daily update
[deliverable/binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2012 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "gdb_assert.h"
48 #include "osabi.h"
49 #include "tic6x-tdep.h"
50 #include "language.h"
51 #include "target-descriptions.h"
52
53 #include "features/tic6x-c64xp.c"
54 #include "features/tic6x-c64x.c"
55 #include "features/tic6x-c62x.c"
56
57 #define TIC6X_OPCODE_SIZE 4
58 #define TIC6X_FETCH_PACKET_SIZE 32
59
60 #define INST_S_BIT(INST) ((INST >> 1) & 1)
61 #define INST_X_BIT(INST) ((INST >> 12) & 1)
62
63 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
64 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
65
66 struct tic6x_unwind_cache
67 {
68 /* The frame's base, optionally used by the high-level debug info. */
69 CORE_ADDR base;
70
71 /* The previous frame's inner most stack address. Used as this
72 frame ID's stack_addr. */
73 CORE_ADDR cfa;
74
75 /* The address of the first instruction in this function */
76 CORE_ADDR pc;
77
78 /* Which register holds the return address for the frame. */
79 int return_regnum;
80
81 /* The offset of register saved on stack. If register is not saved, the
82 corresponding element is -1. */
83 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
84 };
85
86
87 /* Name of TI C6x core registers. */
88 static const char *const tic6x_register_names[] =
89 {
90 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
91 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
92 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
93 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
94 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
95 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
96 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
97 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
98 "CSR", "PC", /* 32 33 */
99 };
100
101 /* This array maps the arguments to the register number which passes argument
102 in function call according to C6000 ELF ABI. */
103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
104
105 /* This is the implementation of gdbarch method register_name. */
106
107 static const char *
108 tic6x_register_name (struct gdbarch *gdbarch, int regno)
109 {
110 if (regno < 0)
111 return NULL;
112
113 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
114 return tdesc_register_name (gdbarch, regno);
115 else if (regno >= ARRAY_SIZE (tic6x_register_names))
116 return "";
117 else
118 return tic6x_register_names[regno];
119 }
120
121 /* This is the implementation of gdbarch method register_type. */
122
123 static struct type *
124 tic6x_register_type (struct gdbarch *gdbarch, int regno)
125 {
126
127 if (regno == TIC6X_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_func_ptr;
129 else
130 return builtin_type (gdbarch)->builtin_uint32;
131 }
132
133 static void
134 tic6x_setup_default (struct tic6x_unwind_cache *cache)
135 {
136 int i;
137
138 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
139 cache->reg_saved[i] = -1;
140 }
141
142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
143 static int tic6x_register_number (int reg, int side, int crosspath);
144
145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
146 Bail out early if CURRENT_PC is reached. Returns the address of the first
147 instruction after the prologue. */
148
149 static CORE_ADDR
150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
151 const CORE_ADDR current_pc,
152 struct tic6x_unwind_cache *cache,
153 struct frame_info *this_frame)
154 {
155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
156 unsigned long inst;
157 unsigned int src_reg, base_reg, dst_reg;
158 int i;
159 CORE_ADDR pc = start_pc;
160 CORE_ADDR return_pc = start_pc;
161 int frame_base_offset_to_sp = 0;
162 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
163 int non_stw_insn_counter = 0;
164
165 if (start_pc >= current_pc)
166 return_pc = current_pc;
167
168 cache->base = 0;
169
170 /* The landmarks in prologue is one or two SUB instructions to SP.
