Introduce ref_ptr::new_reference
[deliverable/binutils-gdb.git] / gdb / tilegx-tdep.c
1 /* Target-dependent code for the Tilera TILE-Gx processor.
2
3 Copyright (C) 2012-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "frame-unwind.h"
24 #include "dwarf2-frame.h"
25 #include "trad-frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "dis-asm.h"
32 #include "inferior.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "osabi.h"
37 #include "linux-tdep.h"
38 #include "objfiles.h"
39 #include "solib-svr4.h"
40 #include "tilegx-tdep.h"
41 #include "opcode/tilegx.h"
42 #include <algorithm>
43 #include "common/byte-vector.h"
44
45 struct tilegx_frame_cache
46 {
47 /* Base address. */
48 CORE_ADDR base;
49 /* Function start. */
50 CORE_ADDR start_pc;
51
52 /* Table of saved registers. */
53 struct trad_frame_saved_reg *saved_regs;
54 };
55
56 /* Register state values used by analyze_prologue. */
57 enum reverse_state
58 {
59 REVERSE_STATE_REGISTER,
60 REVERSE_STATE_VALUE,
61 REVERSE_STATE_UNKNOWN
62 };
63
64 /* Register state used by analyze_prologue(). */
65 struct tilegx_reverse_regs
66 {
67 LONGEST value;
68 enum reverse_state state;
69 };
70
71 static const struct tilegx_reverse_regs
72 template_reverse_regs[TILEGX_NUM_PHYS_REGS] =
73 {
74 { TILEGX_R0_REGNUM, REVERSE_STATE_REGISTER },
75 { TILEGX_R1_REGNUM, REVERSE_STATE_REGISTER },
76 { TILEGX_R2_REGNUM, REVERSE_STATE_REGISTER },
77 { TILEGX_R3_REGNUM, REVERSE_STATE_REGISTER },
78 { TILEGX_R4_REGNUM, REVERSE_STATE_REGISTER },
79 { TILEGX_R5_REGNUM, REVERSE_STATE_REGISTER },
80 { TILEGX_R6_REGNUM, REVERSE_STATE_REGISTER },
81 { TILEGX_R7_REGNUM, REVERSE_STATE_REGISTER },
82 { TILEGX_R8_REGNUM, REVERSE_STATE_REGISTER },
83 { TILEGX_R9_REGNUM, REVERSE_STATE_REGISTER },
84 { TILEGX_R10_REGNUM, REVERSE_STATE_REGISTER },
85 { TILEGX_R11_REGNUM, REVERSE_STATE_REGISTER },
86 { TILEGX_R12_REGNUM, REVERSE_STATE_REGISTER },
87 { TILEGX_R13_REGNUM, REVERSE_STATE_REGISTER },
88 { TILEGX_R14_REGNUM, REVERSE_STATE_REGISTER },
89 { TILEGX_R15_REGNUM, REVERSE_STATE_REGISTER },
90 { TILEGX_R16_REGNUM, REVERSE_STATE_REGISTER },
91 { TILEGX_R17_REGNUM, REVERSE_STATE_REGISTER },
92 { TILEGX_R18_REGNUM, REVERSE_STATE_REGISTER },
93 { TILEGX_R19_REGNUM, REVERSE_STATE_REGISTER },
94 { TILEGX_R20_REGNUM, REVERSE_STATE_REGISTER },
95 { TILEGX_R21_REGNUM, REVERSE_STATE_REGISTER },
96 { TILEGX_R22_REGNUM, REVERSE_STATE_REGISTER },
97 { TILEGX_R23_REGNUM, REVERSE_STATE_REGISTER },
98 { TILEGX_R24_REGNUM, REVERSE_STATE_REGISTER },
99 { TILEGX_R25_REGNUM, REVERSE_STATE_REGISTER },
100 { TILEGX_R26_REGNUM, REVERSE_STATE_REGISTER },
101 { TILEGX_R27_REGNUM, REVERSE_STATE_REGISTER },
102 { TILEGX_R28_REGNUM, REVERSE_STATE_REGISTER },
103 { TILEGX_R29_REGNUM, REVERSE_STATE_REGISTER },
104 { TILEGX_R30_REGNUM, REVERSE_STATE_REGISTER },
105 { TILEGX_R31_REGNUM, REVERSE_STATE_REGISTER },
106 { TILEGX_R32_REGNUM, REVERSE_STATE_REGISTER },
