Remove make_show_memory_breakpoints_cleanup
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum. */
65
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79
80 #include "break-common.h" /* For enum target_hw_bp_type. */
81
82 enum strata
83 {
84 dummy_stratum, /* The lowest of the low */
85 file_stratum, /* Executable files, etc */
86 process_stratum, /* Executing processes or core dump files */
87 thread_stratum, /* Executing threads */
88 record_stratum, /* Support record debugging */
89 arch_stratum /* Architecture overrides */
90 };
91
92 enum thread_control_capabilities
93 {
94 tc_none = 0, /* Default: can't control thread execution. */
95 tc_schedlock = 1, /* Can lock the thread scheduler. */
96 };
97
98 /* The structure below stores information about a system call.
99 It is basically used in the "catch syscall" command, and in
100 every function that gives information about a system call.
101
102 It's also good to mention that its fields represent everything
103 that we currently know about a syscall in GDB. */
104 struct syscall
105 {
106 /* The syscall number. */
107 int number;
108
109 /* The syscall name. */
110 const char *name;
111 };
112
113 /* Return a pretty printed form of TARGET_OPTIONS.
114 Space for the result is malloc'd, caller must free. */
115 extern char *target_options_to_string (int target_options);
116
117 /* Possible types of events that the inferior handler will have to
118 deal with. */
119 enum inferior_event_type
120 {
121 /* Process a normal inferior event which will result in target_wait
122 being called. */
123 INF_REG_EVENT,
124 /* We are called to do stuff after the inferior stops. */
125 INF_EXEC_COMPLETE,
126 };
127 \f
128 /* Target objects which can be transfered using target_read,
129 target_write, et cetera. */
130
131 enum target_object
132 {
133 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
134 TARGET_OBJECT_AVR,
135 /* SPU target specific transfer. See "spu-tdep.c". */
136 TARGET_OBJECT_SPU,
137 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
138 TARGET_OBJECT_MEMORY,
139 /* Memory, avoiding GDB's data cache and trusting the executable.
140 Target implementations of to_xfer_partial never need to handle
141 this object, and most callers should not use it. */
142 TARGET_OBJECT_RAW_MEMORY,
143 /* Memory known to be part of the target's stack. This is cached even
144 if it is not in a region marked as such, since it is known to be
145 "normal" RAM. */
146 TARGET_OBJECT_STACK_MEMORY,
147 /* Memory known to be part of the target code. This is cached even
148 if it is not in a region marked as such. */
149 TARGET_OBJECT_CODE_MEMORY,
150 /* Kernel Unwind Table. See "ia64-tdep.c". */
151 TARGET_OBJECT_UNWIND_TABLE,
152 /* Transfer auxilliary vector. */
153 TARGET_OBJECT_AUXV,
154 /* StackGhost cookie. See "sparc-tdep.c". */
155 TARGET_OBJECT_WCOOKIE,
156 /* Target memory map in XML format. */
157 TARGET_OBJECT_MEMORY_MAP,
158 /* Flash memory. This object can be used to write contents to
159 a previously erased flash memory. Using it without erasing
160 flash can have unexpected results. Addresses are physical
161 address on target, and not relative to flash start. */
162 TARGET_OBJECT_FLASH,
163 /* Available target-specific features, e.g. registers and coprocessors.
164 See "target-descriptions.c". ANNEX should never be empty. */
165 TARGET_OBJECT_AVAILABLE_FEATURES,
166 /* Currently loaded libraries, in XML format. */
167 TARGET_OBJECT_LIBRARIES,
168 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
169 TARGET_OBJECT_LIBRARIES_SVR4,
170 /* Currently loaded libraries specific to AIX systems, in XML format. */
171 TARGET_OBJECT_LIBRARIES_AIX,
172 /* Get OS specific data. The ANNEX specifies the type (running
173 processes, etc.). The data being transfered is expected to follow
174 the DTD specified in features/osdata.dtd. */
175 TARGET_OBJECT_OSDATA,
176 /* Extra signal info. Usually the contents of `siginfo_t' on unix
177 platforms. */
178 TARGET_OBJECT_SIGNAL_INFO,
179 /* The list of threads that are being debugged. */
180 TARGET_OBJECT_THREADS,
181 /* Collected static trace data. */
182 TARGET_OBJECT_STATIC_TRACE_DATA,
183 /* The HP-UX registers (those that can be obtained or modified by using
184 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
185 TARGET_OBJECT_HPUX_UREGS,
186 /* The HP-UX shared library linkage pointer. ANNEX should be a string
187 image of the code address whose linkage pointer we are looking for.
188
189 The size of the data transfered is always 8 bytes (the size of an
190 address on ia64). */
191 TARGET_OBJECT_HPUX_SOLIB_GOT,
192 /* Traceframe info, in XML format. */
193 TARGET_OBJECT_TRACEFRAME_INFO,
194 /* Load maps for FDPIC systems. */
195 TARGET_OBJECT_FDPIC,
196 /* Darwin dynamic linker info data. */
197 TARGET_OBJECT_DARWIN_DYLD_INFO,
198 /* OpenVMS Unwind Information Block. */
199 TARGET_OBJECT_OPENVMS_UIB,
200 /* Branch trace data, in XML format. */
201 TARGET_OBJECT_BTRACE,
202 /* Branch trace configuration, in XML format. */
203 TARGET_OBJECT_BTRACE_CONF,
204 /* The pathname of the executable file that was run to create
205 a specified process. ANNEX should be a string representation
206 of the process ID of the process in question, in hexadecimal
207 format. */
208 TARGET_OBJECT_EXEC_FILE,
209 /* Possible future objects: TARGET_OBJECT_FILE, ... */
210 };
211
212 /* Possible values returned by target_xfer_partial, etc. */
213
214 enum target_xfer_status
215 {
216 /* Some bytes are transferred. */
217 TARGET_XFER_OK = 1,
218
219 /* No further transfer is possible. */
220 TARGET_XFER_EOF = 0,
221
222 /* The piece of the object requested is unavailable. */
223 TARGET_XFER_UNAVAILABLE = 2,
224
225 /* Generic I/O error. Note that it's important that this is '-1',
226 as we still have target_xfer-related code returning hardcoded
227 '-1' on error. */
228 TARGET_XFER_E_IO = -1,
229
230 /* Keep list in sync with target_xfer_status_to_string. */
231 };
232
233 /* Return the string form of STATUS. */
234
235 extern const char *
236 target_xfer_status_to_string (enum target_xfer_status status);
237
238 /* Enumeration of the kinds of traceframe searches that a target may
239 be able to perform. */
240
241 enum trace_find_type
242 {
243 tfind_number,
244 tfind_pc,
245 tfind_tp,
246 tfind_range,
247 tfind_outside,
248 };
249
250 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
251 DEF_VEC_P(static_tracepoint_marker_p);
252
253 typedef enum target_xfer_status
254 target_xfer_partial_ftype (struct target_ops *ops,
255 enum target_object object,
256 const char *annex,
257 gdb_byte *readbuf,
258 const gdb_byte *writebuf,
259 ULONGEST offset,
260 ULONGEST len,
261 ULONGEST *xfered_len);
262
263 enum target_xfer_status
264 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
265 const gdb_byte *writebuf, ULONGEST memaddr,
266 LONGEST len, ULONGEST *xfered_len);
267
268 /* Request that OPS transfer up to LEN addressable units of the target's
269 OBJECT. When reading from a memory object, the size of an addressable unit
270 is architecture dependent and can be found using
271 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
272 byte long. BUF should point to a buffer large enough to hold the read data,
273 taking into account the addressable unit size. The OFFSET, for a seekable
274 object, specifies the starting point. The ANNEX can be used to provide
275 additional data-specific information to the target.
276
277 Return the number of addressable units actually transferred, or a negative
278 error code (an 'enum target_xfer_error' value) if the transfer is not
279 supported or otherwise fails. Return of a positive value less than
280 LEN indicates that no further transfer is possible. Unlike the raw
281 to_xfer_partial interface, callers of these functions do not need
282 to retry partial transfers. */
283
284 extern LONGEST target_read (struct target_ops *ops,
285 enum target_object object,
286 const char *annex, gdb_byte *buf,
287 ULONGEST offset, LONGEST len);
288
289 struct memory_read_result
290 {
291 /* First address that was read. */
292 ULONGEST begin;
293 /* Past-the-end address. */
294 ULONGEST end;
295 /* The data. */
296 gdb_byte *data;
297 };
298 typedef struct memory_read_result memory_read_result_s;
299 DEF_VEC_O(memory_read_result_s);
300
301 extern void free_memory_read_result_vector (void *);
302
303 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
304 const ULONGEST offset,
305 const LONGEST len);
306
307 /* Request that OPS transfer up to LEN addressable units from BUF to the
308 target's OBJECT. When writing to a memory object, the addressable unit
309 size is architecture dependent and can be found using
310 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
311 byte long. The OFFSET, for a seekable object, specifies the starting point.
312 The ANNEX can be used to provide additional data-specific information to
313 the target.
314
315 Return the number of addressable units actually transferred, or a negative
316 error code (an 'enum target_xfer_status' value) if the transfer is not
317 supported or otherwise fails. Return of a positive value less than
318 LEN indicates that no further transfer is possible. Unlike the raw
319 to_xfer_partial interface, callers of these functions do not need to
320 retry partial transfers. */
321
322 extern LONGEST target_write (struct target_ops *ops,
323 enum target_object object,
324 const char *annex, const gdb_byte *buf,
325 ULONGEST offset, LONGEST len);
326
327 /* Similar to target_write, except that it also calls PROGRESS with
328 the number of bytes written and the opaque BATON after every
329 successful partial write (and before the first write). This is
330 useful for progress reporting and user interaction while writing
331 data. To abort the transfer, the progress callback can throw an
332 exception. */
333
334 LONGEST target_write_with_progress (struct target_ops *ops,
335 enum target_object object,
336 const char *annex, const gdb_byte *buf,
337 ULONGEST offset, LONGEST len,
338 void (*progress) (ULONGEST, void *),
339 void *baton);
340
341 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
342 be read using OPS. The return value will be -1 if the transfer
343 fails or is not supported; 0 if the object is empty; or the length
344 of the object otherwise. If a positive value is returned, a
345 sufficiently large buffer will be allocated using xmalloc and
346 returned in *BUF_P containing the contents of the object.
347
348 This method should be used for objects sufficiently small to store
349 in a single xmalloc'd buffer, when no fixed bound on the object's
350 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
351 through this function. */
352
353 extern LONGEST target_read_alloc (struct target_ops *ops,
354 enum target_object object,
355 const char *annex, gdb_byte **buf_p);
356
357 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
358 returned as a string, allocated using xmalloc. If an error occurs
359 or the transfer is unsupported, NULL is returned. Empty objects
360 are returned as allocated but empty strings. A warning is issued
361 if the result contains any embedded NUL bytes. */
362
363 extern char *target_read_stralloc (struct target_ops *ops,
364 enum target_object object,
365 const char *annex);
366
367 /* See target_ops->to_xfer_partial. */
368 extern target_xfer_partial_ftype target_xfer_partial;
369
370 /* Wrappers to target read/write that perform memory transfers. They
371 throw an error if the memory transfer fails.
