Share target_wait prototype between GDB and gdbserver
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45
46 /* This include file defines the interface between the main part
47 of the debugger, and the part which is target-specific, or
48 specific to the communications interface between us and the
49 target.
50
51 A TARGET is an interface between the debugger and a particular
52 kind of file or process. Targets can be STACKED in STRATA,
53 so that more than one target can potentially respond to a request.
54 In particular, memory accesses will walk down the stack of targets
55 until they find a target that is interested in handling that particular
56 address. STRATA are artificial boundaries on the stack, within
57 which particular kinds of targets live. Strata exist so that
58 people don't get confused by pushing e.g. a process target and then
59 a file target, and wondering why they can't see the current values
60 of variables any more (the file target is handling them and they
61 never get to the process target). So when you push a file target,
62 it goes into the file stratum, which is always below the process
63 stratum. */
64
65 #include "target/target.h"
66 #include "target/resume.h"
67 #include "target/wait.h"
68 #include "target/waitstatus.h"
69 #include "bfd.h"
70 #include "symtab.h"
71 #include "memattr.h"
72 #include "vec.h"
73 #include "gdb_signals.h"
74 #include "btrace.h"
75 #include "command.h"
76
77 #include "break-common.h" /* For enum target_hw_bp_type. */
78
79 enum strata
80 {
81 dummy_stratum, /* The lowest of the low */
82 file_stratum, /* Executable files, etc */
83 process_stratum, /* Executing processes or core dump files */
84 thread_stratum, /* Executing threads */
85 record_stratum, /* Support record debugging */
86 arch_stratum /* Architecture overrides */
87 };
88
89 enum thread_control_capabilities
90 {
91 tc_none = 0, /* Default: can't control thread execution. */
92 tc_schedlock = 1, /* Can lock the thread scheduler. */
93 };
94
95 /* The structure below stores information about a system call.
96 It is basically used in the "catch syscall" command, and in
97 every function that gives information about a system call.
98
99 It's also good to mention that its fields represent everything
100 that we currently know about a syscall in GDB. */
101 struct syscall
102 {
103 /* The syscall number. */
104 int number;
105
106 /* The syscall name. */
107 const char *name;
108 };
109
110 /* Return a pretty printed form of target_waitstatus.
111 Space for the result is malloc'd, caller must free. */
112 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
121 {
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE,
203 /* Branch trace configuration, in XML format. */
204 TARGET_OBJECT_BTRACE_CONF,
205 /* The pathname of the executable file that was run to create
206 a specified process. ANNEX should be a string representation
207 of the process ID of the process in question, in hexadecimal
208 format. */
209 TARGET_OBJECT_EXEC_FILE,
210 /* Possible future objects: TARGET_OBJECT_FILE, ... */
211 };
212
213 /* Possible values returned by target_xfer_partial, etc. */
214
215 enum target_xfer_status
216 {
217 /* Some bytes are transferred. */
218 TARGET_XFER_OK = 1,
219
220 /* No further transfer is possible. */
221 TARGET_XFER_EOF = 0,
222
223 /* The piece of the object requested is unavailable. */
224 TARGET_XFER_UNAVAILABLE = 2,
225
226 /* Generic I/O error. Note that it's important that this is '-1',
227 as we still have target_xfer-related code returning hardcoded
228 '-1' on error. */
229 TARGET_XFER_E_IO = -1,
230
231 /* Keep list in sync with target_xfer_status_to_string. */
232 };
233
234 /* Return the string form of STATUS. */
235
236 extern const char *
237 target_xfer_status_to_string (enum target_xfer_status status);
238
239 /* Enumeration of the kinds of traceframe searches that a target may
240 be able to perform. */
241
242 enum trace_find_type
243 {
244 tfind_number,
245 tfind_pc,
246 tfind_tp,
247 tfind_range,
248 tfind_outside,
249 };
250
251 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
252 DEF_VEC_P(static_tracepoint_marker_p);
253
254 typedef enum target_xfer_status
255 target_xfer_partial_ftype (struct target_ops *ops,
256 enum target_object object,
257 const char *annex,
258 gdb_byte *readbuf,
259 const gdb_byte *writebuf,
260 ULONGEST offset,
261 ULONGEST len,
262 ULONGEST *xfered_len);
263
264 enum target_xfer_status
265 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
266 const gdb_byte *writebuf, ULONGEST memaddr,
267 LONGEST len, ULONGEST *xfered_len);
268
269 /* Request that OPS transfer up to LEN addressable units of the target's
270 OBJECT. When reading from a memory object, the size of an addressable unit
271 is architecture dependent and can be found using
272 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
273 byte long. BUF should point to a buffer large enough to hold the read data,
274 taking into account the addressable unit size. The OFFSET, for a seekable
275 object, specifies the starting point. The ANNEX can be used to provide
276 additional data-specific information to the target.
277
278 Return the number of addressable units actually transferred, or a negative
279 error code (an 'enum target_xfer_error' value) if the transfer is not
280 supported or otherwise fails. Return of a positive value less than
281 LEN indicates that no further transfer is possible. Unlike the raw
282 to_xfer_partial interface, callers of these functions do not need
283 to retry partial transfers. */
284
285 extern LONGEST target_read (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 struct memory_read_result
291 {
292 /* First address that was read. */
293 ULONGEST begin;
294 /* Past-the-end address. */
295 ULONGEST end;
296 /* The data. */
297 gdb_byte *data;
298 };
299 typedef struct memory_read_result memory_read_result_s;
300 DEF_VEC_O(memory_read_result_s);
301
302 extern void free_memory_read_result_vector (void *);
303
304 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
305 const ULONGEST offset,
306 const LONGEST len);
307
308 /* Request that OPS transfer up to LEN addressable units from BUF to the
309 target's OBJECT. When writing to a memory object, the addressable unit
310 size is architecture dependent and can be found using
311 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
312 byte long. The OFFSET, for a seekable object, specifies the starting point.
313 The ANNEX can be used to provide additional data-specific information to
314 the target.
315
316 Return the number of addressable units actually transferred, or a negative
317 error code (an 'enum target_xfer_status' value) if the transfer is not
318 supported or otherwise fails. Return of a positive value less than
319 LEN indicates that no further transfer is possible. Unlike the raw
320 to_xfer_partial interface, callers of these functions do not need to
321 retry partial transfers. */
322
323 extern LONGEST target_write (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, const gdb_byte *buf,
326 ULONGEST offset, LONGEST len);
327
328 /* Similar to target_write, except that it also calls PROGRESS with
329 the number of bytes written and the opaque BATON after every
330 successful partial write (and before the first write). This is
331 useful for progress reporting and user interaction while writing
332 data. To abort the transfer, the progress callback can throw an
333 exception. */
334
335 LONGEST target_write_with_progress (struct target_ops *ops,
336 enum target_object object,
337 const char *annex, const gdb_byte *buf,
338 ULONGEST offset, LONGEST len,
339 void (*progress) (ULONGEST, void *),
340 void *baton);
341
342 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
343 be read using OPS. The return value will be -1 if the transfer
344 fails or is not supported; 0 if the object is empty; or the length
345 of the object otherwise. If a positive value is returned, a
346 sufficiently large buffer will be allocated using xmalloc and
347 returned in *BUF_P containing the contents of the object.
348
349 This method should be used for objects sufficiently small to store
350 in a single xmalloc'd buffer, when no fixed bound on the object's
351 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
352 through this function. */
353
354 extern LONGEST target_read_alloc (struct target_ops *ops,
355 enum target_object object,
356 const char *annex, gdb_byte **buf_p);
357
358 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
359 returned as a string, allocated using xmalloc. If an error occurs
360 or the transfer is unsupported, NULL is returned. Empty objects
361 are returned as allocated but empty strings. A warning is issued
362 if the result contains any embedded NUL bytes. */
363
364 extern char *target_read_stralloc (struct target_ops *ops,
365 enum target_object object,
366 const char *annex);
367
368 /* See target_ops->to_xfer_partial. */
369 extern target_xfer_partial_ftype target_xfer_partial;
370
371 /* Wrappers to target read/write that perform memory transfers. They
372 throw an error if the memory transfer fails.
373
374 NOTE: cagney/2003-10-23: The naming schema is lifted from
375 "frame.h". The parameter order is lifted from get_frame_memory,
376 which in turn lifted it from read_memory. */
377
378 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
379 gdb_byte *buf, LONGEST len);
380 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
381 CORE_ADDR addr, int len,
382 enum bfd_endian byte_order);
383 \f
384 struct thread_info; /* fwd decl for parameter list below: */
385
386 /* The type of the callback to the to_async method. */
387
388 typedef void async_callback_ftype (enum inferior_event_type event_type,
389 void *context);
390
391 /* Normally target debug printing is purely type-based. However,
392 sometimes it is necessary to override the debug printing on a
393 per-argument basis. This macro can be used, attribute-style, to
394 name the target debug printing function for a particular method
395 argument. FUNC is the name of the function. The macro's
396 definition is empty because it is only used by the
397 make-target-delegates script. */
398
399 #define TARGET_DEBUG_PRINTER(FUNC)
400
401 /* These defines are used to mark target_ops methods. The script
402 make-target-delegates scans these and auto-generates the base
403 method implementations. There are four macros that can be used:
404
405 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
406 does nothing. This is only valid if the method return type is
407 'void'.
408
409 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
410 'tcomplain ()'. The base method simply makes this call, which is
411 assumed not to return.
412
413 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
414 base method returns this expression's value.
415
416 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
417 make-target-delegates does not generate a base method in this case,
418 but instead uses the argument function as the base method. */
419
420 #define TARGET_DEFAULT_IGNORE()
421 #define TARGET_DEFAULT_NORETURN(ARG)
422 #define TARGET_DEFAULT_RETURN(ARG)
423 #define TARGET_DEFAULT_FUNC(ARG)
424
425 struct target_ops
426 {
427 struct target_ops *beneath; /* To the target under this one. */
428 const char *to_shortname; /* Name this target type */
429 const char *to_longname; /* Name for printing */
430 const char *to_doc; /* Documentation. Does not include trailing
431 newline, and starts with a one-line descrip-
432 tion (probably similar to to_longname). */
433 /* Per-target scratch pad. */
434 void *to_data;
435 /* The open routine takes the rest of the parameters from the
436 command, and (if successful) pushes a new target onto the
437 stack. Targets should supply this routine, if only to provide
438 an error message. */
439 void (*to_open) (const char *, int);
440 /* Old targets with a static target vector provide "to_close".
