btrace: remove leftover comment
[deliverable/binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2016 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "osabi.h"
48 #include "tic6x-tdep.h"
49 #include "language.h"
50 #include "target-descriptions.h"
51 #include <algorithm>
52
53 #include "features/tic6x-c64xp.c"
54 #include "features/tic6x-c64x.c"
55 #include "features/tic6x-c62x.c"
56
57 #define TIC6X_OPCODE_SIZE 4
58 #define TIC6X_FETCH_PACKET_SIZE 32
59
60 #define INST_S_BIT(INST) ((INST >> 1) & 1)
61 #define INST_X_BIT(INST) ((INST >> 12) & 1)
62
63 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
64 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
65
66 struct tic6x_unwind_cache
67 {
68 /* The frame's base, optionally used by the high-level debug info. */
69 CORE_ADDR base;
70
71 /* The previous frame's inner most stack address. Used as this
72 frame ID's stack_addr. */
73 CORE_ADDR cfa;
74
75 /* The address of the first instruction in this function */
76 CORE_ADDR pc;
77
78 /* Which register holds the return address for the frame. */
79 int return_regnum;
80
81 /* The offset of register saved on stack. If register is not saved, the
82 corresponding element is -1. */
83 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
84 };
85
86
87 /* Name of TI C6x core registers. */
88 static const char *const tic6x_register_names[] =
89 {
90 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
91 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
92 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
93 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
94 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
95 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
96 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
97 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
98 "CSR", "PC", /* 32 33 */
99 };
100
101 /* This array maps the arguments to the register number which passes argument
102 in function call according to C6000 ELF ABI. */
103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
104
105 /* This is the implementation of gdbarch method register_name. */
106
107 static const char *
108 tic6x_register_name (struct gdbarch *gdbarch, int regno)
109 {
110 if (regno < 0)
111 return NULL;
112
113 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
114 return tdesc_register_name (gdbarch, regno);
115 else if (regno >= ARRAY_SIZE (tic6x_register_names))
116 return "";
117 else
118 return tic6x_register_names[regno];
119 }
120
121 /* This is the implementation of gdbarch method register_type. */
122
123 static struct type *
124 tic6x_register_type (struct gdbarch *gdbarch, int regno)
125 {
126
127 if (regno == TIC6X_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_func_ptr;
129 else
130 return builtin_type (gdbarch)->builtin_uint32;
131 }
132
133 static void
134 tic6x_setup_default (struct tic6x_unwind_cache *cache)
135 {
136 int i;
137
138 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
139 cache->reg_saved[i] = -1;
140 }
141
142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
143 static int tic6x_register_number (int reg, int side, int crosspath);
144
145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
146 Bail out early if CURRENT_PC is reached. Returns the address of the first
147 instruction after the prologue. */
148
149 static CORE_ADDR
150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
151 const CORE_ADDR current_pc,
152 struct tic6x_unwind_cache *cache,
153 struct frame_info *this_frame)
154 {
155 unsigned long inst;
156 unsigned int src_reg, base_reg, dst_reg;
157 int i;
158 CORE_ADDR pc = start_pc;
159 CORE_ADDR return_pc = start_pc;
160 int frame_base_offset_to_sp = 0;
161 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
162 int non_stw_insn_counter = 0;
163
164 if (start_pc >= current_pc)
165 return_pc = current_pc;
166
167 cache->base = 0;
168
169 /* The landmarks in prologue is one or two SUB instructions to SP.