107 { TILEGX_R33_REGNUM, REVERSE_STATE_REGISTER },
108 { TILEGX_R34_REGNUM, REVERSE_STATE_REGISTER },
109 { TILEGX_R35_REGNUM, REVERSE_STATE_REGISTER },
110 { TILEGX_R36_REGNUM, REVERSE_STATE_REGISTER },
111 { TILEGX_R37_REGNUM, REVERSE_STATE_REGISTER },
112 { TILEGX_R38_REGNUM, REVERSE_STATE_REGISTER },
113 { TILEGX_R39_REGNUM, REVERSE_STATE_REGISTER },
114 { TILEGX_R40_REGNUM, REVERSE_STATE_REGISTER },
115 { TILEGX_R41_REGNUM, REVERSE_STATE_REGISTER },
116 { TILEGX_R42_REGNUM, REVERSE_STATE_REGISTER },
117 { TILEGX_R43_REGNUM, REVERSE_STATE_REGISTER },
118 { TILEGX_R44_REGNUM, REVERSE_STATE_REGISTER },
119 { TILEGX_R45_REGNUM, REVERSE_STATE_REGISTER },
120 { TILEGX_R46_REGNUM, REVERSE_STATE_REGISTER },
121 { TILEGX_R47_REGNUM, REVERSE_STATE_REGISTER },
122 { TILEGX_R48_REGNUM, REVERSE_STATE_REGISTER },
123 { TILEGX_R49_REGNUM, REVERSE_STATE_REGISTER },
124 { TILEGX_R50_REGNUM, REVERSE_STATE_REGISTER },
125 { TILEGX_R51_REGNUM, REVERSE_STATE_REGISTER },
126 { TILEGX_R52_REGNUM, REVERSE_STATE_REGISTER },
127 { TILEGX_TP_REGNUM, REVERSE_STATE_REGISTER },
128 { TILEGX_SP_REGNUM, REVERSE_STATE_REGISTER },
129 { TILEGX_LR_REGNUM, REVERSE_STATE_REGISTER },
130 { 0, REVERSE_STATE_UNKNOWN },
131 { 0, REVERSE_STATE_UNKNOWN },
132 { 0, REVERSE_STATE_UNKNOWN },
133 { 0, REVERSE_STATE_UNKNOWN },
134 { 0, REVERSE_STATE_UNKNOWN },
135 { 0, REVERSE_STATE_UNKNOWN },
136 { 0, REVERSE_STATE_UNKNOWN },
137 { TILEGX_ZERO_REGNUM, REVERSE_STATE_VALUE }
138 };
139
140 /* Implement the "register_name" gdbarch method. */
141
142 static const char *
143 tilegx_register_name (struct gdbarch *gdbarch, int regnum)
144 {
145 static const char *const register_names[TILEGX_NUM_REGS] =
146 {
147 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
149 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
150 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
151 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
152 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
153 "r48", "r49", "r50", "r51", "r52", "tp", "sp", "lr",
154 "sn", "idn0", "idn1", "udn0", "udn1", "udn2", "udn3", "zero",
155 "pc", "faultnum",
156 };
157
158 if (regnum < 0 || regnum >= TILEGX_NUM_REGS)
159 internal_error (__FILE__, __LINE__,
160 "tilegx_register_name: invalid register number %d",
161 regnum);
162
163 return register_names[regnum];
164 }
165
166 /* This is the implementation of gdbarch method register_type. */
167
168 static struct type *
169 tilegx_register_type (struct gdbarch *gdbarch, int regnum)
170 {
171 if (regnum == TILEGX_PC_REGNUM)
172 return builtin_type (gdbarch)->builtin_func_ptr;
173 else
174 return builtin_type (gdbarch)->builtin_uint64;
175 }
176
177 /* This is the implementation of gdbarch method dwarf2_reg_to_regnum. */
178
179 static int
180 tilegx_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
181 {
182 return num;
183 }
184
185 /* Makes the decision of whether a given type is a scalar type.
