Don't set gdb,noinferiorio on gdbserver boards
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44
45 /* This include file defines the interface between the main part
46 of the debugger, and the part which is target-specific, or
47 specific to the communications interface between us and the
48 target.
49
50 A TARGET is an interface between the debugger and a particular
51 kind of file or process. Targets can be STACKED in STRATA,
52 so that more than one target can potentially respond to a request.
53 In particular, memory accesses will walk down the stack of targets
54 until they find a target that is interested in handling that particular
55 address. STRATA are artificial boundaries on the stack, within
56 which particular kinds of targets live. Strata exist so that
57 people don't get confused by pushing e.g. a process target and then
58 a file target, and wondering why they can't see the current values
59 of variables any more (the file target is handling them and they
60 never get to the process target). So when you push a file target,
61 it goes into the file stratum, which is always below the process
62 stratum. */
63
64 #include "target/target.h"
65 #include "target/resume.h"
66 #include "target/wait.h"
67 #include "target/waitstatus.h"
68 #include "bfd.h"
69 #include "symtab.h"
70 #include "memattr.h"
71 #include "vec.h"
72 #include "gdb_signals.h"
73 #include "btrace.h"
74 #include "command.h"
75
76 enum strata
77 {
78 dummy_stratum, /* The lowest of the low */
79 file_stratum, /* Executable files, etc */
80 process_stratum, /* Executing processes or core dump files */
81 thread_stratum, /* Executing threads */
82 record_stratum, /* Support record debugging */
83 arch_stratum /* Architecture overrides */
84 };
85
86 enum thread_control_capabilities
87 {
88 tc_none = 0, /* Default: can't control thread execution. */
89 tc_schedlock = 1, /* Can lock the thread scheduler. */
90 };
91
92 /* The structure below stores information about a system call.
93 It is basically used in the "catch syscall" command, and in
94 every function that gives information about a system call.
95
96 It's also good to mention that its fields represent everything
97 that we currently know about a syscall in GDB. */
98 struct syscall
99 {
100 /* The syscall number. */
101 int number;
102
103 /* The syscall name. */
104 const char *name;
105 };
106
107 /* Return a pretty printed form of target_waitstatus.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
110
111 /* Return a pretty printed form of TARGET_OPTIONS.
112 Space for the result is malloc'd, caller must free. */
113 extern char *target_options_to_string (int target_options);
114
115 /* Possible types of events that the inferior handler will have to
116 deal with. */
117 enum inferior_event_type
118 {
119 /* Process a normal inferior event which will result in target_wait
120 being called. */
121 INF_REG_EVENT,
122 /* We are called because a timer went off. */
123 INF_TIMER,
124 /* We are called to do stuff after the inferior stops. */
125 INF_EXEC_COMPLETE,
126 /* We are called to do some stuff after the inferior stops, but we
127 are expected to reenter the proceed() and
128 handle_inferior_event() functions. This is used only in case of
129 'step n' like commands. */
130 INF_EXEC_CONTINUE
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* SPU target specific transfer. See "spu-tdep.c". */
141 TARGET_OBJECT_SPU,
142 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
143 TARGET_OBJECT_MEMORY,
144 /* Memory, avoiding GDB's data cache and trusting the executable.
145 Target implementations of to_xfer_partial never need to handle
146 this object, and most callers should not use it. */
147 TARGET_OBJECT_RAW_MEMORY,
148 /* Memory known to be part of the target's stack. This is cached even
149 if it is not in a region marked as such, since it is known to be
150 "normal" RAM. */
151 TARGET_OBJECT_STACK_MEMORY,
152 /* Memory known to be part of the target code. This is cached even
153 if it is not in a region marked as such. */
154 TARGET_OBJECT_CODE_MEMORY,
155 /* Kernel Unwind Table. See "ia64-tdep.c". */
156 TARGET_OBJECT_UNWIND_TABLE,
157 /* Transfer auxilliary vector. */
158 TARGET_OBJECT_AUXV,
159 /* StackGhost cookie. See "sparc-tdep.c". */
160 TARGET_OBJECT_WCOOKIE,
161 /* Target memory map in XML format. */
162 TARGET_OBJECT_MEMORY_MAP,
163 /* Flash memory. This object can be used to write contents to
164 a previously erased flash memory. Using it without erasing
165 flash can have unexpected results. Addresses are physical
166 address on target, and not relative to flash start. */
167 TARGET_OBJECT_FLASH,
168 /* Available target-specific features, e.g. registers and coprocessors.
169 See "target-descriptions.c". ANNEX should never be empty. */
170 TARGET_OBJECT_AVAILABLE_FEATURES,
171 /* Currently loaded libraries, in XML format. */
172 TARGET_OBJECT_LIBRARIES,
173 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_SVR4,
175 /* Currently loaded libraries specific to AIX systems, in XML format. */
176 TARGET_OBJECT_LIBRARIES_AIX,
177 /* Get OS specific data. The ANNEX specifies the type (running
178 processes, etc.). The data being transfered is expected to follow
179 the DTD specified in features/osdata.dtd. */
180 TARGET_OBJECT_OSDATA,
181 /* Extra signal info. Usually the contents of `siginfo_t' on unix
182 platforms. */
183 TARGET_OBJECT_SIGNAL_INFO,
184 /* The list of threads that are being debugged. */
185 TARGET_OBJECT_THREADS,
186 /* Collected static trace data. */
187 TARGET_OBJECT_STATIC_TRACE_DATA,
188 /* The HP-UX registers (those that can be obtained or modified by using
189 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
190 TARGET_OBJECT_HPUX_UREGS,
191 /* The HP-UX shared library linkage pointer. ANNEX should be a string
192 image of the code address whose linkage pointer we are looking for.
193
194 The size of the data transfered is always 8 bytes (the size of an
195 address on ia64). */
196 TARGET_OBJECT_HPUX_SOLIB_GOT,
197 /* Traceframe info, in XML format. */
198 TARGET_OBJECT_TRACEFRAME_INFO,
199 /* Load maps for FDPIC systems. */
200 TARGET_OBJECT_FDPIC,
201 /* Darwin dynamic linker info data. */
202 TARGET_OBJECT_DARWIN_DYLD_INFO,
203 /* OpenVMS Unwind Information Block. */
204 TARGET_OBJECT_OPENVMS_UIB,
205 /* Branch trace data, in XML format. */
206 TARGET_OBJECT_BTRACE,
207 /* Branch trace configuration, in XML format. */
208 TARGET_OBJECT_BTRACE_CONF,
209 /* The pathname of the executable file that was run to create
210 a specified process. ANNEX should be a string representation
211 of the process ID of the process in question, in hexadecimal
212 format. */
213 TARGET_OBJECT_EXEC_FILE,
214 /* Possible future objects: TARGET_OBJECT_FILE, ... */
215 };
216
217 /* Possible values returned by target_xfer_partial, etc. */
218
219 enum target_xfer_status
220 {
221 /* Some bytes are transferred. */
222 TARGET_XFER_OK = 1,
223
224 /* No further transfer is possible. */
225 TARGET_XFER_EOF = 0,
226
227 /* The piece of the object requested is unavailable. */
228 TARGET_XFER_UNAVAILABLE = 2,
229
230 /* Generic I/O error. Note that it's important that this is '-1',
231 as we still have target_xfer-related code returning hardcoded
232 '-1' on error. */
233 TARGET_XFER_E_IO = -1,
234
235 /* Keep list in sync with target_xfer_status_to_string. */
236 };
237
238 /* Return the string form of STATUS. */
239
240 extern const char *
241 target_xfer_status_to_string (enum target_xfer_status status);
242
243 /* Enumeration of the kinds of traceframe searches that a target may
244 be able to perform. */
245
246 enum trace_find_type
247 {
248 tfind_number,
249 tfind_pc,
250 tfind_tp,
251 tfind_range,
252 tfind_outside,
253 };
254
255 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
256 DEF_VEC_P(static_tracepoint_marker_p);
257
258 typedef enum target_xfer_status
259 target_xfer_partial_ftype (struct target_ops *ops,
260 enum target_object object,
261 const char *annex,
262 gdb_byte *readbuf,
263 const gdb_byte *writebuf,
264 ULONGEST offset,
265 ULONGEST len,
266 ULONGEST *xfered_len);
267
268 /* Request that OPS transfer up to LEN addressable units of the target's
269 OBJECT. When reading from a memory object, the size of an addressable unit
270 is architecture dependent and can be found using
271 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
272 byte long. BUF should point to a buffer large enough to hold the read data,
273 taking into account the addressable unit size. The OFFSET, for a seekable
274 object, specifies the starting point. The ANNEX can be used to provide
275 additional data-specific information to the target.
276
277 Return the number of addressable units actually transferred, or a negative
278 error code (an 'enum target_xfer_error' value) if the transfer is not
279 supported or otherwise fails. Return of a positive value less than
280 LEN indicates that no further transfer is possible. Unlike the raw
281 to_xfer_partial interface, callers of these functions do not need
282 to retry partial transfers. */
283
284 extern LONGEST target_read (struct target_ops *ops,
285 enum target_object object,
286 const char *annex, gdb_byte *buf,
287 ULONGEST offset, LONGEST len);
288
289 struct memory_read_result
290 {
291 /* First address that was read. */
292 ULONGEST begin;
293 /* Past-the-end address. */
294 ULONGEST end;
295 /* The data. */
296 gdb_byte *data;
297 };
298 typedef struct memory_read_result memory_read_result_s;
299 DEF_VEC_O(memory_read_result_s);
300
301 extern void free_memory_read_result_vector (void *);
302
303 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
304 const ULONGEST offset,
305 const LONGEST len);
306
307 /* Request that OPS transfer up to LEN addressable units from BUF to the
308 target's OBJECT. When writing to a memory object, the addressable unit
309 size is architecture dependent and can be found using
310 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
311 byte long. The OFFSET, for a seekable object, specifies the starting point.
312 The ANNEX can be used to provide additional data-specific information to
313 the target.
314
315 Return the number of addressable units actually transferred, or a negative
316 error code (an 'enum target_xfer_status' value) if the transfer is not
317 supported or otherwise fails. Return of a positive value less than
318 LEN indicates that no further transfer is possible. Unlike the raw
319 to_xfer_partial interface, callers of these functions do not need to
320 retry partial transfers. */
321
322 extern LONGEST target_write (struct target_ops *ops,
323 enum target_object object,
324 const char *annex, const gdb_byte *buf,
325 ULONGEST offset, LONGEST len);
326
327 /* Similar to target_write, except that it also calls PROGRESS with
328 the number of bytes written and the opaque BATON after every
329 successful partial write (and before the first write). This is
330 useful for progress reporting and user interaction while writing
331 data. To abort the transfer, the progress callback can throw an
332 exception. */
333
334 LONGEST target_write_with_progress (struct target_ops *ops,
335 enum target_object object,
336 const char *annex, const gdb_byte *buf,
337 ULONGEST offset, LONGEST len,
338 void (*progress) (ULONGEST, void *),
339 void *baton);
340
341 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
342 be read using OPS. The return value will be -1 if the transfer
343 fails or is not supported; 0 if the object is empty; or the length
344 of the object otherwise. If a positive value is returned, a
345 sufficiently large buffer will be allocated using xmalloc and
346 returned in *BUF_P containing the contents of the object.