170 Instructions on setting up dsbt are in the last part of prologue, if
171 needed. In maxim, prologue can be divided to three parts by two
172 `sub sp, xx, sp' insns. */
173
174 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
175 2nd one is optional. */
176 while (pc < current_pc)
177 {
178 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
179
180 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
181 || (inst & 0x0ffc) == 0x9c0)
182 {
183 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
184 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
185 INST_S_BIT (inst), 0);
186 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
187 INST_S_BIT (inst), 0);
188
189 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
190 {
191 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
192 offset. The constant offset is decoded in bit 13-17 in all
193 these three kinds of instructions. */
194 unsigned int ucst5 = (inst >> 13) & 0x1f;
195
196 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
197 frame_base_offset_to_sp += ucst5 << 2;
198 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
199 frame_base_offset_to_sp += ucst5 << 1;
200 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
201 frame_base_offset_to_sp += ucst5;
202 else
203 gdb_assert_not_reached ("unexpected instruction");
204
205 return_pc = pc + 4;
206 }
207 }
208 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
209 {
210 /* The y bit determines which file base is read from. */
211 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
212 (inst >> 7) & 1, 0);
213
214 if (base_reg == TIC6X_SP_REGNUM)
215 {
216 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
217 INST_S_BIT (inst), 0);
218
219 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
220
221 return_pc = pc + 4;
222 }
223 non_stw_insn_counter = 0;
224 }
225 else
226 {
227 non_stw_insn_counter++;
228 /* Following instruction sequence may be emitted in prologue:
229
230 <+0>: subah .D2 b15,28,b15
231 <+4>: or .L2X 0,a4,b0
232 <+8>: || stw .D2T2 b14,*+b15(56)
233 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
234 <+16>:|| stw .D2T1 a10,*+b15(48)
235 <+20>:stw .D2T2 b3,*+b15(52)
236 <+24>:stw .D2T1 a4,*+b15(40)
237
238 we should look forward for next instruction instead of breaking loop
239 here. So far, we allow almost two sequential non-stw instructions
240 in prologue. */
241 if (non_stw_insn_counter >= 2)
242 break;
243 }
244
245
246 pc += 4;
247 }
248 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
249 ldw .D2T2 *+b14(0),b14 */
250 inst = tic6x_fetch_instruction (gdbarch, pc);
251 /* The s bit determines which file dst will be loaded into, same effect as
252 other places. */
253 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
254 /* The y bit (bit 7), instead of s bit, determines which file base be
255 used. */
256 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
257
258 if ((inst & 0x164) == 0x64 /* ldw */
259 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
260 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
261 {
262 return_pc = pc + 4;
263 }
264
265 if (this_frame)
266 {
267 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
268
269 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
270 {
271 /* If the FP now holds an offset from the CFA then this is a frame
272 which uses the frame pointer. */
273
274 cache->cfa = get_frame_register_unsigned (this_frame,
275 TIC6X_FP_REGNUM);
276 }
277 else
278 {
279 /* FP doesn't hold an offset from the CFA. If SP still holds an
280 offset from the CFA then we might be in a function which omits
281 the frame pointer. */
282
283 cache->cfa = cache->base + frame_base_offset_to_sp;
284 }
285 }
286
287 /* Adjust all the saved registers such that they contain addresses
288 instead of offsets. */
289 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
290 if (cache->reg_saved[i] != -1)
291 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
292
293 return return_pc;
294 }
295
296 /* This is the implementation of gdbarch method skip_prologue. */
297
298 static CORE_ADDR
299 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
300 {
301 CORE_ADDR func_addr;
302 struct tic6x_unwind_cache cache;
303
304 /* See if we can determine the end of the prologue via the symbol table.
305 If so, then return either PC, or the PC after the prologue, whichever is
306 greater. */
307 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
308 {
309 CORE_ADDR post_prologue_pc
310 = skip_prologue_using_sal (gdbarch, func_addr);
311 if (post_prologue_pc != 0)
312 return std::max (start_pc, post_prologue_pc);
313 }
314
315 /* Can't determine prologue from the symbol table, need to examine
316 instructions. */
317 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
318 NULL);
319 }
320
321 /* This is the implementation of gdbarch method breakpiont_from_pc. */
322
323 static const gdb_byte *
324 tic6x_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
325 int *bp_size)
326 {
327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
328
329 *bp_size = 4;
330
331 if (tdep == NULL || tdep->breakpoint == NULL)
332 {
333 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
334 return tic6x_bkpt_illegal_opcode_be;
335 else
336 return tic6x_bkpt_illegal_opcode_le;
337 }
338 else
339 return tdep->breakpoint;
340 }
341
342 /* This is the implementation of gdbarch method print_insn. */