372
373 NOTE: cagney/2003-10-23: The naming schema is lifted from
374 "frame.h". The parameter order is lifted from get_frame_memory,
375 which in turn lifted it from read_memory. */
376
377 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
378 gdb_byte *buf, LONGEST len);
379 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
380 CORE_ADDR addr, int len,
381 enum bfd_endian byte_order);
382 \f
383 struct thread_info; /* fwd decl for parameter list below: */
384
385 /* The type of the callback to the to_async method. */
386
387 typedef void async_callback_ftype (enum inferior_event_type event_type,
388 void *context);
389
390 /* Normally target debug printing is purely type-based. However,
391 sometimes it is necessary to override the debug printing on a
392 per-argument basis. This macro can be used, attribute-style, to
393 name the target debug printing function for a particular method
394 argument. FUNC is the name of the function. The macro's
395 definition is empty because it is only used by the
396 make-target-delegates script. */
397
398 #define TARGET_DEBUG_PRINTER(FUNC)
399
400 /* These defines are used to mark target_ops methods. The script
401 make-target-delegates scans these and auto-generates the base
402 method implementations. There are four macros that can be used:
403
404 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
405 does nothing. This is only valid if the method return type is
406 'void'.
407
408 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
409 'tcomplain ()'. The base method simply makes this call, which is
410 assumed not to return.
411
412 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
413 base method returns this expression's value.
414
415 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
416 make-target-delegates does not generate a base method in this case,
417 but instead uses the argument function as the base method. */
418
419 #define TARGET_DEFAULT_IGNORE()
420 #define TARGET_DEFAULT_NORETURN(ARG)
421 #define TARGET_DEFAULT_RETURN(ARG)
422 #define TARGET_DEFAULT_FUNC(ARG)
423
424 struct target_ops
425 {
426 struct target_ops *beneath; /* To the target under this one. */
427 const char *to_shortname; /* Name this target type */
428 const char *to_longname; /* Name for printing */
429 const char *to_doc; /* Documentation. Does not include trailing
430 newline, and starts with a one-line descrip-
431 tion (probably similar to to_longname). */
432 /* Per-target scratch pad. */
433 void *to_data;
434 /* The open routine takes the rest of the parameters from the
435 command, and (if successful) pushes a new target onto the
436 stack. Targets should supply this routine, if only to provide
437 an error message. */
438 void (*to_open) (const char *, int);
439 /* Old targets with a static target vector provide "to_close".
440 New re-entrant targets provide "to_xclose" and that is expected
441 to xfree everything (including the "struct target_ops"). */
442 void (*to_xclose) (struct target_ops *targ);
443 void (*to_close) (struct target_ops *);
444 /* Attaches to a process on the target side. Arguments are as
445 passed to the `attach' command by the user. This routine can
446 be called when the target is not on the target-stack, if the
447 target_can_run routine returns 1; in that case, it must push
448 itself onto the stack. Upon exit, the target should be ready
449 for normal operations, and should be ready to deliver the
450 status of the process immediately (without waiting) to an
451 upcoming target_wait call. */
452 void (*to_attach) (struct target_ops *ops, const char *, int);
453 void (*to_post_attach) (struct target_ops *, int)
454 TARGET_DEFAULT_IGNORE ();
455 void (*to_detach) (struct target_ops *ops, const char *, int)
456 TARGET_DEFAULT_IGNORE ();
457 void (*to_disconnect) (struct target_ops *, const char *, int)
458 TARGET_DEFAULT_NORETURN (tcomplain ());
459 void (*to_resume) (struct target_ops *, ptid_t,
460 int TARGET_DEBUG_PRINTER (target_debug_print_step),
461 enum gdb_signal)
462 TARGET_DEFAULT_NORETURN (noprocess ());
463 void (*to_commit_resume) (struct target_ops *)
464 TARGET_DEFAULT_IGNORE ();
465 ptid_t (*to_wait) (struct target_ops *,
466 ptid_t, struct target_waitstatus *,
467 int TARGET_DEBUG_PRINTER (target_debug_print_options))
468 TARGET_DEFAULT_FUNC (default_target_wait);
469 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
470 TARGET_DEFAULT_IGNORE ();
471 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
472 TARGET_DEFAULT_NORETURN (noprocess ());
473 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
474 TARGET_DEFAULT_NORETURN (noprocess ());
475
476 void (*to_files_info) (struct target_ops *)
477 TARGET_DEFAULT_IGNORE ();
478 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
479 struct bp_target_info *)
480 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
481 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
482 struct bp_target_info *,
483 enum remove_bp_reason)
484 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
485
486 /* Returns true if the target stopped because it executed a
487 software breakpoint. This is necessary for correct background
488 execution / non-stop mode operation, and for correct PC
489 adjustment on targets where the PC needs to be adjusted when a
490 software breakpoint triggers. In these modes, by the time GDB
491 processes a breakpoint event, the breakpoint may already be
492 done from the target, so GDB needs to be able to tell whether
493 it should ignore the event and whether it should adjust the PC.
494 See adjust_pc_after_break. */
495 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
496 TARGET_DEFAULT_RETURN (0);
497 /* Returns true if the above method is supported. */
498 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
499 TARGET_DEFAULT_RETURN (0);
500
501 /* Returns true if the target stopped for a hardware breakpoint.
502 Likewise, if the target supports hardware breakpoints, this
503 method is necessary for correct background execution / non-stop
504 mode operation. Even though hardware breakpoints do not
505 require PC adjustment, GDB needs to be able to tell whether the
506 hardware breakpoint event is a delayed event for a breakpoint
507 that is already gone and should thus be ignored. */
508 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
509 TARGET_DEFAULT_RETURN (0);
510 /* Returns true if the above method is supported. */
511 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
512 TARGET_DEFAULT_RETURN (0);
513
514 int (*to_can_use_hw_breakpoint) (struct target_ops *,
515 enum bptype, int, int)
516 TARGET_DEFAULT_RETURN (0);
517 int (*to_ranged_break_num_registers) (struct target_ops *)
518 TARGET_DEFAULT_RETURN (-1);
519 int (*to_insert_hw_breakpoint) (struct target_ops *,
520 struct gdbarch *, struct bp_target_info *)
521 TARGET_DEFAULT_RETURN (-1);
522 int (*to_remove_hw_breakpoint) (struct target_ops *,
523 struct gdbarch *, struct bp_target_info *)
524 TARGET_DEFAULT_RETURN (-1);
525
526 /* Documentation of what the two routines below are expected to do is
527 provided with the corresponding target_* macros. */
528 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
529 enum target_hw_bp_type, struct expression *)
530 TARGET_DEFAULT_RETURN (-1);
531 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
532 enum target_hw_bp_type, struct expression *)
533 TARGET_DEFAULT_RETURN (-1);
534
535 int (*to_insert_mask_watchpoint) (struct target_ops *,
536 CORE_ADDR, CORE_ADDR,
537 enum target_hw_bp_type)
538 TARGET_DEFAULT_RETURN (1);
539 int (*to_remove_mask_watchpoint) (struct target_ops *,
540 CORE_ADDR, CORE_ADDR,
541 enum target_hw_bp_type)
542 TARGET_DEFAULT_RETURN (1);
543 int (*to_stopped_by_watchpoint) (struct target_ops *)
544 TARGET_DEFAULT_RETURN (0);
545 int to_have_steppable_watchpoint;
546 int to_have_continuable_watchpoint;
547 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
548 TARGET_DEFAULT_RETURN (0);
549 int (*to_watchpoint_addr_within_range) (struct target_ops *,
550 CORE_ADDR, CORE_ADDR, int)
551 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
552
553 /* Documentation of this routine is provided with the corresponding
554 target_* macro. */
555 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
556 CORE_ADDR, int)
557 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
558
559 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
560 CORE_ADDR, int, int,
561 struct expression *)
562 TARGET_DEFAULT_RETURN (0);
563 int (*to_masked_watch_num_registers) (struct target_ops *,
564 CORE_ADDR, CORE_ADDR)
565 TARGET_DEFAULT_RETURN (-1);
566
567 /* Return 1 for sure target can do single step. Return -1 for
568 unknown. Return 0 for target can't do. */
569 int (*to_can_do_single_step) (struct target_ops *)
570 TARGET_DEFAULT_RETURN (-1);
571
572 void (*to_terminal_init) (struct target_ops *)
573 TARGET_DEFAULT_IGNORE ();
574 void (*to_terminal_inferior) (struct target_ops *)
575 TARGET_DEFAULT_IGNORE ();
576 void (*to_terminal_ours_for_output) (struct target_ops *)
577 TARGET_DEFAULT_IGNORE ();
578 void (*to_terminal_ours) (struct target_ops *)
579 TARGET_DEFAULT_IGNORE ();
580 void (*to_terminal_info) (struct target_ops *, const char *, int)
581 TARGET_DEFAULT_FUNC (default_terminal_info);
582 void (*to_kill) (struct target_ops *)
583 TARGET_DEFAULT_NORETURN (noprocess ());
584 void (*to_load) (struct target_ops *, const char *, int)
585 TARGET_DEFAULT_NORETURN (tcomplain ());
586 /* Start an inferior process and set inferior_ptid to its pid.