441 New re-entrant targets provide "to_xclose" and that is expected
442 to xfree everything (including the "struct target_ops"). */
443 void (*to_xclose) (struct target_ops *targ);
444 void (*to_close) (struct target_ops *);
445 /* Attaches to a process on the target side. Arguments are as
446 passed to the `attach' command by the user. This routine can
447 be called when the target is not on the target-stack, if the
448 target_can_run routine returns 1; in that case, it must push
449 itself onto the stack. Upon exit, the target should be ready
450 for normal operations, and should be ready to deliver the
451 status of the process immediately (without waiting) to an
452 upcoming target_wait call. */
453 void (*to_attach) (struct target_ops *ops, const char *, int);
454 void (*to_post_attach) (struct target_ops *, int)
455 TARGET_DEFAULT_IGNORE ();
456 void (*to_detach) (struct target_ops *ops, const char *, int)
457 TARGET_DEFAULT_IGNORE ();
458 void (*to_disconnect) (struct target_ops *, const char *, int)
459 TARGET_DEFAULT_NORETURN (tcomplain ());
460 void (*to_resume) (struct target_ops *, ptid_t,
461 int TARGET_DEBUG_PRINTER (target_debug_print_step),
462 enum gdb_signal)
463 TARGET_DEFAULT_NORETURN (noprocess ());
464 ptid_t (*to_wait) (struct target_ops *,
465 ptid_t, struct target_waitstatus *,
466 int TARGET_DEBUG_PRINTER (target_debug_print_options))
467 TARGET_DEFAULT_FUNC (default_target_wait);
468 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
469 TARGET_DEFAULT_IGNORE ();
470 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
471 TARGET_DEFAULT_NORETURN (noprocess ());
472 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
473 TARGET_DEFAULT_NORETURN (noprocess ());
474
475 void (*to_files_info) (struct target_ops *)
476 TARGET_DEFAULT_IGNORE ();
477 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
478 struct bp_target_info *)
479 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
480 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
481 struct bp_target_info *,
482 enum remove_bp_reason)
483 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
484
485 /* Returns true if the target stopped because it executed a
486 software breakpoint. This is necessary for correct background
487 execution / non-stop mode operation, and for correct PC
488 adjustment on targets where the PC needs to be adjusted when a
489 software breakpoint triggers. In these modes, by the time GDB
490 processes a breakpoint event, the breakpoint may already be
491 done from the target, so GDB needs to be able to tell whether
492 it should ignore the event and whether it should adjust the PC.
493 See adjust_pc_after_break. */
494 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
495 TARGET_DEFAULT_RETURN (0);
496 /* Returns true if the above method is supported. */
497 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
498 TARGET_DEFAULT_RETURN (0);
499
500 /* Returns true if the target stopped for a hardware breakpoint.
501 Likewise, if the target supports hardware breakpoints, this
502 method is necessary for correct background execution / non-stop
503 mode operation. Even though hardware breakpoints do not
504 require PC adjustment, GDB needs to be able to tell whether the
505 hardware breakpoint event is a delayed event for a breakpoint
506 that is already gone and should thus be ignored. */
507 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
508 TARGET_DEFAULT_RETURN (0);
509 /* Returns true if the above method is supported. */
510 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
511 TARGET_DEFAULT_RETURN (0);
512
513 int (*to_can_use_hw_breakpoint) (struct target_ops *,
514 enum bptype, int, int)
515 TARGET_DEFAULT_RETURN (0);
516 int (*to_ranged_break_num_registers) (struct target_ops *)
517 TARGET_DEFAULT_RETURN (-1);
518 int (*to_insert_hw_breakpoint) (struct target_ops *,
519 struct gdbarch *, struct bp_target_info *)
520 TARGET_DEFAULT_RETURN (-1);
521 int (*to_remove_hw_breakpoint) (struct target_ops *,
522 struct gdbarch *, struct bp_target_info *)
523 TARGET_DEFAULT_RETURN (-1);
524
525 /* Documentation of what the two routines below are expected to do is
526 provided with the corresponding target_* macros. */
527 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
528 enum target_hw_bp_type, struct expression *)
529 TARGET_DEFAULT_RETURN (-1);
530 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
531 enum target_hw_bp_type, struct expression *)
532 TARGET_DEFAULT_RETURN (-1);
533
534 int (*to_insert_mask_watchpoint) (struct target_ops *,
535 CORE_ADDR, CORE_ADDR,
536 enum target_hw_bp_type)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_remove_mask_watchpoint) (struct target_ops *,
539 CORE_ADDR, CORE_ADDR,
540 enum target_hw_bp_type)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_stopped_by_watchpoint) (struct target_ops *)
543 TARGET_DEFAULT_RETURN (0);
544 int to_have_steppable_watchpoint;
545 int to_have_continuable_watchpoint;
546 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
547 TARGET_DEFAULT_RETURN (0);
548 int (*to_watchpoint_addr_within_range) (struct target_ops *,
549 CORE_ADDR, CORE_ADDR, int)
550 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
551
552 /* Documentation of this routine is provided with the corresponding
553 target_* macro. */
554 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
555 CORE_ADDR, int)
556 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
557
558 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
559 CORE_ADDR, int, int,
560 struct expression *)
561 TARGET_DEFAULT_RETURN (0);
562 int (*to_masked_watch_num_registers) (struct target_ops *,
563 CORE_ADDR, CORE_ADDR)
564 TARGET_DEFAULT_RETURN (-1);
565
566 /* Return 1 for sure target can do single step. Return -1 for
567 unknown. Return 0 for target can't do. */
568 int (*to_can_do_single_step) (struct target_ops *)
569 TARGET_DEFAULT_RETURN (-1);
570
571 void (*to_terminal_init) (struct target_ops *)
572 TARGET_DEFAULT_IGNORE ();
573 void (*to_terminal_inferior) (struct target_ops *)
574 TARGET_DEFAULT_IGNORE ();
575 void (*to_terminal_ours_for_output) (struct target_ops *)
576 TARGET_DEFAULT_IGNORE ();
577 void (*to_terminal_ours) (struct target_ops *)
578 TARGET_DEFAULT_IGNORE ();
579 void (*to_terminal_info) (struct target_ops *, const char *, int)
580 TARGET_DEFAULT_FUNC (default_terminal_info);
581 void (*to_kill) (struct target_ops *)
582 TARGET_DEFAULT_NORETURN (noprocess ());
583 void (*to_load) (struct target_ops *, const char *, int)
584 TARGET_DEFAULT_NORETURN (tcomplain ());
585 /* Start an inferior process and set inferior_ptid to its pid.
586 EXEC_FILE is the file to run.
587 ALLARGS is a string containing the arguments to the program.
588 ENV is the environment vector to pass. Errors reported with error().
589 On VxWorks and various standalone systems, we ignore exec_file. */
590 void (*to_create_inferior) (struct target_ops *,
591 char *, char *, char **, int);
592 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
593 TARGET_DEFAULT_IGNORE ();
594 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
595 TARGET_DEFAULT_RETURN (1);
596 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
597 TARGET_DEFAULT_RETURN (1);
598 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
599 TARGET_DEFAULT_RETURN (1);
600 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
601 TARGET_DEFAULT_RETURN (1);
602 int (*to_follow_fork) (struct target_ops *, int, int)
603 TARGET_DEFAULT_FUNC (default_follow_fork);
604 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
605 TARGET_DEFAULT_RETURN (1);
606 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
607 TARGET_DEFAULT_RETURN (1);
608 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
609 TARGET_DEFAULT_IGNORE ();
610 int (*to_set_syscall_catchpoint) (struct target_ops *,
611 int, int, int, int, int *)
612 TARGET_DEFAULT_RETURN (1);
613 int (*to_has_exited) (struct target_ops *, int, int, int *)
614 TARGET_DEFAULT_RETURN (0);
615 void (*to_mourn_inferior) (struct target_ops *)
616 TARGET_DEFAULT_FUNC (default_mourn_inferior);
617 /* Note that to_can_run is special and can be invoked on an
618 unpushed target. Targets defining this method must also define
619 to_can_async_p and to_supports_non_stop. */
620 int (*to_can_run) (struct target_ops *)
621 TARGET_DEFAULT_RETURN (0);
622
623 /* Documentation of this routine is provided with the corresponding
624 target_* macro. */
625 void (*to_pass_signals) (struct target_ops *, int,
626 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
627 TARGET_DEFAULT_IGNORE ();
628
629 /* Documentation of this routine is provided with the
630 corresponding target_* function. */
631 void (*to_program_signals) (struct target_ops *, int,
632 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
633 TARGET_DEFAULT_IGNORE ();
634
635 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
636 TARGET_DEFAULT_RETURN (0);
637 void (*to_update_thread_list) (struct target_ops *)
638 TARGET_DEFAULT_IGNORE ();
639 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
640 TARGET_DEFAULT_FUNC (default_pid_to_str);
641 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
642 TARGET_DEFAULT_RETURN (NULL);
643 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
644 TARGET_DEFAULT_RETURN (NULL);
645 void (*to_stop) (struct target_ops *, ptid_t)
646 TARGET_DEFAULT_IGNORE ();
647 void (*to_interrupt) (struct target_ops *, ptid_t)
648 TARGET_DEFAULT_IGNORE ();
649 void (*to_pass_ctrlc) (struct target_ops *)
650 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
651 void (*to_rcmd) (struct target_ops *,
652 const char *command, struct ui_file *output)
653 TARGET_DEFAULT_FUNC (default_rcmd);
654 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
655 TARGET_DEFAULT_RETURN (NULL);
656 void (*to_log_command) (struct target_ops *, const char *)
657 TARGET_DEFAULT_IGNORE ();
658 struct target_section_table *(*to_get_section_table) (struct target_ops *)
659 TARGET_DEFAULT_RETURN (NULL);
660 enum strata to_stratum;
661 int (*to_has_all_memory) (struct target_ops *);
662 int (*to_has_memory) (struct target_ops *);
663 int (*to_has_stack) (struct target_ops *);
664 int (*to_has_registers) (struct target_ops *);
665 int (*to_has_execution) (struct target_ops *, ptid_t);
666 int to_has_thread_control; /* control thread execution */
667 int to_attach_no_wait;
668 /* This method must be implemented in some situations. See the
669 comment on 'to_can_run'. */
670 int (*to_can_async_p) (struct target_ops *)
671 TARGET_DEFAULT_RETURN (0);
672 int (*to_is_async_p) (struct target_ops *)
673 TARGET_DEFAULT_RETURN (0);
674 void (*to_async) (struct target_ops *, int)
675 TARGET_DEFAULT_NORETURN (tcomplain ());
676 void (*to_thread_events) (struct target_ops *, int)
677 TARGET_DEFAULT_IGNORE ();
678 /* This method must be implemented in some situations. See the
679 comment on 'to_can_run'. */
680 int (*to_supports_non_stop) (struct target_ops *)
681 TARGET_DEFAULT_RETURN (0);
682 /* Return true if the target operates in non-stop mode even with
683 "set non-stop off". */
684 int (*to_always_non_stop_p) (struct target_ops *)
685 TARGET_DEFAULT_RETURN (0);
686 /* find_memory_regions support method for gcore */
687 int (*to_find_memory_regions) (struct target_ops *,
688 find_memory_region_ftype func, void *data)
689 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
690 /* make_corefile_notes support method for gcore */
691 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
692 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
693 /* get_bookmark support method for bookmarks */
694 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
695 TARGET_DEFAULT_NORETURN (tcomplain ());
696 /* goto_bookmark support method for bookmarks */
697 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
698 TARGET_DEFAULT_NORETURN (tcomplain ());
699 /* Return the thread-local address at OFFSET in the
700 thread-local storage for the thread PTID and the shared library
701 or executable file given by OBJFILE. If that block of
702 thread-local storage hasn't been allocated yet, this function
703 may return an error. LOAD_MODULE_ADDR may be zero for statically
704 linked multithreaded inferiors. */
705 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
706 ptid_t ptid,
707 CORE_ADDR load_module_addr,
708 CORE_ADDR offset)
709 TARGET_DEFAULT_NORETURN (generic_tls_error ());
710
711 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
712 OBJECT. The OFFSET, for a seekable object, specifies the
713 starting point. The ANNEX can be used to provide additional
714 data-specific information to the target.