186 Scalar types are returned in the registers r2-r11 as they fit. */
187
188 static int
189 tilegx_type_is_scalar (struct type *t)
190 {
191 return (TYPE_CODE(t) != TYPE_CODE_STRUCT
192 && TYPE_CODE(t) != TYPE_CODE_UNION
193 && TYPE_CODE(t) != TYPE_CODE_ARRAY);
194 }
195
196 /* Returns non-zero if the given struct type will be returned using
197 a special convention, rather than the normal function return method.
198 Used in the context of the "return" command, and target function
199 calls from the debugger. */
200
201 static int
202 tilegx_use_struct_convention (struct type *type)
203 {
204 /* Only scalars which fit in R0 - R9 can be returned in registers.
205 Otherwise, they are returned via a pointer passed in R0. */
206 return (!tilegx_type_is_scalar (type)
207 && (TYPE_LENGTH (type) > (1 + TILEGX_R9_REGNUM - TILEGX_R0_REGNUM)
208 * tilegx_reg_size));
209 }
210
211 /* Find a function's return value in the appropriate registers (in
212 REGCACHE), and copy it into VALBUF. */
213
214 static void
215 tilegx_extract_return_value (struct type *type, struct regcache *regcache,
216 gdb_byte *valbuf)
217 {
218 int len = TYPE_LENGTH (type);
219 int i, regnum = TILEGX_R0_REGNUM;
220
221 for (i = 0; i < len; i += tilegx_reg_size)
222 regcache_raw_read (regcache, regnum++, valbuf + i);
223 }
224
225 /* Copy the function return value from VALBUF into the proper
226 location for a function return.
227 Called only in the context of the "return" command. */
228
229 static void
230 tilegx_store_return_value (struct type *type, struct regcache *regcache,
231 const void *valbuf)
232 {
233 if (TYPE_LENGTH (type) < tilegx_reg_size)
234 {
235 /* Add leading zeros to the (little-endian) value. */
236 gdb_byte buf[tilegx_reg_size] = { 0 };
237
238 memcpy (buf, valbuf, TYPE_LENGTH (type));
239 regcache_raw_write (regcache, TILEGX_R0_REGNUM, buf);
240 }
241 else
242 {
243 int len = TYPE_LENGTH (type);
244 int i, regnum = TILEGX_R0_REGNUM;
245
246 for (i = 0; i < len; i += tilegx_reg_size)
247 regcache_raw_write (regcache, regnum++, (gdb_byte *) valbuf + i);
248 }
249 }
250
251 /* This is the implementation of gdbarch method return_value. */
252
253 static enum return_value_convention
254 tilegx_return_value (struct gdbarch *gdbarch, struct value *function,
255 struct type *type, struct regcache *regcache,
256 gdb_byte *readbuf, const gdb_byte *writebuf)
257 {
258 if (tilegx_use_struct_convention (type))
259 return RETURN_VALUE_STRUCT_CONVENTION;
260 if (writebuf)
261 tilegx_store_return_value (type, regcache, writebuf);
262 else if (readbuf)
263 tilegx_extract_return_value (type, regcache, readbuf);
264 return RETURN_VALUE_REGISTER_CONVENTION;
265 }
266
267 /* This is the implementation of gdbarch method frame_align. */
268
269 static CORE_ADDR
270 tilegx_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
271 {
272 return addr & -8;
273 }
274
275
276 /* Implement the "push_dummy_call" gdbarch method. */
277
278 static CORE_ADDR
279 tilegx_push_dummy_call (struct gdbarch *gdbarch,
280 struct value *function,
281 struct regcache *regcache,
282 CORE_ADDR bp_addr, int nargs,
283 struct value **args,
284 CORE_ADDR sp, int struct_return,
285 CORE_ADDR struct_addr)
286 {
287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
288 CORE_ADDR stack_dest = sp;
289 int argreg = TILEGX_R0_REGNUM;
290 int i, j;
291 int typelen, slacklen;
292 static const gdb_byte four_zero_words[16] = { 0 };
293
294 /* If struct_return is 1, then the struct return address will
295 consume one argument-passing register. */
296 if (struct_return)
297 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
298
299 /* Arguments are passed in R0 - R9, and as soon as an argument
300 will not fit completely in the remaining registers, then it,
301 and all remaining arguments, are put on the stack. */
302 for (i = 0; i < nargs && argreg <= TILEGX_R9_REGNUM; i++)
303 {
304 const gdb_byte *val;
305 typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
306
307 if (typelen > (TILEGX_R9_REGNUM - argreg + 1) * tilegx_reg_size)
308 break;
309
310 /* Put argument into registers wordwise. */
311 val = value_contents (args[i]);
312 for (j = 0; j < typelen; j += tilegx_reg_size)
313 {
314 /* ISSUE: Why special handling for "typelen = 4x + 1"?
