struct frame_unwind *target_get_unwinder (void);
1945
1946 /* See to_get_tailcall_unwinder in struct target_ops. */
1947 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1948
1949 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1950 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1951 if there's a mismatch, and -1 if an error is encountered while
1952 reading memory. Throws an error if the functionality is found not
1953 to be supported by the current target. */
1954 int target_verify_memory (const gdb_byte *data,
1955 CORE_ADDR memaddr, ULONGEST size);
1956
1957 /* Routines for maintenance of the target structures...
1958
1959 complete_target_initialization: Finalize a target_ops by filling in
1960 any fields needed by the target implementation.
1961
1962 add_target: Add a target to the list of all possible targets.
1963
1964 push_target: Make this target the top of the stack of currently used
1965 targets, within its particular stratum of the stack. Result
1966 is 0 if now atop the stack, nonzero if not on top (maybe
1967 should warn user).
1968
1969 unpush_target: Remove this from the stack of currently used targets,
1970 no matter where it is on the list. Returns 0 if no
1971 change, 1 if removed from stack. */
1972
1973 extern void add_target (struct target_ops *);
1974
1975 extern void add_target_with_completer (struct target_ops *t,
1976 completer_ftype *completer);
1977
1978 extern void complete_target_initialization (struct target_ops *t);
1979
1980 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1981 for maintaining backwards compatibility when renaming targets. */
1982
1983 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1984
1985 extern void push_target (struct target_ops *);
1986
1987 extern int unpush_target (struct target_ops *);
1988
1989 extern void target_pre_inferior (int);
1990
1991 extern void target_preopen (int);
1992
1993 /* Does whatever cleanup is required to get rid of all pushed targets. */
1994 extern void pop_all_targets (void);
1995
1996 /* Like pop_all_targets, but pops only targets whose stratum is
1997 strictly above ABOVE_STRATUM. */
1998 extern void pop_all_targets_above (enum strata above_stratum);
1999
2000 extern int target_is_pushed (struct target_ops *t);
2001
2002 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2003 CORE_ADDR offset);
2004
2005 /* Struct target_section maps address ranges to file sections. It is
2006 mostly used with BFD files, but can be used without (e.g. for handling
2007 raw disks, or files not in formats handled by BFD). */
2008
2009 struct target_section
2010 {
2011 CORE_ADDR addr; /* Lowest address in section */
2012 CORE_ADDR endaddr; /* 1+highest address in section */
2013
2014 struct bfd_section *the_bfd_section;
2015
2016 /* The "owner" of the section.
2017 It can be any unique value. It is set by add_target_sections
2018 and used by remove_target_sections.
2019 For example, for executables it is a pointer to exec_bfd and
2020 for shlibs it is the so_list pointer. */
2021 void *owner;
2022 };
2023
2024 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2025
2026 struct target_section_table
2027 {
2028 struct target_section *sections;
2029 struct target_section *sections_end;
2030 };
2031
2032 /* Return the "section" containing the specified address. */
2033 struct target_section *target_section_by_addr (struct target_ops *target,
2034 CORE_ADDR addr);
2035
2036 /* Return the target section table this target (or the targets
2037 beneath) currently manipulate. */
2038
2039 extern struct target_section_table *target_get_section_table
2040 (struct target_ops *target);
2041
2042 /* From mem-break.c */
2043
2044 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2045 struct bp_target_info *);
2046
2047 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2048 struct bp_target_info *);
2049
2050 extern int default_memory_remove_breakpoint (struct gdbarch *,
2051 struct bp_target_info *);
2052
2053 extern int default_memory_insert_breakpoint (struct gdbarch *,
2054 struct bp_target_info *);
2055
2056
2057 /* From target.c */
2058
2059 extern void initialize_targets (void);
2060
2061 extern void noprocess (void) ATTRIBUTE_NORETURN;
2062
2063 extern void target_require_runnable (void);
2064
2065 extern void find_default_attach (struct target_ops *, char *, int);
2066
2067 extern void find_default_create_inferior (struct target_ops *,