171 Instructions on setting up dsbt are in the last part of prologue, if
172 needed. In maxim, prologue can be divided to three parts by two
173 `sub sp, xx, sp' insns. */
174
175 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
176 2nd one is optional. */
177 while (pc < current_pc)
178 {
179 int offset = 0;
180
181 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
182
183 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
184 || (inst & 0x0ffc) == 0x9c0)
185 {
186 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
187 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
188 INST_S_BIT (inst), 0);
189 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
190 INST_S_BIT (inst), 0);
191
192 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
193 {
194 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
195 offset. The constant offset is decoded in bit 13-17 in all
196 these three kinds of instructions. */
197 unsigned int ucst5 = (inst >> 13) & 0x1f;
198
199 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
200 frame_base_offset_to_sp += ucst5 << 2;
201 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
202 frame_base_offset_to_sp += ucst5 << 1;
203 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
204 frame_base_offset_to_sp += ucst5;
205 else
206 gdb_assert_not_reached ("unexpected instruction");
207
208 return_pc = pc + 4;
209 }
210 }
211 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
212 {
213 /* The y bit determines which file base is read from. */
214 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
215 (inst >> 7) & 1, 0);
216
217 if (base_reg == TIC6X_SP_REGNUM)
218 {
219 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
220 INST_S_BIT (inst), 0);
221
222 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
223
224 return_pc = pc + 4;
225 }
226 non_stw_insn_counter = 0;
227 }
228 else
229 {
230 non_stw_insn_counter++;
231 /* Following instruction sequence may be emitted in prologue:
232
233 <+0>: subah .D2 b15,28,b15
234 <+4>: or .L2X 0,a4,b0
235 <+8>: || stw .D2T2 b14,*+b15(56)
236 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
237 <+16>:|| stw .D2T1 a10,*+b15(48)
238 <+20>:stw .D2T2 b3,*+b15(52)
239 <+24>:stw .D2T1 a4,*+b15(40)
240
241 we should look forward for next instruction instead of breaking loop
242 here. So far, we allow almost two sequential non-stw instructions
243 in prologue. */
244 if (non_stw_insn_counter >= 2)
245 break;
246 }
247
248
249 pc += 4;
250 }
251 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
252 ldw .D2T2 *+b14(0),b14 */
253 inst = tic6x_fetch_instruction (gdbarch, pc);
254 /* The s bit determines which file dst will be loaded into, same effect as
255 other places. */
256 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
257 /* The y bit (bit 7), instead of s bit, determines which file base be
258 used. */
259 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
260
261 if ((inst & 0x164) == 0x64 /* ldw */
262 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
263 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
264 {
265 return_pc = pc + 4;
266 }
267
268 if (this_frame)
269 {
270 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
271
272 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
273 {
274 /* If the FP now holds an offset from the CFA then this is a frame
275 which uses the frame pointer. */
276
277 cache->cfa = get_frame_register_unsigned (this_frame,
278 TIC6X_FP_REGNUM);
279 }
280 else
281 {
282 /* FP doesn't hold an offset from the CFA. If SP still holds an
283 offset from the CFA then we might be in a function which omits
284 the frame pointer. */
285
286 cache->cfa = cache->base + frame_base_offset_to_sp;
287 }
288 }
289
290 /* Adjust all the saved registers such that they contain addresses
291 instead of offsets. */
292 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
293 if (cache->reg_saved[i] != -1)
294 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
295
296 return return_pc;
297 }
298
299 /* This is the implementation of gdbarch method skip_prologue. */
300
301 static CORE_ADDR
302 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
303 {
304 CORE_ADDR func_addr;
305 struct tic6x_unwind_cache cache;
306
307 /* See if we can determine the end of the prologue via the symbol table.
308 If so, then return either PC, or the PC after the prologue, whichever is
309 greater. */
310 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
311 {
312 CORE_ADDR post_prologue_pc
313 = skip_prologue_using_sal (gdbarch, func_addr);
314 if (post_prologue_pc != 0)
315 return max (start_pc, post_prologue_pc);
316 }
317
318 /* Can't determine prologue from the symbol table, need to examine
319 instructions. */
320 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
321 NULL);
322 }
323
324 /* This is the implementation of gdbarch method breakpiont_from_pc. */
325
326 static const unsigned char*
327 tic6x_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
328 int *bp_size)
329 {
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331
332 *bp_size = 4;
333
334 if (tdep == NULL || tdep->breakpoint == NULL)
335 {
336 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
337 return tic6x_bkpt_illegal_opcode_be;
338 else
339 return tic6x_bkpt_illegal_opcode_le;
340 }
341 else
342 return tdep->breakpoint;
343 }
344
345 /* This is the implementation of gdbarch method print_insn. */
346
347 static int
348 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
349 {
350 return print_insn_tic6x (memaddr, info);
351 }
352
353 static void