587 EXEC_FILE is the file to run.
588 ALLARGS is a string containing the arguments to the program.
589 ENV is the environment vector to pass. Errors reported with error().
590 On VxWorks and various standalone systems, we ignore exec_file. */
591 void (*to_create_inferior) (struct target_ops *,
592 const char *, const std::string &,
593 char **, int);
594 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
595 TARGET_DEFAULT_IGNORE ();
596 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
597 TARGET_DEFAULT_RETURN (1);
598 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
599 TARGET_DEFAULT_RETURN (1);
600 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
601 TARGET_DEFAULT_RETURN (1);
602 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
603 TARGET_DEFAULT_RETURN (1);
604 int (*to_follow_fork) (struct target_ops *, int, int)
605 TARGET_DEFAULT_FUNC (default_follow_fork);
606 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
607 TARGET_DEFAULT_RETURN (1);
608 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
609 TARGET_DEFAULT_RETURN (1);
610 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
611 TARGET_DEFAULT_IGNORE ();
612 int (*to_set_syscall_catchpoint) (struct target_ops *,
613 int, int, int, int, int *)
614 TARGET_DEFAULT_RETURN (1);
615 int (*to_has_exited) (struct target_ops *, int, int, int *)
616 TARGET_DEFAULT_RETURN (0);
617 void (*to_mourn_inferior) (struct target_ops *)
618 TARGET_DEFAULT_FUNC (default_mourn_inferior);
619 /* Note that to_can_run is special and can be invoked on an
620 unpushed target. Targets defining this method must also define
621 to_can_async_p and to_supports_non_stop. */
622 int (*to_can_run) (struct target_ops *)
623 TARGET_DEFAULT_RETURN (0);
624
625 /* Documentation of this routine is provided with the corresponding
626 target_* macro. */
627 void (*to_pass_signals) (struct target_ops *, int,
628 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
629 TARGET_DEFAULT_IGNORE ();
630
631 /* Documentation of this routine is provided with the
632 corresponding target_* function. */
633 void (*to_program_signals) (struct target_ops *, int,
634 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
635 TARGET_DEFAULT_IGNORE ();
636
637 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
638 TARGET_DEFAULT_RETURN (0);
639 void (*to_update_thread_list) (struct target_ops *)
640 TARGET_DEFAULT_IGNORE ();
641 const char *(*to_pid_to_str) (struct target_ops *, ptid_t)
642 TARGET_DEFAULT_FUNC (default_pid_to_str);
643 const char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
644 TARGET_DEFAULT_RETURN (NULL);
645 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
646 TARGET_DEFAULT_RETURN (NULL);
647 void (*to_stop) (struct target_ops *, ptid_t)
648 TARGET_DEFAULT_IGNORE ();
649 void (*to_interrupt) (struct target_ops *, ptid_t)
650 TARGET_DEFAULT_IGNORE ();
651 void (*to_pass_ctrlc) (struct target_ops *)
652 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
653 void (*to_rcmd) (struct target_ops *,
654 const char *command, struct ui_file *output)
655 TARGET_DEFAULT_FUNC (default_rcmd);
656 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
657 TARGET_DEFAULT_RETURN (NULL);
658 void (*to_log_command) (struct target_ops *, const char *)
659 TARGET_DEFAULT_IGNORE ();
660 struct target_section_table *(*to_get_section_table) (struct target_ops *)
661 TARGET_DEFAULT_RETURN (NULL);
662 enum strata to_stratum;
663 int (*to_has_all_memory) (struct target_ops *);
664 int (*to_has_memory) (struct target_ops *);
665 int (*to_has_stack) (struct target_ops *);
666 int (*to_has_registers) (struct target_ops *);
667 int (*to_has_execution) (struct target_ops *, ptid_t);
668 int to_has_thread_control; /* control thread execution */
669 int to_attach_no_wait;
670 /* This method must be implemented in some situations. See the
671 comment on 'to_can_run'. */
672 int (*to_can_async_p) (struct target_ops *)
673 TARGET_DEFAULT_RETURN (0);
674 int (*to_is_async_p) (struct target_ops *)
675 TARGET_DEFAULT_RETURN (0);
676 void (*to_async) (struct target_ops *, int)
677 TARGET_DEFAULT_NORETURN (tcomplain ());
678 void (*to_thread_events) (struct target_ops *, int)
679 TARGET_DEFAULT_IGNORE ();
680 /* This method must be implemented in some situations. See the
681 comment on 'to_can_run'. */
682 int (*to_supports_non_stop) (struct target_ops *)
683 TARGET_DEFAULT_RETURN (0);
684 /* Return true if the target operates in non-stop mode even with
685 "set non-stop off". */
686 int (*to_always_non_stop_p) (struct target_ops *)
687 TARGET_DEFAULT_RETURN (0);
688 /* find_memory_regions support method for gcore */
689 int (*to_find_memory_regions) (struct target_ops *,
690 find_memory_region_ftype func, void *data)
691 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
692 /* make_corefile_notes support method for gcore */
693 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
694 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
695 /* get_bookmark support method for bookmarks */
696 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
697 TARGET_DEFAULT_NORETURN (tcomplain ());
698 /* goto_bookmark support method for bookmarks */
699 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
700 TARGET_DEFAULT_NORETURN (tcomplain ());
701 /* Return the thread-local address at OFFSET in the
702 thread-local storage for the thread PTID and the shared library
703 or executable file given by OBJFILE. If that block of
704 thread-local storage hasn't been allocated yet, this function
705 may return an error. LOAD_MODULE_ADDR may be zero for statically
706 linked multithreaded inferiors. */
707 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
708 ptid_t ptid,
709 CORE_ADDR load_module_addr,
710 CORE_ADDR offset)
711 TARGET_DEFAULT_NORETURN (generic_tls_error ());
712
713 /* Request that OPS transfer up to LEN addressable units of the target's
714 OBJECT. When reading from a memory object, the size of an addressable
715 unit is architecture dependent and can be found using
716 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
717 1 byte long. The OFFSET, for a seekable object, specifies the
718 starting point. The ANNEX can be used to provide additional
719 data-specific information to the target.
720
721 Return the transferred status, error or OK (an
722 'enum target_xfer_status' value). Save the number of addressable units
723 actually transferred in *XFERED_LEN if transfer is successful
724 (TARGET_XFER_OK) or the number unavailable units if the requested
725 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
726 smaller than LEN does not indicate the end of the object, only
727 the end of the transfer; higher level code should continue
728 transferring if desired. This is handled in target.c.
729
730 The interface does not support a "retry" mechanism. Instead it
731 assumes that at least one addressable unit will be transfered on each
732 successful call.
733
734 NOTE: cagney/2003-10-17: The current interface can lead to
735 fragmented transfers. Lower target levels should not implement
736 hacks, such as enlarging the transfer, in an attempt to
737 compensate for this. Instead, the target stack should be
738 extended so that it implements supply/collect methods and a
739 look-aside object cache. With that available, the lowest
740 target can safely and freely "push" data up the stack.
741
742 See target_read and target_write for more information. One,
743 and only one, of readbuf or writebuf must be non-NULL. */
744
745 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
746 enum target_object object,
747 const char *annex,
748 gdb_byte *readbuf,
749 const gdb_byte *writebuf,
750 ULONGEST offset, ULONGEST len,
751 ULONGEST *xfered_len)
752 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
753
754 /* Return the limit on the size of any single memory transfer
755 for the target. */
756
757 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
758 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
759
760 /* Returns the memory map for the target. A return value of NULL
761 means that no memory map is available. If a memory address
762 does not fall within any returned regions, it's assumed to be
763 RAM. The returned memory regions should not overlap.
764
765 The order of regions does not matter; target_memory_map will
766 sort regions by starting address. For that reason, this
767 function should not be called directly except via
768 target_memory_map.
769
770 This method should not cache data; if the memory map could
771 change unexpectedly, it should be invalidated, and higher
772 layers will re-fetch it. */
773 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
774 TARGET_DEFAULT_RETURN (NULL);
775
776 /* Erases the region of flash memory starting at ADDRESS, of
777 length LENGTH.
778
779 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
780 on flash block boundaries, as reported by 'to_memory_map'. */
781 void (*to_flash_erase) (struct target_ops *,
782 ULONGEST address, LONGEST length)
783 TARGET_DEFAULT_NORETURN (tcomplain ());
784
785 /* Finishes a flash memory write sequence. After this operation
786 all flash memory should be available for writing and the result
787 of reading from areas written by 'to_flash_write' should be
788 equal to what was written. */
789 void (*to_flash_done) (struct target_ops *)
790 TARGET_DEFAULT_NORETURN (tcomplain ());
791
792 /* Describe the architecture-specific features of this target. If
793 OPS doesn't have a description, this should delegate to the
794 "beneath" target. Returns the description found, or NULL if no
795 description was available. */
796 const struct target_desc *(*to_read_description) (struct target_ops *ops)
797 TARGET_DEFAULT_RETURN (NULL);
798
799 /* Build the PTID of the thread on which a given task is running,
800 based on LWP and THREAD. These values are extracted from the
801 task Private_Data section of the Ada Task Control Block, and
802 their interpretation depends on the target. */
803 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
804 long lwp, long thread)
805 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
806
807 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
808 Return 0 if *READPTR is already at the end of the buffer.
809 Return -1 if there is insufficient buffer for a whole entry.
810 Return 1 if an entry was read into *TYPEP and *VALP. */
811 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
812 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
813 TARGET_DEFAULT_FUNC (default_auxv_parse);
814
815 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
816 sequence of bytes in PATTERN with length PATTERN_LEN.
817
818 The result is 1 if found, 0 if not found, and -1 if there was an error
819 requiring halting of the search (e.g. memory read error).
820 If the pattern is found the address is recorded in FOUND_ADDRP. */
821 int (*to_search_memory) (struct target_ops *ops,
822 CORE_ADDR start_addr, ULONGEST search_space_len,
823 const gdb_byte *pattern, ULONGEST pattern_len,
824 CORE_ADDR *found_addrp)
825 TARGET_DEFAULT_FUNC (default_search_memory);
826
827 /* Can target execute in reverse? */
828 int (*to_can_execute_reverse) (struct target_ops *)
829 TARGET_DEFAULT_RETURN (0);
830
831 /* The direction the target is currently executing. Must be
832 implemented on targets that support reverse execution and async
833 mode. The default simply returns forward execution. */
834 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
835 TARGET_DEFAULT_FUNC (default_execution_direction);
836
837 /* Does this target support debugging multiple processes
838 simultaneously? */
839 int (*to_supports_multi_process) (struct target_ops *)
840 TARGET_DEFAULT_RETURN (0);
841
842 /* Does this target support enabling and disabling tracepoints while a trace
843 experiment is running? */
844 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
845 TARGET_DEFAULT_RETURN (0);
846
847 /* Does this target support disabling address space randomization? */
848 int (*to_supports_disable_randomization) (struct target_ops *);
849
850 /* Does this target support the tracenz bytecode for string collection? */
851 int (*to_supports_string_tracing) (struct target_ops *)
852 TARGET_DEFAULT_RETURN (0);
853
854 /* Does this target support evaluation of breakpoint conditions on its
855 end? */
856 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
857 TARGET_DEFAULT_RETURN (0);
858
859 /* Does this target support evaluation of breakpoint commands on its
860 end? */
861 int (*to_can_run_breakpoint_commands) (struct target_ops *)
862 TARGET_DEFAULT_RETURN (0);
863
864 /* Determine current architecture of thread PTID.
865
866 The target is supposed to determine the architecture of the code where
867 the target is currently stopped at (on Cell, if a target is in spu_run,
868 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
869 This is architecture used to perform decr_pc_after_break adjustment,
870 and also determines the frame architecture of the innermost frame.
871 ptrace operations need to operate according to target_gdbarch ().
872
873 The default implementation always returns target_gdbarch (). */
874 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
875 TARGET_DEFAULT_FUNC (default_thread_architecture);
876
877 /* Determine current address space of thread PTID.
878
879 The default implementation always returns the inferior's
880 address space. */
881 struct address_space *(*to_thread_address_space) (struct target_ops *,
882 ptid_t)
883 TARGET_DEFAULT_FUNC (default_thread_address_space);
884
885 /* Target file operations. */
886
887 /* Return nonzero if the filesystem seen by the current inferior
888 is the local filesystem, zero otherwise. */
889 int (*to_filesystem_is_local) (struct target_ops *)
890 TARGET_DEFAULT_RETURN (1);
891
892 /* Open FILENAME on the target, in the filesystem as seen by INF,
893 using FLAGS and MODE. If INF is NULL, use the filesystem seen
894 by the debugger (GDB or, for remote targets, the remote stub).
895 If WARN_IF_SLOW is nonzero, print a warning message if the file
896 is being accessed over a link that may be slow. Return a
897 target file descriptor, or -1 if an error occurs (and set
898 *TARGET_ERRNO). */
899 int (*to_fileio_open) (struct target_ops *,
900 struct inferior *inf, const char *filename,
901 int flags, int mode, int warn_if_slow,
902 int *target_errno);
903
904 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
905 Return the number of bytes written, or -1 if an error occurs
906 (and set *TARGET_ERRNO). */
907 int (*to_fileio_pwrite) (struct target_ops *,
908 int fd, const gdb_byte *write_buf, int len,
909 ULONGEST offset, int *target_errno);
910
911 /* Read up to LEN bytes FD on the target into READ_BUF.