347
348 This method should be used for objects sufficiently small to store
349 in a single xmalloc'd buffer, when no fixed bound on the object's
350 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
351 through this function. */
352
353 extern LONGEST target_read_alloc (struct target_ops *ops,
354 enum target_object object,
355 const char *annex, gdb_byte **buf_p);
356
357 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
358 returned as a string, allocated using xmalloc. If an error occurs
359 or the transfer is unsupported, NULL is returned. Empty objects
360 are returned as allocated but empty strings. A warning is issued
361 if the result contains any embedded NUL bytes. */
362
363 extern char *target_read_stralloc (struct target_ops *ops,
364 enum target_object object,
365 const char *annex);
366
367 /* See target_ops->to_xfer_partial. */
368 extern target_xfer_partial_ftype target_xfer_partial;
369
370 /* Wrappers to target read/write that perform memory transfers. They
371 throw an error if the memory transfer fails.
372
373 NOTE: cagney/2003-10-23: The naming schema is lifted from
374 "frame.h". The parameter order is lifted from get_frame_memory,
375 which in turn lifted it from read_memory. */
376
377 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
378 gdb_byte *buf, LONGEST len);
379 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
380 CORE_ADDR addr, int len,
381 enum bfd_endian byte_order);
382 \f
383 struct thread_info; /* fwd decl for parameter list below: */
384
385 /* The type of the callback to the to_async method. */
386
387 typedef void async_callback_ftype (enum inferior_event_type event_type,
388 void *context);
389
390 /* Normally target debug printing is purely type-based. However,
391 sometimes it is necessary to override the debug printing on a
392 per-argument basis. This macro can be used, attribute-style, to
393 name the target debug printing function for a particular method
394 argument. FUNC is the name of the function. The macro's
395 definition is empty because it is only used by the
396 make-target-delegates script. */
397
398 #define TARGET_DEBUG_PRINTER(FUNC)
399
400 /* These defines are used to mark target_ops methods. The script
401 make-target-delegates scans these and auto-generates the base
402 method implementations. There are four macros that can be used:
403
404 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
405 does nothing. This is only valid if the method return type is
406 'void'.
407
408 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
409 'tcomplain ()'. The base method simply makes this call, which is
410 assumed not to return.
411
412 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
413 base method returns this expression's value.
414
415 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
416 make-target-delegates does not generate a base method in this case,
417 but instead uses the argument function as the base method. */
418
419 #define TARGET_DEFAULT_IGNORE()
420 #define TARGET_DEFAULT_NORETURN(ARG)
421 #define TARGET_DEFAULT_RETURN(ARG)
422 #define TARGET_DEFAULT_FUNC(ARG)
423
424 struct target_ops
425 {
426 struct target_ops *beneath; /* To the target under this one. */
427 const char *to_shortname; /* Name this target type */
428 const char *to_longname; /* Name for printing */
429 const char *to_doc; /* Documentation. Does not include trailing
430 newline, and starts with a one-line descrip-
431 tion (probably similar to to_longname). */
432 /* Per-target scratch pad. */
433 void *to_data;
434 /* The open routine takes the rest of the parameters from the
435 command, and (if successful) pushes a new target onto the
436 stack. Targets should supply this routine, if only to provide
437 an error message. */
438 void (*to_open) (const char *, int);
439 /* Old targets with a static target vector provide "to_close".
440 New re-entrant targets provide "to_xclose" and that is expected
441 to xfree everything (including the "struct target_ops"). */
442 void (*to_xclose) (struct target_ops *targ);
443 void (*to_close) (struct target_ops *);
444 /* Attaches to a process on the target side. Arguments are as
445 passed to the `attach' command by the user. This routine can
446 be called when the target is not on the target-stack, if the
447 target_can_run routine returns 1; in that case, it must push
448 itself onto the stack. Upon exit, the target should be ready
449 for normal operations, and should be ready to deliver the
450 status of the process immediately (without waiting) to an
451 upcoming target_wait call. */
452 void (*to_attach) (struct target_ops *ops, const char *, int);
453 void (*to_post_attach) (struct target_ops *, int)
454 TARGET_DEFAULT_IGNORE ();
455 void (*to_detach) (struct target_ops *ops, const char *, int)
456 TARGET_DEFAULT_IGNORE ();
457 void (*to_disconnect) (struct target_ops *, const char *, int)
458 TARGET_DEFAULT_NORETURN (tcomplain ());
459 void (*to_resume) (struct target_ops *, ptid_t,
460 int TARGET_DEBUG_PRINTER (target_debug_print_step),
461 enum gdb_signal)
462 TARGET_DEFAULT_NORETURN (noprocess ());
463 ptid_t (*to_wait) (struct target_ops *,
464 ptid_t, struct target_waitstatus *,
465 int TARGET_DEBUG_PRINTER (target_debug_print_options))
466 TARGET_DEFAULT_NORETURN (noprocess ());
467 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
468 TARGET_DEFAULT_IGNORE ();
469 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
470 TARGET_DEFAULT_NORETURN (noprocess ());
471 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
472 TARGET_DEFAULT_NORETURN (noprocess ());
473
474 void (*to_files_info) (struct target_ops *)
475 TARGET_DEFAULT_IGNORE ();
476 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
477 struct bp_target_info *)
478 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
479 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
480 struct bp_target_info *)
481 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
482
483 /* Returns true if the target stopped because it executed a
484 software breakpoint. This is necessary for correct background
485 execution / non-stop mode operation, and for correct PC
486 adjustment on targets where the PC needs to be adjusted when a
487 software breakpoint triggers. In these modes, by the time GDB
488 processes a breakpoint event, the breakpoint may already be
489 done from the target, so GDB needs to be able to tell whether
490 it should ignore the event and whether it should adjust the PC.
491 See adjust_pc_after_break. */
492 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
493 TARGET_DEFAULT_RETURN (0);
494 /* Returns true if the above method is supported. */
495 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
496 TARGET_DEFAULT_RETURN (0);
497
498 /* Returns true if the target stopped for a hardware breakpoint.
499 Likewise, if the target supports hardware breakpoints, this
500 method is necessary for correct background execution / non-stop
501 mode operation. Even though hardware breakpoints do not
502 require PC adjustment, GDB needs to be able to tell whether the
503 hardware breakpoint event is a delayed event for a breakpoint
504 that is already gone and should thus be ignored. */
505 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
506 TARGET_DEFAULT_RETURN (0);
507 /* Returns true if the above method is supported. */
508 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
509 TARGET_DEFAULT_RETURN (0);
510
511 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
512 TARGET_DEFAULT_RETURN (0);
513 int (*to_ranged_break_num_registers) (struct target_ops *)
514 TARGET_DEFAULT_RETURN (-1);
515 int (*to_insert_hw_breakpoint) (struct target_ops *,
516 struct gdbarch *, struct bp_target_info *)
517 TARGET_DEFAULT_RETURN (-1);
518 int (*to_remove_hw_breakpoint) (struct target_ops *,
519 struct gdbarch *, struct bp_target_info *)
520 TARGET_DEFAULT_RETURN (-1);
521
522 /* Documentation of what the two routines below are expected to do is
523 provided with the corresponding target_* macros. */
524 int (*to_remove_watchpoint) (struct target_ops *,
525 CORE_ADDR, int, int, struct expression *)
526 TARGET_DEFAULT_RETURN (-1);
527 int (*to_insert_watchpoint) (struct target_ops *,
528 CORE_ADDR, int, int, struct expression *)
529 TARGET_DEFAULT_RETURN (-1);
530
531 int (*to_insert_mask_watchpoint) (struct target_ops *,
532 CORE_ADDR, CORE_ADDR, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_mask_watchpoint) (struct target_ops *,
535 CORE_ADDR, CORE_ADDR, int)
536 TARGET_DEFAULT_RETURN (1);
537 int (*to_stopped_by_watchpoint) (struct target_ops *)
538 TARGET_DEFAULT_RETURN (0);
539 int to_have_steppable_watchpoint;
540 int to_have_continuable_watchpoint;
541 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
542 TARGET_DEFAULT_RETURN (0);
543 int (*to_watchpoint_addr_within_range) (struct target_ops *,
544 CORE_ADDR, CORE_ADDR, int)
545 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
546
547 /* Documentation of this routine is provided with the corresponding
548 target_* macro. */
549 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
550 CORE_ADDR, int)
551 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
552
553 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
554 CORE_ADDR, int, int,
555 struct expression *)
556 TARGET_DEFAULT_RETURN (0);
557 int (*to_masked_watch_num_registers) (struct target_ops *,
558 CORE_ADDR, CORE_ADDR)
559 TARGET_DEFAULT_RETURN (-1);
560 void (*to_terminal_init) (struct target_ops *)
561 TARGET_DEFAULT_IGNORE ();
562 void (*to_terminal_inferior) (struct target_ops *)
563 TARGET_DEFAULT_IGNORE ();
564 void (*to_terminal_ours_for_output) (struct target_ops *)
565 TARGET_DEFAULT_IGNORE ();
566 void (*to_terminal_ours) (struct target_ops *)
567 TARGET_DEFAULT_IGNORE ();
568 void (*to_terminal_info) (struct target_ops *, const char *, int)
569 TARGET_DEFAULT_FUNC (default_terminal_info);
570 void (*to_kill) (struct target_ops *)
571 TARGET_DEFAULT_NORETURN (noprocess ());
572 void (*to_load) (struct target_ops *, const char *, int)
573 TARGET_DEFAULT_NORETURN (tcomplain ());
574 /* Start an inferior process and set inferior_ptid to its pid.
