convert to_rcmd
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int);
409 void (*to_detach) (struct target_ops *ops, const char *, int)
410 TARGET_DEFAULT_IGNORE ();
411 void (*to_disconnect) (struct target_ops *, char *, int);
412 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
413 TARGET_DEFAULT_NORETURN (noprocess ());
414 ptid_t (*to_wait) (struct target_ops *,
415 ptid_t, struct target_waitstatus *, int)
416 TARGET_DEFAULT_NORETURN (noprocess ());
417 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
418 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_NORETURN (noprocess ());
420 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
421
422 /* Transfer LEN bytes of memory between GDB address MYADDR and
423 target address MEMADDR. If WRITE, transfer them to the target, else
424 transfer them from the target. TARGET is the target from which we
425 get this function.
426
427 Return value, N, is one of the following:
428
429 0 means that we can't handle this. If errno has been set, it is the
430 error which prevented us from doing it (FIXME: What about bfd_error?).
431
432 positive (call it N) means that we have transferred N bytes
433 starting at MEMADDR. We might be able to handle more bytes
434 beyond this length, but no promises.
435
436 negative (call its absolute value N) means that we cannot
437 transfer right at MEMADDR, but we could transfer at least
438 something at MEMADDR + N.
439
440 NOTE: cagney/2004-10-01: This has been entirely superseeded by
441 to_xfer_partial and inferior inheritance. */
442
443 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
444 int len, int write,
445 struct mem_attrib *attrib,
446 struct target_ops *target);
447
448 void (*to_files_info) (struct target_ops *);
449 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
450 struct bp_target_info *)
451 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
452 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
455 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int);
456 int (*to_ranged_break_num_registers) (struct target_ops *);
457 int (*to_insert_hw_breakpoint) (struct target_ops *,
458 struct gdbarch *, struct bp_target_info *);
459 int (*to_remove_hw_breakpoint) (struct target_ops *,
460 struct gdbarch *, struct bp_target_info *);
461
462 /* Documentation of what the two routines below are expected to do is
463 provided with the corresponding target_* macros. */
464 int (*to_remove_watchpoint) (struct target_ops *,
465 CORE_ADDR, int, int, struct expression *);
466 int (*to_insert_watchpoint) (struct target_ops *,
467 CORE_ADDR, int, int, struct expression *);
468
469 int (*to_insert_mask_watchpoint) (struct target_ops *,
470 CORE_ADDR, CORE_ADDR, int);
471 int (*to_remove_mask_watchpoint) (struct target_ops *,
472 CORE_ADDR, CORE_ADDR, int);
473 int (*to_stopped_by_watchpoint) (struct target_ops *)
474 TARGET_DEFAULT_RETURN (0);
475 int to_have_steppable_watchpoint;
476 int to_have_continuable_watchpoint;
477 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
478 TARGET_DEFAULT_RETURN (0);
479 int (*to_watchpoint_addr_within_range) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481
482 /* Documentation of this routine is provided with the corresponding
483 target_* macro. */
484 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
485 CORE_ADDR, int);
486
487 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
488 CORE_ADDR, int, int,
489 struct expression *);
490 int (*to_masked_watch_num_registers) (struct target_ops *,
491 CORE_ADDR, CORE_ADDR);
492 void (*to_terminal_init) (struct target_ops *);
493 void (*to_terminal_inferior) (struct target_ops *);
494 void (*to_terminal_ours_for_output) (struct target_ops *);
495 void (*to_terminal_ours) (struct target_ops *);
496 void (*to_terminal_save_ours) (struct target_ops *);
497 void (*to_terminal_info) (struct target_ops *, const char *, int);
498 void (*to_kill) (struct target_ops *);
499 void (*to_load) (struct target_ops *, char *, int);
500 void (*to_create_inferior) (struct target_ops *,
501 char *, char *, char **, int);
502 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
503 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
504 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
505 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
506 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
507 int (*to_follow_fork) (struct target_ops *, int, int);
508 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
509 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
510 int (*to_set_syscall_catchpoint) (struct target_ops *,
511 int, int, int, int, int *);
512 int (*to_has_exited) (struct target_ops *, int, int, int *);
513 void (*to_mourn_inferior) (struct target_ops *);
514 int (*to_can_run) (struct target_ops *);
515
516 /* Documentation of this routine is provided with the corresponding
517 target_* macro. */
518 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
519
520 /* Documentation of this routine is provided with the
521 corresponding target_* function. */
522 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
523
524 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
525 void (*to_find_new_threads) (struct target_ops *);
526 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
527 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
528 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
529 void (*to_stop) (struct target_ops *, ptid_t);
530 void (*to_rcmd) (struct target_ops *,
531 char *command, struct ui_file *output)
532 TARGET_DEFAULT_FUNC (default_rcmd);
533 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
534 void (*to_log_command) (struct target_ops *, const char *);
535 struct target_section_table *(*to_get_section_table) (struct target_ops *);
536 enum strata to_stratum;
537 int (*to_has_all_memory) (struct target_ops *);
538 int (*to_has_memory) (struct target_ops *);
539 int (*to_has_stack) (struct target_ops *);
540 int (*to_has_registers) (struct target_ops *);
541 int (*to_has_execution) (struct target_ops *, ptid_t);
542 int to_has_thread_control; /* control thread execution */
543 int to_attach_no_wait;
544 /* ASYNC target controls */
545 int (*to_can_async_p) (struct target_ops *)
546 TARGET_DEFAULT_FUNC (find_default_can_async_p);
547 int (*to_is_async_p) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (find_default_is_async_p);
549 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
550 TARGET_DEFAULT_NORETURN (tcomplain ());
551 int (*to_supports_non_stop) (struct target_ops *);
552 /* find_memory_regions support method for gcore */
553 int (*to_find_memory_regions) (struct target_ops *,
554 find_memory_region_ftype func, void *data);
555 /* make_corefile_notes support method for gcore */
556 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
557 /* get_bookmark support method for bookmarks */
558 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
559 /* goto_bookmark support method for bookmarks */
560 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
561 /* Return the thread-local address at OFFSET in the
562 thread-local storage for the thread PTID and the shared library
563 or executable file given by OBJFILE. If that block of
564 thread-local storage hasn't been allocated yet, this function
565 may return an error. */
566 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
567 ptid_t ptid,
568 CORE_ADDR load_module_addr,
569 CORE_ADDR offset);
570
571 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
572 OBJECT. The OFFSET, for a seekable object, specifies the
573 starting point. The ANNEX can be used to provide additional
574 data-specific information to the target.
575
576 Return the transferred status, error or OK (an
577 'enum target_xfer_status' value). Save the number of bytes
578 actually transferred in *XFERED_LEN if transfer is successful
579 (TARGET_XFER_OK) or the number unavailable bytes if the requested
580 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
581 smaller than LEN does not indicate the end of the object, only
582 the end of the transfer; higher level code should continue
583 transferring if desired. This is handled in target.c.
584
585 The interface does not support a "retry" mechanism. Instead it
586 assumes that at least one byte will be transfered on each
587 successful call.
588
589 NOTE: cagney/2003-10-17: The current interface can lead to
590 fragmented transfers. Lower target levels should not implement
591 hacks, such as enlarging the transfer, in an attempt to
592 compensate for this. Instead, the target stack should be
593 extended so that it implements supply/collect methods and a
594 look-aside object cache. With that available, the lowest
595 target can safely and freely "push" data up the stack.