354 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
355 struct dwarf2_frame_state_reg *reg,
356 struct frame_info *this_frame)
357 {
358 /* Mark the PC as the destination for the return address. */
359 if (regnum == gdbarch_pc_regnum (gdbarch))
360 reg->how = DWARF2_FRAME_REG_RA;
361
362 /* Mark the stack pointer as the call frame address. */
363 else if (regnum == gdbarch_sp_regnum (gdbarch))
364 reg->how = DWARF2_FRAME_REG_CFA;
365
366 /* The above was taken from the default init_reg in dwarf2-frame.c
367 while the below is c6x specific. */
368
369 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
370 callee-save. */
371 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
372 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
373 else
374 /* All other registers are caller-save. */
375 reg->how = DWARF2_FRAME_REG_UNDEFINED;
376 }
377
378 /* This is the implementation of gdbarch method unwind_pc. */
379
380 static CORE_ADDR
381 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
382 {
383 gdb_byte buf[8];
384
385 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
386 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
387 }
388
389 /* This is the implementation of gdbarch method unwind_sp. */
390
391 static CORE_ADDR
392 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
393 {
394 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
395 }
396
397
398 /* Frame base handling. */
399
400 static struct tic6x_unwind_cache*
401 tic6x_frame_unwind_cache (struct frame_info *this_frame,
402 void **this_prologue_cache)
403 {
404 struct gdbarch *gdbarch = get_frame_arch (this_frame);
405 CORE_ADDR current_pc;
406 struct tic6x_unwind_cache *cache;
407
408 if (*this_prologue_cache)
409 return *this_prologue_cache;
410
411 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
412 (*this_prologue_cache) = cache;
413
414 cache->return_regnum = TIC6X_RA_REGNUM;
415
416 tic6x_setup_default (cache);
417
418 cache->pc = get_frame_func (this_frame);
419 current_pc = get_frame_pc (this_frame);
420
421 /* Prologue analysis does the rest... */
422 if (cache->pc != 0)
423 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
424
425 return cache;
426 }
427
428 static void
429 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
430 struct frame_id *this_id)
431 {
432 struct tic6x_unwind_cache *cache =
433 tic6x_frame_unwind_cache (this_frame, this_cache);
434
435 /* This marks the outermost frame. */
436 if (cache->base == 0)
437 return;
438
439 (*this_id) = frame_id_build (cache->cfa, cache->pc);
440 }
441
442 static struct value *
443 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
444 int regnum)
445 {
446 struct tic6x_unwind_cache *cache =
447 tic6x_frame_unwind_cache (this_frame, this_cache);
448
449 gdb_assert (regnum >= 0);
450
451 /* The PC of the previous frame is stored in the RA register of
452 the current frame. Frob regnum so that we pull the value from
453 the correct place. */
454 if (regnum == TIC6X_PC_REGNUM)
455 regnum = cache->return_regnum;
456
457 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
458 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
459
460 /* If we've worked out where a register is stored then load it from
461 there. */
462 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
463 return frame_unwind_got_memory (this_frame, regnum,
464 cache->reg_saved[regnum]);
465
466 return frame_unwind_got_register (this_frame, regnum, regnum);
467 }
468
469 static CORE_ADDR
470 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
471 {
472 struct tic6x_unwind_cache *info
473 = tic6x_frame_unwind_cache (this_frame, this_cache);
474 return info->base;
475 }
476
477 static const struct frame_unwind tic6x_frame_unwind =
478 {
479 NORMAL_FRAME,
480 default_frame_unwind_stop_reason,
481 tic6x_frame_this_id,
482 tic6x_frame_prev_register,
483 NULL,
484 default_frame_sniffer
485 };
486
487 static const struct frame_base tic6x_frame_base =
488 {
489 &tic6x_frame_unwind,
490 tic6x_frame_base_address,
491 tic6x_frame_base_address,
492 tic6x_frame_base_address
493 };
494
495
496 static struct tic6x_unwind_cache *
497 tic6x_make_stub_cache (struct frame_info *this_frame)
498 {
499 struct tic6x_unwind_cache *cache;
500
501 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
502
503 cache->return_regnum = TIC6X_RA_REGNUM;
504
505 tic6x_setup_default (cache);
506
507 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
508
509 return cache;
510 }
511
512 static void
513 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
514 struct frame_id *this_id)
515 {
516 struct tic6x_unwind_cache *cache;
517
518 if (*this_cache == NULL)
519 *this_cache = tic6x_make_stub_cache (this_frame);
520 cache = *this_cache;
521
522 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
523 }
524
525 static int
526 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
527 struct frame_info *this_frame,
528 void **this_prologue_cache)
529 {
530 CORE_ADDR addr_in_block;
531
532 addr_in_block = get_frame_address_in_block (this_frame);
533 if (in_plt_section (addr_in_block, NULL))
534 return 1;
535
536 return 0;
537 }
538
539 static const struct frame_unwind tic6x_stub_unwind =
540 {
541 NORMAL_FRAME,
542 default_frame_unwind_stop_reason,
543 tic6x_stub_this_id,
544 tic6x_frame_prev_register,
545 NULL,
546 tic6x_stub_unwind_sniffer
547 };
548
549 /* Return the instruction on address PC. */
550
551 static unsigned long
552 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
553 {
554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