575 EXEC_FILE is the file to run.
576 ALLARGS is a string containing the arguments to the program.
577 ENV is the environment vector to pass. Errors reported with error().
578 On VxWorks and various standalone systems, we ignore exec_file. */
579 void (*to_create_inferior) (struct target_ops *,
580 char *, char *, char **, int);
581 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
582 TARGET_DEFAULT_IGNORE ();
583 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
584 TARGET_DEFAULT_RETURN (1);
585 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
586 TARGET_DEFAULT_RETURN (1);
587 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
588 TARGET_DEFAULT_RETURN (1);
589 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
590 TARGET_DEFAULT_RETURN (1);
591 int (*to_follow_fork) (struct target_ops *, int, int)
592 TARGET_DEFAULT_FUNC (default_follow_fork);
593 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
594 TARGET_DEFAULT_RETURN (1);
595 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
596 TARGET_DEFAULT_RETURN (1);
597 int (*to_set_syscall_catchpoint) (struct target_ops *,
598 int, int, int, int, int *)
599 TARGET_DEFAULT_RETURN (1);
600 int (*to_has_exited) (struct target_ops *, int, int, int *)
601 TARGET_DEFAULT_RETURN (0);
602 void (*to_mourn_inferior) (struct target_ops *)
603 TARGET_DEFAULT_FUNC (default_mourn_inferior);
604 /* Note that to_can_run is special and can be invoked on an
605 unpushed target. Targets defining this method must also define
606 to_can_async_p and to_supports_non_stop. */
607 int (*to_can_run) (struct target_ops *)
608 TARGET_DEFAULT_RETURN (0);
609
610 /* Documentation of this routine is provided with the corresponding
611 target_* macro. */
612 void (*to_pass_signals) (struct target_ops *, int,
613 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
614 TARGET_DEFAULT_IGNORE ();
615
616 /* Documentation of this routine is provided with the
617 corresponding target_* function. */
618 void (*to_program_signals) (struct target_ops *, int,
619 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
620 TARGET_DEFAULT_IGNORE ();
621
622 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
623 TARGET_DEFAULT_RETURN (0);
624 void (*to_update_thread_list) (struct target_ops *)
625 TARGET_DEFAULT_IGNORE ();
626 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
627 TARGET_DEFAULT_FUNC (default_pid_to_str);
628 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
629 TARGET_DEFAULT_RETURN (NULL);
630 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
631 TARGET_DEFAULT_RETURN (NULL);
632 void (*to_stop) (struct target_ops *, ptid_t)
633 TARGET_DEFAULT_IGNORE ();
634 void (*to_rcmd) (struct target_ops *,
635 const char *command, struct ui_file *output)
636 TARGET_DEFAULT_FUNC (default_rcmd);
637 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
638 TARGET_DEFAULT_RETURN (NULL);
639 void (*to_log_command) (struct target_ops *, const char *)
640 TARGET_DEFAULT_IGNORE ();
641 struct target_section_table *(*to_get_section_table) (struct target_ops *)
642 TARGET_DEFAULT_RETURN (NULL);
643 enum strata to_stratum;
644 int (*to_has_all_memory) (struct target_ops *);
645 int (*to_has_memory) (struct target_ops *);
646 int (*to_has_stack) (struct target_ops *);
647 int (*to_has_registers) (struct target_ops *);
648 int (*to_has_execution) (struct target_ops *, ptid_t);
649 int to_has_thread_control; /* control thread execution */
650 int to_attach_no_wait;
651 /* This method must be implemented in some situations. See the
652 comment on 'to_can_run'. */
653 int (*to_can_async_p) (struct target_ops *)
654 TARGET_DEFAULT_RETURN (0);
655 int (*to_is_async_p) (struct target_ops *)
656 TARGET_DEFAULT_RETURN (0);
657 void (*to_async) (struct target_ops *, int)
658 TARGET_DEFAULT_NORETURN (tcomplain ());
659 /* This method must be implemented in some situations. See the
660 comment on 'to_can_run'. */
661 int (*to_supports_non_stop) (struct target_ops *)
662 TARGET_DEFAULT_RETURN (0);
663 /* find_memory_regions support method for gcore */
664 int (*to_find_memory_regions) (struct target_ops *,
665 find_memory_region_ftype func, void *data)
666 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
667 /* make_corefile_notes support method for gcore */
668 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
669 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
670 /* get_bookmark support method for bookmarks */
671 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
672 TARGET_DEFAULT_NORETURN (tcomplain ());
673 /* goto_bookmark support method for bookmarks */
674 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
675 TARGET_DEFAULT_NORETURN (tcomplain ());
676 /* Return the thread-local address at OFFSET in the
677 thread-local storage for the thread PTID and the shared library
678 or executable file given by OBJFILE. If that block of
679 thread-local storage hasn't been allocated yet, this function
680 may return an error. LOAD_MODULE_ADDR may be zero for statically
681 linked multithreaded inferiors. */
682 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
683 ptid_t ptid,
684 CORE_ADDR load_module_addr,
685 CORE_ADDR offset)
686 TARGET_DEFAULT_NORETURN (generic_tls_error ());
687
688 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
689 OBJECT. The OFFSET, for a seekable object, specifies the
690 starting point. The ANNEX can be used to provide additional
691 data-specific information to the target.
692
693 Return the transferred status, error or OK (an
694 'enum target_xfer_status' value). Save the number of bytes
695 actually transferred in *XFERED_LEN if transfer is successful
696 (TARGET_XFER_OK) or the number unavailable bytes if the requested
697 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
698 smaller than LEN does not indicate the end of the object, only
699 the end of the transfer; higher level code should continue
700 transferring if desired. This is handled in target.c.
701
702 The interface does not support a "retry" mechanism. Instead it
703 assumes that at least one byte will be transfered on each
704 successful call.
705
706 NOTE: cagney/2003-10-17: The current interface can lead to
707 fragmented transfers. Lower target levels should not implement
708 hacks, such as enlarging the transfer, in an attempt to
709 compensate for this. Instead, the target stack should be
710 extended so that it implements supply/collect methods and a
711 look-aside object cache. With that available, the lowest
712 target can safely and freely "push" data up the stack.
713
714 See target_read and target_write for more information. One,
715 and only one, of readbuf or writebuf must be non-NULL. */
716
717 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
718 enum target_object object,
719 const char *annex,
720 gdb_byte *readbuf,
721 const gdb_byte *writebuf,
722 ULONGEST offset, ULONGEST len,
723 ULONGEST *xfered_len)
724 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
725
726 /* Returns the memory map for the target. A return value of NULL
727 means that no memory map is available. If a memory address
728 does not fall within any returned regions, it's assumed to be
729 RAM. The returned memory regions should not overlap.
730
731 The order of regions does not matter; target_memory_map will
732 sort regions by starting address. For that reason, this
733 function should not be called directly except via
734 target_memory_map.
735
736 This method should not cache data; if the memory map could
737 change unexpectedly, it should be invalidated, and higher
738 layers will re-fetch it. */
739 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
740 TARGET_DEFAULT_RETURN (NULL);
741
742 /* Erases the region of flash memory starting at ADDRESS, of
743 length LENGTH.
744
745 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
746 on flash block boundaries, as reported by 'to_memory_map'. */
747 void (*to_flash_erase) (struct target_ops *,
748 ULONGEST address, LONGEST length)
749 TARGET_DEFAULT_NORETURN (tcomplain ());
750
751 /* Finishes a flash memory write sequence. After this operation
752 all flash memory should be available for writing and the result
753 of reading from areas written by 'to_flash_write' should be
754 equal to what was written. */
755 void (*to_flash_done) (struct target_ops *)
756 TARGET_DEFAULT_NORETURN (tcomplain ());
757
758 /* Describe the architecture-specific features of this target. If
759 OPS doesn't have a description, this should delegate to the
760 "beneath" target. Returns the description found, or NULL if no
761 description was available. */
762 const struct target_desc *(*to_read_description) (struct target_ops *ops)
763 TARGET_DEFAULT_RETURN (NULL);
764
765 /* Build the PTID of the thread on which a given task is running,
766 based on LWP and THREAD. These values are extracted from the
767 task Private_Data section of the Ada Task Control Block, and
768 their interpretation depends on the target. */
769 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
770 long lwp, long thread)
771 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
772
773 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
774 Return 0 if *READPTR is already at the end of the buffer.
775 Return -1 if there is insufficient buffer for a whole entry.
776 Return 1 if an entry was read into *TYPEP and *VALP. */
777 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
778 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
779 TARGET_DEFAULT_FUNC (default_auxv_parse);
780
781 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
782 sequence of bytes in PATTERN with length PATTERN_LEN.
783
784 The result is 1 if found, 0 if not found, and -1 if there was an error
785 requiring halting of the search (e.g. memory read error).
786 If the pattern is found the address is recorded in FOUND_ADDRP. */
787 int (*to_search_memory) (struct target_ops *ops,
788 CORE_ADDR start_addr, ULONGEST search_space_len,
789 const gdb_byte *pattern, ULONGEST pattern_len,
790 CORE_ADDR *found_addrp)
791 TARGET_DEFAULT_FUNC (default_search_memory);
792
793 /* Can target execute in reverse? */
794 int (*to_can_execute_reverse) (struct target_ops *)
795 TARGET_DEFAULT_RETURN (0);
796
797 /* The direction the target is currently executing. Must be
798 implemented on targets that support reverse execution and async
799 mode. The default simply returns forward execution. */
800 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
801 TARGET_DEFAULT_FUNC (default_execution_direction);
802
803 /* Does this target support debugging multiple processes
804 simultaneously? */
805 int (*to_supports_multi_process) (struct target_ops *)
806 TARGET_DEFAULT_RETURN (0);
807
808 /* Does this target support enabling and disabling tracepoints while a trace
809 experiment is running? */
810 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
811 TARGET_DEFAULT_RETURN (0);
812
813 /* Does this target support disabling address space randomization? */
814 int (*to_supports_disable_randomization) (struct target_ops *);
815
816 /* Does this target support the tracenz bytecode for string collection? */
817 int (*to_supports_string_tracing) (struct target_ops *)
818 TARGET_DEFAULT_RETURN (0);
819
820 /* Does this target support evaluation of breakpoint conditions on its
821 end? */
822 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
823 TARGET_DEFAULT_RETURN (0);
824
825 /* Does this target support evaluation of breakpoint commands on its
826 end? */
827 int (*to_can_run_breakpoint_commands) (struct target_ops *)
828 TARGET_DEFAULT_RETURN (0);
829
830 /* Determine current architecture of thread PTID.
831
832 The target is supposed to determine the architecture of the code where
833 the target is currently stopped at (on Cell, if a target is in spu_run,
834 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
835 This is architecture used to perform decr_pc_after_break adjustment,
836 and also determines the frame architecture of the innermost frame.
837 ptrace operations need to operate according to target_gdbarch ().
838
839 The default implementation always returns target_gdbarch (). */
840 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
841 TARGET_DEFAULT_FUNC (default_thread_architecture);
842
843 /* Determine current address space of thread PTID.
844
845 The default implementation always returns the inferior's
846 address space. */
847 struct address_space *(*to_thread_address_space) (struct target_ops *,
848 ptid_t)
849 TARGET_DEFAULT_FUNC (default_thread_address_space);
850
851 /* Target file operations. */
852
853 /* Return nonzero if the filesystem seen by the current inferior
854 is the local filesystem, zero otherwise. */
855 int (*to_filesystem_is_local) (struct target_ops *)
856 TARGET_DEFAULT_RETURN (1);
857
858 /* Open FILENAME on the target, in the filesystem as seen by INF,
859 using FLAGS and MODE. If INF is NULL, use the filesystem seen
860 by the debugger (GDB or, for remote targets, the remote stub).
861 Return a target file descriptor, or -1 if an error occurs (and
862 set *TARGET_ERRNO). */
863 int (*to_fileio_open) (struct target_ops *,
864 struct inferior *inf, const char *filename,
865 int flags, int mode, int *target_errno);
866
867 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
868 Return the number of bytes written, or -1 if an error occurs
869 (and set *TARGET_ERRNO). */
870 int (*to_fileio_pwrite) (struct target_ops *,
871 int fd, const gdb_byte *write_buf, int len,
872 ULONGEST offset, int *target_errno);
873
874 /* Read up to LEN bytes FD on the target into READ_BUF.