596
597 See target_read and target_write for more information. One,
598 and only one, of readbuf or writebuf must be non-NULL. */
599
600 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
601 enum target_object object,
602 const char *annex,
603 gdb_byte *readbuf,
604 const gdb_byte *writebuf,
605 ULONGEST offset, ULONGEST len,
606 ULONGEST *xfered_len)
607 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
608
609 /* Returns the memory map for the target. A return value of NULL
610 means that no memory map is available. If a memory address
611 does not fall within any returned regions, it's assumed to be
612 RAM. The returned memory regions should not overlap.
613
614 The order of regions does not matter; target_memory_map will
615 sort regions by starting address. For that reason, this
616 function should not be called directly except via
617 target_memory_map.
618
619 This method should not cache data; if the memory map could
620 change unexpectedly, it should be invalidated, and higher
621 layers will re-fetch it. */
622 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
623
624 /* Erases the region of flash memory starting at ADDRESS, of
625 length LENGTH.
626
627 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
628 on flash block boundaries, as reported by 'to_memory_map'. */
629 void (*to_flash_erase) (struct target_ops *,
630 ULONGEST address, LONGEST length);
631
632 /* Finishes a flash memory write sequence. After this operation
633 all flash memory should be available for writing and the result
634 of reading from areas written by 'to_flash_write' should be
635 equal to what was written. */
636 void (*to_flash_done) (struct target_ops *);
637
638 /* Describe the architecture-specific features of this target.
639 Returns the description found, or NULL if no description
640 was available. */
641 const struct target_desc *(*to_read_description) (struct target_ops *ops);
642
643 /* Build the PTID of the thread on which a given task is running,
644 based on LWP and THREAD. These values are extracted from the
645 task Private_Data section of the Ada Task Control Block, and
646 their interpretation depends on the target. */
647 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
648 long lwp, long thread);
649
650 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
651 Return 0 if *READPTR is already at the end of the buffer.
652 Return -1 if there is insufficient buffer for a whole entry.
653 Return 1 if an entry was read into *TYPEP and *VALP. */
654 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
655 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
656
657 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
658 sequence of bytes in PATTERN with length PATTERN_LEN.
659
660 The result is 1 if found, 0 if not found, and -1 if there was an error
661 requiring halting of the search (e.g. memory read error).
662 If the pattern is found the address is recorded in FOUND_ADDRP. */
663 int (*to_search_memory) (struct target_ops *ops,
664 CORE_ADDR start_addr, ULONGEST search_space_len,
665 const gdb_byte *pattern, ULONGEST pattern_len,
666 CORE_ADDR *found_addrp);
667
668 /* Can target execute in reverse? */
669 int (*to_can_execute_reverse) (struct target_ops *);
670
671 /* The direction the target is currently executing. Must be
672 implemented on targets that support reverse execution and async
673 mode. The default simply returns forward execution. */
674 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
675
676 /* Does this target support debugging multiple processes
677 simultaneously? */
678 int (*to_supports_multi_process) (struct target_ops *);
679
680 /* Does this target support enabling and disabling tracepoints while a trace
681 experiment is running? */
682 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
683
684 /* Does this target support disabling address space randomization? */
685 int (*to_supports_disable_randomization) (struct target_ops *);
686
687 /* Does this target support the tracenz bytecode for string collection? */
688 int (*to_supports_string_tracing) (struct target_ops *);
689
690 /* Does this target support evaluation of breakpoint conditions on its
691 end? */
692 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
693
694 /* Does this target support evaluation of breakpoint commands on its
695 end? */
696 int (*to_can_run_breakpoint_commands) (struct target_ops *);
697
698 /* Determine current architecture of thread PTID.
699
700 The target is supposed to determine the architecture of the code where
701 the target is currently stopped at (on Cell, if a target is in spu_run,
702 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
703 This is architecture used to perform decr_pc_after_break adjustment,
704 and also determines the frame architecture of the innermost frame.
705 ptrace operations need to operate according to target_gdbarch ().
706
707 The default implementation always returns target_gdbarch (). */
708 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
709
710 /* Determine current address space of thread PTID.
711
712 The default implementation always returns the inferior's
713 address space. */
714 struct address_space *(*to_thread_address_space) (struct target_ops *,
715 ptid_t);
716
717 /* Target file operations. */
718
719 /* Open FILENAME on the target, using FLAGS and MODE. Return a
720 target file descriptor, or -1 if an error occurs (and set
721 *TARGET_ERRNO). */
722 int (*to_fileio_open) (struct target_ops *,
723 const char *filename, int flags, int mode,
724 int *target_errno);
725
726 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
727 Return the number of bytes written, or -1 if an error occurs
728 (and set *TARGET_ERRNO). */
729 int (*to_fileio_pwrite) (struct target_ops *,
730 int fd, const gdb_byte *write_buf, int len,
731 ULONGEST offset, int *target_errno);
732
733 /* Read up to LEN bytes FD on the target into READ_BUF.
734 Return the number of bytes read, or -1 if an error occurs
735 (and set *TARGET_ERRNO). */
736 int (*to_fileio_pread) (struct target_ops *,
737 int fd, gdb_byte *read_buf, int len,
738 ULONGEST offset, int *target_errno);
739
740 /* Close FD on the target. Return 0, or -1 if an error occurs
741 (and set *TARGET_ERRNO). */
742 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
743
744 /* Unlink FILENAME on the target. Return 0, or -1 if an error
745 occurs (and set *TARGET_ERRNO). */
746 int (*to_fileio_unlink) (struct target_ops *,
747 const char *filename, int *target_errno);
748
749 /* Read value of symbolic link FILENAME on the target. Return a
750 null-terminated string allocated via xmalloc, or NULL if an error
751 occurs (and set *TARGET_ERRNO). */
752 char *(*to_fileio_readlink) (struct target_ops *,
753 const char *filename, int *target_errno);
754
755
756 /* Implement the "info proc" command. */
757 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
758
759 /* Tracepoint-related operations. */
760
761 /* Prepare the target for a tracing run. */
762 void (*to_trace_init) (struct target_ops *);
763
764 /* Send full details of a tracepoint location to the target. */
765 void (*to_download_tracepoint) (struct target_ops *,
766 struct bp_location *location);
767
768 /* Is the target able to download tracepoint locations in current
769 state? */
770 int (*to_can_download_tracepoint) (struct target_ops *);
771
772 /* Send full details of a trace state variable to the target. */
773 void (*to_download_trace_state_variable) (struct target_ops *,
774 struct trace_state_variable *tsv);
775
776 /* Enable a tracepoint on the target. */
777 void (*to_enable_tracepoint) (struct target_ops *,
778 struct bp_location *location);
779
780 /* Disable a tracepoint on the target. */
781 void (*to_disable_tracepoint) (struct target_ops *,
782 struct bp_location *location);
783
784 /* Inform the target info of memory regions that are readonly
785 (such as text sections), and so it should return data from
786 those rather than look in the trace buffer. */
787 void (*to_trace_set_readonly_regions) (struct target_ops *);
788
789 /* Start a trace run. */
790 void (*to_trace_start) (struct target_ops *);
791
792 /* Get the current status of a tracing run. */
793 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
794
795 void (*to_get_tracepoint_status) (struct target_ops *,
796 struct breakpoint *tp,
797 struct uploaded_tp *utp);
798
799 /* Stop a trace run. */
800 void (*to_trace_stop) (struct target_ops *);
801
802 /* Ask the target to find a trace frame of the given type TYPE,
803 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
804 number of the trace frame, and also the tracepoint number at
805 TPP. If no trace frame matches, return -1. May throw if the
806 operation fails. */
807 int (*to_trace_find) (struct target_ops *,
808 enum trace_find_type type, int num,
809 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
810
811 /* Get the value of the trace state variable number TSV, returning
812 1 if the value is known and writing the value itself into the
813 location pointed to by VAL, else returning 0. */
814 int (*to_get_trace_state_variable_value) (struct target_ops *,
815 int tsv, LONGEST *val);
816
817 int (*to_save_trace_data) (struct target_ops *, const char *filename);
818
819 int (*to_upload_tracepoints) (struct target_ops *,
820 struct uploaded_tp **utpp);
821
822 int (*to_upload_trace_state_variables) (struct target_ops *,
823 struct uploaded_tsv **utsvp);
824
825 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
826 ULONGEST offset, LONGEST len);
827
828 /* Get the minimum length of instruction on which a fast tracepoint
829 may be set on the target. If this operation is unsupported,
830 return -1. If for some reason the minimum length cannot be
831 determined, return 0. */
832 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
833
834 /* Set the target's tracing behavior in response to unexpected
835 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
836 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
837 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
838 /* Set the size of trace buffer in the target. */
839 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
840
841 /* Add/change textual notes about the trace run, returning 1 if
842 successful, 0 otherwise. */
843 int (*to_set_trace_notes) (struct target_ops *,
844 const char *user, const char *notes,
845 const char *stopnotes);
846
847 /* Return the processor core that thread PTID was last seen on.