343
344 static int
345 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
346 {
347 return print_insn_tic6x (memaddr, info);
348 }
349
350 static void
351 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
352 struct dwarf2_frame_state_reg *reg,
353 struct frame_info *this_frame)
354 {
355 /* Mark the PC as the destination for the return address. */
356 if (regnum == gdbarch_pc_regnum (gdbarch))
357 reg->how = DWARF2_FRAME_REG_RA;
358
359 /* Mark the stack pointer as the call frame address. */
360 else if (regnum == gdbarch_sp_regnum (gdbarch))
361 reg->how = DWARF2_FRAME_REG_CFA;
362
363 /* The above was taken from the default init_reg in dwarf2-frame.c
364 while the below is c6x specific. */
365
366 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
367 callee-save. */
368 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
369 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
370 else
371 /* All other registers are caller-save. */
372 reg->how = DWARF2_FRAME_REG_UNDEFINED;
373 }
374
375 /* This is the implementation of gdbarch method unwind_pc. */
376
377 static CORE_ADDR
378 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
379 {
380 gdb_byte buf[8];
381
382 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
383 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
384 }
385
386 /* This is the implementation of gdbarch method unwind_sp. */
387
388 static CORE_ADDR
389 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
390 {
391 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
392 }
393
394
395 /* Frame base handling. */
396
397 static struct tic6x_unwind_cache*
398 tic6x_frame_unwind_cache (struct frame_info *this_frame,
399 void **this_prologue_cache)
400 {
401 struct gdbarch *gdbarch = get_frame_arch (this_frame);
402 CORE_ADDR current_pc;
403 struct tic6x_unwind_cache *cache;
404
405 if (*this_prologue_cache)
406 return (struct tic6x_unwind_cache *) *this_prologue_cache;
407
408 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
409 (*this_prologue_cache) = cache;
410
411 cache->return_regnum = TIC6X_RA_REGNUM;
412
413 tic6x_setup_default (cache);
414
415 cache->pc = get_frame_func (this_frame);
416 current_pc = get_frame_pc (this_frame);
417
418 /* Prologue analysis does the rest... */
419 if (cache->pc != 0)
420 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
421
422 return cache;
423 }
424
425 static void
426 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
427 struct frame_id *this_id)
428 {
429 struct tic6x_unwind_cache *cache =
430 tic6x_frame_unwind_cache (this_frame, this_cache);
431
432 /* This marks the outermost frame. */
433 if (cache->base == 0)
434 return;
435
436 (*this_id) = frame_id_build (cache->cfa, cache->pc);
437 }
438
439 static struct value *
440 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
441 int regnum)
442 {
443 struct tic6x_unwind_cache *cache =
444 tic6x_frame_unwind_cache (this_frame, this_cache);
445
446 gdb_assert (regnum >= 0);
447
448 /* The PC of the previous frame is stored in the RA register of
449 the current frame. Frob regnum so that we pull the value from
450 the correct place. */
451 if (regnum == TIC6X_PC_REGNUM)
452 regnum = cache->return_regnum;
453
454 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
455 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
456
457 /* If we've worked out where a register is stored then load it from
458 there. */
459 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
460 return frame_unwind_got_memory (this_frame, regnum,
461 cache->reg_saved[regnum]);
462
463 return frame_unwind_got_register (this_frame, regnum, regnum);
464 }
465
466 static CORE_ADDR
467 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
468 {
469 struct tic6x_unwind_cache *info
470 = tic6x_frame_unwind_cache (this_frame, this_cache);
471 return info->base;
472 }
473
474 static const struct frame_unwind tic6x_frame_unwind =
475 {
476 NORMAL_FRAME,
477 default_frame_unwind_stop_reason,
478 tic6x_frame_this_id,
479 tic6x_frame_prev_register,
480 NULL,
481 default_frame_sniffer
482 };
483
484 static const struct frame_base tic6x_frame_base =
485 {
486 &tic6x_frame_unwind,
487 tic6x_frame_base_address,
488 tic6x_frame_base_address,
489 tic6x_frame_base_address
490 };
491
492
493 static struct tic6x_unwind_cache *
494 tic6x_make_stub_cache (struct frame_info *this_frame)
495 {
496 struct tic6x_unwind_cache *cache;
497
498 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
499
500 cache->return_regnum = TIC6X_RA_REGNUM;
501
502 tic6x_setup_default (cache);
503
504 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
505
506 return cache;
507 }
508
509 static void
510 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
511 struct frame_id *this_id)
512 {
513 struct tic6x_unwind_cache *cache;
514
515 if (*this_cache == NULL)
516 *this_cache = tic6x_make_stub_cache (this_frame);
517 cache = (struct tic6x_unwind_cache *) *this_cache;
518
519 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
520 }
521
522 static int
523 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
524 struct frame_info *this_frame,
525 void **this_prologue_cache)
526 {
527 CORE_ADDR addr_in_block;
528
529 addr_in_block = get_frame_address_in_block (this_frame);
530 if (in_plt_section (addr_in_block))
531 return 1;
532
533 return 0;
534 }
535