912 Return the number of bytes read, or -1 if an error occurs
913 (and set *TARGET_ERRNO). */
914 int (*to_fileio_pread) (struct target_ops *,
915 int fd, gdb_byte *read_buf, int len,
916 ULONGEST offset, int *target_errno);
917
918 /* Get information about the file opened as FD and put it in
919 SB. Return 0 on success, or -1 if an error occurs (and set
920 *TARGET_ERRNO). */
921 int (*to_fileio_fstat) (struct target_ops *,
922 int fd, struct stat *sb, int *target_errno);
923
924 /* Close FD on the target. Return 0, or -1 if an error occurs
925 (and set *TARGET_ERRNO). */
926 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
927
928 /* Unlink FILENAME on the target, in the filesystem as seen by
929 INF. If INF is NULL, use the filesystem seen by the debugger
930 (GDB or, for remote targets, the remote stub). Return 0, or
931 -1 if an error occurs (and set *TARGET_ERRNO). */
932 int (*to_fileio_unlink) (struct target_ops *,
933 struct inferior *inf,
934 const char *filename,
935 int *target_errno);
936
937 /* Read value of symbolic link FILENAME on the target, in the
938 filesystem as seen by INF. If INF is NULL, use the filesystem
939 seen by the debugger (GDB or, for remote targets, the remote
940 stub). Return a null-terminated string allocated via xmalloc,
941 or NULL if an error occurs (and set *TARGET_ERRNO). */
942 char *(*to_fileio_readlink) (struct target_ops *,
943 struct inferior *inf,
944 const char *filename,
945 int *target_errno);
946
947
948 /* Implement the "info proc" command. */
949 void (*to_info_proc) (struct target_ops *, const char *,
950 enum info_proc_what);
951
952 /* Tracepoint-related operations. */
953
954 /* Prepare the target for a tracing run. */
955 void (*to_trace_init) (struct target_ops *)
956 TARGET_DEFAULT_NORETURN (tcomplain ());
957
958 /* Send full details of a tracepoint location to the target. */
959 void (*to_download_tracepoint) (struct target_ops *,
960 struct bp_location *location)
961 TARGET_DEFAULT_NORETURN (tcomplain ());
962
963 /* Is the target able to download tracepoint locations in current
964 state? */
965 int (*to_can_download_tracepoint) (struct target_ops *)
966 TARGET_DEFAULT_RETURN (0);
967
968 /* Send full details of a trace state variable to the target. */
969 void (*to_download_trace_state_variable) (struct target_ops *,
970 struct trace_state_variable *tsv)
971 TARGET_DEFAULT_NORETURN (tcomplain ());
972
973 /* Enable a tracepoint on the target. */
974 void (*to_enable_tracepoint) (struct target_ops *,
975 struct bp_location *location)
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Disable a tracepoint on the target. */
979 void (*to_disable_tracepoint) (struct target_ops *,
980 struct bp_location *location)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
982
983 /* Inform the target info of memory regions that are readonly
984 (such as text sections), and so it should return data from
985 those rather than look in the trace buffer. */
986 void (*to_trace_set_readonly_regions) (struct target_ops *)
987 TARGET_DEFAULT_NORETURN (tcomplain ());
988
989 /* Start a trace run. */
990 void (*to_trace_start) (struct target_ops *)
991 TARGET_DEFAULT_NORETURN (tcomplain ());
992
993 /* Get the current status of a tracing run. */
994 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
995 TARGET_DEFAULT_RETURN (-1);
996
997 void (*to_get_tracepoint_status) (struct target_ops *,
998 struct breakpoint *tp,
999 struct uploaded_tp *utp)
1000 TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002 /* Stop a trace run. */
1003 void (*to_trace_stop) (struct target_ops *)
1004 TARGET_DEFAULT_NORETURN (tcomplain ());
1005
1006 /* Ask the target to find a trace frame of the given type TYPE,
1007 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1008 number of the trace frame, and also the tracepoint number at
1009 TPP. If no trace frame matches, return -1. May throw if the
1010 operation fails. */
1011 int (*to_trace_find) (struct target_ops *,
1012 enum trace_find_type type, int num,
1013 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1014 TARGET_DEFAULT_RETURN (-1);
1015
1016 /* Get the value of the trace state variable number TSV, returning
1017 1 if the value is known and writing the value itself into the
1018 location pointed to by VAL, else returning 0. */
1019 int (*to_get_trace_state_variable_value) (struct target_ops *,
1020 int tsv, LONGEST *val)
1021 TARGET_DEFAULT_RETURN (0);
1022
1023 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1024 TARGET_DEFAULT_NORETURN (tcomplain ());
1025
1026 int (*to_upload_tracepoints) (struct target_ops *,
1027 struct uploaded_tp **utpp)
1028 TARGET_DEFAULT_RETURN (0);
1029
1030 int (*to_upload_trace_state_variables) (struct target_ops *,
1031 struct uploaded_tsv **utsvp)
1032 TARGET_DEFAULT_RETURN (0);
1033
1034 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1035 ULONGEST offset, LONGEST len)
1036 TARGET_DEFAULT_NORETURN (tcomplain ());
1037
1038 /* Get the minimum length of instruction on which a fast tracepoint
1039 may be set on the target. If this operation is unsupported,
1040 return -1. If for some reason the minimum length cannot be
1041 determined, return 0. */
1042 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1043 TARGET_DEFAULT_RETURN (-1);
1044
1045 /* Set the target's tracing behavior in response to unexpected
1046 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1047 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1048 TARGET_DEFAULT_IGNORE ();
1049 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1050 TARGET_DEFAULT_IGNORE ();
1051 /* Set the size of trace buffer in the target. */
1052 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1053 TARGET_DEFAULT_IGNORE ();
1054
1055 /* Add/change textual notes about the trace run, returning 1 if
1056 successful, 0 otherwise. */
1057 int (*to_set_trace_notes) (struct target_ops *,
1058 const char *user, const char *notes,
1059 const char *stopnotes)
1060 TARGET_DEFAULT_RETURN (0);
1061
1062 /* Return the processor core that thread PTID was last seen on.
1063 This information is updated only when:
1064 - update_thread_list is called
1065 - thread stops
1066 If the core cannot be determined -- either for the specified
1067 thread, or right now, or in this debug session, or for this
1068 target -- return -1. */
1069 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1070 TARGET_DEFAULT_RETURN (-1);
1071
1072 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1073 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1074 a match, 0 if there's a mismatch, and -1 if an error is
1075 encountered while reading memory. */
1076 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1077 CORE_ADDR memaddr, ULONGEST size)
1078 TARGET_DEFAULT_FUNC (default_verify_memory);
1079
1080 /* Return the address of the start of the Thread Information Block
1081 a Windows OS specific feature. */
1082 int (*to_get_tib_address) (struct target_ops *,
1083 ptid_t ptid, CORE_ADDR *addr)
1084 TARGET_DEFAULT_NORETURN (tcomplain ());
1085
1086 /* Send the new settings of write permission variables. */
1087 void (*to_set_permissions) (struct target_ops *)
1088 TARGET_DEFAULT_IGNORE ();
1089
1090 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1091 with its details. Return 1 on success, 0 on failure. */
1092 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1093 struct static_tracepoint_marker *marker)
1094 TARGET_DEFAULT_RETURN (0);
1095
1096 /* Return a vector of all tracepoints markers string id ID, or all
1097 markers if ID is NULL. */
1098 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1099 TARGET_DEFAULT_NORETURN (tcomplain ());
1100
1101 /* Return a traceframe info object describing the current
1102 traceframe's contents. This method should not cache data;
1103 higher layers take care of caching, invalidating, and
1104 re-fetching when necessary. */
1105 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1106 TARGET_DEFAULT_NORETURN (tcomplain ());
1107
1108 /* Ask the target to use or not to use agent according to USE. Return 1
1109 successful, 0 otherwise. */
1110 int (*to_use_agent) (struct target_ops *, int use)
1111 TARGET_DEFAULT_NORETURN (tcomplain ());
1112
1113 /* Is the target able to use agent in current state? */
1114 int (*to_can_use_agent) (struct target_ops *)
1115 TARGET_DEFAULT_RETURN (0);
1116
1117 /* Check whether the target supports branch tracing. */
1118 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1119 TARGET_DEFAULT_RETURN (0);
1120
1121 /* Enable branch tracing for PTID using CONF configuration.
1122 Return a branch trace target information struct for reading and for
1123 disabling branch trace. */
1124 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1125 ptid_t ptid,
1126 const struct btrace_config *conf)
1127 TARGET_DEFAULT_NORETURN (tcomplain ());
1128
1129 /* Disable branch tracing and deallocate TINFO. */
1130 void (*to_disable_btrace) (struct target_ops *,
1131 struct btrace_target_info *tinfo)
1132 TARGET_DEFAULT_NORETURN (tcomplain ());
1133
1134 /* Disable branch tracing and deallocate TINFO. This function is similar
1135 to to_disable_btrace, except that it is called during teardown and is
1136 only allowed to perform actions that are safe. A counter-example would
1137 be attempting to talk to a remote target. */
1138 void (*to_teardown_btrace) (struct target_ops *,
1139 struct btrace_target_info *tinfo)
1140 TARGET_DEFAULT_NORETURN (tcomplain ());
1141
1142 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1143 DATA is cleared before new trace is added. */
1144 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1145 struct btrace_data *data,
1146 struct btrace_target_info *btinfo,
1147 enum btrace_read_type type)
1148 TARGET_DEFAULT_NORETURN (tcomplain ());
1149
1150 /* Get the branch trace configuration. */
1151 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1152 const struct btrace_target_info *)
1153 TARGET_DEFAULT_RETURN (NULL);
1154
1155 /* Current recording method. */
1156 enum record_method (*to_record_method) (struct target_ops *, ptid_t ptid)
1157 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1158
1159 /* Stop trace recording. */
1160 void (*to_stop_recording) (struct target_ops *)
1161 TARGET_DEFAULT_IGNORE ();
1162
1163 /* Print information about the recording. */
1164 void (*to_info_record) (struct target_ops *)
1165 TARGET_DEFAULT_IGNORE ();
1166
1167 /* Save the recorded execution trace into a file. */
1168 void (*to_save_record) (struct target_ops *, const char *filename)
1169 TARGET_DEFAULT_NORETURN (tcomplain ());
1170
1171 /* Delete the recorded execution trace from the current position
1172 onwards. */
1173 void (*to_delete_record) (struct target_ops *)
1174 TARGET_DEFAULT_NORETURN (tcomplain ());
1175
1176 /* Query if the record target is currently replaying PTID. */
1177 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1178 TARGET_DEFAULT_RETURN (0);
1179
1180 /* Query if the record target will replay PTID if it were resumed in
1181 execution direction DIR. */
1182 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1183 TARGET_DEFAULT_RETURN (0);
1184
1185 /* Stop replaying. */
1186 void (*to_record_stop_replaying) (struct target_ops *)
1187 TARGET_DEFAULT_IGNORE ();
1188
1189 /* Go to the begin of the execution trace. */
1190 void (*to_goto_record_begin) (struct target_ops *)
1191 TARGET_DEFAULT_NORETURN (tcomplain ());
1192
1193 /* Go to the end of the execution trace. */
1194 void (*to_goto_record_end) (struct target_ops *)
1195 TARGET_DEFAULT_NORETURN (tcomplain ());
1196
1197 /* Go to a specific location in the recorded execution trace. */
1198 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1199 TARGET_DEFAULT_NORETURN (tcomplain ());
1200
1201 /* Disassemble SIZE instructions in the recorded execution trace from
1202 the current position.
1203 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1204 disassemble SIZE succeeding instructions. */
1205 void (*to_insn_history) (struct target_ops *, int size,
1206 gdb_disassembly_flags flags)
1207 TARGET_DEFAULT_NORETURN (tcomplain ());
1208
1209 /* Disassemble SIZE instructions in the recorded execution trace around
1210 FROM.
1211 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1212 disassemble SIZE instructions after FROM. */
1213 void (*to_insn_history_from) (struct target_ops *,
1214 ULONGEST from, int size,
1215 gdb_disassembly_flags flags)
1216 TARGET_DEFAULT_NORETURN (tcomplain ());
1217
1218 /* Disassemble a section of the recorded execution trace from instruction
1219 BEGIN (inclusive) to instruction END (inclusive). */
1220 void (*to_insn_history_range) (struct target_ops *,
1221 ULONGEST begin, ULONGEST end,
1222 gdb_disassembly_flags flags)
1223 TARGET_DEFAULT_NORETURN (tcomplain ());
1224
1225 /* Print a function trace of the recorded execution trace.