875 Return the number of bytes read, or -1 if an error occurs
876 (and set *TARGET_ERRNO). */
877 int (*to_fileio_pread) (struct target_ops *,
878 int fd, gdb_byte *read_buf, int len,
879 ULONGEST offset, int *target_errno);
880
881 /* Get information about the file opened as FD and put it in
882 SB. Return 0 on success, or -1 if an error occurs (and set
883 *TARGET_ERRNO). */
884 int (*to_fileio_fstat) (struct target_ops *,
885 int fd, struct stat *sb, int *target_errno);
886
887 /* Close FD on the target. Return 0, or -1 if an error occurs
888 (and set *TARGET_ERRNO). */
889 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
890
891 /* Unlink FILENAME on the target, in the filesystem as seen by
892 INF. If INF is NULL, use the filesystem seen by the debugger
893 (GDB or, for remote targets, the remote stub). Return 0, or
894 -1 if an error occurs (and set *TARGET_ERRNO). */
895 int (*to_fileio_unlink) (struct target_ops *,
896 struct inferior *inf,
897 const char *filename,
898 int *target_errno);
899
900 /* Read value of symbolic link FILENAME on the target, in the
901 filesystem as seen by INF. If INF is NULL, use the filesystem
902 seen by the debugger (GDB or, for remote targets, the remote
903 stub). Return a null-terminated string allocated via xmalloc,
904 or NULL if an error occurs (and set *TARGET_ERRNO). */
905 char *(*to_fileio_readlink) (struct target_ops *,
906 struct inferior *inf,
907 const char *filename,
908 int *target_errno);
909
910
911 /* Implement the "info proc" command. */
912 void (*to_info_proc) (struct target_ops *, const char *,
913 enum info_proc_what);
914
915 /* Tracepoint-related operations. */
916
917 /* Prepare the target for a tracing run. */
918 void (*to_trace_init) (struct target_ops *)
919 TARGET_DEFAULT_NORETURN (tcomplain ());
920
921 /* Send full details of a tracepoint location to the target. */
922 void (*to_download_tracepoint) (struct target_ops *,
923 struct bp_location *location)
924 TARGET_DEFAULT_NORETURN (tcomplain ());
925
926 /* Is the target able to download tracepoint locations in current
927 state? */
928 int (*to_can_download_tracepoint) (struct target_ops *)
929 TARGET_DEFAULT_RETURN (0);
930
931 /* Send full details of a trace state variable to the target. */
932 void (*to_download_trace_state_variable) (struct target_ops *,
933 struct trace_state_variable *tsv)
934 TARGET_DEFAULT_NORETURN (tcomplain ());
935
936 /* Enable a tracepoint on the target. */
937 void (*to_enable_tracepoint) (struct target_ops *,
938 struct bp_location *location)
939 TARGET_DEFAULT_NORETURN (tcomplain ());
940
941 /* Disable a tracepoint on the target. */
942 void (*to_disable_tracepoint) (struct target_ops *,
943 struct bp_location *location)
944 TARGET_DEFAULT_NORETURN (tcomplain ());
945
946 /* Inform the target info of memory regions that are readonly
947 (such as text sections), and so it should return data from
948 those rather than look in the trace buffer. */
949 void (*to_trace_set_readonly_regions) (struct target_ops *)
950 TARGET_DEFAULT_NORETURN (tcomplain ());
951
952 /* Start a trace run. */
953 void (*to_trace_start) (struct target_ops *)
954 TARGET_DEFAULT_NORETURN (tcomplain ());
955
956 /* Get the current status of a tracing run. */
957 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
958 TARGET_DEFAULT_RETURN (-1);
959
960 void (*to_get_tracepoint_status) (struct target_ops *,
961 struct breakpoint *tp,
962 struct uploaded_tp *utp)
963 TARGET_DEFAULT_NORETURN (tcomplain ());
964
965 /* Stop a trace run. */
966 void (*to_trace_stop) (struct target_ops *)
967 TARGET_DEFAULT_NORETURN (tcomplain ());
968
969 /* Ask the target to find a trace frame of the given type TYPE,
970 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
971 number of the trace frame, and also the tracepoint number at
972 TPP. If no trace frame matches, return -1. May throw if the
973 operation fails. */
974 int (*to_trace_find) (struct target_ops *,
975 enum trace_find_type type, int num,
976 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
977 TARGET_DEFAULT_RETURN (-1);
978
979 /* Get the value of the trace state variable number TSV, returning
980 1 if the value is known and writing the value itself into the
981 location pointed to by VAL, else returning 0. */
982 int (*to_get_trace_state_variable_value) (struct target_ops *,
983 int tsv, LONGEST *val)
984 TARGET_DEFAULT_RETURN (0);
985
986 int (*to_save_trace_data) (struct target_ops *, const char *filename)
987 TARGET_DEFAULT_NORETURN (tcomplain ());
988
989 int (*to_upload_tracepoints) (struct target_ops *,
990 struct uploaded_tp **utpp)
991 TARGET_DEFAULT_RETURN (0);
992
993 int (*to_upload_trace_state_variables) (struct target_ops *,
994 struct uploaded_tsv **utsvp)
995 TARGET_DEFAULT_RETURN (0);
996
997 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
998 ULONGEST offset, LONGEST len)
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Get the minimum length of instruction on which a fast tracepoint
1002 may be set on the target. If this operation is unsupported,
1003 return -1. If for some reason the minimum length cannot be
1004 determined, return 0. */
1005 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1006 TARGET_DEFAULT_RETURN (-1);
1007
1008 /* Set the target's tracing behavior in response to unexpected
1009 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1010 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1011 TARGET_DEFAULT_IGNORE ();
1012 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1013 TARGET_DEFAULT_IGNORE ();
1014 /* Set the size of trace buffer in the target. */
1015 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1016 TARGET_DEFAULT_IGNORE ();
1017
1018 /* Add/change textual notes about the trace run, returning 1 if
1019 successful, 0 otherwise. */
1020 int (*to_set_trace_notes) (struct target_ops *,
1021 const char *user, const char *notes,
1022 const char *stopnotes)
1023 TARGET_DEFAULT_RETURN (0);
1024
1025 /* Return the processor core that thread PTID was last seen on.
1026 This information is updated only when:
1027 - update_thread_list is called
1028 - thread stops
1029 If the core cannot be determined -- either for the specified
1030 thread, or right now, or in this debug session, or for this
1031 target -- return -1. */
1032 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1033 TARGET_DEFAULT_RETURN (-1);
1034
1035 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1036 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1037 a match, 0 if there's a mismatch, and -1 if an error is
1038 encountered while reading memory. */
1039 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1040 CORE_ADDR memaddr, ULONGEST size)
1041 TARGET_DEFAULT_FUNC (default_verify_memory);
1042
1043 /* Return the address of the start of the Thread Information Block
1044 a Windows OS specific feature. */
1045 int (*to_get_tib_address) (struct target_ops *,
1046 ptid_t ptid, CORE_ADDR *addr)
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Send the new settings of write permission variables. */
1050 void (*to_set_permissions) (struct target_ops *)
1051 TARGET_DEFAULT_IGNORE ();
1052
1053 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1054 with its details. Return 1 on success, 0 on failure. */
1055 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1056 struct static_tracepoint_marker *marker)
1057 TARGET_DEFAULT_RETURN (0);
1058
1059 /* Return a vector of all tracepoints markers string id ID, or all
1060 markers if ID is NULL. */
1061 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1062 TARGET_DEFAULT_NORETURN (tcomplain ());
1063
1064 /* Return a traceframe info object describing the current
1065 traceframe's contents. This method should not cache data;
1066 higher layers take care of caching, invalidating, and
1067 re-fetching when necessary. */
1068 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1069 TARGET_DEFAULT_NORETURN (tcomplain ());
1070
1071 /* Ask the target to use or not to use agent according to USE. Return 1
1072 successful, 0 otherwise. */
1073 int (*to_use_agent) (struct target_ops *, int use)
1074 TARGET_DEFAULT_NORETURN (tcomplain ());
1075
1076 /* Is the target able to use agent in current state? */
1077 int (*to_can_use_agent) (struct target_ops *)
1078 TARGET_DEFAULT_RETURN (0);
1079
1080 /* Check whether the target supports branch tracing. */
1081 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1082 TARGET_DEFAULT_RETURN (0);
1083
1084 /* Enable branch tracing for PTID using CONF configuration.
1085 Return a branch trace target information struct for reading and for
1086 disabling branch trace. */
1087 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1088 ptid_t ptid,
1089 const struct btrace_config *conf)
1090 TARGET_DEFAULT_NORETURN (tcomplain ());
1091
1092 /* Disable branch tracing and deallocate TINFO. */
1093 void (*to_disable_btrace) (struct target_ops *,
1094 struct btrace_target_info *tinfo)
1095 TARGET_DEFAULT_NORETURN (tcomplain ());
1096
1097 /* Disable branch tracing and deallocate TINFO. This function is similar
1098 to to_disable_btrace, except that it is called during teardown and is
1099 only allowed to perform actions that are safe. A counter-example would
1100 be attempting to talk to a remote target. */
1101 void (*to_teardown_btrace) (struct target_ops *,
1102 struct btrace_target_info *tinfo)
1103 TARGET_DEFAULT_NORETURN (tcomplain ());
1104
1105 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1106 DATA is cleared before new trace is added. */
1107 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1108 struct btrace_data *data,
1109 struct btrace_target_info *btinfo,
1110 enum btrace_read_type type)
1111 TARGET_DEFAULT_NORETURN (tcomplain ());
1112
1113 /* Get the branch trace configuration. */
1114 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1115 const struct btrace_target_info *)
1116 TARGET_DEFAULT_RETURN (NULL);
1117
1118 /* Stop trace recording. */
1119 void (*to_stop_recording) (struct target_ops *)
1120 TARGET_DEFAULT_IGNORE ();
1121
1122 /* Print information about the recording. */
1123 void (*to_info_record) (struct target_ops *)
1124 TARGET_DEFAULT_IGNORE ();
1125
1126 /* Save the recorded execution trace into a file. */
1127 void (*to_save_record) (struct target_ops *, const char *filename)
1128 TARGET_DEFAULT_NORETURN (tcomplain ());
1129
1130 /* Delete the recorded execution trace from the current position
1131 onwards. */
1132 void (*to_delete_record) (struct target_ops *)
1133 TARGET_DEFAULT_NORETURN (tcomplain ());
1134
1135 /* Query if the record target is currently replaying. */
1136 int (*to_record_is_replaying) (struct target_ops *)
1137 TARGET_DEFAULT_RETURN (0);
1138
1139 /* Go to the begin of the execution trace. */
1140 void (*to_goto_record_begin) (struct target_ops *)
1141 TARGET_DEFAULT_NORETURN (tcomplain ());
1142
1143 /* Go to the end of the execution trace. */
1144 void (*to_goto_record_end) (struct target_ops *)
1145 TARGET_DEFAULT_NORETURN (tcomplain ());
1146
1147 /* Go to a specific location in the recorded execution trace. */
1148 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1149 TARGET_DEFAULT_NORETURN (tcomplain ());
1150
1151 /* Disassemble SIZE instructions in the recorded execution trace from
1152 the current position.