536 static const struct frame_unwind tic6x_stub_unwind =
537 {
538 NORMAL_FRAME,
539 default_frame_unwind_stop_reason,
540 tic6x_stub_this_id,
541 tic6x_frame_prev_register,
542 NULL,
543 tic6x_stub_unwind_sniffer
544 };
545
546 /* Return the instruction on address PC. */
547
548 static unsigned long
549 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
550 {
551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
552 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
553 }
554
555 /* Compute the condition of INST if it is a conditional instruction. Always
556 return 1 if INST is not a conditional instruction. */
557
558 static int
559 tic6x_condition_true (struct frame_info *frame, unsigned long inst)
560 {
561 int register_number;
562 int register_value;
563 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
564
565 register_number = register_numbers[(inst >> 29) & 7];
566 if (register_number == -1)
567 return 1;
568
569 register_value = get_frame_register_signed (frame, register_number);
570 if ((inst & 0x10000000) != 0)
571 return register_value == 0;
572 return register_value != 0;
573 }
574
575 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
576 instruction. */
577
578 static int
579 tic6x_register_number (int reg, int side, int crosspath)
580 {
581 int r = (reg & 15) | ((crosspath ^ side) << 4);
582 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
583 r += 37;
584 return r;
585 }
586
587 static int
588 tic6x_extract_signed_field (int value, int low_bit, int bits)
589 {
590 int mask = (1 << bits) - 1;
591 int r = (value >> low_bit) & mask;
592 if ((r & (1 << (bits - 1))) != 0)
593 r -= mask + 1;
594 return r;
595 }
596
597 /* Determine where to set a single step breakpoint. */
598
599 static CORE_ADDR
600 tic6x_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
601 {
602 struct gdbarch *gdbarch = get_frame_arch (frame);
603 unsigned long inst;
604 int register_number;
605 int last = 0;
606
607 do
608 {
609 inst = tic6x_fetch_instruction (gdbarch, pc);
610
611 last = !(inst & 1);
612
613 if (inst == TIC6X_INST_SWE)
614 {
615 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
616
617 if (tdep->syscall_next_pc != NULL)
618 return tdep->syscall_next_pc (frame);
619 }
620
621 if (tic6x_condition_true (frame, inst))
622 {
623 if ((inst & 0x0000007c) == 0x00000010)
624 {
625 /* B with displacement */
626 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
627 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
628 break;
629 }
630 if ((inst & 0x0f83effc) == 0x00000360)
631 {
632 /* B with register */
633
634 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
635 INST_S_BIT (inst),
636 INST_X_BIT (inst));
637 pc = get_frame_register_unsigned (frame, register_number);
638 break;
639 }
640 if ((inst & 0x00001ffc) == 0x00001020)
641 {
642 /* BDEC */
643 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
644 INST_S_BIT (inst), 0);
645 if (get_frame_register_signed (frame, register_number) >= 0)
646 {
647 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
648 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
649 }
650 break;
651 }
652 if ((inst & 0x00001ffc) == 0x00000120)
653 {
654 /* BNOP with displacement */
655 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
656 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
657 break;
658 }
659 if ((inst & 0x0f830ffe) == 0x00800362)
660 {
661 /* BNOP with register */
662 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
663 1, INST_X_BIT (inst));
664 pc = get_frame_register_unsigned (frame, register_number);
665 break;
666 }
667 if ((inst & 0x00001ffc) == 0x00000020)
668 {
669 /* BPOS */
670 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
671 INST_S_BIT (inst), 0);
672 if (get_frame_register_signed (frame, register_number) >= 0)
673 {
674 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
675 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
676 }
677 break;
678 }
679 if ((inst & 0xf000007c) == 0x10000010)
680 {
681 /* CALLP */
682 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
683 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
684 break;
685 }
686 }
687 pc += TIC6X_OPCODE_SIZE;
688 }
689 while (!last);
690 return pc;
691 }
692
693 /* This is the implementation of gdbarch method software_single_step. */
694
695 static int
696 tic6x_software_single_step (struct frame_info *frame)
697 {
698 struct gdbarch *gdbarch = get_frame_arch (frame);
699 struct address_space *aspace = get_frame_address_space (frame);
700 CORE_ADDR next_pc = tic6x_get_next_pc (frame, get_frame_pc (frame));
701
702 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
703
704 return 1;
705 }
706
707 /* This is the implementation of gdbarch method frame_align. */
708
709 static CORE_ADDR
710 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
711 {
712 return align_down (addr, 8);
713 }
714
715 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
716 value into VALBUF. */
717
718 static void
719 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
720 enum bfd_endian byte_order, gdb_byte *valbuf)
721 {
722 int len = TYPE_LENGTH (valtype);
723
724 /* pointer types are returned in register A4,
725 up to 32-bit types in A4
726 up to 64-bit types in A5:A4 */
727 if (len <= 4)
728 {
729 /* In big-endian,
730 - one-byte structure or union occupies the LSB of single even register.