848 This information is updated only when:
849 - update_thread_list is called
850 - thread stops
851 If the core cannot be determined -- either for the specified
852 thread, or right now, or in this debug session, or for this
853 target -- return -1. */
854 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
855
856 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
857 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
858 a match, 0 if there's a mismatch, and -1 if an error is
859 encountered while reading memory. */
860 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
861 CORE_ADDR memaddr, ULONGEST size);
862
863 /* Return the address of the start of the Thread Information Block
864 a Windows OS specific feature. */
865 int (*to_get_tib_address) (struct target_ops *,
866 ptid_t ptid, CORE_ADDR *addr);
867
868 /* Send the new settings of write permission variables. */
869 void (*to_set_permissions) (struct target_ops *);
870
871 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
872 with its details. Return 1 on success, 0 on failure. */
873 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
874 struct static_tracepoint_marker *marker);
875
876 /* Return a vector of all tracepoints markers string id ID, or all
877 markers if ID is NULL. */
878 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
879 (struct target_ops *, const char *id);
880
881 /* Return a traceframe info object describing the current
882 traceframe's contents. If the target doesn't support
883 traceframe info, return NULL. If the current traceframe is not
884 selected (the current traceframe number is -1), the target can
885 choose to return either NULL or an empty traceframe info. If
886 NULL is returned, for example in remote target, GDB will read
887 from the live inferior. If an empty traceframe info is
888 returned, for example in tfile target, which means the
889 traceframe info is available, but the requested memory is not
890 available in it. GDB will try to see if the requested memory
891 is available in the read-only sections. This method should not
892 cache data; higher layers take care of caching, invalidating,
893 and re-fetching when necessary. */
894 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
895
896 /* Ask the target to use or not to use agent according to USE. Return 1
897 successful, 0 otherwise. */
898 int (*to_use_agent) (struct target_ops *, int use);
899
900 /* Is the target able to use agent in current state? */
901 int (*to_can_use_agent) (struct target_ops *);
902
903 /* Check whether the target supports branch tracing. */
904 int (*to_supports_btrace) (struct target_ops *)
905 TARGET_DEFAULT_RETURN (0);
906
907 /* Enable branch tracing for PTID and allocate a branch trace target
908 information struct for reading and for disabling branch trace. */
909 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
910 ptid_t ptid);
911
912 /* Disable branch tracing and deallocate TINFO. */
913 void (*to_disable_btrace) (struct target_ops *,
914 struct btrace_target_info *tinfo);
915
916 /* Disable branch tracing and deallocate TINFO. This function is similar
917 to to_disable_btrace, except that it is called during teardown and is
918 only allowed to perform actions that are safe. A counter-example would
919 be attempting to talk to a remote target. */
920 void (*to_teardown_btrace) (struct target_ops *,
921 struct btrace_target_info *tinfo);
922
923 /* Read branch trace data for the thread indicated by BTINFO into DATA.
924 DATA is cleared before new trace is added.
925 The branch trace will start with the most recent block and continue
926 towards older blocks. */
927 enum btrace_error (*to_read_btrace) (struct target_ops *self,
928 VEC (btrace_block_s) **data,
929 struct btrace_target_info *btinfo,
930 enum btrace_read_type type);
931
932 /* Stop trace recording. */
933 void (*to_stop_recording) (struct target_ops *);
934
935 /* Print information about the recording. */
936 void (*to_info_record) (struct target_ops *);
937
938 /* Save the recorded execution trace into a file. */
939 void (*to_save_record) (struct target_ops *, const char *filename);
940
941 /* Delete the recorded execution trace from the current position onwards. */
942 void (*to_delete_record) (struct target_ops *);
943
944 /* Query if the record target is currently replaying. */
945 int (*to_record_is_replaying) (struct target_ops *);
946
947 /* Go to the begin of the execution trace. */
948 void (*to_goto_record_begin) (struct target_ops *);
949
950 /* Go to the end of the execution trace. */
951 void (*to_goto_record_end) (struct target_ops *);
952
953 /* Go to a specific location in the recorded execution trace. */
954 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
955
956 /* Disassemble SIZE instructions in the recorded execution trace from
957 the current position.
958 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
959 disassemble SIZE succeeding instructions. */
960 void (*to_insn_history) (struct target_ops *, int size, int flags);
961
962 /* Disassemble SIZE instructions in the recorded execution trace around
963 FROM.
964 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
965 disassemble SIZE instructions after FROM. */
966 void (*to_insn_history_from) (struct target_ops *,
967 ULONGEST from, int size, int flags);
968
969 /* Disassemble a section of the recorded execution trace from instruction
970 BEGIN (inclusive) to instruction END (inclusive). */
971 void (*to_insn_history_range) (struct target_ops *,
972 ULONGEST begin, ULONGEST end, int flags);
973
974 /* Print a function trace of the recorded execution trace.
975 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
976 succeeding functions. */
977 void (*to_call_history) (struct target_ops *, int size, int flags);
978
979 /* Print a function trace of the recorded execution trace starting
980 at function FROM.
981 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
982 SIZE functions after FROM. */
983 void (*to_call_history_from) (struct target_ops *,
984 ULONGEST begin, int size, int flags);
985
986 /* Print a function trace of an execution trace section from function BEGIN
987 (inclusive) to function END (inclusive). */
988 void (*to_call_history_range) (struct target_ops *,
989 ULONGEST begin, ULONGEST end, int flags);
990
991 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
992 non-empty annex. */
993 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
994
995 /* Those unwinders are tried before any other arch unwinders. Use NULL if
996 it is not used. */
997 const struct frame_unwind *to_get_unwinder;
998 const struct frame_unwind *to_get_tailcall_unwinder;
999
1000 /* Return the number of bytes by which the PC needs to be decremented
1001 after executing a breakpoint instruction.
1002 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1003 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1004 struct gdbarch *gdbarch);
1005
1006 int to_magic;
1007 /* Need sub-structure for target machine related rather than comm related?
1008 */
1009 };
1010
1011 /* Magic number for checking ops size. If a struct doesn't end with this
1012 number, somebody changed the declaration but didn't change all the
1013 places that initialize one. */
1014
1015 #define OPS_MAGIC 3840
1016
1017 /* The ops structure for our "current" target process. This should
1018 never be NULL. If there is no target, it points to the dummy_target. */
1019
1020 extern struct target_ops current_target;
1021
1022 /* Define easy words for doing these operations on our current target. */
1023
1024 #define target_shortname (current_target.to_shortname)
1025 #define target_longname (current_target.to_longname)
1026
1027 /* Does whatever cleanup is required for a target that we are no
1028 longer going to be calling. This routine is automatically always
1029 called after popping the target off the target stack - the target's
1030 own methods are no longer available through the target vector.