555 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
556 }
557
558 /* Compute the condition of INST if it is a conditional instruction. Always
559 return 1 if INST is not a conditional instruction. */
560
561 static int
562 tic6x_condition_true (struct frame_info *frame, unsigned long inst)
563 {
564 int register_number;
565 int register_value;
566 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
567
568 register_number = register_numbers[(inst >> 29) & 7];
569 if (register_number == -1)
570 return 1;
571
572 register_value = get_frame_register_signed (frame, register_number);
573 if ((inst & 0x10000000) != 0)
574 return register_value == 0;
575 return register_value != 0;
576 }
577
578 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
579 instruction. */
580
581 static int
582 tic6x_register_number (int reg, int side, int crosspath)
583 {
584 int r = (reg & 15) | ((crosspath ^ side) << 4);
585 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
586 r += 37;
587 return r;
588 }
589
590 static int
591 tic6x_extract_signed_field (int value, int low_bit, int bits)
592 {
593 int mask = (1 << bits) - 1;
594 int r = (value >> low_bit) & mask;
595 if ((r & (1 << (bits - 1))) != 0)
596 r -= mask + 1;
597 return r;
598 }
599
600 /* Determine where to set a single step breakpoint. */
601
602 static CORE_ADDR
603 tic6x_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
604 {
605 struct gdbarch *gdbarch = get_frame_arch (frame);
606 unsigned long inst;
607 int register_number;
608 int last = 0;
609
610 do
611 {
612 inst = tic6x_fetch_instruction (gdbarch, pc);
613
614 last = !(inst & 1);
615
616 if (inst == TIC6X_INST_SWE)
617 {
618 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
619
620 if (tdep->syscall_next_pc != NULL)
621 return tdep->syscall_next_pc (frame);
622 }
623
624 if (tic6x_condition_true (frame, inst))
625 {
626 if ((inst & 0x0000007c) == 0x00000010)
627 {
628 /* B with displacement */
629 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
630 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
631 break;
632 }
633 if ((inst & 0x0f83effc) == 0x00000360)
634 {
635 /* B with register */
636
637 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
638 INST_S_BIT (inst),
639 INST_X_BIT (inst));
640 pc = get_frame_register_unsigned (frame, register_number);
641 break;
642 }
643 if ((inst & 0x00001ffc) == 0x00001020)
644 {
645 /* BDEC */
646 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
647 INST_S_BIT (inst), 0);
648 if (get_frame_register_signed (frame, register_number) >= 0)
649 {
650 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
651 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
652 }
653 break;
654 }
655 if ((inst & 0x00001ffc) == 0x00000120)
656 {
657 /* BNOP with displacement */
658 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
659 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
660 break;
661 }
662 if ((inst & 0x0f830ffe) == 0x00800362)
663 {
664 /* BNOP with register */
665 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
666 1, INST_X_BIT (inst));
667 pc = get_frame_register_unsigned (frame, register_number);
668 break;
669 }
670 if ((inst & 0x00001ffc) == 0x00000020)
671 {
672 /* BPOS */
673 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
674 INST_S_BIT (inst), 0);
675 if (get_frame_register_signed (frame, register_number) >= 0)
676 {
677 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
678 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
679 }
680 break;
681 }
682 if ((inst & 0xf000007c) == 0x10000010)
683 {
684 /* CALLP */
685 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
686 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
687 break;
688 }
689 }
690 pc += TIC6X_OPCODE_SIZE;
691 }
692 while (!last);
693 return pc;
694 }
695
696 /* This is the implementation of gdbarch method software_single_step. */
697
698 static int
699 tic6x_software_single_step (struct frame_info *frame)
700 {
701 struct gdbarch *gdbarch = get_frame_arch (frame);
702 struct address_space *aspace = get_frame_address_space (frame);
703 CORE_ADDR next_pc = tic6x_get_next_pc (frame, get_frame_pc (frame));
704
705 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
706
707 return 1;
708 }
709
710 /* This is the implementation of gdbarch method frame_align. */
711
712 static CORE_ADDR
713 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
714 {
715 return align_down (addr, 8);
716 }
717
718 /* This is the implementation of gdbarch method register_to_value. */
719
720 static int
721 tic6x_register_to_value (struct frame_info *frame, int regnum,
722 struct type *type, gdb_byte * to,
723 int *optimizedp, int *unavailablep)
724 {
725 get_frame_register (frame, regnum, (char *) to);
726 *optimizedp = *unavailablep = 0;
727 return 1;
728 }
729
730 /* This is the implementation of gdbarch method value_to_register. */
731
732 static void
733 tic6x_value_to_register (struct frame_info *frame, int regnum,
734 struct type *type, const gdb_byte *from)
735 {
736 put_frame_register (frame, regnum, from);
737 }
738
739 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
740 value into VALBUF. */
741
742 static void
743 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
744 enum bfd_endian byte_order, gdb_byte *valbuf)
745 {
746 int len = TYPE_LENGTH (valtype);
747
748 /* pointer types are returned in register A4,
749 up to 32-bit types in A4
750 up to 64-bit types in A5:A4 */
751 if (len <= 4)
752 {
753 /* In big-endian,
754 - one-byte structure or union occupies the LSB of single even register.