731 - for two-byte structure or union, the first byte occupies byte 1 of
732 register and the second byte occupies byte 0.
733 so, we read the contents in VAL from the LSBs of register. */
734 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
735 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
736 valbuf);
737 else
738 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
739 }
740 else if (len <= 8)
741 {
742 /* For a 5-8 byte structure or union in big-endian, the first byte
743 occupies byte 3 (the MSB) of the upper (odd) register and the
744 remaining bytes fill the decreasingly significant bytes. 5-7
745 byte structures or unions have padding in the LSBs of the
746 lower (even) register. */
747 if (byte_order == BFD_ENDIAN_BIG)
748 {
749 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
750 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
751 }
752 else
753 {
754 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
755 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
756 }
757 }
758 }
759
760 /* Write into appropriate registers a function return value
761 of type TYPE, given in virtual format. */
762
763 static void
764 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
765 enum bfd_endian byte_order, const gdb_byte *valbuf)
766 {
767 int len = TYPE_LENGTH (valtype);
768
769 /* return values of up to 8 bytes are returned in A5:A4 */
770
771 if (len <= 4)
772 {
773 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
774 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
775 valbuf);
776 else
777 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
778 }
779 else if (len <= 8)
780 {
781 if (byte_order == BFD_ENDIAN_BIG)
782 {
783 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
784 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
785 }
786 else
787 {
788 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
789 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
790 }
791 }
792 }
793
794 /* This is the implementation of gdbarch method return_value. */
795
796 static enum return_value_convention
797 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
798 struct type *type, struct regcache *regcache,
799 gdb_byte *readbuf, const gdb_byte *writebuf)
800 {
801 /* In C++, when function returns an object, even its size is small
802 enough, it stii has to be passed via reference, pointed by register
803 A3. */
804 if (current_language->la_language == language_cplus)
805 {
806 if (type != NULL)
807 {
808 type = check_typedef (type);
809 if (language_pass_by_reference (type))
810 return RETURN_VALUE_STRUCT_CONVENTION;
811 }
812 }
813
814 if (TYPE_LENGTH (type) > 8)
815 return RETURN_VALUE_STRUCT_CONVENTION;
816
817 if (readbuf)
818 tic6x_extract_return_value (type, regcache,
819 gdbarch_byte_order (gdbarch), readbuf);
820 if (writebuf)
821 tic6x_store_return_value (type, regcache,
822 gdbarch_byte_order (gdbarch), writebuf);
823
824 return RETURN_VALUE_REGISTER_CONVENTION;
825 }
826
827 /* This is the implementation of gdbarch method dummy_id. */
828
829 static struct frame_id
830 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
831 {
832 return frame_id_build
833 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
834 get_frame_pc (this_frame));
835 }
836
837 /* Get the alignment requirement of TYPE. */
838
839 static int
840 tic6x_arg_type_alignment (struct type *type)
841 {
842 int len = TYPE_LENGTH (check_typedef (type));
843 enum type_code typecode = TYPE_CODE (check_typedef (type));
844
845 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
846 {
847 /* The stack alignment of a structure (and union) passed by value is the
848 smallest power of two greater than or equal to its size.