1031 Closing file descriptors and freeing all memory allocated memory are
1032 typical things it should do. */
1033
1034 void target_close (struct target_ops *targ);
1035
1036 /* Attaches to a process on the target side. Arguments are as passed
1037 to the `attach' command by the user. This routine can be called
1038 when the target is not on the target-stack, if the target_can_run
1039 routine returns 1; in that case, it must push itself onto the stack.
1040 Upon exit, the target should be ready for normal operations, and
1041 should be ready to deliver the status of the process immediately
1042 (without waiting) to an upcoming target_wait call. */
1043
1044 void target_attach (char *, int);
1045
1046 /* Some targets don't generate traps when attaching to the inferior,
1047 or their target_attach implementation takes care of the waiting.
1048 These targets must set to_attach_no_wait. */
1049
1050 #define target_attach_no_wait \
1051 (current_target.to_attach_no_wait)
1052
1053 /* The target_attach operation places a process under debugger control,
1054 and stops the process.
1055
1056 This operation provides a target-specific hook that allows the
1057 necessary bookkeeping to be performed after an attach completes. */
1058 #define target_post_attach(pid) \
1059 (*current_target.to_post_attach) (&current_target, pid)
1060
1061 /* Takes a program previously attached to and detaches it.
1062 The program may resume execution (some targets do, some don't) and will
1063 no longer stop on signals, etc. We better not have left any breakpoints
1064 in the program or it'll die when it hits one. ARGS is arguments
1065 typed by the user (e.g. a signal to send the process). FROM_TTY
1066 says whether to be verbose or not. */
1067
1068 extern void target_detach (const char *, int);
1069
1070 /* Disconnect from the current target without resuming it (leaving it
1071 waiting for a debugger). */
1072
1073 extern void target_disconnect (char *, int);
1074
1075 /* Resume execution of the target process PTID (or a group of
1076 threads). STEP says whether to single-step or to run free; SIGGNAL
1077 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1078 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1079 PTID means `step/resume only this process id'. A wildcard PTID
1080 (all threads, or all threads of process) means `step/resume
1081 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1082 matches) resume with their 'thread->suspend.stop_signal' signal
1083 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1084 if in "no pass" state. */
1085
1086 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1087
1088 /* Wait for process pid to do something. PTID = -1 to wait for any
1089 pid to do something. Return pid of child, or -1 in case of error;
1090 store status through argument pointer STATUS. Note that it is
1091 _NOT_ OK to throw_exception() out of target_wait() without popping
1092 the debugging target from the stack; GDB isn't prepared to get back
1093 to the prompt with a debugging target but without the frame cache,
1094 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1095 options. */
1096
1097 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1098 int options);
1099
1100 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1101
1102 extern void target_fetch_registers (struct regcache *regcache, int regno);
1103
1104 /* Store at least register REGNO, or all regs if REGNO == -1.
1105 It can store as many registers as it wants to, so target_prepare_to_store
1106 must have been previously called. Calls error() if there are problems. */
1107
1108 extern void target_store_registers (struct regcache *regcache, int regs);
1109
1110 /* Get ready to modify the registers array. On machines which store
1111 individual registers, this doesn't need to do anything. On machines
1112 which store all the registers in one fell swoop, this makes sure
1113 that REGISTERS contains all the registers from the program being
1114 debugged. */
1115
1116 #define target_prepare_to_store(regcache) \
1117 (*current_target.to_prepare_to_store) (&current_target, regcache)
1118
1119 /* Determine current address space of thread PTID. */
1120
1121 struct address_space *target_thread_address_space (ptid_t);
1122
1123 /* Implement the "info proc" command. This returns one if the request
1124 was handled, and zero otherwise. It can also throw an exception if
1125 an error was encountered while attempting to handle the
1126 request. */
1127
1128 int target_info_proc (char *, enum info_proc_what);
1129
1130 /* Returns true if this target can debug multiple processes
1131 simultaneously. */
1132
1133 #define target_supports_multi_process() \
1134 (*current_target.to_supports_multi_process) (&current_target)
1135
1136 /* Returns true if this target can disable address space randomization. */
1137
1138 int target_supports_disable_randomization (void);
1139
1140 /* Returns true if this target can enable and disable tracepoints
1141 while a trace experiment is running. */
1142
1143 #define target_supports_enable_disable_tracepoint() \
1144 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1145
1146 #define target_supports_string_tracing() \
1147 (*current_target.to_supports_string_tracing) (&current_target)
1148
1149 /* Returns true if this target can handle breakpoint conditions
1150 on its end. */
1151
1152 #define target_supports_evaluation_of_breakpoint_conditions() \
1153 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1154
1155 /* Returns true if this target can handle breakpoint commands
1156 on its end. */
1157
1158 #define target_can_run_breakpoint_commands() \
1159 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1160
1161 extern int target_read_string (CORE_ADDR, char **, int, int *);
1162
1163 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1164 ssize_t len);
1165
1166 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1167 ssize_t len);
1168
1169 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1170
1171 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1172
1173 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1174 ssize_t len);
1175
1176 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1177 ssize_t len);
1178
1179 /* Fetches the target's memory map. If one is found it is sorted
1180 and returned, after some consistency checking. Otherwise, NULL
1181 is returned. */
1182 VEC(mem_region_s) *target_memory_map (void);
1183
1184 /* Erase the specified flash region. */
1185 void target_flash_erase (ULONGEST address, LONGEST length);
1186
1187 /* Finish a sequence of flash operations. */
1188 void target_flash_done (void);
1189
1190 /* Describes a request for a memory write operation. */
1191 struct memory_write_request
1192 {
1193 /* Begining address that must be written. */
1194 ULONGEST begin;
1195 /* Past-the-end address. */
1196 ULONGEST end;
1197 /* The data to write. */
1198 gdb_byte *data;
1199 /* A callback baton for progress reporting for this request. */
1200 void *baton;
1201 };
1202 typedef struct memory_write_request memory_write_request_s;
1203 DEF_VEC_O(memory_write_request_s);
1204
1205 /* Enumeration specifying different flash preservation behaviour. */
1206 enum flash_preserve_mode
1207 {
1208 flash_preserve,
1209 flash_discard
1210 };
1211
1212 /* Write several memory blocks at once. This version can be more
1213 efficient than making several calls to target_write_memory, in
1214 particular because it can optimize accesses to flash memory.
1215
1216 Moreover, this is currently the only memory access function in gdb
1217 that supports writing to flash memory, and it should be used for
1218 all cases where access to flash memory is desirable.
1219
1220 REQUESTS is the vector (see vec.h) of memory_write_request.
1221 PRESERVE_FLASH_P indicates what to do with blocks which must be
1222 erased, but not completely rewritten.
1223 PROGRESS_CB is a function that will be periodically called to provide
1224 feedback to user. It will be called with the baton corresponding
1225 to the request currently being written. It may also be called
1226 with a NULL baton, when preserved flash sectors are being rewritten.
1227
1228 The function returns 0 on success, and error otherwise. */
1229 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1230 enum flash_preserve_mode preserve_flash_p,
1231 void (*progress_cb) (ULONGEST, void *));
1232
1233 /* Print a line about the current target. */
1234
1235 #define target_files_info() \
1236 (*current_target.to_files_info) (&current_target)
1237
1238 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1239 the target machine. Returns 0 for success, and returns non-zero or
1240 throws an error (with a detailed failure reason error code and
1241 message) otherwise. */
1242
1243 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1244 struct bp_target_info *bp_tgt);
1245
1246 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1247 machine. Result is 0 for success, non-zero for error. */
1248
1249 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1250 struct bp_target_info *bp_tgt);
1251
1252 /* Initialize the terminal settings we record for the inferior,
1253 before we actually run the inferior. */
1254
1255 #define target_terminal_init() \
1256 (*current_target.to_terminal_init) (&current_target)
1257
1258 /* Put the inferior's terminal settings into effect.