1153 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1154 disassemble SIZE succeeding instructions. */
1155 void (*to_insn_history) (struct target_ops *, int size, int flags)
1156 TARGET_DEFAULT_NORETURN (tcomplain ());
1157
1158 /* Disassemble SIZE instructions in the recorded execution trace around
1159 FROM.
1160 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1161 disassemble SIZE instructions after FROM. */
1162 void (*to_insn_history_from) (struct target_ops *,
1163 ULONGEST from, int size, int flags)
1164 TARGET_DEFAULT_NORETURN (tcomplain ());
1165
1166 /* Disassemble a section of the recorded execution trace from instruction
1167 BEGIN (inclusive) to instruction END (inclusive). */
1168 void (*to_insn_history_range) (struct target_ops *,
1169 ULONGEST begin, ULONGEST end, int flags)
1170 TARGET_DEFAULT_NORETURN (tcomplain ());
1171
1172 /* Print a function trace of the recorded execution trace.
1173 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1174 succeeding functions. */
1175 void (*to_call_history) (struct target_ops *, int size, int flags)
1176 TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178 /* Print a function trace of the recorded execution trace starting
1179 at function FROM.
1180 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1181 SIZE functions after FROM. */
1182 void (*to_call_history_from) (struct target_ops *,
1183 ULONGEST begin, int size, int flags)
1184 TARGET_DEFAULT_NORETURN (tcomplain ());
1185
1186 /* Print a function trace of an execution trace section from function BEGIN
1187 (inclusive) to function END (inclusive). */
1188 void (*to_call_history_range) (struct target_ops *,
1189 ULONGEST begin, ULONGEST end, int flags)
1190 TARGET_DEFAULT_NORETURN (tcomplain ());
1191
1192 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1193 non-empty annex. */
1194 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1195 TARGET_DEFAULT_RETURN (0);
1196
1197 /* Those unwinders are tried before any other arch unwinders. If
1198 SELF doesn't have unwinders, it should delegate to the
1199 "beneath" target. */
1200 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1201 TARGET_DEFAULT_RETURN (NULL);
1202
1203 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1204 TARGET_DEFAULT_RETURN (NULL);
1205
1206 /* Prepare to generate a core file. */
1207 void (*to_prepare_to_generate_core) (struct target_ops *)
1208 TARGET_DEFAULT_IGNORE ();
1209
1210 /* Cleanup after generating a core file. */
1211 void (*to_done_generating_core) (struct target_ops *)
1212 TARGET_DEFAULT_IGNORE ();
1213
1214 int to_magic;
1215 /* Need sub-structure for target machine related rather than comm related?
1216 */
1217 };
1218
1219 /* Magic number for checking ops size. If a struct doesn't end with this
1220 number, somebody changed the declaration but didn't change all the
1221 places that initialize one. */
1222
1223 #define OPS_MAGIC 3840
1224
1225 /* The ops structure for our "current" target process. This should
1226 never be NULL. If there is no target, it points to the dummy_target. */
1227
1228 extern struct target_ops current_target;
1229
1230 /* Define easy words for doing these operations on our current target. */
1231
1232 #define target_shortname (current_target.to_shortname)
1233 #define target_longname (current_target.to_longname)
1234
1235 /* Does whatever cleanup is required for a target that we are no
1236 longer going to be calling. This routine is automatically always
1237 called after popping the target off the target stack - the target's
1238 own methods are no longer available through the target vector.
1239 Closing file descriptors and freeing all memory allocated memory are
1240 typical things it should do. */
1241
1242 void target_close (struct target_ops *targ);
1243
1244 /* Find the correct target to use for "attach". If a target on the
1245 current stack supports attaching, then it is returned. Otherwise,
1246 the default run target is returned. */
1247
1248 extern struct target_ops *find_attach_target (void);
1249
1250 /* Find the correct target to use for "run". If a target on the
1251 current stack supports creating a new inferior, then it is
1252 returned. Otherwise, the default run target is returned. */
1253
1254 extern struct target_ops *find_run_target (void);
1255
1256 /* Some targets don't generate traps when attaching to the inferior,
1257 or their target_attach implementation takes care of the waiting.
1258 These targets must set to_attach_no_wait. */
1259
1260 #define target_attach_no_wait \
1261 (current_target.to_attach_no_wait)
1262
1263 /* The target_attach operation places a process under debugger control,
1264 and stops the process.
1265
1266 This operation provides a target-specific hook that allows the
1267 necessary bookkeeping to be performed after an attach completes. */
1268 #define target_post_attach(pid) \
1269 (*current_target.to_post_attach) (&current_target, pid)
1270
1271 /* Takes a program previously attached to and detaches it.
1272 The program may resume execution (some targets do, some don't) and will
1273 no longer stop on signals, etc. We better not have left any breakpoints
1274 in the program or it'll die when it hits one. ARGS is arguments
1275 typed by the user (e.g. a signal to send the process). FROM_TTY
1276 says whether to be verbose or not. */
1277
1278 extern void target_detach (const char *, int);
1279
1280 /* Disconnect from the current target without resuming it (leaving it
1281 waiting for a debugger). */
1282
1283 extern void target_disconnect (const char *, int);
1284
1285 /* Resume execution of the target process PTID (or a group of
1286 threads). STEP says whether to single-step or to run free; SIGGNAL
1287 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1288 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1289 PTID means `step/resume only this process id'. A wildcard PTID
1290 (all threads, or all threads of process) means `step/resume
1291 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1292 matches) resume with their 'thread->suspend.stop_signal' signal
1293 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1294 if in "no pass" state. */
1295
1296 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1297
1298 /* Wait for process pid to do something. PTID = -1 to wait for any
1299 pid to do something. Return pid of child, or -1 in case of error;
1300 store status through argument pointer STATUS. Note that it is
1301 _NOT_ OK to throw_exception() out of target_wait() without popping
1302 the debugging target from the stack; GDB isn't prepared to get back
1303 to the prompt with a debugging target but without the frame cache,
1304 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1305 options. */
1306
1307 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1308 int options);
1309
1310 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1311
1312 extern void target_fetch_registers (struct regcache *regcache, int regno);
1313
1314 /* Store at least register REGNO, or all regs if REGNO == -1.
1315 It can store as many registers as it wants to, so target_prepare_to_store
1316 must have been previously called. Calls error() if there are problems. */
1317
1318 extern void target_store_registers (struct regcache *regcache, int regs);
1319
1320 /* Get ready to modify the registers array. On machines which store
1321 individual registers, this doesn't need to do anything. On machines
1322 which store all the registers in one fell swoop, this makes sure
1323 that REGISTERS contains all the registers from the program being
1324 debugged. */
1325
1326 #define target_prepare_to_store(regcache) \
1327 (*current_target.to_prepare_to_store) (&current_target, regcache)
1328
1329 /* Determine current address space of thread PTID. */
1330
1331 struct address_space *target_thread_address_space (ptid_t);
1332
1333 /* Implement the "info proc" command. This returns one if the request
1334 was handled, and zero otherwise. It can also throw an exception if
1335 an error was encountered while attempting to handle the
1336 request. */
1337
1338 int target_info_proc (const char *, enum info_proc_what);
1339
1340 /* Returns true if this target can debug multiple processes
1341 simultaneously. */
1342
1343 #define target_supports_multi_process() \
1344 (*current_target.to_supports_multi_process) (&current_target)
1345
1346 /* Returns true if this target can disable address space randomization. */
1347
1348 int target_supports_disable_randomization (void);
1349
1350 /* Returns true if this target can enable and disable tracepoints
1351 while a trace experiment is running. */
1352
1353 #define target_supports_enable_disable_tracepoint() \
1354 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1355
1356 #define target_supports_string_tracing() \
1357 (*current_target.to_supports_string_tracing) (&current_target)
1358
1359 /* Returns true if this target can handle breakpoint conditions
1360 on its end. */
1361
1362 #define target_supports_evaluation_of_breakpoint_conditions() \
1363 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1364
1365 /* Returns true if this target can handle breakpoint commands
1366 on its end. */
1367
1368 #define target_can_run_breakpoint_commands() \
1369 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1370
1371 extern int target_read_string (CORE_ADDR, char **, int, int *);
1372
1373 /* For target_read_memory see target/target.h. */
1374
1375 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1376 ssize_t len);
1377
1378 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1379
1380 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1381
1382 /* For target_write_memory see target/target.h. */
1383
1384 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1385 ssize_t len);
1386
1387 /* Fetches the target's memory map. If one is found it is sorted
1388 and returned, after some consistency checking. Otherwise, NULL
1389 is returned. */
1390 VEC(mem_region_s) *target_memory_map (void);
1391
1392 /* Erase the specified flash region. */
1393 void target_flash_erase (ULONGEST address, LONGEST length);
1394
1395 /* Finish a sequence of flash operations. */
1396 void target_flash_done (void);
1397
1398 /* Describes a request for a memory write operation. */
1399 struct memory_write_request
1400 {
1401 /* Begining address that must be written. */
1402 ULONGEST begin;
1403 /* Past-the-end address. */
1404 ULONGEST end;
1405 /* The data to write. */
1406 gdb_byte *data;
1407 /* A callback baton for progress reporting for this request. */
1408 void *baton;
1409 };
1410 typedef struct memory_write_request memory_write_request_s;
1411 DEF_VEC_O(memory_write_request_s);
1412
1413 /* Enumeration specifying different flash preservation behaviour. */
1414 enum flash_preserve_mode
1415 {
1416 flash_preserve,
1417 flash_discard
1418 };
1419
1420 /* Write several memory blocks at once. This version can be more
1421 efficient than making several calls to target_write_memory, in
1422 particular because it can optimize accesses to flash memory.
1423
1424 Moreover, this is currently the only memory access function in gdb
1425 that supports writing to flash memory, and it should be used for
1426 all cases where access to flash memory is desirable.
1427
1428 REQUESTS is the vector (see vec.h) of memory_write_request.
1429 PRESERVE_FLASH_P indicates what to do with blocks which must be
1430 erased, but not completely rewritten.
1431 PROGRESS_CB is a function that will be periodically called to provide
1432 feedback to user. It will be called with the baton corresponding
1433 to the request currently being written. It may also be called
1434 with a NULL baton, when preserved flash sectors are being rewritten.