755 - for two-byte structure or union, the first byte occupies byte 1 of
756 register and the second byte occupies byte 0.
757 so, we read the contents in VAL from the LSBs of register. */
758 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
759 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
760 valbuf);
761 else
762 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
763 }
764 else if (len <= 8)
765 {
766 /* For a 5-8 byte structure or union in big-endian, the first byte
767 occupies byte 3 (the MSB) of the upper (odd) register and the
768 remaining bytes fill the decreasingly significant bytes. 5-7
769 byte structures or unions have padding in the LSBs of the
770 lower (even) register. */
771 if (byte_order == BFD_ENDIAN_BIG)
772 {
773 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
774 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
775 }
776 else
777 {
778 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
779 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
780 }
781 }
782 }
783
784 /* Write into appropriate registers a function return value
785 of type TYPE, given in virtual format. */
786
787 static void
788 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
789 enum bfd_endian byte_order, const gdb_byte *valbuf)
790 {
791 int len = TYPE_LENGTH (valtype);
792
793 /* return values of up to 8 bytes are returned in A5:A4 */
794
795 if (len <= 4)
796 {
797 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
798 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
799 valbuf);
800 else
801 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
802 }
803 else if (len <= 8)
804 {
805 if (byte_order == BFD_ENDIAN_BIG)
806 {
807 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
808 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
809 }
810 else
811 {
812 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
813 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
814 }
815 }
816 }
817
818 /* This is the implementation of gdbarch method return_value. */
819
820 static enum return_value_convention
821 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
822 struct type *type, struct regcache *regcache,
823 gdb_byte *readbuf, const gdb_byte *writebuf)
824 {
825 /* In C++, when function returns an object, even its size is small
826 enough, it stii has to be passed via reference, pointed by register
827 A3. */
828 if (current_language->la_language == language_cplus)
829 {
830 if (type != NULL)
831 {
832 CHECK_TYPEDEF (type);
833 if (language_pass_by_reference (type))
834 return RETURN_VALUE_STRUCT_CONVENTION;
835 }
836 }
837
838 if (TYPE_LENGTH (type) > 8)
839 return RETURN_VALUE_STRUCT_CONVENTION;
840
841 if (readbuf)
842 tic6x_extract_return_value (type, regcache,
843 gdbarch_byte_order (gdbarch), readbuf);
844 if (writebuf)
845 tic6x_store_return_value (type, regcache,
846 gdbarch_byte_order (gdbarch), writebuf);
847
848 return RETURN_VALUE_REGISTER_CONVENTION;
849 }
850
851 /* This is the implementation of gdbarch method dummy_id. */
852
853 static struct frame_id
854 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
855 {
856 return frame_id_build
857 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
858 get_frame_pc (this_frame));
859 }
860
861 /* Get the alignment requirement of TYPE. */
862
863 static int
864 tic6x_arg_type_alignment (struct type *type)
865 {
866 int len = TYPE_LENGTH (check_typedef (type));
867 enum type_code typecode = TYPE_CODE (check_typedef (type));
868
869 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
870 {
871 /* The stack alignment of a structure (and union) passed by value is the
872 smallest power of two greater than or equal to its size.