1259 This is preparation for starting or resuming the inferior. */
1260
1261 extern void target_terminal_inferior (void);
1262
1263 /* Put some of our terminal settings into effect,
1264 enough to get proper results from our output,
1265 but do not change into or out of RAW mode
1266 so that no input is discarded.
1267
1268 After doing this, either terminal_ours or terminal_inferior
1269 should be called to get back to a normal state of affairs. */
1270
1271 #define target_terminal_ours_for_output() \
1272 (*current_target.to_terminal_ours_for_output) (&current_target)
1273
1274 /* Put our terminal settings into effect.
1275 First record the inferior's terminal settings
1276 so they can be restored properly later. */
1277
1278 #define target_terminal_ours() \
1279 (*current_target.to_terminal_ours) (&current_target)
1280
1281 /* Save our terminal settings.
1282 This is called from TUI after entering or leaving the curses
1283 mode. Since curses modifies our terminal this call is here
1284 to take this change into account. */
1285
1286 #define target_terminal_save_ours() \
1287 (*current_target.to_terminal_save_ours) (&current_target)
1288
1289 /* Print useful information about our terminal status, if such a thing
1290 exists. */
1291
1292 #define target_terminal_info(arg, from_tty) \
1293 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1294
1295 /* Kill the inferior process. Make it go away. */
1296
1297 extern void target_kill (void);
1298
1299 /* Load an executable file into the target process. This is expected
1300 to not only bring new code into the target process, but also to
1301 update GDB's symbol tables to match.
1302
1303 ARG contains command-line arguments, to be broken down with
1304 buildargv (). The first non-switch argument is the filename to
1305 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1306 0)), which is an offset to apply to the load addresses of FILE's
1307 sections. The target may define switches, or other non-switch
1308 arguments, as it pleases. */
1309
1310 extern void target_load (char *arg, int from_tty);
1311
1312 /* Start an inferior process and set inferior_ptid to its pid.
1313 EXEC_FILE is the file to run.
1314 ALLARGS is a string containing the arguments to the program.
1315 ENV is the environment vector to pass. Errors reported with error().
1316 On VxWorks and various standalone systems, we ignore exec_file. */
1317
1318 void target_create_inferior (char *exec_file, char *args,
1319 char **env, int from_tty);
1320
1321 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1322 notification of inferior events such as fork and vork immediately
1323 after the inferior is created. (This because of how gdb gets an
1324 inferior created via invoking a shell to do it. In such a scenario,
1325 if the shell init file has commands in it, the shell will fork and
1326 exec for each of those commands, and we will see each such fork
1327 event. Very bad.)
1328
1329 Such targets will supply an appropriate definition for this function. */
1330
1331 #define target_post_startup_inferior(ptid) \
1332 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1333
1334 /* On some targets, we can catch an inferior fork or vfork event when
1335 it occurs. These functions insert/remove an already-created
1336 catchpoint for such events. They return 0 for success, 1 if the
1337 catchpoint type is not supported and -1 for failure. */
1338
1339 #define target_insert_fork_catchpoint(pid) \
1340 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1341
1342 #define target_remove_fork_catchpoint(pid) \
1343 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1344
1345 #define target_insert_vfork_catchpoint(pid) \
1346 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1347
1348 #define target_remove_vfork_catchpoint(pid) \
1349 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1350
1351 /* If the inferior forks or vforks, this function will be called at
1352 the next resume in order to perform any bookkeeping and fiddling
1353 necessary to continue debugging either the parent or child, as
1354 requested, and releasing the other. Information about the fork
1355 or vfork event is available via get_last_target_status ().
1356 This function returns 1 if the inferior should not be resumed
1357 (i.e. there is another event pending). */
1358
1359 int target_follow_fork (int follow_child, int detach_fork);
1360
1361 /* On some targets, we can catch an inferior exec event when it
1362 occurs. These functions insert/remove an already-created
1363 catchpoint for such events. They return 0 for success, 1 if the
1364 catchpoint type is not supported and -1 for failure. */
1365
1366 #define target_insert_exec_catchpoint(pid) \
1367 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1368
1369 #define target_remove_exec_catchpoint(pid) \
1370 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1371
1372 /* Syscall catch.
1373
1374 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1375 If NEEDED is zero, it means the target can disable the mechanism to
1376 catch system calls because there are no more catchpoints of this type.
1377
1378 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1379 being requested. In this case, both TABLE_SIZE and TABLE should
1380 be ignored.
1381
1382 TABLE_SIZE is the number of elements in TABLE. It only matters if
1383 ANY_COUNT is zero.
1384
1385 TABLE is an array of ints, indexed by syscall number. An element in
1386 this array is nonzero if that syscall should be caught. This argument
1387 only matters if ANY_COUNT is zero.
1388
1389 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1390 for failure. */
1391
1392 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1393 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1394 pid, needed, any_count, \
1395 table_size, table)
1396
1397 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1398 exit code of PID, if any. */
1399
1400 #define target_has_exited(pid,wait_status,exit_status) \
1401 (*current_target.to_has_exited) (&current_target, \
1402 pid,wait_status,exit_status)
1403
1404 /* The debugger has completed a blocking wait() call. There is now
1405 some process event that must be processed. This function should
1406 be defined by those targets that require the debugger to perform
1407 cleanup or internal state changes in response to the process event. */
1408
1409 /* The inferior process has died. Do what is right. */
1410
1411 void target_mourn_inferior (void);
1412
1413 /* Does target have enough data to do a run or attach command? */
1414
1415 #define target_can_run(t) \
1416 ((t)->to_can_run) (t)
1417
1418 /* Set list of signals to be handled in the target.
1419
1420 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1421 (enum gdb_signal). For every signal whose entry in this array is
1422 non-zero, the target is allowed -but not required- to skip reporting
1423 arrival of the signal to the GDB core by returning from target_wait,
1424 and to pass the signal directly to the inferior instead.
1425
1426 However, if the target is hardware single-stepping a thread that is
1427 about to receive a signal, it needs to be reported in any case, even
1428 if mentioned in a previous target_pass_signals call. */
1429
1430 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1431
1432 /* Set list of signals the target may pass to the inferior. This
1433 directly maps to the "handle SIGNAL pass/nopass" setting.