1226 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1227 succeeding functions. */
1228 void (*to_call_history) (struct target_ops *, int size, int flags)
1229 TARGET_DEFAULT_NORETURN (tcomplain ());
1230
1231 /* Print a function trace of the recorded execution trace starting
1232 at function FROM.
1233 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1234 SIZE functions after FROM. */
1235 void (*to_call_history_from) (struct target_ops *,
1236 ULONGEST begin, int size, int flags)
1237 TARGET_DEFAULT_NORETURN (tcomplain ());
1238
1239 /* Print a function trace of an execution trace section from function BEGIN
1240 (inclusive) to function END (inclusive). */
1241 void (*to_call_history_range) (struct target_ops *,
1242 ULONGEST begin, ULONGEST end, int flags)
1243 TARGET_DEFAULT_NORETURN (tcomplain ());
1244
1245 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1246 non-empty annex. */
1247 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1248 TARGET_DEFAULT_RETURN (0);
1249
1250 /* Those unwinders are tried before any other arch unwinders. If
1251 SELF doesn't have unwinders, it should delegate to the
1252 "beneath" target. */
1253 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1254 TARGET_DEFAULT_RETURN (NULL);
1255
1256 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1257 TARGET_DEFAULT_RETURN (NULL);
1258
1259 /* Prepare to generate a core file. */
1260 void (*to_prepare_to_generate_core) (struct target_ops *)
1261 TARGET_DEFAULT_IGNORE ();
1262
1263 /* Cleanup after generating a core file. */
1264 void (*to_done_generating_core) (struct target_ops *)
1265 TARGET_DEFAULT_IGNORE ();
1266
1267 int to_magic;
1268 /* Need sub-structure for target machine related rather than comm related?
1269 */
1270 };
1271
1272 /* Magic number for checking ops size. If a struct doesn't end with this
1273 number, somebody changed the declaration but didn't change all the
1274 places that initialize one. */
1275
1276 #define OPS_MAGIC 3840
1277
1278 /* The ops structure for our "current" target process. This should
1279 never be NULL. If there is no target, it points to the dummy_target. */
1280
1281 extern struct target_ops current_target;
1282
1283 /* Define easy words for doing these operations on our current target. */
1284
1285 #define target_shortname (current_target.to_shortname)
1286 #define target_longname (current_target.to_longname)
1287
1288 /* Does whatever cleanup is required for a target that we are no
1289 longer going to be calling. This routine is automatically always
1290 called after popping the target off the target stack - the target's
1291 own methods are no longer available through the target vector.
1292 Closing file descriptors and freeing all memory allocated memory are
1293 typical things it should do. */
1294
1295 void target_close (struct target_ops *targ);
1296
1297 /* Find the correct target to use for "attach". If a target on the
1298 current stack supports attaching, then it is returned. Otherwise,
1299 the default run target is returned. */
1300
1301 extern struct target_ops *find_attach_target (void);
1302
1303 /* Find the correct target to use for "run". If a target on the
1304 current stack supports creating a new inferior, then it is
1305 returned. Otherwise, the default run target is returned. */
1306
1307 extern struct target_ops *find_run_target (void);
1308
1309 /* Some targets don't generate traps when attaching to the inferior,
1310 or their target_attach implementation takes care of the waiting.
1311 These targets must set to_attach_no_wait. */
1312
1313 #define target_attach_no_wait \
1314 (current_target.to_attach_no_wait)
1315
1316 /* The target_attach operation places a process under debugger control,
1317 and stops the process.
1318
1319 This operation provides a target-specific hook that allows the
1320 necessary bookkeeping to be performed after an attach completes. */
1321 #define target_post_attach(pid) \
1322 (*current_target.to_post_attach) (&current_target, pid)
1323
1324 /* Display a message indicating we're about to detach from the current
1325 inferior process. */
1326
1327 extern void target_announce_detach (int from_tty);
1328
1329 /* Takes a program previously attached to and detaches it.
1330 The program may resume execution (some targets do, some don't) and will
1331 no longer stop on signals, etc. We better not have left any breakpoints
1332 in the program or it'll die when it hits one. ARGS is arguments
1333 typed by the user (e.g. a signal to send the process). FROM_TTY
1334 says whether to be verbose or not. */
1335
1336 extern void target_detach (const char *, int);
1337
1338 /* Disconnect from the current target without resuming it (leaving it
1339 waiting for a debugger). */
1340
1341 extern void target_disconnect (const char *, int);
1342
1343 /* Resume execution (or prepare for execution) of a target thread,
1344 process or all processes. STEP says whether to hardware
1345 single-step or to run free; SIGGNAL is the signal to be given to
1346 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1347 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1348 process id'. A wildcard PTID (all threads, or all threads of
1349 process) means `step/resume INFERIOR_PTID, and let other threads
1350 (for which the wildcard PTID matches) resume with their
1351 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1352 is in "pass" state, or with no signal if in "no pass" state.
1353
1354 In order to efficiently handle batches of resumption requests,
1355 targets may implement this method such that it records the
1356 resumption request, but defers the actual resumption to the
1357 target_commit_resume method implementation. See
1358 target_commit_resume below. */
1359 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1360
1361 /* Commit a series of resumption requests previously prepared with
1362 target_resume calls.
1363
1364 GDB always calls target_commit_resume after calling target_resume
1365 one or more times. A target may thus use this method in
1366 coordination with the target_resume method to batch target-side
1367 resumption requests. In that case, the target doesn't actually
1368 resume in its target_resume implementation. Instead, it prepares
1369 the resumption in target_resume, and defers the actual resumption
1370 to target_commit_resume. E.g., the remote target uses this to
1371 coalesce multiple resumption requests in a single vCont packet. */
1372 extern void target_commit_resume ();
1373
1374 /* Setup to defer target_commit_resume calls, and return a cleanup
1375 that reactivates target_commit_resume, if it was previously
1376 active. */
1377 struct cleanup *make_cleanup_defer_target_commit_resume ();
1378
1379 /* For target_read_memory see target/target.h. */
1380
1381 /* The default target_ops::to_wait implementation. */
1382
1383 extern ptid_t default_target_wait (struct target_ops *ops,
1384 ptid_t ptid,
1385 struct target_waitstatus *status,
1386 int options);
1387
1388 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1389
1390 extern void target_fetch_registers (struct regcache *regcache, int regno);
1391
1392 /* Store at least register REGNO, or all regs if REGNO == -1.
1393 It can store as many registers as it wants to, so target_prepare_to_store
1394 must have been previously called. Calls error() if there are problems. */
1395
1396 extern void target_store_registers (struct regcache *regcache, int regs);
1397
1398 /* Get ready to modify the registers array. On machines which store
1399 individual registers, this doesn't need to do anything. On machines
1400 which store all the registers in one fell swoop, this makes sure
1401 that REGISTERS contains all the registers from the program being
1402 debugged. */
1403
1404 #define target_prepare_to_store(regcache) \
1405 (*current_target.to_prepare_to_store) (&current_target, regcache)
1406
1407 /* Determine current address space of thread PTID. */
1408
1409 struct address_space *target_thread_address_space (ptid_t);
1410
1411 /* Implement the "info proc" command. This returns one if the request
1412 was handled, and zero otherwise. It can also throw an exception if
1413 an error was encountered while attempting to handle the
1414 request. */
1415
1416 int target_info_proc (const char *, enum info_proc_what);
1417
1418 /* Returns true if this target can disable address space randomization. */
1419
1420 int target_supports_disable_randomization (void);
1421
1422 /* Returns true if this target can enable and disable tracepoints
1423 while a trace experiment is running. */
1424
1425 #define target_supports_enable_disable_tracepoint() \
1426 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1427
1428 #define target_supports_string_tracing() \
1429 (*current_target.to_supports_string_tracing) (&current_target)
1430
1431 /* Returns true if this target can handle breakpoint conditions
1432 on its end. */
1433
1434 #define target_supports_evaluation_of_breakpoint_conditions() \
1435 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1436
1437 /* Returns true if this target can handle breakpoint commands
1438 on its end. */
1439
1440 #define target_can_run_breakpoint_commands() \
1441 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1442
1443 extern int target_read_string (CORE_ADDR, char **, int, int *);
1444
1445 /* For target_read_memory see target/target.h. */
1446
1447 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1448 ssize_t len);
1449
1450 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1451
1452 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1453
1454 /* For target_write_memory see target/target.h. */
1455
1456 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1457 ssize_t len);
1458
1459 /* Fetches the target's memory map. If one is found it is sorted
1460 and returned, after some consistency checking. Otherwise, NULL
1461 is returned. */
1462 VEC(mem_region_s) *target_memory_map (void);
1463
1464 /* Erases all flash memory regions on the target. */
1465 void flash_erase_command (char *cmd, int from_tty);
1466
1467 /* Erase the specified flash region. */
1468 void target_flash_erase (ULONGEST address, LONGEST length);
1469
1470 /* Finish a sequence of flash operations. */
1471 void target_flash_done (void);
1472
1473 /* Describes a request for a memory write operation. */
1474 struct memory_write_request
1475 {
1476 /* Begining address that must be written. */
1477 ULONGEST begin;
1478 /* Past-the-end address. */
1479 ULONGEST end;
1480 /* The data to write. */
1481 gdb_byte *data;
1482 /* A callback baton for progress reporting for this request. */
1483 void *baton;
1484 };
1485 typedef struct memory_write_request memory_write_request_s;
1486 DEF_VEC_O(memory_write_request_s);
1487
1488 /* Enumeration specifying different flash preservation behaviour. */
1489 enum flash_preserve_mode
1490 {
1491 flash_preserve,
1492 flash_discard
1493 };
1494
1495 /* Write several memory blocks at once. This version can be more
1496 efficient than making several calls to target_write_memory, in
1497 particular because it can optimize accesses to flash memory.
1498
1499 Moreover, this is currently the only memory access function in gdb
1500 that supports writing to flash memory, and it should be used for
1501 all cases where access to flash memory is desirable.
1502
1503 REQUESTS is the vector (see vec.h) of memory_write_request.
1504 PRESERVE_FLASH_P indicates what to do with blocks which must be
1505 erased, but not completely rewritten.
1506 PROGRESS_CB is a function that will be periodically called to provide
1507 feedback to user. It will be called with the baton corresponding
1508 to the request currently being written. It may also be called
1509 with a NULL baton, when preserved flash sectors are being rewritten.