715
716 Return the transferred status, error or OK (an
717 'enum target_xfer_status' value). Save the number of bytes
718 actually transferred in *XFERED_LEN if transfer is successful
719 (TARGET_XFER_OK) or the number unavailable bytes if the requested
720 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
721 smaller than LEN does not indicate the end of the object, only
722 the end of the transfer; higher level code should continue
723 transferring if desired. This is handled in target.c.
724
725 The interface does not support a "retry" mechanism. Instead it
726 assumes that at least one byte will be transfered on each
727 successful call.
728
729 NOTE: cagney/2003-10-17: The current interface can lead to
730 fragmented transfers. Lower target levels should not implement
731 hacks, such as enlarging the transfer, in an attempt to
732 compensate for this. Instead, the target stack should be
733 extended so that it implements supply/collect methods and a
734 look-aside object cache. With that available, the lowest
735 target can safely and freely "push" data up the stack.
736
737 See target_read and target_write for more information. One,
738 and only one, of readbuf or writebuf must be non-NULL. */
739
740 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
741 enum target_object object,
742 const char *annex,
743 gdb_byte *readbuf,
744 const gdb_byte *writebuf,
745 ULONGEST offset, ULONGEST len,
746 ULONGEST *xfered_len)
747 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
748
749 /* Return the limit on the size of any single memory transfer
750 for the target. */
751
752 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
753 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
754
755 /* Returns the memory map for the target. A return value of NULL
756 means that no memory map is available. If a memory address
757 does not fall within any returned regions, it's assumed to be
758 RAM. The returned memory regions should not overlap.
759
760 The order of regions does not matter; target_memory_map will
761 sort regions by starting address. For that reason, this
762 function should not be called directly except via
763 target_memory_map.
764
765 This method should not cache data; if the memory map could
766 change unexpectedly, it should be invalidated, and higher
767 layers will re-fetch it. */
768 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
769 TARGET_DEFAULT_RETURN (NULL);
770
771 /* Erases the region of flash memory starting at ADDRESS, of
772 length LENGTH.
773
774 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
775 on flash block boundaries, as reported by 'to_memory_map'. */
776 void (*to_flash_erase) (struct target_ops *,
777 ULONGEST address, LONGEST length)
778 TARGET_DEFAULT_NORETURN (tcomplain ());
779
780 /* Finishes a flash memory write sequence. After this operation
781 all flash memory should be available for writing and the result
782 of reading from areas written by 'to_flash_write' should be
783 equal to what was written. */
784 void (*to_flash_done) (struct target_ops *)
785 TARGET_DEFAULT_NORETURN (tcomplain ());
786
787 /* Describe the architecture-specific features of this target. If
788 OPS doesn't have a description, this should delegate to the
789 "beneath" target. Returns the description found, or NULL if no
790 description was available. */
791 const struct target_desc *(*to_read_description) (struct target_ops *ops)
792 TARGET_DEFAULT_RETURN (NULL);
793
794 /* Build the PTID of the thread on which a given task is running,
795 based on LWP and THREAD. These values are extracted from the
796 task Private_Data section of the Ada Task Control Block, and
797 their interpretation depends on the target. */
798 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
799 long lwp, long thread)
800 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
801
802 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
803 Return 0 if *READPTR is already at the end of the buffer.
804 Return -1 if there is insufficient buffer for a whole entry.
805 Return 1 if an entry was read into *TYPEP and *VALP. */
806 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
807 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
808 TARGET_DEFAULT_FUNC (default_auxv_parse);
809
810 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
811 sequence of bytes in PATTERN with length PATTERN_LEN.
812
813 The result is 1 if found, 0 if not found, and -1 if there was an error
814 requiring halting of the search (e.g. memory read error).
815 If the pattern is found the address is recorded in FOUND_ADDRP. */
816 int (*to_search_memory) (struct target_ops *ops,
817 CORE_ADDR start_addr, ULONGEST search_space_len,
818 const gdb_byte *pattern, ULONGEST pattern_len,
819 CORE_ADDR *found_addrp)
820 TARGET_DEFAULT_FUNC (default_search_memory);
821
822 /* Can target execute in reverse? */
823 int (*to_can_execute_reverse) (struct target_ops *)
824 TARGET_DEFAULT_RETURN (0);
825
826 /* The direction the target is currently executing. Must be
827 implemented on targets that support reverse execution and async
828 mode. The default simply returns forward execution. */
829 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
830 TARGET_DEFAULT_FUNC (default_execution_direction);
831
832 /* Does this target support debugging multiple processes
833 simultaneously? */
834 int (*to_supports_multi_process) (struct target_ops *)
835 TARGET_DEFAULT_RETURN (0);
836
837 /* Does this target support enabling and disabling tracepoints while a trace
838 experiment is running? */
839 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
840 TARGET_DEFAULT_RETURN (0);
841
842 /* Does this target support disabling address space randomization? */
843 int (*to_supports_disable_randomization) (struct target_ops *);
844
845 /* Does this target support the tracenz bytecode for string collection? */
846 int (*to_supports_string_tracing) (struct target_ops *)
847 TARGET_DEFAULT_RETURN (0);
848
849 /* Does this target support evaluation of breakpoint conditions on its
850 end? */
851 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
852 TARGET_DEFAULT_RETURN (0);
853
854 /* Does this target support evaluation of breakpoint commands on its
855 end? */
856 int (*to_can_run_breakpoint_commands) (struct target_ops *)
857 TARGET_DEFAULT_RETURN (0);
858
859 /* Determine current architecture of thread PTID.
860
861 The target is supposed to determine the architecture of the code where
862 the target is currently stopped at (on Cell, if a target is in spu_run,
863 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
864 This is architecture used to perform decr_pc_after_break adjustment,
865 and also determines the frame architecture of the innermost frame.
866 ptrace operations need to operate according to target_gdbarch ().
867
868 The default implementation always returns target_gdbarch (). */
869 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
870 TARGET_DEFAULT_FUNC (default_thread_architecture);
871
872 /* Determine current address space of thread PTID.
873
874 The default implementation always returns the inferior's
875 address space. */
876 struct address_space *(*to_thread_address_space) (struct target_ops *,
877 ptid_t)
878 TARGET_DEFAULT_FUNC (default_thread_address_space);
879
880 /* Target file operations. */
881
882 /* Return nonzero if the filesystem seen by the current inferior
883 is the local filesystem, zero otherwise. */
884 int (*to_filesystem_is_local) (struct target_ops *)
885 TARGET_DEFAULT_RETURN (1);
886
887 /* Open FILENAME on the target, in the filesystem as seen by INF,
888 using FLAGS and MODE. If INF is NULL, use the filesystem seen
889 by the debugger (GDB or, for remote targets, the remote stub).
890 If WARN_IF_SLOW is nonzero, print a warning message if the file
891 is being accessed over a link that may be slow. Return a
892 target file descriptor, or -1 if an error occurs (and set
893 *TARGET_ERRNO). */
894 int (*to_fileio_open) (struct target_ops *,
895 struct inferior *inf, const char *filename,
896 int flags, int mode, int warn_if_slow,
897 int *target_errno);
898
899 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
900 Return the number of bytes written, or -1 if an error occurs
901 (and set *TARGET_ERRNO). */
902 int (*to_fileio_pwrite) (struct target_ops *,
903 int fd, const gdb_byte *write_buf, int len,
904 ULONGEST offset, int *target_errno);
905
906 /* Read up to LEN bytes FD on the target into READ_BUF.