1434
1435 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1436 number (enum gdb_signal). For every signal whose entry in this
1437 array is non-zero, the target is allowed to pass the signal to the
1438 inferior. Signals not present in the array shall be silently
1439 discarded. This does not influence whether to pass signals to the
1440 inferior as a result of a target_resume call. This is useful in
1441 scenarios where the target needs to decide whether to pass or not a
1442 signal to the inferior without GDB core involvement, such as for
1443 example, when detaching (as threads may have been suspended with
1444 pending signals not reported to GDB). */
1445
1446 extern void target_program_signals (int nsig, unsigned char *program_signals);
1447
1448 /* Check to see if a thread is still alive. */
1449
1450 extern int target_thread_alive (ptid_t ptid);
1451
1452 /* Query for new threads and add them to the thread list. */
1453
1454 extern void target_find_new_threads (void);
1455
1456 /* Make target stop in a continuable fashion. (For instance, under
1457 Unix, this should act like SIGSTOP). This function is normally
1458 used by GUIs to implement a stop button. */
1459
1460 extern void target_stop (ptid_t ptid);
1461
1462 /* Send the specified COMMAND to the target's monitor
1463 (shell,interpreter) for execution. The result of the query is
1464 placed in OUTBUF. */
1465
1466 #define target_rcmd(command, outbuf) \
1467 (*current_target.to_rcmd) (&current_target, command, outbuf)
1468
1469
1470 /* Does the target include all of memory, or only part of it? This
1471 determines whether we look up the target chain for other parts of
1472 memory if this target can't satisfy a request. */
1473
1474 extern int target_has_all_memory_1 (void);
1475 #define target_has_all_memory target_has_all_memory_1 ()
1476
1477 /* Does the target include memory? (Dummy targets don't.) */
1478
1479 extern int target_has_memory_1 (void);
1480 #define target_has_memory target_has_memory_1 ()
1481
1482 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1483 we start a process.) */
1484
1485 extern int target_has_stack_1 (void);
1486 #define target_has_stack target_has_stack_1 ()
1487
1488 /* Does the target have registers? (Exec files don't.) */
1489
1490 extern int target_has_registers_1 (void);
1491 #define target_has_registers target_has_registers_1 ()
1492
1493 /* Does the target have execution? Can we make it jump (through
1494 hoops), or pop its stack a few times? This means that the current
1495 target is currently executing; for some targets, that's the same as
1496 whether or not the target is capable of execution, but there are
1497 also targets which can be current while not executing. In that
1498 case this will become true after target_create_inferior or
1499 target_attach. */
1500
1501 extern int target_has_execution_1 (ptid_t);
1502
1503 /* Like target_has_execution_1, but always passes inferior_ptid. */
1504
1505 extern int target_has_execution_current (void);
1506
1507 #define target_has_execution target_has_execution_current ()
1508
1509 /* Default implementations for process_stratum targets. Return true
1510 if there's a selected inferior, false otherwise. */
1511
1512 extern int default_child_has_all_memory (struct target_ops *ops);
1513 extern int default_child_has_memory (struct target_ops *ops);
1514 extern int default_child_has_stack (struct target_ops *ops);
1515 extern int default_child_has_registers (struct target_ops *ops);
1516 extern int default_child_has_execution (struct target_ops *ops,
1517 ptid_t the_ptid);
1518
1519 /* Can the target support the debugger control of thread execution?
1520 Can it lock the thread scheduler? */
1521
1522 #define target_can_lock_scheduler \
1523 (current_target.to_has_thread_control & tc_schedlock)
1524
1525 /* Should the target enable async mode if it is supported? Temporary
1526 cludge until async mode is a strict superset of sync mode. */
1527 extern int target_async_permitted;
1528
1529 /* Can the target support asynchronous execution? */
1530 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1531
1532 /* Is the target in asynchronous execution mode? */
1533 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1534
1535 int target_supports_non_stop (void);
1536
1537 /* Put the target in async mode with the specified callback function. */
1538 #define target_async(CALLBACK,CONTEXT) \
1539 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1540
1541 #define target_execution_direction() \
1542 (current_target.to_execution_direction (&current_target))
1543
1544 /* Converts a process id to a string. Usually, the string just contains
1545 `process xyz', but on some systems it may contain
1546 `process xyz thread abc'. */
1547
1548 extern char *target_pid_to_str (ptid_t ptid);
1549
1550 extern char *normal_pid_to_str (ptid_t ptid);
1551
1552 /* Return a short string describing extra information about PID,
1553 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1554 is okay. */
1555
1556 #define target_extra_thread_info(TP) \
1557 (current_target.to_extra_thread_info (&current_target, TP))
1558
1559 /* Return the thread's name. A NULL result means that the target
1560 could not determine this thread's name. */
1561
1562 extern char *target_thread_name (struct thread_info *);
1563
1564 /* Attempts to find the pathname of the executable file
1565 that was run to create a specified process.
1566
1567 The process PID must be stopped when this operation is used.
1568
1569 If the executable file cannot be determined, NULL is returned.
1570
1571 Else, a pointer to a character string containing the pathname
1572 is returned. This string should be copied into a buffer by
1573 the client if the string will not be immediately used, or if
1574 it must persist. */
1575
1576 #define target_pid_to_exec_file(pid) \
1577 (current_target.to_pid_to_exec_file) (&current_target, pid)
1578
1579 /* See the to_thread_architecture description in struct target_ops. */
1580
1581 #define target_thread_architecture(ptid) \
1582 (current_target.to_thread_architecture (&current_target, ptid))
1583
1584 /*
1585 * Iterator function for target memory regions.
1586 * Calls a callback function once for each memory region 'mapped'
1587 * in the child process. Defined as a simple macro rather than
1588 * as a function macro so that it can be tested for nullity.
1589 */
1590
1591 #define target_find_memory_regions(FUNC, DATA) \
1592 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1593
1594 /*
1595 * Compose corefile .note section.
1596 */
1597
1598 #define target_make_corefile_notes(BFD, SIZE_P) \
1599 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1600
1601 /* Bookmark interfaces. */
1602 #define target_get_bookmark(ARGS, FROM_TTY) \
1603 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1604
1605 #define target_goto_bookmark(ARG, FROM_TTY) \
1606 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1607
1608 /* Hardware watchpoint interfaces. */
1609
1610 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1611 write). Only the INFERIOR_PTID task is being queried. */
1612
1613 #define target_stopped_by_watchpoint() \
1614 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1615
1616 /* Non-zero if we have steppable watchpoints */
1617
1618 #define target_have_steppable_watchpoint \
1619 (current_target.to_have_steppable_watchpoint)
1620
1621 /* Non-zero if we have continuable watchpoints */
1622
1623 #define target_have_continuable_watchpoint \
1624 (current_target.to_have_continuable_watchpoint)
1625
1626 /* Provide defaults for hardware watchpoint functions. */
1627
1628 /* If the *_hw_beakpoint functions have not been defined
1629 elsewhere use the definitions in the target vector. */
1630
1631 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1632 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1633 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1634 (including this one?). OTHERTYPE is who knows what... */
1635
1636 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1637 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1638 TYPE, CNT, OTHERTYPE);
1639
1640 /* Returns the number of debug registers needed to watch the given
1641 memory region, or zero if not supported. */
1642
1643 #define target_region_ok_for_hw_watchpoint(addr, len) \
1644 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1645 addr, len)
1646
1647
1648 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1649 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1650 COND is the expression for its condition, or NULL if there's none.
1651 Returns 0 for success, 1 if the watchpoint type is not supported,
1652 -1 for failure. */
1653
1654 #define target_insert_watchpoint(addr, len, type, cond) \
1655 (*current_target.to_insert_watchpoint) (&current_target, \
1656 addr, len, type, cond)
1657
1658 #define target_remove_watchpoint(addr, len, type, cond) \
1659 (*current_target.to_remove_watchpoint) (&current_target, \
1660 addr, len, type, cond)
1661
1662 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1663 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1664 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1665 masked watchpoints are not supported, -1 for failure. */
1666
1667 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1668
1669 /* Remove a masked watchpoint at ADDR with the mask MASK.
1670 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1671 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1672 for failure. */
1673
1674 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1675
1676 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1677 the target machine. Returns 0 for success, and returns non-zero or
1678 throws an error (with a detailed failure reason error code and
1679 message) otherwise. */
1680
1681 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1682 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1683 gdbarch, bp_tgt)
1684
1685 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1686 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1687 gdbarch, bp_tgt)
1688
1689 /* Return number of debug registers needed for a ranged breakpoint,
1690 or -1 if ranged breakpoints are not supported. */
1691
1692 extern int target_ranged_break_num_registers (void);
1693
1694 /* Return non-zero if target knows the data address which triggered this
1695 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1696 INFERIOR_PTID task is being queried. */
1697 #define target_stopped_data_address(target, addr_p) \
1698 (*target.to_stopped_data_address) (target, addr_p)
1699
1700 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1701 LENGTH bytes beginning at START. */
1702 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1703 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1704
1705 /* Return non-zero if the target is capable of using hardware to evaluate
1706 the condition expression. In this case, if the condition is false when
1707 the watched memory location changes, execution may continue without the
1708 debugger being notified.