1510
1511 The function returns 0 on success, and error otherwise. */
1512 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1513 enum flash_preserve_mode preserve_flash_p,
1514 void (*progress_cb) (ULONGEST, void *));
1515
1516 /* Print a line about the current target. */
1517
1518 #define target_files_info() \
1519 (*current_target.to_files_info) (&current_target)
1520
1521 /* Insert a breakpoint at address BP_TGT->placed_address in
1522 the target machine. Returns 0 for success, and returns non-zero or
1523 throws an error (with a detailed failure reason error code and
1524 message) otherwise. */
1525
1526 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1527 struct bp_target_info *bp_tgt);
1528
1529 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1530 machine. Result is 0 for success, non-zero for error. */
1531
1532 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1533 struct bp_target_info *bp_tgt,
1534 enum remove_bp_reason reason);
1535
1536 /* Returns true if the terminal settings of the inferior are in
1537 effect. */
1538
1539 extern int target_terminal_is_inferior (void);
1540
1541 /* Returns true if our terminal settings are in effect. */
1542
1543 extern int target_terminal_is_ours (void);
1544
1545 /* For target_terminal_init, target_terminal_inferior and
1546 target_terminal_ours, see target/target.h. */
1547
1548 /* Put some of our terminal settings into effect, enough to get proper
1549 results from our output, but do not change into or out of RAW mode
1550 so that no input is discarded. This is a no-op if terminal_ours
1551 was most recently called. This is a no-op unless called with the main
1552 UI as current UI. */
1553
1554 extern void target_terminal_ours_for_output (void);
1555
1556 /* Return true if the target stack has a non-default
1557 "to_terminal_ours" method. */
1558
1559 extern int target_supports_terminal_ours (void);
1560
1561 /* Make a cleanup that restores the state of the terminal to the current
1562 state. */
1563 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1564
1565 /* Print useful information about our terminal status, if such a thing
1566 exists. */
1567
1568 #define target_terminal_info(arg, from_tty) \
1569 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1570
1571 /* Kill the inferior process. Make it go away. */
1572
1573 extern void target_kill (void);
1574
1575 /* Load an executable file into the target process. This is expected
1576 to not only bring new code into the target process, but also to
1577 update GDB's symbol tables to match.
1578
1579 ARG contains command-line arguments, to be broken down with
1580 buildargv (). The first non-switch argument is the filename to
1581 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1582 0)), which is an offset to apply to the load addresses of FILE's
1583 sections. The target may define switches, or other non-switch
1584 arguments, as it pleases. */
1585
1586 extern void target_load (const char *arg, int from_tty);
1587
1588 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1589 notification of inferior events such as fork and vork immediately
1590 after the inferior is created. (This because of how gdb gets an
1591 inferior created via invoking a shell to do it. In such a scenario,
1592 if the shell init file has commands in it, the shell will fork and
1593 exec for each of those commands, and we will see each such fork
1594 event. Very bad.)
1595
1596 Such targets will supply an appropriate definition for this function. */
1597
1598 #define target_post_startup_inferior(ptid) \
1599 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1600
1601 /* On some targets, we can catch an inferior fork or vfork event when
1602 it occurs. These functions insert/remove an already-created
1603 catchpoint for such events. They return 0 for success, 1 if the
1604 catchpoint type is not supported and -1 for failure. */
1605
1606 #define target_insert_fork_catchpoint(pid) \
1607 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1608
1609 #define target_remove_fork_catchpoint(pid) \
1610 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1611
1612 #define target_insert_vfork_catchpoint(pid) \
1613 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1614
1615 #define target_remove_vfork_catchpoint(pid) \
1616 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1617
1618 /* If the inferior forks or vforks, this function will be called at
1619 the next resume in order to perform any bookkeeping and fiddling
1620 necessary to continue debugging either the parent or child, as
1621 requested, and releasing the other. Information about the fork
1622 or vfork event is available via get_last_target_status ().
1623 This function returns 1 if the inferior should not be resumed
1624 (i.e. there is another event pending). */
1625
1626 int target_follow_fork (int follow_child, int detach_fork);
1627
1628 /* Handle the target-specific bookkeeping required when the inferior
1629 makes an exec call. INF is the exec'd inferior. */
1630
1631 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1632
1633 /* On some targets, we can catch an inferior exec event when it
1634 occurs. These functions insert/remove an already-created
1635 catchpoint for such events. They return 0 for success, 1 if the
1636 catchpoint type is not supported and -1 for failure. */
1637
1638 #define target_insert_exec_catchpoint(pid) \
1639 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1640
1641 #define target_remove_exec_catchpoint(pid) \
1642 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1643
1644 /* Syscall catch.
1645
1646 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1647 If NEEDED is zero, it means the target can disable the mechanism to
1648 catch system calls because there are no more catchpoints of this type.
1649
1650 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1651 being requested. In this case, both TABLE_SIZE and TABLE should
1652 be ignored.
1653
1654 TABLE_SIZE is the number of elements in TABLE. It only matters if
1655 ANY_COUNT is zero.
1656
1657 TABLE is an array of ints, indexed by syscall number. An element in
1658 this array is nonzero if that syscall should be caught. This argument
1659 only matters if ANY_COUNT is zero.
1660
1661 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1662 for failure. */
1663
1664 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1665 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1666 pid, needed, any_count, \
1667 table_size, table)
1668
1669 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1670 exit code of PID, if any. */
1671
1672 #define target_has_exited(pid,wait_status,exit_status) \
1673 (*current_target.to_has_exited) (&current_target, \
1674 pid,wait_status,exit_status)
1675
1676 /* The debugger has completed a blocking wait() call. There is now
1677 some process event that must be processed. This function should
1678 be defined by those targets that require the debugger to perform
1679 cleanup or internal state changes in response to the process event. */
1680
1681 /* For target_mourn_inferior see target/target.h. */
1682
1683 /* Does target have enough data to do a run or attach command? */
1684
1685 #define target_can_run(t) \
1686 ((t)->to_can_run) (t)
1687
1688 /* Set list of signals to be handled in the target.
1689
1690 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1691 (enum gdb_signal). For every signal whose entry in this array is
1692 non-zero, the target is allowed -but not required- to skip reporting
1693 arrival of the signal to the GDB core by returning from target_wait,
1694 and to pass the signal directly to the inferior instead.
1695
1696 However, if the target is hardware single-stepping a thread that is
1697 about to receive a signal, it needs to be reported in any case, even
1698 if mentioned in a previous target_pass_signals call. */
1699
1700 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1701
1702 /* Set list of signals the target may pass to the inferior. This
1703 directly maps to the "handle SIGNAL pass/nopass" setting.
1704
1705 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1706 number (enum gdb_signal). For every signal whose entry in this
1707 array is non-zero, the target is allowed to pass the signal to the
1708 inferior. Signals not present in the array shall be silently
1709 discarded. This does not influence whether to pass signals to the
1710 inferior as a result of a target_resume call. This is useful in
1711 scenarios where the target needs to decide whether to pass or not a
1712 signal to the inferior without GDB core involvement, such as for
1713 example, when detaching (as threads may have been suspended with
1714 pending signals not reported to GDB). */
1715
1716 extern void target_program_signals (int nsig, unsigned char *program_signals);
1717
1718 /* Check to see if a thread is still alive. */
1719
1720 extern int target_thread_alive (ptid_t ptid);
1721
1722 /* Sync the target's threads with GDB's thread list. */
1723
1724 extern void target_update_thread_list (void);
1725
1726 /* Make target stop in a continuable fashion. (For instance, under
1727 Unix, this should act like SIGSTOP). Note that this function is
1728 asynchronous: it does not wait for the target to become stopped
1729 before returning. If this is the behavior you want please use
1730 target_stop_and_wait. */
1731
1732 extern void target_stop (ptid_t ptid);
1733
1734 /* Interrupt the target just like the user typed a ^C on the
1735 inferior's controlling terminal. (For instance, under Unix, this
1736 should act like SIGINT). This function is asynchronous. */
1737
1738 extern void target_interrupt (ptid_t ptid);
1739
1740 /* Pass a ^C, as determined to have been pressed by checking the quit
1741 flag, to the target. Normally calls target_interrupt, but remote
1742 targets may take the opportunity to detect the remote side is not
1743 responding and offer to disconnect. */
1744
1745 extern void target_pass_ctrlc (void);
1746
1747 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1748 target_interrupt. */
1749 extern void default_target_pass_ctrlc (struct target_ops *ops);
1750
1751 /* Send the specified COMMAND to the target's monitor
1752 (shell,interpreter) for execution. The result of the query is
1753 placed in OUTBUF. */
1754
1755 #define target_rcmd(command, outbuf) \
1756 (*current_target.to_rcmd) (&current_target, command, outbuf)
1757
1758
1759 /* Does the target include all of memory, or only part of it? This
1760 determines whether we look up the target chain for other parts of
1761 memory if this target can't satisfy a request. */
1762
1763 extern int target_has_all_memory_1 (void);
1764 #define target_has_all_memory target_has_all_memory_1 ()
1765
1766 /* Does the target include memory? (Dummy targets don't.) */
1767
1768 extern int target_has_memory_1 (void);
1769 #define target_has_memory target_has_memory_1 ()
1770
1771 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1772 we start a process.) */
1773
1774 extern int target_has_stack_1 (void);
1775 #define target_has_stack target_has_stack_1 ()
1776
1777 /* Does the target have registers? (Exec files don't.) */
1778
1779 extern int target_has_registers_1 (void);
1780 #define target_has_registers target_has_registers_1 ()
1781
1782 /* Does the target have execution? Can we make it jump (through
1783 hoops), or pop its stack a few times? This means that the current
1784 target is currently executing; for some targets, that's the same as
1785 whether or not the target is capable of execution, but there are
1786 also targets which can be current while not executing. In that
1787 case this will become true after to_create_inferior or
1788 to_attach. */
1789
1790 extern int target_has_execution_1 (ptid_t);
1791
1792 /* Like target_has_execution_1, but always passes inferior_ptid. */
1793
1794 extern int target_has_execution_current (void);
1795
1796 #define target_has_execution target_has_execution_current ()
1797
1798 /* Default implementations for process_stratum targets. Return true
1799 if there's a selected inferior, false otherwise. */
1800
1801 extern int default_child_has_all_memory (struct target_ops *ops);
1802 extern int default_child_has_memory (struct target_ops *ops);
1803 extern int default_child_has_stack (struct target_ops *ops);
1804 extern int default_child_has_registers (struct target_ops *ops);
1805 extern int default_child_has_execution (struct target_ops *ops,
1806 ptid_t the_ptid);
1807
1808 /* Can the target support the debugger control of thread execution?
1809 Can it lock the thread scheduler? */
1810
1811 #define target_can_lock_scheduler \
1812 (current_target.to_has_thread_control & tc_schedlock)
1813
1814 /* Controls whether async mode is permitted. */
1815 extern int target_async_permitted;
1816
1817 /* Can the target support asynchronous execution? */
1818 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1819
1820 /* Is the target in asynchronous execution mode? */
1821 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1822
1823 /* Enables/disabled async target events. */
1824 extern void target_async (int enable);
1825
1826 /* Enables/disables thread create and exit events. */
1827 extern void target_thread_events (int enable);
1828
1829 /* Whether support for controlling the target backends always in
1830 non-stop mode is enabled. */
1831 extern enum auto_boolean target_non_stop_enabled;
1832
1833 /* Is the target in non-stop mode? Some targets control the inferior
1834 in non-stop mode even with "set non-stop off". Always true if "set
1835 non-stop" is on. */
1836 extern int target_is_non_stop_p (void);
1837
1838 #define target_execution_direction() \
1839 (current_target.to_execution_direction (&current_target))
1840
1841 /* Converts a process id to a string. Usually, the string just contains
1842 `process xyz', but on some systems it may contain
1843 `process xyz thread abc'. */
1844
1845 extern const char *target_pid_to_str (ptid_t ptid);
1846
1847 extern const char *normal_pid_to_str (ptid_t ptid);
1848
1849 /* Return a short string describing extra information about PID,
1850 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1851 is okay. */
1852
1853 #define target_extra_thread_info(TP) \
1854 (current_target.to_extra_thread_info (&current_target, TP))
1855
1856 /* Return the thread's name, or NULL if the target is unable to determine it.
1857 The returned value must not be freed by the caller. */
1858
1859 extern const char *target_thread_name (struct thread_info *);
1860
1861 /* Attempts to find the pathname of the executable file
1862 that was run to create a specified process.