1435
1436 The function returns 0 on success, and error otherwise. */
1437 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1438 enum flash_preserve_mode preserve_flash_p,
1439 void (*progress_cb) (ULONGEST, void *));
1440
1441 /* Print a line about the current target. */
1442
1443 #define target_files_info() \
1444 (*current_target.to_files_info) (&current_target)
1445
1446 /* Insert a breakpoint at address BP_TGT->placed_address in
1447 the target machine. Returns 0 for success, and returns non-zero or
1448 throws an error (with a detailed failure reason error code and
1449 message) otherwise. */
1450
1451 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1452 struct bp_target_info *bp_tgt);
1453
1454 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1455 machine. Result is 0 for success, non-zero for error. */
1456
1457 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1458 struct bp_target_info *bp_tgt);
1459
1460 /* Returns true if the terminal settings of the inferior are in
1461 effect. */
1462
1463 extern int target_terminal_is_inferior (void);
1464
1465 /* Initialize the terminal settings we record for the inferior,
1466 before we actually run the inferior. */
1467
1468 extern void target_terminal_init (void);
1469
1470 /* Put the inferior's terminal settings into effect.
1471 This is preparation for starting or resuming the inferior. */
1472
1473 extern void target_terminal_inferior (void);
1474
1475 /* Put some of our terminal settings into effect, enough to get proper
1476 results from our output, but do not change into or out of RAW mode
1477 so that no input is discarded. This is a no-op if terminal_ours
1478 was most recently called. */
1479
1480 extern void target_terminal_ours_for_output (void);
1481
1482 /* Put our terminal settings into effect.
1483 First record the inferior's terminal settings
1484 so they can be restored properly later. */
1485
1486 extern void target_terminal_ours (void);
1487
1488 /* Return true if the target stack has a non-default
1489 "to_terminal_ours" method. */
1490
1491 extern int target_supports_terminal_ours (void);
1492
1493 /* Make a cleanup that restores the state of the terminal to the current
1494 state. */
1495 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1496
1497 /* Print useful information about our terminal status, if such a thing
1498 exists. */
1499
1500 #define target_terminal_info(arg, from_tty) \
1501 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1502
1503 /* Kill the inferior process. Make it go away. */
1504
1505 extern void target_kill (void);
1506
1507 /* Load an executable file into the target process. This is expected
1508 to not only bring new code into the target process, but also to
1509 update GDB's symbol tables to match.
1510
1511 ARG contains command-line arguments, to be broken down with
1512 buildargv (). The first non-switch argument is the filename to
1513 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1514 0)), which is an offset to apply to the load addresses of FILE's
1515 sections. The target may define switches, or other non-switch
1516 arguments, as it pleases. */
1517
1518 extern void target_load (const char *arg, int from_tty);
1519
1520 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1521 notification of inferior events such as fork and vork immediately
1522 after the inferior is created. (This because of how gdb gets an
1523 inferior created via invoking a shell to do it. In such a scenario,
1524 if the shell init file has commands in it, the shell will fork and
1525 exec for each of those commands, and we will see each such fork
1526 event. Very bad.)
1527
1528 Such targets will supply an appropriate definition for this function. */
1529
1530 #define target_post_startup_inferior(ptid) \
1531 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1532
1533 /* On some targets, we can catch an inferior fork or vfork event when
1534 it occurs. These functions insert/remove an already-created
1535 catchpoint for such events. They return 0 for success, 1 if the
1536 catchpoint type is not supported and -1 for failure. */
1537
1538 #define target_insert_fork_catchpoint(pid) \
1539 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1540
1541 #define target_remove_fork_catchpoint(pid) \
1542 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1543
1544 #define target_insert_vfork_catchpoint(pid) \
1545 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1546
1547 #define target_remove_vfork_catchpoint(pid) \
1548 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1549
1550 /* If the inferior forks or vforks, this function will be called at
1551 the next resume in order to perform any bookkeeping and fiddling
1552 necessary to continue debugging either the parent or child, as
1553 requested, and releasing the other. Information about the fork
1554 or vfork event is available via get_last_target_status ().
1555 This function returns 1 if the inferior should not be resumed
1556 (i.e. there is another event pending). */
1557
1558 int target_follow_fork (int follow_child, int detach_fork);
1559
1560 /* On some targets, we can catch an inferior exec event when it
1561 occurs. These functions insert/remove an already-created
1562 catchpoint for such events. They return 0 for success, 1 if the
1563 catchpoint type is not supported and -1 for failure. */
1564
1565 #define target_insert_exec_catchpoint(pid) \
1566 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1567
1568 #define target_remove_exec_catchpoint(pid) \
1569 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1570
1571 /* Syscall catch.
1572
1573 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1574 If NEEDED is zero, it means the target can disable the mechanism to
1575 catch system calls because there are no more catchpoints of this type.
1576
1577 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1578 being requested. In this case, both TABLE_SIZE and TABLE should
1579 be ignored.
1580
1581 TABLE_SIZE is the number of elements in TABLE. It only matters if
1582 ANY_COUNT is zero.
1583
1584 TABLE is an array of ints, indexed by syscall number. An element in
1585 this array is nonzero if that syscall should be caught. This argument
1586 only matters if ANY_COUNT is zero.
1587
1588 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1589 for failure. */
1590
1591 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1592 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1593 pid, needed, any_count, \
1594 table_size, table)
1595
1596 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1597 exit code of PID, if any. */
1598
1599 #define target_has_exited(pid,wait_status,exit_status) \
1600 (*current_target.to_has_exited) (&current_target, \
1601 pid,wait_status,exit_status)
1602
1603 /* The debugger has completed a blocking wait() call. There is now
1604 some process event that must be processed. This function should
1605 be defined by those targets that require the debugger to perform
1606 cleanup or internal state changes in response to the process event. */
1607
1608 /* The inferior process has died. Do what is right. */
1609
1610 void target_mourn_inferior (void);
1611
1612 /* Does target have enough data to do a run or attach command? */
1613
1614 #define target_can_run(t) \
1615 ((t)->to_can_run) (t)
1616
1617 /* Set list of signals to be handled in the target.
1618
1619 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1620 (enum gdb_signal). For every signal whose entry in this array is
1621 non-zero, the target is allowed -but not required- to skip reporting
1622 arrival of the signal to the GDB core by returning from target_wait,
1623 and to pass the signal directly to the inferior instead.
1624
1625 However, if the target is hardware single-stepping a thread that is
1626 about to receive a signal, it needs to be reported in any case, even
1627 if mentioned in a previous target_pass_signals call. */
1628
1629 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1630
1631 /* Set list of signals the target may pass to the inferior. This
1632 directly maps to the "handle SIGNAL pass/nopass" setting.
1633
1634 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1635 number (enum gdb_signal). For every signal whose entry in this
1636 array is non-zero, the target is allowed to pass the signal to the
1637 inferior. Signals not present in the array shall be silently
1638 discarded. This does not influence whether to pass signals to the
1639 inferior as a result of a target_resume call. This is useful in
1640 scenarios where the target needs to decide whether to pass or not a
1641 signal to the inferior without GDB core involvement, such as for
1642 example, when detaching (as threads may have been suspended with
1643 pending signals not reported to GDB). */
1644
1645 extern void target_program_signals (int nsig, unsigned char *program_signals);
1646
1647 /* Check to see if a thread is still alive. */
1648
1649 extern int target_thread_alive (ptid_t ptid);
1650
1651 /* Sync the target's threads with GDB's thread list. */
1652
1653 extern void target_update_thread_list (void);
1654
1655 /* Make target stop in a continuable fashion. (For instance, under
1656 Unix, this should act like SIGSTOP). Note that this function is
1657 asynchronous: it does not wait for the target to become stopped
1658 before returning. If this is the behavior you want please use
1659 target_stop_and_wait. */
1660
1661 extern void target_stop (ptid_t ptid);
1662
1663 /* Send the specified COMMAND to the target's monitor
1664 (shell,interpreter) for execution. The result of the query is
1665 placed in OUTBUF. */
1666
1667 #define target_rcmd(command, outbuf) \
1668 (*current_target.to_rcmd) (&current_target, command, outbuf)
1669
1670
1671 /* Does the target include all of memory, or only part of it? This
1672 determines whether we look up the target chain for other parts of
1673 memory if this target can't satisfy a request. */
1674
1675 extern int target_has_all_memory_1 (void);
1676 #define target_has_all_memory target_has_all_memory_1 ()
1677
1678 /* Does the target include memory? (Dummy targets don't.) */
1679
1680 extern int target_has_memory_1 (void);
1681 #define target_has_memory target_has_memory_1 ()
1682
1683 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1684 we start a process.) */
1685
1686 extern int target_has_stack_1 (void);
1687 #define target_has_stack target_has_stack_1 ()
1688
1689 /* Does the target have registers? (Exec files don't.) */
1690
1691 extern int target_has_registers_1 (void);
1692 #define target_has_registers target_has_registers_1 ()
1693
1694 /* Does the target have execution? Can we make it jump (through
1695 hoops), or pop its stack a few times? This means that the current
1696 target is currently executing; for some targets, that's the same as
1697 whether or not the target is capable of execution, but there are
1698 also targets which can be current while not executing. In that
1699 case this will become true after to_create_inferior or
1700 to_attach. */
1701
1702 extern int target_has_execution_1 (ptid_t);
1703
1704 /* Like target_has_execution_1, but always passes inferior_ptid. */
1705
1706 extern int target_has_execution_current (void);
1707
1708 #define target_has_execution target_has_execution_current ()
1709
1710 /* Default implementations for process_stratum targets. Return true
1711 if there's a selected inferior, false otherwise. */
1712
1713 extern int default_child_has_all_memory (struct target_ops *ops);
1714 extern int default_child_has_memory (struct target_ops *ops);
1715 extern int default_child_has_stack (struct target_ops *ops);
1716 extern int default_child_has_registers (struct target_ops *ops);
1717 extern int default_child_has_execution (struct target_ops *ops,
1718 ptid_t the_ptid);
1719
1720 /* Can the target support the debugger control of thread execution?
1721 Can it lock the thread scheduler? */
1722
1723 #define target_can_lock_scheduler \
1724 (current_target.to_has_thread_control & tc_schedlock)
1725
1726 /* Controls whether async mode is permitted. */
1727 extern int target_async_permitted;
1728
1729 /* Can the target support asynchronous execution? */
1730 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1731
1732 /* Is the target in asynchronous execution mode? */
1733 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1734
1735 /* Enables/disabled async target events. */
1736 #define target_async(ENABLE) \
1737 (current_target.to_async (&current_target, (ENABLE)))
1738
1739 #define target_execution_direction() \
1740 (current_target.to_execution_direction (&current_target))
1741
1742 /* Converts a process id to a string. Usually, the string just contains
1743 `process xyz', but on some systems it may contain
1744 `process xyz thread abc'. */
1745
1746 extern char *target_pid_to_str (ptid_t ptid);
1747
1748 extern char *normal_pid_to_str (ptid_t ptid);
1749
1750 /* Return a short string describing extra information about PID,
1751 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1752 is okay. */
1753
1754 #define target_extra_thread_info(TP) \
1755 (current_target.to_extra_thread_info (&current_target, TP))
1756
1757 /* Return the thread's name. A NULL result means that the target
1758 could not determine this thread's name. */
1759
1760 extern char *target_thread_name (struct thread_info *);
1761
1762 /* Attempts to find the pathname of the executable file
1763 that was run to create a specified process.