907 Return the number of bytes read, or -1 if an error occurs
908 (and set *TARGET_ERRNO). */
909 int (*to_fileio_pread) (struct target_ops *,
910 int fd, gdb_byte *read_buf, int len,
911 ULONGEST offset, int *target_errno);
912
913 /* Get information about the file opened as FD and put it in
914 SB. Return 0 on success, or -1 if an error occurs (and set
915 *TARGET_ERRNO). */
916 int (*to_fileio_fstat) (struct target_ops *,
917 int fd, struct stat *sb, int *target_errno);
918
919 /* Close FD on the target. Return 0, or -1 if an error occurs
920 (and set *TARGET_ERRNO). */
921 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
922
923 /* Unlink FILENAME on the target, in the filesystem as seen by
924 INF. If INF is NULL, use the filesystem seen by the debugger
925 (GDB or, for remote targets, the remote stub). Return 0, or
926 -1 if an error occurs (and set *TARGET_ERRNO). */
927 int (*to_fileio_unlink) (struct target_ops *,
928 struct inferior *inf,
929 const char *filename,
930 int *target_errno);
931
932 /* Read value of symbolic link FILENAME on the target, in the
933 filesystem as seen by INF. If INF is NULL, use the filesystem
934 seen by the debugger (GDB or, for remote targets, the remote
935 stub). Return a null-terminated string allocated via xmalloc,
936 or NULL if an error occurs (and set *TARGET_ERRNO). */
937 char *(*to_fileio_readlink) (struct target_ops *,
938 struct inferior *inf,
939 const char *filename,
940 int *target_errno);
941
942
943 /* Implement the "info proc" command. */
944 void (*to_info_proc) (struct target_ops *, const char *,
945 enum info_proc_what);
946
947 /* Tracepoint-related operations. */
948
949 /* Prepare the target for a tracing run. */
950 void (*to_trace_init) (struct target_ops *)
951 TARGET_DEFAULT_NORETURN (tcomplain ());
952
953 /* Send full details of a tracepoint location to the target. */
954 void (*to_download_tracepoint) (struct target_ops *,
955 struct bp_location *location)
956 TARGET_DEFAULT_NORETURN (tcomplain ());
957
958 /* Is the target able to download tracepoint locations in current
959 state? */
960 int (*to_can_download_tracepoint) (struct target_ops *)
961 TARGET_DEFAULT_RETURN (0);
962
963 /* Send full details of a trace state variable to the target. */
964 void (*to_download_trace_state_variable) (struct target_ops *,
965 struct trace_state_variable *tsv)
966 TARGET_DEFAULT_NORETURN (tcomplain ());
967
968 /* Enable a tracepoint on the target. */
969 void (*to_enable_tracepoint) (struct target_ops *,
970 struct bp_location *location)
971 TARGET_DEFAULT_NORETURN (tcomplain ());
972
973 /* Disable a tracepoint on the target. */
974 void (*to_disable_tracepoint) (struct target_ops *,
975 struct bp_location *location)
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Inform the target info of memory regions that are readonly
979 (such as text sections), and so it should return data from
980 those rather than look in the trace buffer. */
981 void (*to_trace_set_readonly_regions) (struct target_ops *)
982 TARGET_DEFAULT_NORETURN (tcomplain ());
983
984 /* Start a trace run. */
985 void (*to_trace_start) (struct target_ops *)
986 TARGET_DEFAULT_NORETURN (tcomplain ());
987
988 /* Get the current status of a tracing run. */
989 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
990 TARGET_DEFAULT_RETURN (-1);
991
992 void (*to_get_tracepoint_status) (struct target_ops *,
993 struct breakpoint *tp,
994 struct uploaded_tp *utp)
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Stop a trace run. */
998 void (*to_trace_stop) (struct target_ops *)
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Ask the target to find a trace frame of the given type TYPE,
1002 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1003 number of the trace frame, and also the tracepoint number at
1004 TPP. If no trace frame matches, return -1. May throw if the
1005 operation fails. */
1006 int (*to_trace_find) (struct target_ops *,
1007 enum trace_find_type type, int num,
1008 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1009 TARGET_DEFAULT_RETURN (-1);
1010
1011 /* Get the value of the trace state variable number TSV, returning
1012 1 if the value is known and writing the value itself into the
1013 location pointed to by VAL, else returning 0. */
1014 int (*to_get_trace_state_variable_value) (struct target_ops *,
1015 int tsv, LONGEST *val)
1016 TARGET_DEFAULT_RETURN (0);
1017
1018 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1019 TARGET_DEFAULT_NORETURN (tcomplain ());
1020
1021 int (*to_upload_tracepoints) (struct target_ops *,
1022 struct uploaded_tp **utpp)
1023 TARGET_DEFAULT_RETURN (0);
1024
1025 int (*to_upload_trace_state_variables) (struct target_ops *,
1026 struct uploaded_tsv **utsvp)
1027 TARGET_DEFAULT_RETURN (0);
1028
1029 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1030 ULONGEST offset, LONGEST len)
1031 TARGET_DEFAULT_NORETURN (tcomplain ());
1032
1033 /* Get the minimum length of instruction on which a fast tracepoint
1034 may be set on the target. If this operation is unsupported,
1035 return -1. If for some reason the minimum length cannot be
1036 determined, return 0. */
1037 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1038 TARGET_DEFAULT_RETURN (-1);
1039
1040 /* Set the target's tracing behavior in response to unexpected
1041 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1042 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1043 TARGET_DEFAULT_IGNORE ();
1044 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1045 TARGET_DEFAULT_IGNORE ();
1046 /* Set the size of trace buffer in the target. */
1047 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1048 TARGET_DEFAULT_IGNORE ();
1049
1050 /* Add/change textual notes about the trace run, returning 1 if
1051 successful, 0 otherwise. */
1052 int (*to_set_trace_notes) (struct target_ops *,
1053 const char *user, const char *notes,
1054 const char *stopnotes)
1055 TARGET_DEFAULT_RETURN (0);
1056
1057 /* Return the processor core that thread PTID was last seen on.
1058 This information is updated only when:
1059 - update_thread_list is called
1060 - thread stops
1061 If the core cannot be determined -- either for the specified
1062 thread, or right now, or in this debug session, or for this
1063 target -- return -1. */
1064 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1065 TARGET_DEFAULT_RETURN (-1);
1066
1067 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1068 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1069 a match, 0 if there's a mismatch, and -1 if an error is
1070 encountered while reading memory. */
1071 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1072 CORE_ADDR memaddr, ULONGEST size)
1073 TARGET_DEFAULT_FUNC (default_verify_memory);
1074
1075 /* Return the address of the start of the Thread Information Block
1076 a Windows OS specific feature. */
1077 int (*to_get_tib_address) (struct target_ops *,
1078 ptid_t ptid, CORE_ADDR *addr)
1079 TARGET_DEFAULT_NORETURN (tcomplain ());
1080
1081 /* Send the new settings of write permission variables. */
1082 void (*to_set_permissions) (struct target_ops *)
1083 TARGET_DEFAULT_IGNORE ();
1084
1085 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1086 with its details. Return 1 on success, 0 on failure. */
1087 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1088 struct static_tracepoint_marker *marker)
1089 TARGET_DEFAULT_RETURN (0);
1090
1091 /* Return a vector of all tracepoints markers string id ID, or all
1092 markers if ID is NULL. */
1093 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1094 TARGET_DEFAULT_NORETURN (tcomplain ());
1095
1096 /* Return a traceframe info object describing the current
1097 traceframe's contents. This method should not cache data;
1098 higher layers take care of caching, invalidating, and
1099 re-fetching when necessary. */
1100 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1101 TARGET_DEFAULT_NORETURN (tcomplain ());
1102
1103 /* Ask the target to use or not to use agent according to USE. Return 1
1104 successful, 0 otherwise. */
1105 int (*to_use_agent) (struct target_ops *, int use)
1106 TARGET_DEFAULT_NORETURN (tcomplain ());
1107
1108 /* Is the target able to use agent in current state? */
1109 int (*to_can_use_agent) (struct target_ops *)
1110 TARGET_DEFAULT_RETURN (0);
1111
1112 /* Check whether the target supports branch tracing. */
1113 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1114 TARGET_DEFAULT_RETURN (0);
1115
1116 /* Enable branch tracing for PTID using CONF configuration.
1117 Return a branch trace target information struct for reading and for
1118 disabling branch trace. */
1119 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1120 ptid_t ptid,
1121 const struct btrace_config *conf)
1122 TARGET_DEFAULT_NORETURN (tcomplain ());
1123
1124 /* Disable branch tracing and deallocate TINFO. */
1125 void (*to_disable_btrace) (struct target_ops *,
1126 struct btrace_target_info *tinfo)
1127 TARGET_DEFAULT_NORETURN (tcomplain ());
1128
1129 /* Disable branch tracing and deallocate TINFO. This function is similar
1130 to to_disable_btrace, except that it is called during teardown and is
1131 only allowed to perform actions that are safe. A counter-example would
1132 be attempting to talk to a remote target. */
1133 void (*to_teardown_btrace) (struct target_ops *,
1134 struct btrace_target_info *tinfo)
1135 TARGET_DEFAULT_NORETURN (tcomplain ());
1136
1137 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1138 DATA is cleared before new trace is added. */
1139 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1140 struct btrace_data *data,
1141 struct btrace_target_info *btinfo,
1142 enum btrace_read_type type)
1143 TARGET_DEFAULT_NORETURN (tcomplain ());
1144
1145 /* Get the branch trace configuration. */
1146 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1147 const struct btrace_target_info *)
1148 TARGET_DEFAULT_RETURN (NULL);
1149
1150 /* Stop trace recording. */
1151 void (*to_stop_recording) (struct target_ops *)
1152 TARGET_DEFAULT_IGNORE ();
1153
1154 /* Print information about the recording. */
1155 void (*to_info_record) (struct target_ops *)
1156 TARGET_DEFAULT_IGNORE ();
1157
1158 /* Save the recorded execution trace into a file. */
1159 void (*to_save_record) (struct target_ops *, const char *filename)
1160 TARGET_DEFAULT_NORETURN (tcomplain ());
1161
1162 /* Delete the recorded execution trace from the current position
1163 onwards. */
1164 void (*to_delete_record) (struct target_ops *)
1165 TARGET_DEFAULT_NORETURN (tcomplain ());
1166
1167 /* Query if the record target is currently replaying PTID. */
1168 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1169 TARGET_DEFAULT_RETURN (0);
1170
1171 /* Query if the record target will replay PTID if it were resumed in
1172 execution direction DIR. */
1173 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1174 TARGET_DEFAULT_RETURN (0);
1175
1176 /* Stop replaying. */
1177 void (*to_record_stop_replaying) (struct target_ops *)
1178 TARGET_DEFAULT_IGNORE ();
1179
1180 /* Go to the begin of the execution trace. */
1181 void (*to_goto_record_begin) (struct target_ops *)
1182 TARGET_DEFAULT_NORETURN (tcomplain ());
1183
1184 /* Go to the end of the execution trace. */
1185 void (*to_goto_record_end) (struct target_ops *)
1186 TARGET_DEFAULT_NORETURN (tcomplain ());
1187
1188 /* Go to a specific location in the recorded execution trace. */
1189 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1190 TARGET_DEFAULT_NORETURN (tcomplain ());
1191
1192 /* Disassemble SIZE instructions in the recorded execution trace from
1193 the current position.
1194 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1195 disassemble SIZE succeeding instructions. */
1196 void (*to_insn_history) (struct target_ops *, int size, int flags)
1197 TARGET_DEFAULT_NORETURN (tcomplain ());
1198
1199 /* Disassemble SIZE instructions in the recorded execution trace around
1200 FROM.
1201 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1202 disassemble SIZE instructions after FROM. */
1203 void (*to_insn_history_from) (struct target_ops *,
1204 ULONGEST from, int size, int flags)
1205 TARGET_DEFAULT_NORETURN (tcomplain ());
1206
1207 /* Disassemble a section of the recorded execution trace from instruction
1208 BEGIN (inclusive) to instruction END (inclusive). */
1209 void (*to_insn_history_range) (struct target_ops *,
1210 ULONGEST begin, ULONGEST end, int flags)
1211 TARGET_DEFAULT_NORETURN (tcomplain ());
1212
1213 /* Print a function trace of the recorded execution trace.
1214 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1215 succeeding functions. */
1216 void (*to_call_history) (struct target_ops *, int size, int flags)
1217 TARGET_DEFAULT_NORETURN (tcomplain ());
1218
1219 /* Print a function trace of the recorded execution trace starting
1220 at function FROM.
1221 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1222 SIZE functions after FROM. */
1223 void (*to_call_history_from) (struct target_ops *,
1224 ULONGEST begin, int size, int flags)
1225 TARGET_DEFAULT_NORETURN (tcomplain ());
1226
1227 /* Print a function trace of an execution trace section from function BEGIN
1228 (inclusive) to function END (inclusive). */
1229 void (*to_call_history_range) (struct target_ops *,
1230 ULONGEST begin, ULONGEST end, int flags)
1231 TARGET_DEFAULT_NORETURN (tcomplain ());
1232
1233 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1234 non-empty annex. */
1235 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1236 TARGET_DEFAULT_RETURN (0);
1237
1238 /* Those unwinders are tried before any other arch unwinders. If
1239 SELF doesn't have unwinders, it should delegate to the
1240 "beneath" target. */
1241 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1242 TARGET_DEFAULT_RETURN (NULL);
1243
1244 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1245 TARGET_DEFAULT_RETURN (NULL);
1246
1247 /* Prepare to generate a core file. */
1248 void (*to_prepare_to_generate_core) (struct target_ops *)
1249 TARGET_DEFAULT_IGNORE ();
1250
1251 /* Cleanup after generating a core file. */
1252 void (*to_done_generating_core) (struct target_ops *)
1253 TARGET_DEFAULT_IGNORE ();
1254
1255 int to_magic;
1256 /* Need sub-structure for target machine related rather than comm related?