1863
1864 The process PID must be stopped when this operation is used.
1865
1866 If the executable file cannot be determined, NULL is returned.
1867
1868 Else, a pointer to a character string containing the pathname
1869 is returned. This string should be copied into a buffer by
1870 the client if the string will not be immediately used, or if
1871 it must persist. */
1872
1873 #define target_pid_to_exec_file(pid) \
1874 (current_target.to_pid_to_exec_file) (&current_target, pid)
1875
1876 /* See the to_thread_architecture description in struct target_ops. */
1877
1878 #define target_thread_architecture(ptid) \
1879 (current_target.to_thread_architecture (&current_target, ptid))
1880
1881 /*
1882 * Iterator function for target memory regions.
1883 * Calls a callback function once for each memory region 'mapped'
1884 * in the child process. Defined as a simple macro rather than
1885 * as a function macro so that it can be tested for nullity.
1886 */
1887
1888 #define target_find_memory_regions(FUNC, DATA) \
1889 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1890
1891 /*
1892 * Compose corefile .note section.
1893 */
1894
1895 #define target_make_corefile_notes(BFD, SIZE_P) \
1896 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1897
1898 /* Bookmark interfaces. */
1899 #define target_get_bookmark(ARGS, FROM_TTY) \
1900 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1901
1902 #define target_goto_bookmark(ARG, FROM_TTY) \
1903 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1904
1905 /* Hardware watchpoint interfaces. */
1906
1907 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1908 write). Only the INFERIOR_PTID task is being queried. */
1909
1910 #define target_stopped_by_watchpoint() \
1911 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1912
1913 /* Returns non-zero if the target stopped because it executed a
1914 software breakpoint instruction. */
1915
1916 #define target_stopped_by_sw_breakpoint() \
1917 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1918
1919 #define target_supports_stopped_by_sw_breakpoint() \
1920 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1921
1922 #define target_stopped_by_hw_breakpoint() \
1923 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1924
1925 #define target_supports_stopped_by_hw_breakpoint() \
1926 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1927
1928 /* Non-zero if we have steppable watchpoints */
1929
1930 #define target_have_steppable_watchpoint \
1931 (current_target.to_have_steppable_watchpoint)
1932
1933 /* Non-zero if we have continuable watchpoints */
1934
1935 #define target_have_continuable_watchpoint \
1936 (current_target.to_have_continuable_watchpoint)
1937
1938 /* Provide defaults for hardware watchpoint functions. */
1939
1940 /* If the *_hw_beakpoint functions have not been defined
1941 elsewhere use the definitions in the target vector. */
1942
1943 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1944 Returns negative if the target doesn't have enough hardware debug
1945 registers available. Return zero if hardware watchpoint of type
1946 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1947 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1948 CNT is the number of such watchpoints used so far, including this
1949 one. OTHERTYPE is the number of watchpoints of other types than
1950 this one used so far. */
1951
1952 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1953 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1954 TYPE, CNT, OTHERTYPE)
1955
1956 /* Returns the number of debug registers needed to watch the given
1957 memory region, or zero if not supported. */
1958
1959 #define target_region_ok_for_hw_watchpoint(addr, len) \
1960 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1961 addr, len)
1962
1963
1964 #define target_can_do_single_step() \
1965 (*current_target.to_can_do_single_step) (&current_target)
1966
1967 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1968 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1969 COND is the expression for its condition, or NULL if there's none.
1970 Returns 0 for success, 1 if the watchpoint type is not supported,
1971 -1 for failure. */
1972
1973 #define target_insert_watchpoint(addr, len, type, cond) \
1974 (*current_target.to_insert_watchpoint) (&current_target, \
1975 addr, len, type, cond)
1976
1977 #define target_remove_watchpoint(addr, len, type, cond) \
1978 (*current_target.to_remove_watchpoint) (&current_target, \
1979 addr, len, type, cond)
1980
1981 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1982 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1983 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1984 masked watchpoints are not supported, -1 for failure. */
1985
1986 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1987 enum target_hw_bp_type);
1988
1989 /* Remove a masked watchpoint at ADDR with the mask MASK.
1990 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1991 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1992 for failure. */
1993
1994 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1995 enum target_hw_bp_type);
1996
1997 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1998 the target machine. Returns 0 for success, and returns non-zero or
1999 throws an error (with a detailed failure reason error code and
2000 message) otherwise. */
2001
2002 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2003 (*current_target.to_insert_hw_breakpoint) (&current_target, \
2004 gdbarch, bp_tgt)
2005
2006 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2007 (*current_target.to_remove_hw_breakpoint) (&current_target, \
2008 gdbarch, bp_tgt)
2009
2010 /* Return number of debug registers needed for a ranged breakpoint,
2011 or -1 if ranged breakpoints are not supported. */
2012
2013 extern int target_ranged_break_num_registers (void);
2014
2015 /* Return non-zero if target knows the data address which triggered this
2016 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2017 INFERIOR_PTID task is being queried. */
2018 #define target_stopped_data_address(target, addr_p) \
2019 (*(target)->to_stopped_data_address) (target, addr_p)
2020
2021 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2022 LENGTH bytes beginning at START. */
2023 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2024 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
2025
2026 /* Return non-zero if the target is capable of using hardware to evaluate
2027 the condition expression. In this case, if the condition is false when
2028 the watched memory location changes, execution may continue without the
2029 debugger being notified.
2030
2031 Due to limitations in the hardware implementation, it may be capable of
2032 avoiding triggering the watchpoint in some cases where the condition
2033 expression is false, but may report some false positives as well.
2034 For this reason, GDB will still evaluate the condition expression when
2035 the watchpoint triggers. */
2036 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2037 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2038 addr, len, type, cond)
2039
2040 /* Return number of debug registers needed for a masked watchpoint,
2041 -1 if masked watchpoints are not supported or -2 if the given address
2042 and mask combination cannot be used. */
2043
2044 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2045
2046 /* Target can execute in reverse? */
2047 #define target_can_execute_reverse \
2048 current_target.to_can_execute_reverse (&current_target)
2049
2050 extern const struct target_desc *target_read_description (struct target_ops *);
2051
2052 #define target_get_ada_task_ptid(lwp, tid) \
2053 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2054
2055 /* Utility implementation of searching memory. */
2056 extern int simple_search_memory (struct target_ops* ops,
2057 CORE_ADDR start_addr,
2058 ULONGEST search_space_len,
2059 const gdb_byte *pattern,
2060 ULONGEST pattern_len,
2061 CORE_ADDR *found_addrp);
2062
2063 /* Main entry point for searching memory. */
2064 extern int target_search_memory (CORE_ADDR start_addr,
2065 ULONGEST search_space_len,
2066 const gdb_byte *pattern,
2067 ULONGEST pattern_len,
2068 CORE_ADDR *found_addrp);
2069
2070 /* Target file operations. */
2071
2072 /* Return nonzero if the filesystem seen by the current inferior
2073 is the local filesystem, zero otherwise. */
2074 #define target_filesystem_is_local() \
2075 current_target.to_filesystem_is_local (&current_target)
2076
2077 /* Open FILENAME on the target, in the filesystem as seen by INF,
2078 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2079 by the debugger (GDB or, for remote targets, the remote stub).
2080 Return a target file descriptor, or -1 if an error occurs (and
2081 set *TARGET_ERRNO). */
2082 extern int target_fileio_open (struct inferior *inf,
2083 const char *filename, int flags,
2084 int mode, int *target_errno);
2085
2086 /* Like target_fileio_open, but print a warning message if the
2087 file is being accessed over a link that may be slow. */
2088 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2089 const char *filename,
2090 int flags,
2091 int mode,
2092 int *target_errno);
2093
2094 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2095 Return the number of bytes written, or -1 if an error occurs
2096 (and set *TARGET_ERRNO). */
2097 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2098 ULONGEST offset, int *target_errno);
2099
2100 /* Read up to LEN bytes FD on the target into READ_BUF.
2101 Return the number of bytes read, or -1 if an error occurs
2102 (and set *TARGET_ERRNO). */
2103 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2104 ULONGEST offset, int *target_errno);
2105
2106 /* Get information about the file opened as FD on the target
2107 and put it in SB. Return 0 on success, or -1 if an error
2108 occurs (and set *TARGET_ERRNO). */
2109 extern int target_fileio_fstat (int fd, struct stat *sb,
2110 int *target_errno);
2111
2112 /* Close FD on the target. Return 0, or -1 if an error occurs
2113 (and set *TARGET_ERRNO). */
2114 extern int target_fileio_close (int fd, int *target_errno);
2115
2116 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2117 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2118 for remote targets, the remote stub). Return 0, or -1 if an error
2119 occurs (and set *TARGET_ERRNO). */
2120 extern int target_fileio_unlink (struct inferior *inf,
2121 const char *filename,
2122 int *target_errno);
2123
2124 /* Read value of symbolic link FILENAME on the target, in the
2125 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2126 by the debugger (GDB or, for remote targets, the remote stub).
2127 Return a null-terminated string allocated via xmalloc, or NULL if
2128 an error occurs (and set *TARGET_ERRNO). */
2129 extern char *target_fileio_readlink (struct inferior *inf,
2130 const char *filename,
2131 int *target_errno);
2132
2133 /* Read target file FILENAME, in the filesystem as seen by INF. If
2134 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2135 remote targets, the remote stub). The return value will be -1 if
2136 the transfer fails or is not supported; 0 if the object is empty;
2137 or the length of the object otherwise. If a positive value is
2138 returned, a sufficiently large buffer will be allocated using
2139 xmalloc and returned in *BUF_P containing the contents of the
2140 object.