1709
1710 Due to limitations in the hardware implementation, it may be capable of
1711 avoiding triggering the watchpoint in some cases where the condition
1712 expression is false, but may report some false positives as well.
1713 For this reason, GDB will still evaluate the condition expression when
1714 the watchpoint triggers. */
1715 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1716 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1717 addr, len, type, cond)
1718
1719 /* Return number of debug registers needed for a masked watchpoint,
1720 -1 if masked watchpoints are not supported or -2 if the given address
1721 and mask combination cannot be used. */
1722
1723 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1724
1725 /* Target can execute in reverse? */
1726 #define target_can_execute_reverse \
1727 (current_target.to_can_execute_reverse ? \
1728 current_target.to_can_execute_reverse (&current_target) : 0)
1729
1730 extern const struct target_desc *target_read_description (struct target_ops *);
1731
1732 #define target_get_ada_task_ptid(lwp, tid) \
1733 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1734
1735 /* Utility implementation of searching memory. */
1736 extern int simple_search_memory (struct target_ops* ops,
1737 CORE_ADDR start_addr,
1738 ULONGEST search_space_len,
1739 const gdb_byte *pattern,
1740 ULONGEST pattern_len,
1741 CORE_ADDR *found_addrp);
1742
1743 /* Main entry point for searching memory. */
1744 extern int target_search_memory (CORE_ADDR start_addr,
1745 ULONGEST search_space_len,
1746 const gdb_byte *pattern,
1747 ULONGEST pattern_len,
1748 CORE_ADDR *found_addrp);
1749
1750 /* Target file operations. */
1751
1752 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1753 target file descriptor, or -1 if an error occurs (and set
1754 *TARGET_ERRNO). */
1755 extern int target_fileio_open (const char *filename, int flags, int mode,
1756 int *target_errno);
1757
1758 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1759 Return the number of bytes written, or -1 if an error occurs
1760 (and set *TARGET_ERRNO). */
1761 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1762 ULONGEST offset, int *target_errno);
1763
1764 /* Read up to LEN bytes FD on the target into READ_BUF.
1765 Return the number of bytes read, or -1 if an error occurs
1766 (and set *TARGET_ERRNO). */
1767 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1768 ULONGEST offset, int *target_errno);
1769
1770 /* Close FD on the target. Return 0, or -1 if an error occurs
1771 (and set *TARGET_ERRNO). */
1772 extern int target_fileio_close (int fd, int *target_errno);
1773
1774 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1775 occurs (and set *TARGET_ERRNO). */
1776 extern int target_fileio_unlink (const char *filename, int *target_errno);
1777
1778 /* Read value of symbolic link FILENAME on the target. Return a
1779 null-terminated string allocated via xmalloc, or NULL if an error
1780 occurs (and set *TARGET_ERRNO). */
1781 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1782
1783 /* Read target file FILENAME. The return value will be -1 if the transfer
1784 fails or is not supported; 0 if the object is empty; or the length
1785 of the object otherwise. If a positive value is returned, a
1786 sufficiently large buffer will be allocated using xmalloc and
1787 returned in *BUF_P containing the contents of the object.
1788
1789 This method should be used for objects sufficiently small to store
1790 in a single xmalloc'd buffer, when no fixed bound on the object's
1791 size is known in advance. */
1792 extern LONGEST target_fileio_read_alloc (const char *filename,
1793 gdb_byte **buf_p);
1794
1795 /* Read target file FILENAME. The result is NUL-terminated and
1796 returned as a string, allocated using xmalloc. If an error occurs
1797 or the transfer is unsupported, NULL is returned. Empty objects
1798 are returned as allocated but empty strings. A warning is issued
1799 if the result contains any embedded NUL bytes. */
1800 extern char *target_fileio_read_stralloc (const char *filename);
1801
1802
1803 /* Tracepoint-related operations. */
1804
1805 #define target_trace_init() \
1806 (*current_target.to_trace_init) (&current_target)
1807
1808 #define target_download_tracepoint(t) \
1809 (*current_target.to_download_tracepoint) (&current_target, t)
1810
1811 #define target_can_download_tracepoint() \
1812 (*current_target.to_can_download_tracepoint) (&current_target)
1813
1814 #define target_download_trace_state_variable(tsv) \
1815 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1816
1817 #define target_enable_tracepoint(loc) \
1818 (*current_target.to_enable_tracepoint) (&current_target, loc)
1819
1820 #define target_disable_tracepoint(loc) \
1821 (*current_target.to_disable_tracepoint) (&current_target, loc)
1822
1823 #define target_trace_start() \
1824 (*current_target.to_trace_start) (&current_target)
1825
1826 #define target_trace_set_readonly_regions() \
1827 (*current_target.to_trace_set_readonly_regions) (&current_target)
1828
1829 #define target_get_trace_status(ts) \
1830 (*current_target.to_get_trace_status) (&current_target, ts)
1831
1832 #define target_get_tracepoint_status(tp,utp) \
1833 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1834
1835 #define target_trace_stop() \
1836 (*current_target.to_trace_stop) (&current_target)
1837
1838 #define target_trace_find(type,num,addr1,addr2,tpp) \
1839 (*current_target.to_trace_find) (&current_target, \
1840 (type), (num), (addr1), (addr2), (tpp))
1841
1842 #define target_get_trace_state_variable_value(tsv,val) \
1843 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1844 (tsv), (val))
1845
1846 #define target_save_trace_data(filename) \
1847 (*current_target.to_save_trace_data) (&current_target, filename)
1848
1849 #define target_upload_tracepoints(utpp) \
1850 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1851
1852 #define target_upload_trace_state_variables(utsvp) \
1853 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1854
1855 #define target_get_raw_trace_data(buf,offset,len) \
1856 (*current_target.to_get_raw_trace_data) (&current_target, \
1857 (buf), (offset), (len))
1858
1859 #define target_get_min_fast_tracepoint_insn_len() \
1860 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1861
1862 #define target_set_disconnected_tracing(val) \
1863 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1864
1865 #define target_set_circular_trace_buffer(val) \
1866 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1867
1868 #define target_set_trace_buffer_size(val) \
1869 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1870
1871 #define target_set_trace_notes(user,notes,stopnotes) \
1872 (*current_target.to_set_trace_notes) (&current_target, \
1873 (user), (notes), (stopnotes))
1874
1875 #define target_get_tib_address(ptid, addr) \
1876 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1877
1878 #define target_set_permissions() \
1879 (*current_target.to_set_permissions) (&current_target)
1880
1881 #define target_static_tracepoint_marker_at(addr, marker) \
1882 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1883 addr, marker)
1884
1885 #define target_static_tracepoint_markers_by_strid(marker_id) \
1886 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1887 marker_id)
1888
1889 #define target_traceframe_info() \
1890 (*current_target.to_traceframe_info) (&current_target)
1891
1892 #define target_use_agent(use) \
1893 (*current_target.to_use_agent) (&current_target, use)
1894
1895 #define target_can_use_agent() \
1896 (*current_target.to_can_use_agent) (&current_target)
1897
1898 #define target_augmented_libraries_svr4_read() \
1899 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1900
1901 /* Command logging facility. */
1902
1903 #define target_log_command(p) \
1904 do \
1905 if (current_target.to_log_command) \
1906 (*current_target.to_log_command) (&current_target, \
1907 p); \
1908 while (0)
1909
1910
1911 extern int target_core_of_thread (ptid_t ptid);
1912
1913 /* See to_get_unwinder in struct target_ops. */
1914 extern const struct frame_unwind *target_get_unwinder (void);
1915
1916 /* See to_get_tailcall_unwinder in struct target_ops. */
1917 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1918
1919 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1920 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1921 if there's a mismatch, and -1 if an error is encountered while
1922 reading memory. Throws an error if the functionality is found not
1923 to be supported by the current target. */
1924 int target_verify_memory (const gdb_byte *data,
1925 CORE_ADDR memaddr, ULONGEST size);
1926
1927 /* Routines for maintenance of the target structures...