1257 */
1258 };
1259
1260 /* Magic number for checking ops size. If a struct doesn't end with this
1261 number, somebody changed the declaration but didn't change all the
1262 places that initialize one. */
1263
1264 #define OPS_MAGIC 3840
1265
1266 /* The ops structure for our "current" target process. This should
1267 never be NULL. If there is no target, it points to the dummy_target. */
1268
1269 extern struct target_ops current_target;
1270
1271 /* Define easy words for doing these operations on our current target. */
1272
1273 #define target_shortname (current_target.to_shortname)
1274 #define target_longname (current_target.to_longname)
1275
1276 /* Does whatever cleanup is required for a target that we are no
1277 longer going to be calling. This routine is automatically always
1278 called after popping the target off the target stack - the target's
1279 own methods are no longer available through the target vector.
1280 Closing file descriptors and freeing all memory allocated memory are
1281 typical things it should do. */
1282
1283 void target_close (struct target_ops *targ);
1284
1285 /* Find the correct target to use for "attach". If a target on the
1286 current stack supports attaching, then it is returned. Otherwise,
1287 the default run target is returned. */
1288
1289 extern struct target_ops *find_attach_target (void);
1290
1291 /* Find the correct target to use for "run". If a target on the
1292 current stack supports creating a new inferior, then it is
1293 returned. Otherwise, the default run target is returned. */
1294
1295 extern struct target_ops *find_run_target (void);
1296
1297 /* Some targets don't generate traps when attaching to the inferior,
1298 or their target_attach implementation takes care of the waiting.
1299 These targets must set to_attach_no_wait. */
1300
1301 #define target_attach_no_wait \
1302 (current_target.to_attach_no_wait)
1303
1304 /* The target_attach operation places a process under debugger control,
1305 and stops the process.
1306
1307 This operation provides a target-specific hook that allows the
1308 necessary bookkeeping to be performed after an attach completes. */
1309 #define target_post_attach(pid) \
1310 (*current_target.to_post_attach) (&current_target, pid)
1311
1312 /* Display a message indicating we're about to detach from the current
1313 inferior process. */
1314
1315 extern void target_announce_detach (int from_tty);
1316
1317 /* Takes a program previously attached to and detaches it.
1318 The program may resume execution (some targets do, some don't) and will
1319 no longer stop on signals, etc. We better not have left any breakpoints
1320 in the program or it'll die when it hits one. ARGS is arguments
1321 typed by the user (e.g. a signal to send the process). FROM_TTY
1322 says whether to be verbose or not. */
1323
1324 extern void target_detach (const char *, int);
1325
1326 /* Disconnect from the current target without resuming it (leaving it
1327 waiting for a debugger). */
1328
1329 extern void target_disconnect (const char *, int);
1330
1331 /* Resume execution of the target process PTID (or a group of
1332 threads). STEP says whether to hardware single-step or to run free;
1333 SIGGNAL is the signal to be given to the target, or GDB_SIGNAL_0 for no
1334 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1335 PTID means `step/resume only this process id'. A wildcard PTID
1336 (all threads, or all threads of process) means `step/resume
1337 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1338 matches) resume with their 'thread->suspend.stop_signal' signal
1339 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1340 if in "no pass" state. */
1341
1342 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1343
1344 /* For target_read_memory see target/target.h. */
1345
1346 /* The default target_ops::to_wait implementation. */
1347
1348 extern ptid_t default_target_wait (struct target_ops *ops,
1349 ptid_t ptid,
1350 struct target_waitstatus *status,
1351 int options);
1352
1353 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1354
1355 extern void target_fetch_registers (struct regcache *regcache, int regno);
1356
1357 /* Store at least register REGNO, or all regs if REGNO == -1.
1358 It can store as many registers as it wants to, so target_prepare_to_store
1359 must have been previously called. Calls error() if there are problems. */
1360
1361 extern void target_store_registers (struct regcache *regcache, int regs);
1362
1363 /* Get ready to modify the registers array. On machines which store
1364 individual registers, this doesn't need to do anything. On machines
1365 which store all the registers in one fell swoop, this makes sure
1366 that REGISTERS contains all the registers from the program being
1367 debugged. */
1368
1369 #define target_prepare_to_store(regcache) \
1370 (*current_target.to_prepare_to_store) (&current_target, regcache)
1371
1372 /* Determine current address space of thread PTID. */
1373
1374 struct address_space *target_thread_address_space (ptid_t);
1375
1376 /* Implement the "info proc" command. This returns one if the request
1377 was handled, and zero otherwise. It can also throw an exception if
1378 an error was encountered while attempting to handle the
1379 request. */
1380
1381 int target_info_proc (const char *, enum info_proc_what);
1382
1383 /* Returns true if this target can debug multiple processes
1384 simultaneously. */
1385
1386 #define target_supports_multi_process() \
1387 (*current_target.to_supports_multi_process) (&current_target)
1388
1389 /* Returns true if this target can disable address space randomization. */
1390
1391 int target_supports_disable_randomization (void);
1392
1393 /* Returns true if this target can enable and disable tracepoints
1394 while a trace experiment is running. */
1395
1396 #define target_supports_enable_disable_tracepoint() \
1397 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1398
1399 #define target_supports_string_tracing() \
1400 (*current_target.to_supports_string_tracing) (&current_target)
1401
1402 /* Returns true if this target can handle breakpoint conditions
1403 on its end. */
1404
1405 #define target_supports_evaluation_of_breakpoint_conditions() \
1406 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1407
1408 /* Returns true if this target can handle breakpoint commands
1409 on its end. */
1410
1411 #define target_can_run_breakpoint_commands() \
1412 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1413
1414 extern int target_read_string (CORE_ADDR, char **, int, int *);
1415
1416 /* For target_read_memory see target/target.h. */
1417
1418 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1419 ssize_t len);
1420
1421 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1422
1423 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1424
1425 /* For target_write_memory see target/target.h. */
1426
1427 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1428 ssize_t len);
1429
1430 /* Fetches the target's memory map. If one is found it is sorted
1431 and returned, after some consistency checking. Otherwise, NULL
1432 is returned. */
1433 VEC(mem_region_s) *target_memory_map (void);
1434
1435 /* Erase the specified flash region. */
1436 void target_flash_erase (ULONGEST address, LONGEST length);
1437
1438 /* Finish a sequence of flash operations. */
1439 void target_flash_done (void);
1440
1441 /* Describes a request for a memory write operation. */
1442 struct memory_write_request
1443 {
1444 /* Begining address that must be written. */
1445 ULONGEST begin;
1446 /* Past-the-end address. */
1447 ULONGEST end;
1448 /* The data to write. */
1449 gdb_byte *data;
1450 /* A callback baton for progress reporting for this request. */
1451 void *baton;
1452 };
1453 typedef struct memory_write_request memory_write_request_s;
1454 DEF_VEC_O(memory_write_request_s);
1455
1456 /* Enumeration specifying different flash preservation behaviour. */
1457 enum flash_preserve_mode
1458 {
1459 flash_preserve,
1460 flash_discard
1461 };
1462
1463 /* Write several memory blocks at once. This version can be more
1464 efficient than making several calls to target_write_memory, in
1465 particular because it can optimize accesses to flash memory.
1466
1467 Moreover, this is currently the only memory access function in gdb
1468 that supports writing to flash memory, and it should be used for
1469 all cases where access to flash memory is desirable.
1470
1471 REQUESTS is the vector (see vec.h) of memory_write_request.
1472 PRESERVE_FLASH_P indicates what to do with blocks which must be
1473 erased, but not completely rewritten.
1474 PROGRESS_CB is a function that will be periodically called to provide
1475 feedback to user. It will be called with the baton corresponding
1476 to the request currently being written. It may also be called
1477 with a NULL baton, when preserved flash sectors are being rewritten.
1478
1479 The function returns 0 on success, and error otherwise. */
1480 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1481 enum flash_preserve_mode preserve_flash_p,
1482 void (*progress_cb) (ULONGEST, void *));
1483
1484 /* Print a line about the current target. */
1485
1486 #define target_files_info() \
1487 (*current_target.to_files_info) (&current_target)
1488
1489 /* Insert a breakpoint at address BP_TGT->placed_address in
1490 the target machine. Returns 0 for success, and returns non-zero or
1491 throws an error (with a detailed failure reason error code and
1492 message) otherwise. */
1493
1494 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1495 struct bp_target_info *bp_tgt);
1496
1497 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1498 machine. Result is 0 for success, non-zero for error. */
1499
1500 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1501 struct bp_target_info *bp_tgt,
1502 enum remove_bp_reason reason);
1503
1504 /* Returns true if the terminal settings of the inferior are in
1505 effect. */
1506
1507 extern int target_terminal_is_inferior (void);
1508
1509 /* Returns true if our terminal settings are in effect. */
1510
1511 extern int target_terminal_is_ours (void);
1512
1513 /* Initialize the terminal settings we record for the inferior,
1514 before we actually run the inferior. */
1515
1516 extern void target_terminal_init (void);
1517
1518 /* Put the inferior's terminal settings into effect. This is
1519 preparation for starting or resuming the inferior. This is a no-op
1520 unless called with the main UI as current UI. */
1521
1522 extern void target_terminal_inferior (void);
1523
1524 /* Put some of our terminal settings into effect, enough to get proper
1525 results from our output, but do not change into or out of RAW mode
1526 so that no input is discarded. This is a no-op if terminal_ours
1527 was most recently called. This is a no-op unless called with the main
1528 UI as current UI. */
1529
1530 extern void target_terminal_ours_for_output (void);
1531
1532 /* Put our terminal settings into effect. First record the inferior's
1533 terminal settings so they can be restored properly later. This is
1534 a no-op unless called with the main UI as current UI. */
1535
1536 extern void target_terminal_ours (void);
1537
1538 /* Return true if the target stack has a non-default
1539 "to_terminal_ours" method. */
1540
1541 extern int target_supports_terminal_ours (void);
1542
1543 /* Make a cleanup that restores the state of the terminal to the current
1544 state. */
1545 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1546
1547 /* Print useful information about our terminal status, if such a thing
1548 exists. */
1549
1550 #define target_terminal_info(arg, from_tty) \
1551 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1552
1553 /* Kill the inferior process. Make it go away. */
1554
1555 extern void target_kill (void);
1556
1557 /* Load an executable file into the target process. This is expected
1558 to not only bring new code into the target process, but also to
1559 update GDB's symbol tables to match.