2068 char *, char *, char **, int);
2069
2070 extern struct target_ops *find_target_beneath (struct target_ops *);
2071
2072 /* Find the target at STRATUM. If no target is at that stratum,
2073 return NULL. */
2074
2075 struct target_ops *find_target_at (enum strata stratum);
2076
2077 /* Read OS data object of type TYPE from the target, and return it in
2078 XML format. The result is NUL-terminated and returned as a string,
2079 allocated using xmalloc. If an error occurs or the transfer is
2080 unsupported, NULL is returned. Empty objects are returned as
2081 allocated but empty strings. */
2082
2083 extern char *target_get_osdata (const char *type);
2084
2085 \f
2086 /* Stuff that should be shared among the various remote targets. */
2087
2088 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2089 information (higher values, more information). */
2090 extern int remote_debug;
2091
2092 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2093 extern int baud_rate;
2094 /* Timeout limit for response from target. */
2095 extern int remote_timeout;
2096
2097 \f
2098
2099 /* Set the show memory breakpoints mode to show, and installs a cleanup
2100 to restore it back to the current value. */
2101 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2102
2103 extern int may_write_registers;
2104 extern int may_write_memory;
2105 extern int may_insert_breakpoints;
2106 extern int may_insert_tracepoints;
2107 extern int may_insert_fast_tracepoints;
2108 extern int may_stop;
2109
2110 extern void update_target_permissions (void);
2111
2112 \f
2113 /* Imported from machine dependent code. */
2114
2115 /* Blank target vector entries are initialized to target_ignore. */
2116 void target_ignore (void);
2117
2118 /* See to_supports_btrace in struct target_ops. */
2119 #define target_supports_btrace() \
2120 (current_target.to_supports_btrace (&current_target))
2121
2122 /* See to_enable_btrace in struct target_ops. */
2123 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2124
2125 /* See to_disable_btrace in struct target_ops. */
2126 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2127
2128 /* See to_teardown_btrace in struct target_ops. */
2129 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2130
2131 /* See to_read_btrace in struct target_ops. */
2132 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2133 struct btrace_target_info *,
2134 enum btrace_read_type);
2135
2136 /* See to_stop_recording in struct target_ops. */
2137 extern void target_stop_recording (void);
2138
2139 /* See to_info_record in struct target_ops. */
2140 extern void target_info_record (void);
2141
2142 /* See to_save_record in struct target_ops. */
2143 extern void target_save_record (const char *filename);
2144
2145 /* Query if the target supports deleting the execution log. */
2146 extern int target_supports_delete_record (void);
2147
2148 /* See to_delete_record in struct target_ops. */
2149 extern void target_delete_record (void);
2150
2151 /* See to_record_is_replaying in struct target_ops. */
2152 extern int target_record_is_replaying (void);
2153
2154 /* See to_goto_record_begin in struct target_ops. */
2155 extern void target_goto_record_begin (void);
2156
2157 /* See to_goto_record_end in struct target_ops. */
2158 extern void target_goto_record_end (void);
2159
2160 /* See to_goto_record in struct target_ops. */
2161 extern void target_goto_record (ULONGEST insn);
2162
2163 /* See to_insn_history. */
2164 extern void target_insn_history (int size, int flags);
2165
2166 /* See to_insn_history_from. */
2167 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2168
2169 /* See to_insn_history_range. */
2170 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2171
2172 /* See to_call_history. */
2173 extern void target_call_history (int size, int flags);
2174
2175 /* See to_call_history_from. */
2176 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2177
2178 /* See to_call_history_range. */
2179 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2180
2181 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2182 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2183 struct gdbarch *gdbarch);
2184
2185 /* See to_decr_pc_after_break. */
2186 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2187
2188 #endif /* !defined (TARGET_H) */
This page took 0.106946 seconds and 5 git commands to generate.