849 This cannot exceed 8 bytes, which is the largest allowable size for
850 a structure passed by value. */
851
852 if (len <= 2)
853 return len;
854 else if (len <= 4)
855 return 4;
856 else if (len <= 8)
857 return 8;
858 else
859 gdb_assert_not_reached ("unexpected length of data");
860 }
861 else
862 {
863 if (len <= 4)
864 return 4;
865 else if (len == 8)
866 {
867 if (typecode == TYPE_CODE_COMPLEX)
868 return 4;
869 else
870 return 8;
871 }
872 else if (len == 16)
873 {
874 if (typecode == TYPE_CODE_COMPLEX)
875 return 8;
876 else
877 return 16;
878 }
879 else
880 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
881 len);
882 }
883 }
884
885 /* This is the implementation of gdbarch method push_dummy_call. */
886
887 static CORE_ADDR
888 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
889 struct regcache *regcache, CORE_ADDR bp_addr,
890 int nargs, struct value **args, CORE_ADDR sp,
891 int struct_return, CORE_ADDR struct_addr)
892 {
893 int argreg = 0;
894 int argnum;
895 int stack_offset = 4;
896 int references_offset = 4;
897 CORE_ADDR func_addr = find_function_addr (function, NULL);
898 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
899 struct type *func_type = value_type (function);
900 /* The first arg passed on stack. Mostly the first 10 args are passed by
901 registers. */
902 int first_arg_on_stack = 10;
903
904 /* Set the return address register to point to the entry point of
905 the program, where a breakpoint lies in wait. */
906 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
907
908 /* The caller must pass an argument in A3 containing a destination address
909 for the returned value. The callee returns the object by copying it to
910 the address in A3. */
911 if (struct_return)
912 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
913
914 /* Determine the type of this function. */
915 func_type = check_typedef (func_type);
916 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
917 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
918
919 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
920 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
921
922 /* For a variadic C function, the last explicitly declared argument and all
923 remaining arguments are passed on the stack. */
924 if (TYPE_VARARGS (func_type))
925 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
926
927 /* Now make space on the stack for the args. */
928 for (argnum = 0; argnum < nargs; argnum++)
929 {
930 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
931 if (argnum >= 10 - argreg)
932 references_offset += len;
933 stack_offset += len;
934 }
935 sp -= stack_offset;
936 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
937 Stack Alignment. */
938 sp = align_down (sp, 8);
939 stack_offset = 4;
940
941 /* Now load as many as possible of the first arguments into
942 registers, and push the rest onto the stack. Loop through args
943 from first to last. */
944 for (argnum = 0; argnum < nargs; argnum++)
945 {
946 const gdb_byte *val;
947 struct value *arg = args[argnum];
948 struct type *arg_type = check_typedef (value_type (arg));
949 int len = TYPE_LENGTH (arg_type);
950 enum type_code typecode = TYPE_CODE (arg_type);
951
952 val = value_contents (arg);
953
954 /* Copy the argument to general registers or the stack in
955 register-sized pieces. */
956 if (argreg < first_arg_on_stack)
957 {
958 if (len <= 4)
959 {
960 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
961 {
962 /* In big-endian,
963 - one-byte structure or union occupies the LSB of single
964 even register.
965 - for two-byte structure or union, the first byte
966 occupies byte 1 of register and the second byte occupies
967 byte 0.
968 so, we write the contents in VAL to the lsp of
969 register. */
970 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
971 regcache_cooked_write_part (regcache, arg_regs[argreg],
972 4 - len, len, val);
973 else
974 regcache_cooked_write (regcache, arg_regs[argreg], val);
975 }
976 else
977 {
978 /* The argument is being passed by value in a single
979 register. */
980 CORE_ADDR regval = extract_unsigned_integer (val, len,
981 byte_order);
982
983 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
984 regval);
985 }
986 }
987 else
988 {
989 if (len <= 8)
990 {
991 if (typecode == TYPE_CODE_STRUCT
992 || typecode == TYPE_CODE_UNION)
993 {
994 /* For a 5-8 byte structure or union in big-endian, the
995 first byte occupies byte 3 (the MSB) of the upper (odd)
996 register and the remaining bytes fill the decreasingly
997 significant bytes. 5-7 byte structures or unions have
998 padding in the LSBs of the lower (even) register. */
999 if (byte_order == BFD_ENDIAN_BIG)
1000 {
1001 regcache_cooked_write (regcache,
1002 arg_regs[argreg] + 1, val);
1003 regcache_cooked_write_part (regcache,
1004 arg_regs[argreg], 0,
1005 len - 4, val + 4);
1006 }
1007 else
1008 {
1009 regcache_cooked_write (regcache, arg_regs[argreg],
1010 val);
1011 regcache_cooked_write_part (regcache,
1012 arg_regs[argreg] + 1, 0,
1013 len - 4, val + 4);
1014 }
1015 }
1016 else
1017 {
1018 /* The argument is being passed by value in a pair of
1019 registers. */
1020 ULONGEST regval = extract_unsigned_integer (val, len,
1021 byte_order);
1022
1023 regcache_cooked_write_unsigned (regcache,
1024 arg_regs[argreg],
1025 regval);
1026 regcache_cooked_write_unsigned (regcache,
1027 arg_regs[argreg] + 1,
1028 regval >> 32);
1029 }
1030 }
1031 else
1032 {
1033 /* The argument is being passed by reference in a single
1034 register. */
1035 CORE_ADDR addr;
1036
1037 /* It is not necessary to adjust REFERENCES_OFFSET to
1038 8-byte aligned in some cases, in which 4-byte alignment
1039 is sufficient. For simplicity, we adjust
1040 REFERENCES_OFFSET to 8-byte aligned. */
1041 references_offset = align_up (references_offset, 8);
1042
1043 addr = sp + references_offset;
1044 write_memory (addr, val, len);
1045 references_offset += align_up (len, 4);
1046 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1047 addr);
1048 }
1049 }
1050 argreg++;
1051 }
1052 else
1053 {
1054 /* The argument is being passed on the stack. */
1055 CORE_ADDR addr;
1056
1057 /* There are six different cases of alignment, and these rules can
1058 be found in tic6x_arg_type_alignment:
1059
1060 1) 4-byte aligned if size is less than or equal to 4 byte, such
1061 as short, int, struct, union etc.