1560
1561 ARG contains command-line arguments, to be broken down with
1562 buildargv (). The first non-switch argument is the filename to
1563 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1564 0)), which is an offset to apply to the load addresses of FILE's
1565 sections. The target may define switches, or other non-switch
1566 arguments, as it pleases. */
1567
1568 extern void target_load (const char *arg, int from_tty);
1569
1570 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1571 notification of inferior events such as fork and vork immediately
1572 after the inferior is created. (This because of how gdb gets an
1573 inferior created via invoking a shell to do it. In such a scenario,
1574 if the shell init file has commands in it, the shell will fork and
1575 exec for each of those commands, and we will see each such fork
1576 event. Very bad.)
1577
1578 Such targets will supply an appropriate definition for this function. */
1579
1580 #define target_post_startup_inferior(ptid) \
1581 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1582
1583 /* On some targets, we can catch an inferior fork or vfork event when
1584 it occurs. These functions insert/remove an already-created
1585 catchpoint for such events. They return 0 for success, 1 if the
1586 catchpoint type is not supported and -1 for failure. */
1587
1588 #define target_insert_fork_catchpoint(pid) \
1589 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1590
1591 #define target_remove_fork_catchpoint(pid) \
1592 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1593
1594 #define target_insert_vfork_catchpoint(pid) \
1595 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1596
1597 #define target_remove_vfork_catchpoint(pid) \
1598 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1599
1600 /* If the inferior forks or vforks, this function will be called at
1601 the next resume in order to perform any bookkeeping and fiddling
1602 necessary to continue debugging either the parent or child, as
1603 requested, and releasing the other. Information about the fork
1604 or vfork event is available via get_last_target_status ().
1605 This function returns 1 if the inferior should not be resumed
1606 (i.e. there is another event pending). */
1607
1608 int target_follow_fork (int follow_child, int detach_fork);
1609
1610 /* Handle the target-specific bookkeeping required when the inferior
1611 makes an exec call. INF is the exec'd inferior. */
1612
1613 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1614
1615 /* On some targets, we can catch an inferior exec event when it
1616 occurs. These functions insert/remove an already-created
1617 catchpoint for such events. They return 0 for success, 1 if the
1618 catchpoint type is not supported and -1 for failure. */
1619
1620 #define target_insert_exec_catchpoint(pid) \
1621 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1622
1623 #define target_remove_exec_catchpoint(pid) \
1624 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1625
1626 /* Syscall catch.
1627
1628 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1629 If NEEDED is zero, it means the target can disable the mechanism to
1630 catch system calls because there are no more catchpoints of this type.
1631
1632 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1633 being requested. In this case, both TABLE_SIZE and TABLE should
1634 be ignored.
1635
1636 TABLE_SIZE is the number of elements in TABLE. It only matters if
1637 ANY_COUNT is zero.
1638
1639 TABLE is an array of ints, indexed by syscall number. An element in
1640 this array is nonzero if that syscall should be caught. This argument
1641 only matters if ANY_COUNT is zero.
1642
1643 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1644 for failure. */
1645
1646 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1647 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1648 pid, needed, any_count, \
1649 table_size, table)
1650
1651 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1652 exit code of PID, if any. */
1653
1654 #define target_has_exited(pid,wait_status,exit_status) \
1655 (*current_target.to_has_exited) (&current_target, \
1656 pid,wait_status,exit_status)
1657
1658 /* The debugger has completed a blocking wait() call. There is now
1659 some process event that must be processed. This function should
1660 be defined by those targets that require the debugger to perform
1661 cleanup or internal state changes in response to the process event. */
1662
1663 /* The inferior process has died. Do what is right. */
1664
1665 void target_mourn_inferior (void);
1666
1667 /* Does target have enough data to do a run or attach command? */
1668
1669 #define target_can_run(t) \
1670 ((t)->to_can_run) (t)
1671
1672 /* Set list of signals to be handled in the target.
1673
1674 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1675 (enum gdb_signal). For every signal whose entry in this array is
1676 non-zero, the target is allowed -but not required- to skip reporting
1677 arrival of the signal to the GDB core by returning from target_wait,
1678 and to pass the signal directly to the inferior instead.
1679
1680 However, if the target is hardware single-stepping a thread that is
1681 about to receive a signal, it needs to be reported in any case, even
1682 if mentioned in a previous target_pass_signals call. */
1683
1684 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1685
1686 /* Set list of signals the target may pass to the inferior. This
1687 directly maps to the "handle SIGNAL pass/nopass" setting.
1688
1689 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1690 number (enum gdb_signal). For every signal whose entry in this
1691 array is non-zero, the target is allowed to pass the signal to the
1692 inferior. Signals not present in the array shall be silently
1693 discarded. This does not influence whether to pass signals to the
1694 inferior as a result of a target_resume call. This is useful in
1695 scenarios where the target needs to decide whether to pass or not a
1696 signal to the inferior without GDB core involvement, such as for
1697 example, when detaching (as threads may have been suspended with
1698 pending signals not reported to GDB). */
1699
1700 extern void target_program_signals (int nsig, unsigned char *program_signals);
1701
1702 /* Check to see if a thread is still alive. */
1703
1704 extern int target_thread_alive (ptid_t ptid);
1705
1706 /* Sync the target's threads with GDB's thread list. */
1707
1708 extern void target_update_thread_list (void);
1709
1710 /* Make target stop in a continuable fashion. (For instance, under
1711 Unix, this should act like SIGSTOP). Note that this function is
1712 asynchronous: it does not wait for the target to become stopped
1713 before returning. If this is the behavior you want please use
1714 target_stop_and_wait. */
1715
1716 extern void target_stop (ptid_t ptid);
1717
1718 /* Interrupt the target just like the user typed a ^C on the
1719 inferior's controlling terminal. (For instance, under Unix, this
1720 should act like SIGINT). This function is asynchronous. */
1721
1722 extern void target_interrupt (ptid_t ptid);
1723
1724 /* Pass a ^C, as determined to have been pressed by checking the quit
1725 flag, to the target. Normally calls target_interrupt, but remote
1726 targets may take the opportunity to detect the remote side is not
1727 responding and offer to disconnect. */
1728
1729 extern void target_pass_ctrlc (void);
1730
1731 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1732 target_interrupt. */
1733 extern void default_target_pass_ctrlc (struct target_ops *ops);
1734
1735 /* Send the specified COMMAND to the target's monitor
1736 (shell,interpreter) for execution. The result of the query is
1737 placed in OUTBUF. */
1738
1739 #define target_rcmd(command, outbuf) \
1740 (*current_target.to_rcmd) (&current_target, command, outbuf)
1741
1742
1743 /* Does the target include all of memory, or only part of it? This
1744 determines whether we look up the target chain for other parts of
1745 memory if this target can't satisfy a request. */
1746
1747 extern int target_has_all_memory_1 (void);
1748 #define target_has_all_memory target_has_all_memory_1 ()
1749
1750 /* Does the target include memory? (Dummy targets don't.) */
1751
1752 extern int target_has_memory_1 (void);
1753 #define target_has_memory target_has_memory_1 ()
1754
1755 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1756 we start a process.) */
1757
1758 extern int target_has_stack_1 (void);
1759 #define target_has_stack target_has_stack_1 ()
1760
1761 /* Does the target have registers? (Exec files don't.) */
1762
1763 extern int target_has_registers_1 (void);
1764 #define target_has_registers target_has_registers_1 ()
1765
1766 /* Does the target have execution? Can we make it jump (through
1767 hoops), or pop its stack a few times? This means that the current
1768 target is currently executing; for some targets, that's the same as
1769 whether or not the target is capable of execution, but there are
1770 also targets which can be current while not executing. In that
1771 case this will become true after to_create_inferior or
1772 to_attach. */
1773
1774 extern int target_has_execution_1 (ptid_t);
1775
1776 /* Like target_has_execution_1, but always passes inferior_ptid. */
1777
1778 extern int target_has_execution_current (void);
1779
1780 #define target_has_execution target_has_execution_current ()
1781
1782 /* Default implementations for process_stratum targets. Return true
1783 if there's a selected inferior, false otherwise. */
1784
1785 extern int default_child_has_all_memory (struct target_ops *ops);
1786 extern int default_child_has_memory (struct target_ops *ops);
1787 extern int default_child_has_stack (struct target_ops *ops);
1788 extern int default_child_has_registers (struct target_ops *ops);
1789 extern int default_child_has_execution (struct target_ops *ops,
1790 ptid_t the_ptid);
1791
1792 /* Can the target support the debugger control of thread execution?
1793 Can it lock the thread scheduler? */
1794
1795 #define target_can_lock_scheduler \
1796 (current_target.to_has_thread_control & tc_schedlock)
1797
1798 /* Controls whether async mode is permitted. */
1799 extern int target_async_permitted;
1800
1801 /* Can the target support asynchronous execution? */
1802 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1803
1804 /* Is the target in asynchronous execution mode? */
1805 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1806
1807 /* Enables/disabled async target events. */
1808 extern void target_async (int enable);
1809
1810 /* Enables/disables thread create and exit events. */
1811 extern void target_thread_events (int enable);
1812
1813 /* Whether support for controlling the target backends always in
1814 non-stop mode is enabled. */
1815 extern enum auto_boolean target_non_stop_enabled;
1816
1817 /* Is the target in non-stop mode? Some targets control the inferior
1818 in non-stop mode even with "set non-stop off". Always true if "set
1819 non-stop" is on. */
1820 extern int target_is_non_stop_p (void);
1821
1822 #define target_execution_direction() \
1823 (current_target.to_execution_direction (&current_target))
1824
1825 /* Converts a process id to a string. Usually, the string just contains
1826 `process xyz', but on some systems it may contain
1827 `process xyz thread abc'. */
1828
1829 extern char *target_pid_to_str (ptid_t ptid);
1830
1831 extern char *normal_pid_to_str (ptid_t ptid);
1832
1833 /* Return a short string describing extra information about PID,
1834 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1835 is okay. */
1836
1837 #define target_extra_thread_info(TP) \
1838 (current_target.to_extra_thread_info (&current_target, TP))
1839
1840 /* Return the thread's name, or NULL if the target is unable to determine it.
1841 The returned value must not be freed by the caller. */
1842
1843 extern const char *target_thread_name (struct thread_info *);
1844
1845 /* Attempts to find the pathname of the executable file
1846 that was run to create a specified process.
1847
1848 The process PID must be stopped when this operation is used.
1849
1850 If the executable file cannot be determined, NULL is returned.
1851
1852 Else, a pointer to a character string containing the pathname
1853 is returned. This string should be copied into a buffer by
1854 the client if the string will not be immediately used, or if
1855 it must persist. */
1856
1857 #define target_pid_to_exec_file(pid) \
1858 (current_target.to_pid_to_exec_file) (&current_target, pid)
1859
1860 /* See the to_thread_architecture description in struct target_ops. */
1861
1862 #define target_thread_architecture(ptid) \
1863 (current_target.to_thread_architecture (&current_target, ptid))
1864
1865 /*
1866 * Iterator function for target memory regions.