2141
2142 This method should be used for objects sufficiently small to store
2143 in a single xmalloc'd buffer, when no fixed bound on the object's
2144 size is known in advance. */
2145 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2146 const char *filename,
2147 gdb_byte **buf_p);
2148
2149 /* Read target file FILENAME, in the filesystem as seen by INF. If
2150 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2151 remote targets, the remote stub). The result is NUL-terminated and
2152 returned as a string, allocated using xmalloc. If an error occurs
2153 or the transfer is unsupported, NULL is returned. Empty objects
2154 are returned as allocated but empty strings. A warning is issued
2155 if the result contains any embedded NUL bytes. */
2156 extern char *target_fileio_read_stralloc (struct inferior *inf,
2157 const char *filename);
2158
2159
2160 /* Tracepoint-related operations. */
2161
2162 #define target_trace_init() \
2163 (*current_target.to_trace_init) (&current_target)
2164
2165 #define target_download_tracepoint(t) \
2166 (*current_target.to_download_tracepoint) (&current_target, t)
2167
2168 #define target_can_download_tracepoint() \
2169 (*current_target.to_can_download_tracepoint) (&current_target)
2170
2171 #define target_download_trace_state_variable(tsv) \
2172 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2173
2174 #define target_enable_tracepoint(loc) \
2175 (*current_target.to_enable_tracepoint) (&current_target, loc)
2176
2177 #define target_disable_tracepoint(loc) \
2178 (*current_target.to_disable_tracepoint) (&current_target, loc)
2179
2180 #define target_trace_start() \
2181 (*current_target.to_trace_start) (&current_target)
2182
2183 #define target_trace_set_readonly_regions() \
2184 (*current_target.to_trace_set_readonly_regions) (&current_target)
2185
2186 #define target_get_trace_status(ts) \
2187 (*current_target.to_get_trace_status) (&current_target, ts)
2188
2189 #define target_get_tracepoint_status(tp,utp) \
2190 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2191
2192 #define target_trace_stop() \
2193 (*current_target.to_trace_stop) (&current_target)
2194
2195 #define target_trace_find(type,num,addr1,addr2,tpp) \
2196 (*current_target.to_trace_find) (&current_target, \
2197 (type), (num), (addr1), (addr2), (tpp))
2198
2199 #define target_get_trace_state_variable_value(tsv,val) \
2200 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2201 (tsv), (val))
2202
2203 #define target_save_trace_data(filename) \
2204 (*current_target.to_save_trace_data) (&current_target, filename)
2205
2206 #define target_upload_tracepoints(utpp) \
2207 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2208
2209 #define target_upload_trace_state_variables(utsvp) \
2210 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2211
2212 #define target_get_raw_trace_data(buf,offset,len) \
2213 (*current_target.to_get_raw_trace_data) (&current_target, \
2214 (buf), (offset), (len))
2215
2216 #define target_get_min_fast_tracepoint_insn_len() \
2217 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2218
2219 #define target_set_disconnected_tracing(val) \
2220 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2221
2222 #define target_set_circular_trace_buffer(val) \
2223 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2224
2225 #define target_set_trace_buffer_size(val) \
2226 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2227
2228 #define target_set_trace_notes(user,notes,stopnotes) \
2229 (*current_target.to_set_trace_notes) (&current_target, \
2230 (user), (notes), (stopnotes))
2231
2232 #define target_get_tib_address(ptid, addr) \
2233 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2234
2235 #define target_set_permissions() \
2236 (*current_target.to_set_permissions) (&current_target)
2237
2238 #define target_static_tracepoint_marker_at(addr, marker) \
2239 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2240 addr, marker)
2241
2242 #define target_static_tracepoint_markers_by_strid(marker_id) \
2243 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2244 marker_id)
2245
2246 #define target_traceframe_info() \
2247 (*current_target.to_traceframe_info) (&current_target)
2248
2249 #define target_use_agent(use) \
2250 (*current_target.to_use_agent) (&current_target, use)
2251
2252 #define target_can_use_agent() \
2253 (*current_target.to_can_use_agent) (&current_target)
2254
2255 #define target_augmented_libraries_svr4_read() \
2256 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2257
2258 /* Command logging facility. */
2259
2260 #define target_log_command(p) \
2261 (*current_target.to_log_command) (&current_target, p)
2262
2263
2264 extern int target_core_of_thread (ptid_t ptid);
2265
2266 /* See to_get_unwinder in struct target_ops. */
2267 extern const struct frame_unwind *target_get_unwinder (void);
2268
2269 /* See to_get_tailcall_unwinder in struct target_ops. */
2270 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2271
2272 /* This implements basic memory verification, reading target memory
2273 and performing the comparison here (as opposed to accelerated
2274 verification making use of the qCRC packet, for example). */
2275
2276 extern int simple_verify_memory (struct target_ops* ops,
2277 const gdb_byte *data,
2278 CORE_ADDR memaddr, ULONGEST size);
2279
2280 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2281 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2282 if there's a mismatch, and -1 if an error is encountered while
2283 reading memory. Throws an error if the functionality is found not
2284 to be supported by the current target. */
2285 int target_verify_memory (const gdb_byte *data,
2286 CORE_ADDR memaddr, ULONGEST size);
2287
2288 /* Routines for maintenance of the target structures...
2289
2290 complete_target_initialization: Finalize a target_ops by filling in
2291 any fields needed by the target implementation. Unnecessary for
2292 targets which are registered via add_target, as this part gets
2293 taken care of then.
2294
2295 add_target: Add a target to the list of all possible targets.
2296 This only makes sense for targets that should be activated using
2297 the "target TARGET_NAME ..." command.
2298
2299 push_target: Make this target the top of the stack of currently used
2300 targets, within its particular stratum of the stack. Result
2301 is 0 if now atop the stack, nonzero if not on top (maybe
2302 should warn user).
2303
2304 unpush_target: Remove this from the stack of currently used targets,
2305 no matter where it is on the list. Returns 0 if no
2306 change, 1 if removed from stack. */
2307
2308 extern void add_target (struct target_ops *);
2309
2310 extern void add_target_with_completer (struct target_ops *t,
2311 completer_ftype *completer);
2312
2313 extern void complete_target_initialization (struct target_ops *t);
2314
2315 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2316 for maintaining backwards compatibility when renaming targets. */
2317
2318 extern void add_deprecated_target_alias (struct target_ops *t,
2319 const char *alias);
2320
2321 extern void push_target (struct target_ops *);
2322
2323 extern int unpush_target (struct target_ops *);
2324
2325 extern void target_pre_inferior (int);
2326
2327 extern void target_preopen (int);
2328
2329 /* Does whatever cleanup is required to get rid of all pushed targets. */
2330 extern void pop_all_targets (void);
2331
2332 /* Like pop_all_targets, but pops only targets whose stratum is at or
2333 above STRATUM. */
2334 extern void pop_all_targets_at_and_above (enum strata stratum);
2335
2336 /* Like pop_all_targets, but pops only targets whose stratum is
2337 strictly above ABOVE_STRATUM. */
2338 extern void pop_all_targets_above (enum strata above_stratum);
2339
2340 extern int target_is_pushed (struct target_ops *t);
2341
2342 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2343 CORE_ADDR offset);
2344
2345 /* Struct target_section maps address ranges to file sections. It is
2346 mostly used with BFD files, but can be used without (e.g. for handling
2347 raw disks, or files not in formats handled by BFD). */
2348
2349 struct target_section
2350 {
2351 CORE_ADDR addr; /* Lowest address in section */
2352 CORE_ADDR endaddr; /* 1+highest address in section */
2353
2354 struct bfd_section *the_bfd_section;
2355
2356 /* The "owner" of the section.
2357 It can be any unique value. It is set by add_target_sections
2358 and used by remove_target_sections.
2359 For example, for executables it is a pointer to exec_bfd and
2360 for shlibs it is the so_list pointer. */
2361 void *owner;
2362 };
2363
2364 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2365
2366 struct target_section_table
2367 {
2368 struct target_section *sections;
2369 struct target_section *sections_end;
2370 };
2371
2372 /* Return the "section" containing the specified address. */
2373 struct target_section *target_section_by_addr (struct target_ops *target,
2374 CORE_ADDR addr);
2375
2376 /* Return the target section table this target (or the targets
2377 beneath) currently manipulate. */
2378
2379 extern struct target_section_table *target_get_section_table
2380 (struct target_ops *target);
2381
2382 /* From mem-break.c */
2383
2384 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2385 struct bp_target_info *,
2386 enum remove_bp_reason);
2387
2388 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2389 struct bp_target_info *);
2390
2391 /* Check whether the memory at the breakpoint's placed address still
2392 contains the expected breakpoint instruction. */
2393
2394 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2395 struct bp_target_info *bp_tgt);
2396
2397 extern int default_memory_remove_breakpoint (struct gdbarch *,
2398 struct bp_target_info *);
2399
2400 extern int default_memory_insert_breakpoint (struct gdbarch *,
2401 struct bp_target_info *);
2402
2403
2404 /* From target.c */
2405
2406 extern void initialize_targets (void);
2407
2408 extern void noprocess (void) ATTRIBUTE_NORETURN;
2409
2410 extern void target_require_runnable (void);
2411
2412 extern struct target_ops *find_target_beneath (struct target_ops *);
2413
2414 /* Find the target at STRATUM. If no target is at that stratum,
2415 return NULL. */
2416
2417 struct target_ops *find_target_at (enum strata stratum);
2418
2419 /* Read OS data object of type TYPE from the target, and return it in
2420 XML format. The result is NUL-terminated and returned as a string,
2421 allocated using xmalloc. If an error occurs or the transfer is
2422 unsupported, NULL is returned. Empty objects are returned as
2423 allocated but empty strings. */
2424
2425 extern char *target_get_osdata (const char *type);
2426
2427 \f
2428 /* Stuff that should be shared among the various remote targets. */
2429
2430 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2431 information (higher values, more information). */
2432 extern int remote_debug;
2433
2434 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2435 extern int baud_rate;
2436
2437 /* Parity for serial port */
2438 extern int serial_parity;
2439
2440 /* Timeout limit for response from target. */
2441 extern int remote_timeout;
2442
2443 \f
2444
2445 /* Set the show memory breakpoints mode to show, and return a
2446 scoped_restore to restore it back to the current value. */
2447 extern scoped_restore_tmpl<int>
2448 make_scoped_restore_show_memory_breakpoints (int show);
2449
2450 extern int may_write_registers;
2451 extern int may_write_memory;
2452 extern int may_insert_breakpoints;
2453 extern int may_insert_tracepoints;
2454 extern int may_insert_fast_tracepoints;
2455 extern int may_stop;
2456
2457 extern void update_target_permissions (void);
2458
2459 \f
2460 /* Imported from machine dependent code. */
2461
2462 /* See to_supports_btrace in struct target_ops. */
2463 extern int target_supports_btrace (enum btrace_format);
2464
2465 /* See to_enable_btrace in struct target_ops. */
2466 extern struct btrace_target_info *
2467 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2468
2469 /* See to_disable_btrace in struct target_ops. */
2470 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2471
2472 /* See to_teardown_btrace in struct target_ops. */
2473 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2474
2475 /* See to_read_btrace in struct target_ops. */
2476 extern enum btrace_error target_read_btrace (struct btrace_data *,
2477 struct btrace_target_info *,
2478 enum btrace_read_type);
2479
2480 /* See to_btrace_conf in struct target_ops. */
2481 extern const struct btrace_config *
2482 target_btrace_conf (const struct btrace_target_info *);
2483
2484 /* See to_stop_recording in struct target_ops. */
2485 extern void target_stop_recording (void);
2486
2487 /* See to_save_record in struct target_ops. */
2488 extern void target_save_record (const char *filename);
2489
2490 /* Query if the target supports deleting the execution log. */
2491 extern int target_supports_delete_record (void);
2492
2493 /* See to_delete_record in struct target_ops. */
2494 extern void target_delete_record (void);
2495
2496 /* See to_record_method. */
2497 extern enum record_method target_record_method (ptid_t ptid);
2498
2499 /* See to_record_is_replaying in struct target_ops. */
2500 extern int target_record_is_replaying (ptid_t ptid);
2501
2502 /* See to_record_will_replay in struct target_ops. */
2503 extern int target_record_will_replay (ptid_t ptid, int dir);
2504
2505 /* See to_record_stop_replaying in struct target_ops. */
2506 extern void target_record_stop_replaying (void);
2507
2508 /* See to_goto_record_begin in struct target_ops. */
2509 extern void target_goto_record_begin (void);
2510
2511 /* See to_goto_record_end in struct target_ops. */
2512 extern void target_goto_record_end (void);
2513
2514 /* See to_goto_record in struct target_ops. */
2515 extern void target_goto_record (ULONGEST insn);
2516
2517 /* See to_insn_history. */
2518 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2519
2520 /* See to_insn_history_from. */
2521 extern void target_insn_history_from (ULONGEST from, int size,
2522 gdb_disassembly_flags flags);
2523
2524 /* See to_insn_history_range. */
2525 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2526 gdb_disassembly_flags flags);
2527
2528 /* See to_call_history. */
2529 extern void target_call_history (int size, int flags);
2530
2531 /* See to_call_history_from. */
2532 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2533
2534 /* See to_call_history_range. */
2535 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2536
2537 /* See to_prepare_to_generate_core. */
2538 extern void target_prepare_to_generate_core (void);
2539
2540 /* See to_done_generating_core. */
2541 extern void target_done_generating_core (void);
2542
2543 #endif /* !defined (TARGET_H) */
This page took 0.082657 seconds and 5 git commands to generate.