1062 2) 8-byte aligned if size is less than or equal to 8-byte, such
1063 as double, long long,
1064 3) 4-byte aligned if it is of type _Complex float, even its size
1065 is 8-byte.
1066 4) 8-byte aligned if it is of type _Complex double or _Complex
1067 long double, even its size is 16-byte. Because, the address of
1068 variable is passed as reference.
1069 5) struct and union larger than 8-byte are passed by reference, so
1070 it is 4-byte aligned.
1071 6) struct and union of size between 4 byte and 8 byte varies.
1072 alignment of struct variable is the alignment of its first field,
1073 while alignment of union variable is the max of all its fields'
1074 alignment. */
1075
1076 if (len <= 4)
1077 ; /* Default is 4-byte aligned. Nothing to be done. */
1078 else if (len <= 8)
1079 stack_offset = align_up (stack_offset,
1080 tic6x_arg_type_alignment (arg_type));
1081 else if (len == 16)
1082 {
1083 /* _Complex double or _Complex long double */
1084 if (typecode == TYPE_CODE_COMPLEX)
1085 {
1086 /* The argument is being passed by reference on stack. */
1087 CORE_ADDR addr;
1088 references_offset = align_up (references_offset, 8);
1089
1090 addr = sp + references_offset;
1091 /* Store variable on stack. */
1092 write_memory (addr, val, len);
1093
1094 references_offset += align_up (len, 4);
1095
1096 /* Pass the address of variable on stack as reference. */
1097 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1098 addr);
1099 len = 4;
1100
1101 }
1102 else
1103 internal_error (__FILE__, __LINE__,
1104 _("unexpected type %d of arg %d"),
1105 typecode, argnum);
1106 }
1107 else
1108 internal_error (__FILE__, __LINE__,
1109 _("unexpected length %d of arg %d"), len, argnum);
1110
1111 addr = sp + stack_offset;
1112 write_memory (addr, val, len);
1113 stack_offset += align_up (len, 4);
1114 }
1115 }
1116
1117 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1118
1119 /* Return adjusted stack pointer. */
1120 return sp;
1121 }
1122
1123 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */
1124
1125 static int
1126 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1127 {
1128 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1129 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1130 if ((inst & 0x0f83effc) == 0x360)
1131 {
1132 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1133 INST_S_BIT (inst),
1134 INST_X_BIT (inst));
1135 if (src2 == TIC6X_RA_REGNUM)
1136 return 1;
1137 }
1138
1139 return 0;
1140 }
1141
1142 /* This is the implementation of gdbarch method get_longjmp_target. */
1143
1144 static int
1145 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1146 {
1147 struct gdbarch *gdbarch = get_frame_arch (frame);
1148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1149 CORE_ADDR jb_addr;
1150 gdb_byte buf[4];
1151
1152 /* JMP_BUF is passed by reference in A4. */
1153 jb_addr = get_frame_register_unsigned (frame, 4);
1154
1155 /* JMP_BUF contains 13 elements of type int, and return address is stored
1156 in the last slot. */
1157 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1158 return 0;
1159
1160 *pc = extract_unsigned_integer (buf, 4, byte_order);
1161
1162 return 1;
1163 }
1164
1165 /* This is the implementation of gdbarch method
1166 return_in_first_hidden_param_p. */
1167
1168 static int
1169 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1170 struct type *type)
1171 {
1172 return 0;
1173 }
1174
1175 static struct gdbarch *
1176 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1177 {
1178 struct gdbarch *gdbarch;
1179 struct gdbarch_tdep *tdep;
1180 struct tdesc_arch_data *tdesc_data = NULL;
1181 const struct target_desc *tdesc = info.target_desc;
1182 int has_gp = 0;
1183
1184 /* Check any target description for validity. */
1185 if (tdesc_has_registers (tdesc))
1186 {
1187 const struct tdesc_feature *feature;
1188 int valid_p, i;
1189
1190 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1191
1192 if (feature == NULL)
1193 return NULL;
1194
1195 tdesc_data = tdesc_data_alloc ();
1196
1197 valid_p = 1;
1198 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1199 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1200 tic6x_register_names[i]);
1201
1202 /* CSR */
1203 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1204 tic6x_register_names[TIC6X_CSR_REGNUM]);
1205 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1206 tic6x_register_names[TIC6X_PC_REGNUM]);
1207