873 This cannot exceed 8 bytes, which is the largest allowable size for
874 a structure passed by value. */
875
876 if (len <= 2)
877 return len;
878 else if (len <= 4)
879 return 4;
880 else if (len <= 8)
881 return 8;
882 else
883 gdb_assert_not_reached ("unexpected length of data");
884 }
885 else
886 {
887 if (len <= 4)
888 return 4;
889 else if (len == 8)
890 {
891 if (typecode == TYPE_CODE_COMPLEX)
892 return 4;
893 else
894 return 8;
895 }
896 else if (len == 16)
897 {
898 if (typecode == TYPE_CODE_COMPLEX)
899 return 8;
900 else
901 return 16;
902 }
903 else
904 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
905 len);
906 }
907 }
908
909 /* This is the implementation of gdbarch method push_dummy_call. */
910
911 static CORE_ADDR
912 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
913 struct regcache *regcache, CORE_ADDR bp_addr,
914 int nargs, struct value **args, CORE_ADDR sp,
915 int struct_return, CORE_ADDR struct_addr)
916 {
917 int argreg = 0;
918 int argnum;
919 int len = 0;
920 int stack_offset = 4;
921 int references_offset = 4;
922 CORE_ADDR func_addr = find_function_addr (function, NULL);
923 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
924 struct type *func_type = value_type (function);
925 /* The first arg passed on stack. Mostly the first 10 args are passed by
926 registers. */
927 int first_arg_on_stack = 10;
928
929 /* Set the return address register to point to the entry point of
930 the program, where a breakpoint lies in wait. */
931 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
932
933 /* The caller must pass an argument in A3 containing a destination address
934 for the returned value. The callee returns the object by copying it to
935 the address in A3. */
936 if (struct_return)
937 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
938
939 /* Determine the type of this function. */
940 func_type = check_typedef (func_type);
941 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
942 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
943
944 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
945 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
946
947 /* For a variadic C function, the last explicitly declared argument and all
948 remaining arguments are passed on the stack. */
949 if (TYPE_VARARGS (func_type))
950 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
951
952 /* Now make space on the stack for the args. */
953 for (argnum = 0; argnum < nargs; argnum++)
954 {
955 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
956 if (argnum >= 10 - argreg)
957 references_offset += len;
958 stack_offset += len;
959 }
960 sp -= stack_offset;
961 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
962 Stack Alignment. */
963 sp = align_down (sp, 8);
964 stack_offset = 4;
965
966 /* Now load as many as possible of the first arguments into
967 registers, and push the rest onto the stack. Loop through args
968 from first to last. */
969 for (argnum = 0; argnum < nargs; argnum++)
970 {
971 const gdb_byte *val;
972 struct value *arg = args[argnum];
973 struct type *arg_type = check_typedef (value_type (arg));
974 int len = TYPE_LENGTH (arg_type);
975 enum type_code typecode = TYPE_CODE (arg_type);
976
977 val = value_contents (arg);
978
979 /* Copy the argument to general registers or the stack in
980 register-sized pieces. */
981 if (argreg < first_arg_on_stack)
982 {
983 if (len <= 4)
984 {
985 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
986 {
987 /* In big-endian,
988 - one-byte structure or union occupies the LSB of single
989 even register.
990 - for two-byte structure or union, the first byte
991 occupies byte 1 of register and the second byte occupies
992 byte 0.
993 so, we write the contents in VAL to the lsp of
994 register. */
995 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
996 regcache_cooked_write_part (regcache, arg_regs[argreg],
997 4 - len, len, val);
998 else
999 regcache_cooked_write (regcache, arg_regs[argreg], val);
1000 }
1001 else
1002 {
1003 /* The argument is being passed by value in a single
1004 register. */
1005 CORE_ADDR regval = extract_unsigned_integer (val, len,
1006 byte_order);
1007
1008 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1009 regval);
1010 }
1011 }
1012 else
1013 {
1014 if (len <= 8)
1015 {
1016 if (typecode == TYPE_CODE_STRUCT
1017 || typecode == TYPE_CODE_UNION)
1018 {
1019 /* For a 5-8 byte structure or union in big-endian, the
1020 first byte occupies byte 3 (the MSB) of the upper (odd)
1021 register and the remaining bytes fill the decreasingly
1022 significant bytes. 5-7 byte structures or unions have
1023 padding in the LSBs of the lower (even) register. */
1024 if (byte_order == BFD_ENDIAN_BIG)
1025 {
1026 regcache_cooked_write (regcache,
1027 arg_regs[argreg] + 1, val);
1028 regcache_cooked_write_part (regcache,
1029 arg_regs[argreg], 0,
1030 len - 4, val + 4);
1031 }
1032 else
1033 {
1034 regcache_cooked_write (regcache, arg_regs[argreg],
1035 val);
1036 regcache_cooked_write_part (regcache,
1037 arg_regs[argreg] + 1, 0,
1038 len - 4, val + 4);
1039 }
1040 }
1041 else
1042 {
1043 /* The argument is being passed by value in a pair of
1044 registers. */
1045 ULONGEST regval = extract_unsigned_integer (val, len,
1046 byte_order);
1047
1048 regcache_cooked_write_unsigned (regcache,
1049 arg_regs[argreg],
1050 regval);
1051 regcache_cooked_write_unsigned (regcache,
1052 arg_regs[argreg] + 1,
1053 regval >> 32);
1054 }
1055 }
1056 else
1057 {
1058 /* The argument is being passed by reference in a single
1059 register. */
1060 CORE_ADDR addr;
1061
1062 /* It is not necessary to adjust REFERENCES_OFFSET to
1063 8-byte aligned in some cases, in which 4-byte alignment
1064 is sufficient. For simplicity, we adjust
1065 REFERENCES_OFFSET to 8-byte aligned. */
1066 references_offset = align_up (references_offset, 8);
1067
1068 addr = sp + references_offset;
1069 write_memory (addr, val, len);
1070 references_offset += align_up (len, 4);
1071 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1072 addr);
1073 }
1074 }
1075 argreg++;
1076 }
1077 else
1078 {
1079 /* The argument is being passed on the stack. */
1080 CORE_ADDR addr;
1081
1082 /* There are six different cases of alignment, and these rules can
1083 be found in tic6x_arg_type_alignment:
1084
1085 1) 4-byte aligned if size is less than or equal to 4 byte, such
1086 as short, int, struct, union etc.