1764
1765 The process PID must be stopped when this operation is used.
1766
1767 If the executable file cannot be determined, NULL is returned.
1768
1769 Else, a pointer to a character string containing the pathname
1770 is returned. This string should be copied into a buffer by
1771 the client if the string will not be immediately used, or if
1772 it must persist. */
1773
1774 #define target_pid_to_exec_file(pid) \
1775 (current_target.to_pid_to_exec_file) (&current_target, pid)
1776
1777 /* See the to_thread_architecture description in struct target_ops. */
1778
1779 #define target_thread_architecture(ptid) \
1780 (current_target.to_thread_architecture (&current_target, ptid))
1781
1782 /*
1783 * Iterator function for target memory regions.
1784 * Calls a callback function once for each memory region 'mapped'
1785 * in the child process. Defined as a simple macro rather than
1786 * as a function macro so that it can be tested for nullity.
1787 */
1788
1789 #define target_find_memory_regions(FUNC, DATA) \
1790 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1791
1792 /*
1793 * Compose corefile .note section.
1794 */
1795
1796 #define target_make_corefile_notes(BFD, SIZE_P) \
1797 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1798
1799 /* Bookmark interfaces. */
1800 #define target_get_bookmark(ARGS, FROM_TTY) \
1801 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1802
1803 #define target_goto_bookmark(ARG, FROM_TTY) \
1804 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1805
1806 /* Hardware watchpoint interfaces. */
1807
1808 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1809 write). Only the INFERIOR_PTID task is being queried. */
1810
1811 #define target_stopped_by_watchpoint() \
1812 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1813
1814 /* Returns non-zero if the target stopped because it executed a
1815 software breakpoint instruction. */
1816
1817 #define target_stopped_by_sw_breakpoint() \
1818 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1819
1820 #define target_supports_stopped_by_sw_breakpoint() \
1821 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1822
1823 #define target_stopped_by_hw_breakpoint() \
1824 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1825
1826 #define target_supports_stopped_by_hw_breakpoint() \
1827 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1828
1829 /* Non-zero if we have steppable watchpoints */
1830
1831 #define target_have_steppable_watchpoint \
1832 (current_target.to_have_steppable_watchpoint)
1833
1834 /* Non-zero if we have continuable watchpoints */
1835
1836 #define target_have_continuable_watchpoint \
1837 (current_target.to_have_continuable_watchpoint)
1838
1839 /* Provide defaults for hardware watchpoint functions. */
1840
1841 /* If the *_hw_beakpoint functions have not been defined
1842 elsewhere use the definitions in the target vector. */
1843
1844 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1845 Returns negative if the target doesn't have enough hardware debug
1846 registers available. Return zero if hardware watchpoint of type
1847 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1848 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1849 CNT is the number of such watchpoints used so far, including this
1850 one. OTHERTYPE is who knows what... */
1851
1852 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1853 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1854 TYPE, CNT, OTHERTYPE)
1855
1856 /* Returns the number of debug registers needed to watch the given
1857 memory region, or zero if not supported. */
1858
1859 #define target_region_ok_for_hw_watchpoint(addr, len) \
1860 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1861 addr, len)
1862
1863
1864 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1865 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1866 COND is the expression for its condition, or NULL if there's none.
1867 Returns 0 for success, 1 if the watchpoint type is not supported,
1868 -1 for failure. */
1869
1870 #define target_insert_watchpoint(addr, len, type, cond) \
1871 (*current_target.to_insert_watchpoint) (&current_target, \
1872 addr, len, type, cond)
1873
1874 #define target_remove_watchpoint(addr, len, type, cond) \
1875 (*current_target.to_remove_watchpoint) (&current_target, \
1876 addr, len, type, cond)
1877
1878 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1879 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1880 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1881 masked watchpoints are not supported, -1 for failure. */
1882
1883 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1884
1885 /* Remove a masked watchpoint at ADDR with the mask MASK.
1886 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1887 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1888 for failure. */
1889
1890 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1891
1892 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1893 the target machine. Returns 0 for success, and returns non-zero or
1894 throws an error (with a detailed failure reason error code and
1895 message) otherwise. */
1896
1897 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1898 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1899 gdbarch, bp_tgt)
1900
1901 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1902 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1903 gdbarch, bp_tgt)
1904
1905 /* Return number of debug registers needed for a ranged breakpoint,
1906 or -1 if ranged breakpoints are not supported. */
1907
1908 extern int target_ranged_break_num_registers (void);
1909
1910 /* Return non-zero if target knows the data address which triggered this
1911 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1912 INFERIOR_PTID task is being queried. */
1913 #define target_stopped_data_address(target, addr_p) \
1914 (*(target)->to_stopped_data_address) (target, addr_p)
1915
1916 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1917 LENGTH bytes beginning at START. */
1918 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1919 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1920
1921 /* Return non-zero if the target is capable of using hardware to evaluate
1922 the condition expression. In this case, if the condition is false when
1923 the watched memory location changes, execution may continue without the
1924 debugger being notified.
1925
1926 Due to limitations in the hardware implementation, it may be capable of
1927 avoiding triggering the watchpoint in some cases where the condition
1928 expression is false, but may report some false positives as well.
1929 For this reason, GDB will still evaluate the condition expression when
1930 the watchpoint triggers. */
1931 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1932 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1933 addr, len, type, cond)
1934
1935 /* Return number of debug registers needed for a masked watchpoint,
1936 -1 if masked watchpoints are not supported or -2 if the given address
1937 and mask combination cannot be used. */
1938
1939 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1940
1941 /* Target can execute in reverse? */
1942 #define target_can_execute_reverse \
1943 current_target.to_can_execute_reverse (&current_target)
1944
1945 extern const struct target_desc *target_read_description (struct target_ops *);
1946
1947 #define target_get_ada_task_ptid(lwp, tid) \
1948 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1949
1950 /* Utility implementation of searching memory. */
1951 extern int simple_search_memory (struct target_ops* ops,
1952 CORE_ADDR start_addr,
1953 ULONGEST search_space_len,
1954 const gdb_byte *pattern,
1955 ULONGEST pattern_len,
1956 CORE_ADDR *found_addrp);
1957
1958 /* Main entry point for searching memory. */
1959 extern int target_search_memory (CORE_ADDR start_addr,
1960 ULONGEST search_space_len,
1961 const gdb_byte *pattern,
1962 ULONGEST pattern_len,
1963 CORE_ADDR *found_addrp);
1964
1965 /* Target file operations. */
1966
1967 /* Return nonzero if the filesystem seen by the current inferior
1968 is the local filesystem, zero otherwise. */
1969 #define target_filesystem_is_local() \
1970 current_target.to_filesystem_is_local (&current_target)
1971
1972 /* Open FILENAME on the target, in the filesystem as seen by INF,
1973 using FLAGS and MODE. If INF is NULL, use the filesystem seen
1974 by the debugger (GDB or, for remote targets, the remote stub).
1975 Return a target file descriptor, or -1 if an error occurs (and
1976 set *TARGET_ERRNO). */
1977 extern int target_fileio_open (struct inferior *inf,
1978 const char *filename, int flags,
1979 int mode, int *target_errno);
1980
1981 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1982 Return the number of bytes written, or -1 if an error occurs
1983 (and set *TARGET_ERRNO). */
1984 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1985 ULONGEST offset, int *target_errno);
1986
1987 /* Read up to LEN bytes FD on the target into READ_BUF.
1988 Return the number of bytes read, or -1 if an error occurs
1989 (and set *TARGET_ERRNO). */
1990 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1991 ULONGEST offset, int *target_errno);
1992
1993 /* Get information about the file opened as FD on the target
1994 and put it in SB. Return 0 on success, or -1 if an error
1995 occurs (and set *TARGET_ERRNO). */
1996 extern int target_fileio_fstat (int fd, struct stat *sb,
1997 int *target_errno);
1998
1999 /* Close FD on the target. Return 0, or -1 if an error occurs
2000 (and set *TARGET_ERRNO). */
2001 extern int target_fileio_close (int fd, int *target_errno);
2002
2003 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2004 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2005 for remote targets, the remote stub). Return 0, or -1 if an error
2006 occurs (and set *TARGET_ERRNO). */
2007 extern int target_fileio_unlink (struct inferior *inf,
2008 const char *filename,
2009 int *target_errno);
2010
2011 /* Read value of symbolic link FILENAME on the target, in the
2012 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2013 by the debugger (GDB or, for remote targets, the remote stub).
2014 Return a null-terminated string allocated via xmalloc, or NULL if
2015 an error occurs (and set *TARGET_ERRNO). */
2016 extern char *target_fileio_readlink (struct inferior *inf,
2017 const char *filename,
2018 int *target_errno);
2019
2020 /* Read target file FILENAME, in the filesystem as seen by INF. If
2021 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2022 remote targets, the remote stub). The return value will be -1 if
2023 the transfer fails or is not supported; 0 if the object is empty;
2024 or the length of the object otherwise. If a positive value is
2025 returned, a sufficiently large buffer will be allocated using
2026 xmalloc and returned in *BUF_P containing the contents of the
2027 object.