1208 if (!valid_p)
1209 {
1210 tdesc_data_cleanup (tdesc_data);
1211 return NULL;
1212 }
1213
1214 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1215 if (feature)
1216 {
1217 int j = 0;
1218 static const char *const gp[] =
1219 {
1220 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1221 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1222 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1223 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1224 };
1225
1226 has_gp = 1;
1227 valid_p = 1;
1228 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1229 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1230 gp[j]);
1231
1232 if (!valid_p)
1233 {
1234 tdesc_data_cleanup (tdesc_data);
1235 return NULL;
1236 }
1237 }
1238
1239 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1240 if (feature)
1241 {
1242 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1243 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1244 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1245
1246 if (!valid_p)
1247 {
1248 tdesc_data_cleanup (tdesc_data);
1249 return NULL;
1250 }
1251 }
1252
1253 }
1254
1255 /* Find a candidate among extant architectures. */
1256 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1257 arches != NULL;
1258 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1259 {
1260 tdep = gdbarch_tdep (arches->gdbarch);
1261
1262 if (has_gp != tdep->has_gp)
1263 continue;
1264
1265 if (tdep && tdep->breakpoint)
1266 return arches->gdbarch;
1267 }
1268
1269 tdep = XCNEW (struct gdbarch_tdep);
1270
1271 tdep->has_gp = has_gp;
1272 gdbarch = gdbarch_alloc (&info, tdep);
1273
1274 /* Data type sizes. */
1275 set_gdbarch_ptr_bit (gdbarch, 32);
1276 set_gdbarch_addr_bit (gdbarch, 32);
1277 set_gdbarch_short_bit (gdbarch, 16);
1278 set_gdbarch_int_bit (gdbarch, 32);
1279 set_gdbarch_long_bit (gdbarch, 32);
1280 set_gdbarch_long_long_bit (gdbarch, 64);
1281 set_gdbarch_float_bit (gdbarch, 32);
1282 set_gdbarch_double_bit (gdbarch, 64);
1283
1284 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1285 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1286
1287 /* The register set. */
1288 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1289 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1290 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1291
1292 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1293 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1294
1295 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1296
1297 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1298 set_gdbarch_breakpoint_from_pc (gdbarch, tic6x_breakpoint_from_pc);
1299
1300 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1301 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1302
1303 /* Unwinding. */
1304 dwarf2_append_unwinders (gdbarch);
1305
1306 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1307 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1308 frame_base_set_default (gdbarch, &tic6x_frame_base);
1309
1310 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1311
1312 /* Single stepping. */
1313 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1314
1315 set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1316
1317 /* Call dummy code. */
1318 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1319
1320 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1321
1322 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1323
1324 /* Enable inferior call support. */
1325 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1326
1327 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1328
1329 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1330
1331 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1332 tic6x_return_in_first_hidden_param_p);
1333
1334 /* Hook in ABI-specific overrides, if they have been registered. */
1335 gdbarch_init_osabi (info, gdbarch);
1336
1337 if (tdesc_data)
1338 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1339
1340 return gdbarch;
1341 }
1342
1343 /* -Wmissing-prototypes */
1344 extern initialize_file_ftype _initialize_tic6x_tdep;
1345
1346 void
1347 _initialize_tic6x_tdep (void)
1348 {
1349 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1350
1351 initialize_tdesc_tic6x_c64xp ();
1352 initialize_tdesc_tic6x_c64x ();
1353 initialize_tdesc_tic6x_c62x ();
1354 }
This page took 0.059387 seconds and 4 git commands to generate.