1867 * Calls a callback function once for each memory region 'mapped'
1868 * in the child process. Defined as a simple macro rather than
1869 * as a function macro so that it can be tested for nullity.
1870 */
1871
1872 #define target_find_memory_regions(FUNC, DATA) \
1873 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1874
1875 /*
1876 * Compose corefile .note section.
1877 */
1878
1879 #define target_make_corefile_notes(BFD, SIZE_P) \
1880 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1881
1882 /* Bookmark interfaces. */
1883 #define target_get_bookmark(ARGS, FROM_TTY) \
1884 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1885
1886 #define target_goto_bookmark(ARG, FROM_TTY) \
1887 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1888
1889 /* Hardware watchpoint interfaces. */
1890
1891 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1892 write). Only the INFERIOR_PTID task is being queried. */
1893
1894 #define target_stopped_by_watchpoint() \
1895 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1896
1897 /* Returns non-zero if the target stopped because it executed a
1898 software breakpoint instruction. */
1899
1900 #define target_stopped_by_sw_breakpoint() \
1901 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1902
1903 #define target_supports_stopped_by_sw_breakpoint() \
1904 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1905
1906 #define target_stopped_by_hw_breakpoint() \
1907 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1908
1909 #define target_supports_stopped_by_hw_breakpoint() \
1910 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1911
1912 /* Non-zero if we have steppable watchpoints */
1913
1914 #define target_have_steppable_watchpoint \
1915 (current_target.to_have_steppable_watchpoint)
1916
1917 /* Non-zero if we have continuable watchpoints */
1918
1919 #define target_have_continuable_watchpoint \
1920 (current_target.to_have_continuable_watchpoint)
1921
1922 /* Provide defaults for hardware watchpoint functions. */
1923
1924 /* If the *_hw_beakpoint functions have not been defined
1925 elsewhere use the definitions in the target vector. */
1926
1927 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1928 Returns negative if the target doesn't have enough hardware debug
1929 registers available. Return zero if hardware watchpoint of type
1930 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1931 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1932 CNT is the number of such watchpoints used so far, including this
1933 one. OTHERTYPE is the number of watchpoints of other types than
1934 this one used so far. */
1935
1936 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1937 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1938 TYPE, CNT, OTHERTYPE)
1939
1940 /* Returns the number of debug registers needed to watch the given
1941 memory region, or zero if not supported. */
1942
1943 #define target_region_ok_for_hw_watchpoint(addr, len) \
1944 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1945 addr, len)
1946
1947
1948 #define target_can_do_single_step() \
1949 (*current_target.to_can_do_single_step) (&current_target)
1950
1951 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1952 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1953 COND is the expression for its condition, or NULL if there's none.
1954 Returns 0 for success, 1 if the watchpoint type is not supported,
1955 -1 for failure. */
1956
1957 #define target_insert_watchpoint(addr, len, type, cond) \
1958 (*current_target.to_insert_watchpoint) (&current_target, \
1959 addr, len, type, cond)
1960
1961 #define target_remove_watchpoint(addr, len, type, cond) \
1962 (*current_target.to_remove_watchpoint) (&current_target, \
1963 addr, len, type, cond)
1964
1965 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1966 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1967 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1968 masked watchpoints are not supported, -1 for failure. */
1969
1970 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1971 enum target_hw_bp_type);
1972
1973 /* Remove a masked watchpoint at ADDR with the mask MASK.
1974 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1975 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1976 for failure. */
1977
1978 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1979 enum target_hw_bp_type);
1980
1981 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1982 the target machine. Returns 0 for success, and returns non-zero or
1983 throws an error (with a detailed failure reason error code and
1984 message) otherwise. */
1985
1986 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1987 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1988 gdbarch, bp_tgt)
1989
1990 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1991 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1992 gdbarch, bp_tgt)
1993
1994 /* Return number of debug registers needed for a ranged breakpoint,
1995 or -1 if ranged breakpoints are not supported. */
1996
1997 extern int target_ranged_break_num_registers (void);
1998
1999 /* Return non-zero if target knows the data address which triggered this
2000 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2001 INFERIOR_PTID task is being queried. */
2002 #define target_stopped_data_address(target, addr_p) \
2003 (*(target)->to_stopped_data_address) (target, addr_p)
2004
2005 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2006 LENGTH bytes beginning at START. */
2007 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2008 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
2009
2010 /* Return non-zero if the target is capable of using hardware to evaluate
2011 the condition expression. In this case, if the condition is false when
2012 the watched memory location changes, execution may continue without the
2013 debugger being notified.
2014
2015 Due to limitations in the hardware implementation, it may be capable of
2016 avoiding triggering the watchpoint in some cases where the condition
2017 expression is false, but may report some false positives as well.
2018 For this reason, GDB will still evaluate the condition expression when
2019 the watchpoint triggers. */
2020 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2021 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2022 addr, len, type, cond)
2023
2024 /* Return number of debug registers needed for a masked watchpoint,
2025 -1 if masked watchpoints are not supported or -2 if the given address
2026 and mask combination cannot be used. */
2027
2028 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2029
2030 /* Target can execute in reverse? */
2031 #define target_can_execute_reverse \
2032 current_target.to_can_execute_reverse (&current_target)
2033
2034 extern const struct target_desc *target_read_description (struct target_ops *);
2035
2036 #define target_get_ada_task_ptid(lwp, tid) \
2037 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2038
2039 /* Utility implementation of searching memory. */
2040 extern int simple_search_memory (struct target_ops* ops,
2041 CORE_ADDR start_addr,
2042 ULONGEST search_space_len,
2043 const gdb_byte *pattern,
2044 ULONGEST pattern_len,
2045 CORE_ADDR *found_addrp);
2046
2047 /* Main entry point for searching memory. */
2048 extern int target_search_memory (CORE_ADDR start_addr,
2049 ULONGEST search_space_len,
2050 const gdb_byte *pattern,
2051 ULONGEST pattern_len,
2052 CORE_ADDR *found_addrp);
2053
2054 /* Target file operations. */
2055
2056 /* Return nonzero if the filesystem seen by the current inferior
2057 is the local filesystem, zero otherwise. */
2058 #define target_filesystem_is_local() \
2059 current_target.to_filesystem_is_local (&current_target)
2060
2061 /* Open FILENAME on the target, in the filesystem as seen by INF,
2062 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2063 by the debugger (GDB or, for remote targets, the remote stub).
2064 Return a target file descriptor, or -1 if an error occurs (and
2065 set *TARGET_ERRNO). */
2066 extern int target_fileio_open (struct inferior *inf,
2067 const char *filename, int flags,
2068 int mode, int *target_errno);
2069
2070 /* Like target_fileio_open, but print a warning message if the
2071 file is being accessed over a link that may be slow. */
2072 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2073 const char *filename,
2074 int flags,
2075 int mode,
2076 int *target_errno);
2077
2078 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2079 Return the number of bytes written, or -1 if an error occurs
2080 (and set *TARGET_ERRNO). */
2081 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2082 ULONGEST offset, int *target_errno);
2083
2084 /* Read up to LEN bytes FD on the target into READ_BUF.
2085 Return the number of bytes read, or -1 if an error occurs
2086 (and set *TARGET_ERRNO). */
2087 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2088 ULONGEST offset, int *target_errno);
2089
2090 /* Get information about the file opened as FD on the target
2091 and put it in SB. Return 0 on success, or -1 if an error
2092 occurs (and set *TARGET_ERRNO). */
2093 extern int target_fileio_fstat (int fd, struct stat *sb,
2094 int *target_errno);
2095
2096 /* Close FD on the target. Return 0, or -1 if an error occurs
2097 (and set *TARGET_ERRNO). */
2098 extern int target_fileio_close (int fd, int *target_errno);
2099
2100 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2101 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2102 for remote targets, the remote stub). Return 0, or -1 if an error
2103 occurs (and set *TARGET_ERRNO). */
2104 extern int target_fileio_unlink (struct inferior *inf,
2105 const char *filename,
2106 int *target_errno);
2107
2108 /* Read value of symbolic link FILENAME on the target, in the
2109 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2110 by the debugger (GDB or, for remote targets, the remote stub).
2111 Return a null-terminated string allocated via xmalloc, or NULL if
2112 an error occurs (and set *TARGET_ERRNO). */
2113 extern char *target_fileio_readlink (struct inferior *inf,
2114 const char *filename,
2115 int *target_errno);
2116
2117 /* Read target file FILENAME, in the filesystem as seen by INF. If
2118 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2119 remote targets, the remote stub). The return value will be -1 if
2120 the transfer fails or is not supported; 0 if the object is empty;
2121 or the length of the object otherwise. If a positive value is
2122 returned, a sufficiently large buffer will be allocated using
2123 xmalloc and returned in *BUF_P containing the contents of the
2124 object.