1087 2) 8-byte aligned if size is less than or equal to 8-byte, such
1088 as double, long long,
1089 3) 4-byte aligned if it is of type _Complex float, even its size
1090 is 8-byte.
1091 4) 8-byte aligned if it is of type _Complex double or _Complex
1092 long double, even its size is 16-byte. Because, the address of
1093 variable is passed as reference.
1094 5) struct and union larger than 8-byte are passed by reference, so
1095 it is 4-byte aligned.
1096 6) struct and union of size between 4 byte and 8 byte varies.
1097 alignment of struct variable is the alignment of its first field,
1098 while alignment of union variable is the max of all its fields'
1099 alignment. */
1100
1101 if (len <= 4)
1102 ; /* Default is 4-byte aligned. Nothing to be done. */
1103 else if (len <= 8)
1104 stack_offset = align_up (stack_offset,
1105 tic6x_arg_type_alignment (arg_type));
1106 else if (len == 16)
1107 {
1108 /* _Complex double or _Complex long double */
1109 if (typecode == TYPE_CODE_COMPLEX)
1110 {
1111 /* The argument is being passed by reference on stack. */
1112 CORE_ADDR addr;
1113 references_offset = align_up (references_offset, 8);
1114
1115 addr = sp + references_offset;
1116 /* Store variable on stack. */
1117 write_memory (addr, val, len);
1118
1119 references_offset += align_up (len, 4);
1120
1121 /* Pass the address of variable on stack as reference. */
1122 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1123 addr);
1124 len = 4;
1125
1126 }
1127 else
1128 internal_error (__FILE__, __LINE__,
1129 _("unexpected type %d of arg %d"),
1130 typecode, argnum);
1131 }
1132 else
1133 internal_error (__FILE__, __LINE__,
1134 _("unexpected length %d of arg %d"), len, argnum);
1135
1136 addr = sp + stack_offset;
1137 write_memory (addr, val, len);
1138 stack_offset += align_up (len, 4);
1139 }
1140 }
1141
1142 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1143
1144 /* Return adjusted stack pointer. */
1145 return sp;
1146 }
1147
1148 /* This is the implementation of gdbarch method in_function_epilogue_p. */
1149
1150 static int
1151 tic6x_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1152 {
1153 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1154 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1155 if ((inst & 0x0f83effc) == 0x360)
1156 {
1157 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1158 INST_S_BIT (inst),
1159 INST_X_BIT (inst));
1160 if (src2 == TIC6X_RA_REGNUM)
1161 return 1;
1162 }
1163
1164 return 0;
1165 }
1166
1167 /* This is the implementation of gdbarch method get_longjmp_target. */
1168
1169 static int
1170 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1171 {
1172 struct gdbarch *gdbarch = get_frame_arch (frame);
1173 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1174 CORE_ADDR jb_addr;
1175 char buf[4];
1176
1177 /* JMP_BUF is passed by reference in A4. */
1178 jb_addr = get_frame_register_unsigned (frame, 4);
1179
1180 /* JMP_BUF contains 13 elements of type int, and return address is stored
1181 in the last slot. */
1182 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1183 return 0;
1184
1185 *pc = extract_unsigned_integer (buf, 4, byte_order);
1186
1187 return 1;
1188 }
1189
1190 /* This is the implementation of gdbarch method
1191 return_in_first_hidden_param_p. */
1192
1193 static int
1194 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1195 struct type *type)
1196 {
1197 return 0;
1198 }
1199
1200 static struct gdbarch *
1201 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1202 {
1203 struct gdbarch *gdbarch;
1204 struct gdbarch_tdep *tdep;
1205 struct tdesc_arch_data *tdesc_data = NULL;
1206 const struct target_desc *tdesc = info.target_desc;
1207 int has_gp = 0;
1208
1209 /* Check any target description for validity. */
1210 if (tdesc_has_registers (tdesc))
1211 {
1212 const struct tdesc_feature *feature;
1213 int valid_p, i;
1214
1215 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1216
1217 if (feature == NULL)
1218 return NULL;
1219
1220 tdesc_data = tdesc_data_alloc ();
1221
1222 valid_p = 1;
1223 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1224 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1225 tic6x_register_names[i]);
1226
1227 /* CSR */
1228 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1229 tic6x_register_names[TIC6X_CSR_REGNUM]);
1230 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1231 tic6x_register_names[TIC6X_PC_REGNUM]);
1232
1233 if (!valid_p)
1234 {
1235 tdesc_data_cleanup (tdesc_data);