2028
2029 This method should be used for objects sufficiently small to store
2030 in a single xmalloc'd buffer, when no fixed bound on the object's
2031 size is known in advance. */
2032 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2033 const char *filename,
2034 gdb_byte **buf_p);
2035
2036 /* Read target file FILENAME, in the filesystem as seen by INF. If
2037 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2038 remote targets, the remote stub). The result is NUL-terminated and
2039 returned as a string, allocated using xmalloc. If an error occurs
2040 or the transfer is unsupported, NULL is returned. Empty objects
2041 are returned as allocated but empty strings. A warning is issued
2042 if the result contains any embedded NUL bytes. */
2043 extern char *target_fileio_read_stralloc (struct inferior *inf,
2044 const char *filename);
2045
2046
2047 /* Tracepoint-related operations. */
2048
2049 #define target_trace_init() \
2050 (*current_target.to_trace_init) (&current_target)
2051
2052 #define target_download_tracepoint(t) \
2053 (*current_target.to_download_tracepoint) (&current_target, t)
2054
2055 #define target_can_download_tracepoint() \
2056 (*current_target.to_can_download_tracepoint) (&current_target)
2057
2058 #define target_download_trace_state_variable(tsv) \
2059 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2060
2061 #define target_enable_tracepoint(loc) \
2062 (*current_target.to_enable_tracepoint) (&current_target, loc)
2063
2064 #define target_disable_tracepoint(loc) \
2065 (*current_target.to_disable_tracepoint) (&current_target, loc)
2066
2067 #define target_trace_start() \
2068 (*current_target.to_trace_start) (&current_target)
2069
2070 #define target_trace_set_readonly_regions() \
2071 (*current_target.to_trace_set_readonly_regions) (&current_target)
2072
2073 #define target_get_trace_status(ts) \
2074 (*current_target.to_get_trace_status) (&current_target, ts)
2075
2076 #define target_get_tracepoint_status(tp,utp) \
2077 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2078
2079 #define target_trace_stop() \
2080 (*current_target.to_trace_stop) (&current_target)
2081
2082 #define target_trace_find(type,num,addr1,addr2,tpp) \
2083 (*current_target.to_trace_find) (&current_target, \
2084 (type), (num), (addr1), (addr2), (tpp))
2085
2086 #define target_get_trace_state_variable_value(tsv,val) \
2087 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2088 (tsv), (val))
2089
2090 #define target_save_trace_data(filename) \
2091 (*current_target.to_save_trace_data) (&current_target, filename)
2092
2093 #define target_upload_tracepoints(utpp) \
2094 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2095
2096 #define target_upload_trace_state_variables(utsvp) \
2097 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2098
2099 #define target_get_raw_trace_data(buf,offset,len) \
2100 (*current_target.to_get_raw_trace_data) (&current_target, \
2101 (buf), (offset), (len))
2102
2103 #define target_get_min_fast_tracepoint_insn_len() \
2104 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2105
2106 #define target_set_disconnected_tracing(val) \
2107 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2108
2109 #define target_set_circular_trace_buffer(val) \
2110 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2111
2112 #define target_set_trace_buffer_size(val) \
2113 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2114
2115 #define target_set_trace_notes(user,notes,stopnotes) \
2116 (*current_target.to_set_trace_notes) (&current_target, \
2117 (user), (notes), (stopnotes))
2118
2119 #define target_get_tib_address(ptid, addr) \
2120 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2121
2122 #define target_set_permissions() \
2123 (*current_target.to_set_permissions) (&current_target)
2124
2125 #define target_static_tracepoint_marker_at(addr, marker) \
2126 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2127 addr, marker)
2128
2129 #define target_static_tracepoint_markers_by_strid(marker_id) \
2130 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2131 marker_id)
2132
2133 #define target_traceframe_info() \
2134 (*current_target.to_traceframe_info) (&current_target)
2135
2136 #define target_use_agent(use) \
2137 (*current_target.to_use_agent) (&current_target, use)
2138
2139 #define target_can_use_agent() \
2140 (*current_target.to_can_use_agent) (&current_target)
2141
2142 #define target_augmented_libraries_svr4_read() \
2143 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2144
2145 /* Command logging facility. */
2146
2147 #define target_log_command(p) \
2148 (*current_target.to_log_command) (&current_target, p)
2149
2150
2151 extern int target_core_of_thread (ptid_t ptid);
2152
2153 /* See to_get_unwinder in struct target_ops. */
2154 extern const struct frame_unwind *target_get_unwinder (void);
2155
2156 /* See to_get_tailcall_unwinder in struct target_ops. */
2157 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2158
2159 /* This implements basic memory verification, reading target memory
2160 and performing the comparison here (as opposed to accelerated
2161 verification making use of the qCRC packet, for example). */
2162
2163 extern int simple_verify_memory (struct target_ops* ops,
2164 const gdb_byte *data,
2165 CORE_ADDR memaddr, ULONGEST size);
2166
2167 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2168 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2169 if there's a mismatch, and -1 if an error is encountered while
2170 reading memory. Throws an error if the functionality is found not
2171 to be supported by the current target. */
2172 int target_verify_memory (const gdb_byte *data,
2173 CORE_ADDR memaddr, ULONGEST size);
2174
2175 /* Routines for maintenance of the target structures...
2176
2177 complete_target_initialization: Finalize a target_ops by filling in
2178 any fields needed by the target implementation. Unnecessary for
2179 targets which are registered via add_target, as this part gets
2180 taken care of then.
2181
2182 add_target: Add a target to the list of all possible targets.
2183 This only makes sense for targets that should be activated using
2184 the "target TARGET_NAME ..." command.
2185
2186 push_target: Make this target the top of the stack of currently used
2187 targets, within its particular stratum of the stack. Result
2188 is 0 if now atop the stack, nonzero if not on top (maybe
2189 should warn user).
2190
2191 unpush_target: Remove this from the stack of currently used targets,
2192 no matter where it is on the list. Returns 0 if no
2193 change, 1 if removed from stack. */
2194
2195 extern void add_target (struct target_ops *);
2196
2197 extern void add_target_with_completer (struct target_ops *t,
2198 completer_ftype *completer);
2199
2200 extern void complete_target_initialization (struct target_ops *t);
2201
2202 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2203 for maintaining backwards compatibility when renaming targets. */
2204
2205 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2206
2207 extern void push_target (struct target_ops *);
2208
2209 extern int unpush_target (struct target_ops *);
2210
2211 extern void target_pre_inferior (int);
2212
2213 extern void target_preopen (int);
2214
2215 /* Does whatever cleanup is required to get rid of all pushed targets. */
2216 extern void pop_all_targets (void);
2217
2218 /* Like pop_all_targets, but pops only targets whose stratum is
2219 strictly above ABOVE_STRATUM. */
2220 extern void pop_all_targets_above (enum strata above_stratum);
2221
2222 extern int target_is_pushed (struct target_ops *t);
2223
2224 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2225 CORE_ADDR offset);
2226
2227 /* Struct target_section maps address ranges to file sections. It is
2228 mostly used with BFD files, but can be used without (e.g. for handling
2229 raw disks, or files not in formats handled by BFD). */
2230
2231 struct target_section
2232 {
2233 CORE_ADDR addr; /* Lowest address in section */
2234 CORE_ADDR endaddr; /* 1+highest address in section */
2235
2236 struct bfd_section *the_bfd_section;
2237
2238 /* The "owner" of the section.
2239 It can be any unique value. It is set by add_target_sections
2240 and used by remove_target_sections.
2241 For example, for executables it is a pointer to exec_bfd and
2242 for shlibs it is the so_list pointer. */
2243 void *owner;
2244 };
2245
2246 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2247
2248 struct target_section_table
2249 {
2250 struct target_section *sections;
2251 struct target_section *sections_end;
2252 };
2253
2254 /* Return the "section" containing the specified address. */
2255 struct target_section *target_section_by_addr (struct target_ops *target,
2256 CORE_ADDR addr);
2257
2258 /* Return the target section table this target (or the targets
2259 beneath) currently manipulate. */
2260
2261 extern struct target_section_table *target_get_section_table
2262 (struct target_ops *target);
2263
2264 /* From mem-break.c */
2265
2266 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2267 struct bp_target_info *);
2268
2269 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2270 struct bp_target_info *);
2271
2272 /* Check whether the memory at the breakpoint's placed address still
2273 contains the expected breakpoint instruction. */
2274
2275 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2276 struct bp_target_info *bp_tgt);
2277
2278 extern int default_memory_remove_breakpoint (struct gdbarch *,
2279 struct bp_target_info *);
2280
2281 extern int default_memory_insert_breakpoint (struct gdbarch *,
2282 struct bp_target_info *);
2283
2284
2285 /* From target.c */
2286
2287 extern void initialize_targets (void);
2288
2289 extern void noprocess (void) ATTRIBUTE_NORETURN;
2290
2291 extern void target_require_runnable (void);
2292
2293 extern struct target_ops *find_target_beneath (struct target_ops *);
2294
2295 /* Find the target at STRATUM. If no target is at that stratum,
2296 return NULL. */
2297
2298 struct target_ops *find_target_at (enum strata stratum);
2299
2300 /* Read OS data object of type TYPE from the target, and return it in
2301 XML format. The result is NUL-terminated and returned as a string,
2302 allocated using xmalloc. If an error occurs or the transfer is
2303 unsupported, NULL is returned. Empty objects are returned as
2304 allocated but empty strings. */
2305
2306 extern char *target_get_osdata (const char *type);
2307
2308 \f
2309 /* Stuff that should be shared among the various remote targets. */
2310
2311 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2312 information (higher values, more information). */
2313 extern int remote_debug;
2314
2315 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2316 extern int baud_rate;
2317
2318 /* Parity for serial port */
2319 extern int serial_parity;
2320
2321 /* Timeout limit for response from target. */
2322 extern int remote_timeout;
2323
2324 \f
2325
2326 /* Set the show memory breakpoints mode to show, and installs a cleanup
2327 to restore it back to the current value. */
2328 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2329
2330 extern int may_write_registers;
2331 extern int may_write_memory;
2332 extern int may_insert_breakpoints;
2333 extern int may_insert_tracepoints;
2334 extern int may_insert_fast_tracepoints;
2335 extern int may_stop;
2336
2337 extern void update_target_permissions (void);
2338
2339 \f
2340 /* Imported from machine dependent code. */
2341
2342 /* See to_supports_btrace in struct target_ops. */
2343 extern int target_supports_btrace (enum btrace_format);
2344
2345 /* See to_enable_btrace in struct target_ops. */
2346 extern struct btrace_target_info *
2347 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2348
2349 /* See to_disable_btrace in struct target_ops. */
2350 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2351
2352 /* See to_teardown_btrace in struct target_ops. */
2353 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2354
2355 /* See to_read_btrace in struct target_ops. */
2356 extern enum btrace_error target_read_btrace (struct btrace_data *,
2357 struct btrace_target_info *,
2358 enum btrace_read_type);
2359
2360 /* See to_btrace_conf in struct target_ops. */
2361 extern const struct btrace_config *
2362 target_btrace_conf (const struct btrace_target_info *);
2363
2364 /* See to_stop_recording in struct target_ops. */
2365 extern void target_stop_recording (void);
2366
2367 /* See to_save_record in struct target_ops. */
2368 extern void target_save_record (const char *filename);
2369
2370 /* Query if the target supports deleting the execution log. */
2371 extern int target_supports_delete_record (void);
2372
2373 /* See to_delete_record in struct target_ops. */
2374 extern void target_delete_record (void);
2375
2376 /* See to_record_is_replaying in struct target_ops. */
2377 extern int target_record_is_replaying (void);
2378
2379 /* See to_goto_record_begin in struct target_ops. */
2380 extern void target_goto_record_begin (void);
2381
2382 /* See to_goto_record_end in struct target_ops. */
2383 extern void target_goto_record_end (void);
2384
2385 /* See to_goto_record in struct target_ops. */
2386 extern void target_goto_record (ULONGEST insn);
2387
2388 /* See to_insn_history. */
2389 extern void target_insn_history (int size, int flags);
2390
2391 /* See to_insn_history_from. */
2392 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2393
2394 /* See to_insn_history_range. */
2395 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2396
2397 /* See to_call_history. */
2398 extern void target_call_history (int size, int flags);
2399
2400 /* See to_call_history_from. */
2401 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2402
2403 /* See to_call_history_range. */
2404 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2405
2406 /* See to_prepare_to_generate_core. */
2407 extern void target_prepare_to_generate_core (void);
2408
2409 /* See to_done_generating_core. */
2410 extern void target_done_generating_core (void);
2411
2412 #endif /* !defined (TARGET_H) */
This page took 0.090711 seconds and 5 git commands to generate.