2125
2126 This method should be used for objects sufficiently small to store
2127 in a single xmalloc'd buffer, when no fixed bound on the object's
2128 size is known in advance. */
2129 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2130 const char *filename,
2131 gdb_byte **buf_p);
2132
2133 /* Read target file FILENAME, in the filesystem as seen by INF. If
2134 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2135 remote targets, the remote stub). The result is NUL-terminated and
2136 returned as a string, allocated using xmalloc. If an error occurs
2137 or the transfer is unsupported, NULL is returned. Empty objects
2138 are returned as allocated but empty strings. A warning is issued
2139 if the result contains any embedded NUL bytes. */
2140 extern char *target_fileio_read_stralloc (struct inferior *inf,
2141 const char *filename);
2142
2143
2144 /* Tracepoint-related operations. */
2145
2146 #define target_trace_init() \
2147 (*current_target.to_trace_init) (&current_target)
2148
2149 #define target_download_tracepoint(t) \
2150 (*current_target.to_download_tracepoint) (&current_target, t)
2151
2152 #define target_can_download_tracepoint() \
2153 (*current_target.to_can_download_tracepoint) (&current_target)
2154
2155 #define target_download_trace_state_variable(tsv) \
2156 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2157
2158 #define target_enable_tracepoint(loc) \
2159 (*current_target.to_enable_tracepoint) (&current_target, loc)
2160
2161 #define target_disable_tracepoint(loc) \
2162 (*current_target.to_disable_tracepoint) (&current_target, loc)
2163
2164 #define target_trace_start() \
2165 (*current_target.to_trace_start) (&current_target)
2166
2167 #define target_trace_set_readonly_regions() \
2168 (*current_target.to_trace_set_readonly_regions) (&current_target)
2169
2170 #define target_get_trace_status(ts) \
2171 (*current_target.to_get_trace_status) (&current_target, ts)
2172
2173 #define target_get_tracepoint_status(tp,utp) \
2174 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2175
2176 #define target_trace_stop() \
2177 (*current_target.to_trace_stop) (&current_target)
2178
2179 #define target_trace_find(type,num,addr1,addr2,tpp) \
2180 (*current_target.to_trace_find) (&current_target, \
2181 (type), (num), (addr1), (addr2), (tpp))
2182
2183 #define target_get_trace_state_variable_value(tsv,val) \
2184 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2185 (tsv), (val))
2186
2187 #define target_save_trace_data(filename) \
2188 (*current_target.to_save_trace_data) (&current_target, filename)
2189
2190 #define target_upload_tracepoints(utpp) \
2191 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2192
2193 #define target_upload_trace_state_variables(utsvp) \
2194 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2195
2196 #define target_get_raw_trace_data(buf,offset,len) \
2197 (*current_target.to_get_raw_trace_data) (&current_target, \
2198 (buf), (offset), (len))
2199
2200 #define target_get_min_fast_tracepoint_insn_len() \
2201 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2202
2203 #define target_set_disconnected_tracing(val) \
2204 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2205
2206 #define target_set_circular_trace_buffer(val) \
2207 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2208
2209 #define target_set_trace_buffer_size(val) \
2210 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2211
2212 #define target_set_trace_notes(user,notes,stopnotes) \
2213 (*current_target.to_set_trace_notes) (&current_target, \
2214 (user), (notes), (stopnotes))
2215
2216 #define target_get_tib_address(ptid, addr) \
2217 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2218
2219 #define target_set_permissions() \
2220 (*current_target.to_set_permissions) (&current_target)
2221
2222 #define target_static_tracepoint_marker_at(addr, marker) \
2223 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2224 addr, marker)
2225
2226 #define target_static_tracepoint_markers_by_strid(marker_id) \
2227 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2228 marker_id)
2229
2230 #define target_traceframe_info() \
2231 (*current_target.to_traceframe_info) (&current_target)
2232
2233 #define target_use_agent(use) \
2234 (*current_target.to_use_agent) (&current_target, use)
2235
2236 #define target_can_use_agent() \
2237 (*current_target.to_can_use_agent) (&current_target)
2238
2239 #define target_augmented_libraries_svr4_read() \
2240 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2241
2242 /* Command logging facility. */
2243
2244 #define target_log_command(p) \
2245 (*current_target.to_log_command) (&current_target, p)
2246
2247
2248 extern int target_core_of_thread (ptid_t ptid);
2249
2250 /* See to_get_unwinder in struct target_ops. */
2251 extern const struct frame_unwind *target_get_unwinder (void);
2252
2253 /* See to_get_tailcall_unwinder in struct target_ops. */
2254 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2255
2256 /* This implements basic memory verification, reading target memory
2257 and performing the comparison here (as opposed to accelerated
2258 verification making use of the qCRC packet, for example). */
2259
2260 extern int simple_verify_memory (struct target_ops* ops,
2261 const gdb_byte *data,
2262 CORE_ADDR memaddr, ULONGEST size);
2263
2264 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2265 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2266 if there's a mismatch, and -1 if an error is encountered while
2267 reading memory. Throws an error if the functionality is found not
2268 to be supported by the current target. */
2269 int target_verify_memory (const gdb_byte *data,
2270 CORE_ADDR memaddr, ULONGEST size);
2271
2272 /* Routines for maintenance of the target structures...
2273
2274 complete_target_initialization: Finalize a target_ops by filling in
2275 any fields needed by the target implementation. Unnecessary for
2276 targets which are registered via add_target, as this part gets
2277 taken care of then.
2278
2279 add_target: Add a target to the list of all possible targets.
2280 This only makes sense for targets that should be activated using
2281 the "target TARGET_NAME ..." command.
2282
2283 push_target: Make this target the top of the stack of currently used
2284 targets, within its particular stratum of the stack. Result
2285 is 0 if now atop the stack, nonzero if not on top (maybe
2286 should warn user).
2287
2288 unpush_target: Remove this from the stack of currently used targets,
2289 no matter where it is on the list. Returns 0 if no
2290 change, 1 if removed from stack. */
2291
2292 extern void add_target (struct target_ops *);
2293
2294 extern void add_target_with_completer (struct target_ops *t,
2295 completer_ftype *completer);
2296
2297 extern void complete_target_initialization (struct target_ops *t);
2298
2299 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2300 for maintaining backwards compatibility when renaming targets. */
2301
2302 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2303
2304 extern void push_target (struct target_ops *);
2305
2306 extern int unpush_target (struct target_ops *);
2307
2308 extern void target_pre_inferior (int);
2309
2310 extern void target_preopen (int);
2311
2312 /* Does whatever cleanup is required to get rid of all pushed targets. */
2313 extern void pop_all_targets (void);
2314
2315 /* Like pop_all_targets, but pops only targets whose stratum is at or
2316 above STRATUM. */
2317 extern void pop_all_targets_at_and_above (enum strata stratum);
2318
2319 /* Like pop_all_targets, but pops only targets whose stratum is
2320 strictly above ABOVE_STRATUM. */
2321 extern void pop_all_targets_above (enum strata above_stratum);
2322
2323 extern int target_is_pushed (struct target_ops *t);
2324
2325 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2326 CORE_ADDR offset);
2327
2328 /* Struct target_section maps address ranges to file sections. It is
2329 mostly used with BFD files, but can be used without (e.g. for handling
2330 raw disks, or files not in formats handled by BFD). */
2331
2332 struct target_section
2333 {
2334 CORE_ADDR addr; /* Lowest address in section */
2335 CORE_ADDR endaddr; /* 1+highest address in section */
2336
2337 struct bfd_section *the_bfd_section;
2338
2339 /* The "owner" of the section.
2340 It can be any unique value. It is set by add_target_sections
2341 and used by remove_target_sections.
2342 For example, for executables it is a pointer to exec_bfd and
2343 for shlibs it is the so_list pointer. */
2344 void *owner;
2345 };
2346
2347 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2348
2349 struct target_section_table
2350 {
2351 struct target_section *sections;
2352 struct target_section *sections_end;
2353 };
2354
2355 /* Return the "section" containing the specified address. */
2356 struct target_section *target_section_by_addr (struct target_ops *target,
2357 CORE_ADDR addr);
2358
2359 /* Return the target section table this target (or the targets
2360 beneath) currently manipulate. */
2361
2362 extern struct target_section_table *target_get_section_table
2363 (struct target_ops *target);
2364
2365 /* From mem-break.c */
2366
2367 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2368 struct bp_target_info *,
2369 enum remove_bp_reason);
2370
2371 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2372 struct bp_target_info *);
2373
2374 /* Check whether the memory at the breakpoint's placed address still
2375 contains the expected breakpoint instruction. */
2376
2377 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2378 struct bp_target_info *bp_tgt);
2379
2380 extern int default_memory_remove_breakpoint (struct gdbarch *,
2381 struct bp_target_info *);
2382
2383 extern int default_memory_insert_breakpoint (struct gdbarch *,
2384 struct bp_target_info *);
2385
2386
2387 /* From target.c */
2388
2389 extern void initialize_targets (void);
2390
2391 extern void noprocess (void) ATTRIBUTE_NORETURN;
2392
2393 extern void target_require_runnable (void);
2394
2395 extern struct target_ops *find_target_beneath (struct target_ops *);
2396
2397 /* Find the target at STRATUM. If no target is at that stratum,
2398 return NULL. */
2399
2400 struct target_ops *find_target_at (enum strata stratum);
2401
2402 /* Read OS data object of type TYPE from the target, and return it in
2403 XML format. The result is NUL-terminated and returned as a string,
2404 allocated using xmalloc. If an error occurs or the transfer is
2405 unsupported, NULL is returned. Empty objects are returned as
2406 allocated but empty strings. */
2407
2408 extern char *target_get_osdata (const char *type);
2409
2410 \f
2411 /* Stuff that should be shared among the various remote targets. */
2412
2413 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2414 information (higher values, more information). */
2415 extern int remote_debug;
2416
2417 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2418 extern int baud_rate;
2419
2420 /* Parity for serial port */
2421 extern int serial_parity;
2422
2423 /* Timeout limit for response from target. */
2424 extern int remote_timeout;
2425
2426 \f
2427
2428 /* Set the show memory breakpoints mode to show, and installs a cleanup
2429 to restore it back to the current value. */
2430 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2431
2432 extern int may_write_registers;
2433 extern int may_write_memory;
2434 extern int may_insert_breakpoints;
2435 extern int may_insert_tracepoints;
2436 extern int may_insert_fast_tracepoints;
2437 extern int may_stop;
2438
2439 extern void update_target_permissions (void);
2440
2441 \f
2442 /* Imported from machine dependent code. */
2443
2444 /* See to_supports_btrace in struct target_ops. */
2445 extern int target_supports_btrace (enum btrace_format);
2446
2447 /* See to_enable_btrace in struct target_ops. */
2448 extern struct btrace_target_info *
2449 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2450
2451 /* See to_disable_btrace in struct target_ops. */
2452 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2453
2454 /* See to_teardown_btrace in struct target_ops. */
2455 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2456
2457 /* See to_read_btrace in struct target_ops. */
2458 extern enum btrace_error target_read_btrace (struct btrace_data *,
2459 struct btrace_target_info *,
2460 enum btrace_read_type);
2461
2462 /* See to_btrace_conf in struct target_ops. */
2463 extern const struct btrace_config *
2464 target_btrace_conf (const struct btrace_target_info *);
2465
2466 /* See to_stop_recording in struct target_ops. */
2467 extern void target_stop_recording (void);
2468
2469 /* See to_save_record in struct target_ops. */
2470 extern void target_save_record (const char *filename);
2471
2472 /* Query if the target supports deleting the execution log. */
2473 extern int target_supports_delete_record (void);
2474
2475 /* See to_delete_record in struct target_ops. */
2476 extern void target_delete_record (void);
2477
2478 /* See to_record_is_replaying in struct target_ops. */
2479 extern int target_record_is_replaying (ptid_t ptid);
2480
2481 /* See to_record_will_replay in struct target_ops. */
2482 extern int target_record_will_replay (ptid_t ptid, int dir);
2483
2484 /* See to_record_stop_replaying in struct target_ops. */
2485 extern void target_record_stop_replaying (void);
2486
2487 /* See to_goto_record_begin in struct target_ops. */
2488 extern void target_goto_record_begin (void);
2489
2490 /* See to_goto_record_end in struct target_ops. */
2491 extern void target_goto_record_end (void);
2492
2493 /* See to_goto_record in struct target_ops. */
2494 extern void target_goto_record (ULONGEST insn);
2495
2496 /* See to_insn_history. */
2497 extern void target_insn_history (int size, int flags);
2498
2499 /* See to_insn_history_from. */
2500 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2501
2502 /* See to_insn_history_range. */
2503 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2504
2505 /* See to_call_history. */
2506 extern void target_call_history (int size, int flags);
2507
2508 /* See to_call_history_from. */
2509 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2510
2511 /* See to_call_history_range. */
2512 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2513
2514 /* See to_prepare_to_generate_core. */
2515 extern void target_prepare_to_generate_core (void);
2516
2517 /* See to_done_generating_core. */
2518 extern void target_done_generating_core (void);
2519
2520 #endif /* !defined (TARGET_H) */
This page took 0.079831 seconds and 5 git commands to generate.