1928
1929 complete_target_initialization: Finalize a target_ops by filling in
1930 any fields needed by the target implementation.
1931
1932 add_target: Add a target to the list of all possible targets.
1933
1934 push_target: Make this target the top of the stack of currently used
1935 targets, within its particular stratum of the stack. Result
1936 is 0 if now atop the stack, nonzero if not on top (maybe
1937 should warn user).
1938
1939 unpush_target: Remove this from the stack of currently used targets,
1940 no matter where it is on the list. Returns 0 if no
1941 change, 1 if removed from stack. */
1942
1943 extern void add_target (struct target_ops *);
1944
1945 extern void add_target_with_completer (struct target_ops *t,
1946 completer_ftype *completer);
1947
1948 extern void complete_target_initialization (struct target_ops *t);
1949
1950 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1951 for maintaining backwards compatibility when renaming targets. */
1952
1953 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1954
1955 extern void push_target (struct target_ops *);
1956
1957 extern int unpush_target (struct target_ops *);
1958
1959 extern void target_pre_inferior (int);
1960
1961 extern void target_preopen (int);
1962
1963 /* Does whatever cleanup is required to get rid of all pushed targets. */
1964 extern void pop_all_targets (void);
1965
1966 /* Like pop_all_targets, but pops only targets whose stratum is
1967 strictly above ABOVE_STRATUM. */
1968 extern void pop_all_targets_above (enum strata above_stratum);
1969
1970 extern int target_is_pushed (struct target_ops *t);
1971
1972 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1973 CORE_ADDR offset);
1974
1975 /* Struct target_section maps address ranges to file sections. It is
1976 mostly used with BFD files, but can be used without (e.g. for handling
1977 raw disks, or files not in formats handled by BFD). */
1978
1979 struct target_section
1980 {
1981 CORE_ADDR addr; /* Lowest address in section */
1982 CORE_ADDR endaddr; /* 1+highest address in section */
1983
1984 struct bfd_section *the_bfd_section;
1985
1986 /* The "owner" of the section.
1987 It can be any unique value. It is set by add_target_sections
1988 and used by remove_target_sections.
1989 For example, for executables it is a pointer to exec_bfd and
1990 for shlibs it is the so_list pointer. */
1991 void *owner;
1992 };
1993
1994 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1995
1996 struct target_section_table
1997 {
1998 struct target_section *sections;
1999 struct target_section *sections_end;
2000 };
2001
2002 /* Return the "section" containing the specified address. */
2003 struct target_section *target_section_by_addr (struct target_ops *target,
2004 CORE_ADDR addr);
2005
2006 /* Return the target section table this target (or the targets
2007 beneath) currently manipulate. */
2008
2009 extern struct target_section_table *target_get_section_table
2010 (struct target_ops *target);
2011
2012 /* From mem-break.c */
2013
2014 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2015 struct bp_target_info *);
2016
2017 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2018 struct bp_target_info *);
2019
2020 extern int default_memory_remove_breakpoint (struct gdbarch *,
2021 struct bp_target_info *);
2022
2023 extern int default_memory_insert_breakpoint (struct gdbarch *,
2024 struct bp_target_info *);
2025
2026
2027 /* From target.c */
2028
2029 extern void initialize_targets (void);
2030
2031 extern void noprocess (void) ATTRIBUTE_NORETURN;
2032
2033 extern void target_require_runnable (void);
2034
2035 extern void find_default_attach (struct target_ops *, char *, int);
2036
2037 extern void find_default_create_inferior (struct target_ops *,
2038 char *, char *, char **, int);
2039
2040 extern struct target_ops *find_target_beneath (struct target_ops *);
2041
2042 /* Find the target at STRATUM. If no target is at that stratum,
2043 return NULL. */
2044
2045 struct target_ops *find_target_at (enum strata stratum);
2046
2047 /* Read OS data object of type TYPE from the target, and return it in
2048 XML format. The result is NUL-terminated and returned as a string,
2049 allocated using xmalloc. If an error occurs or the transfer is
2050 unsupported, NULL is returned. Empty objects are returned as
2051 allocated but empty strings. */
2052
2053 extern char *target_get_osdata (const char *type);
2054
2055 \f
2056 /* Stuff that should be shared among the various remote targets. */
2057
2058 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2059 information (higher values, more information). */
2060 extern int remote_debug;
2061
2062 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2063 extern int baud_rate;
2064 /* Timeout limit for response from target. */
2065 extern int remote_timeout;
2066
2067 \f
2068
2069 /* Set the show memory breakpoints mode to show, and installs a cleanup
2070 to restore it back to the current value. */
2071 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2072
2073 extern int may_write_registers;
2074 extern int may_write_memory;
2075 extern int may_insert_breakpoints;
2076 extern int may_insert_tracepoints;
2077 extern int may_insert_fast_tracepoints;
2078 extern int may_stop;
2079
2080 extern void update_target_permissions (void);
2081
2082 \f
2083 /* Imported from machine dependent code. */
2084
2085 /* Blank target vector entries are initialized to target_ignore. */
2086 void target_ignore (void);
2087
2088 /* See to_supports_btrace in struct target_ops. */
2089 #define target_supports_btrace() \
2090 (current_target.to_supports_btrace (&current_target))
2091
2092 /* See to_enable_btrace in struct target_ops. */
2093 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2094
2095 /* See to_disable_btrace in struct target_ops. */
2096 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2097
2098 /* See to_teardown_btrace in struct target_ops. */
2099 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2100
2101 /* See to_read_btrace in struct target_ops. */
2102 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2103 struct btrace_target_info *,
2104 enum btrace_read_type);
2105
2106 /* See to_stop_recording in struct target_ops. */
2107 extern void target_stop_recording (void);
2108
2109 /* See to_info_record in struct target_ops. */
2110 extern void target_info_record (void);
2111
2112 /* See to_save_record in struct target_ops. */
2113 extern void target_save_record (const char *filename);
2114
2115 /* Query if the target supports deleting the execution log. */
2116 extern int target_supports_delete_record (void);
2117
2118 /* See to_delete_record in struct target_ops. */
2119 extern void target_delete_record (void);
2120
2121 /* See to_record_is_replaying in struct target_ops. */
2122 extern int target_record_is_replaying (void);
2123
2124 /* See to_goto_record_begin in struct target_ops. */
2125 extern void target_goto_record_begin (void);
2126
2127 /* See to_goto_record_end in struct target_ops. */
2128 extern void target_goto_record_end (void);
2129
2130 /* See to_goto_record in struct target_ops. */
2131 extern void target_goto_record (ULONGEST insn);
2132
2133 /* See to_insn_history. */
2134 extern void target_insn_history (int size, int flags);
2135
2136 /* See to_insn_history_from. */
2137 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2138
2139 /* See to_insn_history_range. */
2140 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2141
2142 /* See to_call_history. */
2143 extern void target_call_history (int size, int flags);
2144
2145 /* See to_call_history_from. */
2146 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2147
2148 /* See to_call_history_range. */
2149 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2150
2151 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2152 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2153 struct gdbarch *gdbarch);
2154
2155 /* See to_decr_pc_after_break. */
2156 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2157
2158 #endif /* !defined (TARGET_H) */
This page took 0.072756 seconds and 5 git commands to generate.