1236 return NULL;
1237 }
1238
1239 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1240 if (feature)
1241 {
1242 int j = 0;
1243 static const char *const gp[] =
1244 {
1245 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1246 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1247 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1248 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1249 };
1250
1251 has_gp = 1;
1252 valid_p = 1;
1253 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1254 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1255 gp[j]);
1256
1257 if (!valid_p)
1258 {
1259 tdesc_data_cleanup (tdesc_data);
1260 return NULL;
1261 }
1262 }
1263
1264 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1265 if (feature)
1266 {
1267 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1268 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1269 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1270
1271 if (!valid_p)
1272 {
1273 tdesc_data_cleanup (tdesc_data);
1274 return NULL;
1275 }
1276 }
1277
1278 }
1279
1280 /* Find a candidate among extant architectures. */
1281 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1282 arches != NULL;
1283 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1284 {
1285 tdep = gdbarch_tdep (arches->gdbarch);
1286
1287 if (has_gp != tdep->has_gp)
1288 continue;
1289
1290 if (tdep && tdep->breakpoint)
1291 return arches->gdbarch;
1292 }
1293
1294 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
1295
1296 tdep->has_gp = has_gp;
1297 gdbarch = gdbarch_alloc (&info, tdep);
1298
1299 /* Data type sizes. */
1300 set_gdbarch_ptr_bit (gdbarch, 32);
1301 set_gdbarch_addr_bit (gdbarch, 32);
1302 set_gdbarch_short_bit (gdbarch, 16);
1303 set_gdbarch_int_bit (gdbarch, 32);
1304 set_gdbarch_long_bit (gdbarch, 32);
1305 set_gdbarch_long_long_bit (gdbarch, 64);
1306 set_gdbarch_float_bit (gdbarch, 32);
1307 set_gdbarch_double_bit (gdbarch, 64);
1308
1309 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1310 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1311
1312 /* The register set. */
1313 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1314 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1315 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1316
1317 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1318 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1319
1320 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1321
1322 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1323 set_gdbarch_breakpoint_from_pc (gdbarch, tic6x_breakpoint_from_pc);
1324
1325 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1326 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1327
1328 /* Unwinding. */
1329 dwarf2_append_unwinders (gdbarch);
1330
1331 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1332 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1333
1334 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1335
1336 /* Single stepping. */
1337 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1338
1339 set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1340
1341 /* Call dummy code. */
1342 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1343
1344 set_gdbarch_register_to_value (gdbarch, tic6x_register_to_value);
1345 set_gdbarch_value_to_register (gdbarch, tic6x_value_to_register);
1346
1347 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1348
1349 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1350
1351 /* Enable inferior call support. */
1352 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1353
1354 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1355
1356 set_gdbarch_in_function_epilogue_p (gdbarch, tic6x_in_function_epilogue_p);
1357
1358 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1359 tic6x_return_in_first_hidden_param_p);
1360
1361 /* Hook in ABI-specific overrides, if they have been registered. */
1362 gdbarch_init_osabi (info, gdbarch);
1363
1364 if (tdesc_data)
1365 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1366
1367 return gdbarch;
1368 }
1369
1370 /* -Wmissing-prototypes */
1371 extern initialize_file_ftype _initialize_tic6x_tdep;
1372
1373 void
1374 _initialize_tic6x_tdep (void)
1375 {
1376 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1377
1378 initialize_tdesc_tic6x_c64xp ();
1379 initialize_tdesc_tic6x_c64x ();
1380 initialize_tdesc_tic6x_c62x ();
1381 }
This page took 0.060977 seconds and 4 git commands to generate.