315 I don't ever see "typelen" values except 4 and 8. */
316 int n = (typelen - j == 1) ? 1 : tilegx_reg_size;
317 ULONGEST w = extract_unsigned_integer (val + j, n, byte_order);
318
319 regcache_cooked_write_unsigned (regcache, argreg++, w);
320 }
321 }
322
323 /* Align SP. */
324 stack_dest = tilegx_frame_align (gdbarch, stack_dest);
325
326 /* Loop backwards through remaining arguments and push them on
327 the stack, word aligned. */
328 for (j = nargs - 1; j >= i; j--)
329 {
330 const gdb_byte *contents = value_contents (args[j]);
331
332 typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
333 slacklen = align_up (typelen, 8) - typelen;
334 gdb::byte_vector val (typelen + slacklen);
335 memcpy (val.data (), contents, typelen);
336 memset (val.data () + typelen, 0, slacklen);
337
338 /* Now write data to the stack. The stack grows downwards. */
339 stack_dest -= typelen + slacklen;
340 write_memory (stack_dest, val.data (), typelen + slacklen);
341 }
342
343 /* Add 16 bytes for linkage space to the stack. */
344 stack_dest = stack_dest - 16;
345 write_memory (stack_dest, four_zero_words, 16);
346
347 /* Update stack pointer. */
348 regcache_cooked_write_unsigned (regcache, TILEGX_SP_REGNUM, stack_dest);
349
350 /* Set the return address register to point to the entry point of
351 the program, where a breakpoint lies in wait. */
352 regcache_cooked_write_unsigned (regcache, TILEGX_LR_REGNUM, bp_addr);
353
354 return stack_dest;
355 }
356
357
358 /* Decode the instructions within the given address range.
359 Decide when we must have reached the end of the function prologue.
360 If a frame_info pointer is provided, fill in its saved_regs etc.
361 Returns the address of the first instruction after the prologue.
362 NOTE: This is often called with start_addr being the start of some
363 function, and end_addr being the current PC. */
364
365 static CORE_ADDR
366 tilegx_analyze_prologue (struct gdbarch* gdbarch,
367 CORE_ADDR start_addr, CORE_ADDR end_addr,
368 struct tilegx_frame_cache *cache,
369 struct frame_info *next_frame)
370 {
371 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
372 CORE_ADDR next_addr;
373 CORE_ADDR prolog_end = end_addr;
374 gdb_byte instbuf[32 * TILEGX_BUNDLE_SIZE_IN_BYTES];
375 CORE_ADDR instbuf_start;
376 unsigned int instbuf_size;
377 int status;
378 bfd_uint64_t bundle;
379 struct tilegx_decoded_instruction
380 decoded[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
381 int num_insns;
382 struct tilegx_reverse_regs reverse_frame[TILEGX_NUM_PHYS_REGS];
383 struct tilegx_reverse_regs
384 new_reverse_frame[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
385 int dest_regs[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
386 int reverse_frame_valid, prolog_done, branch_seen, lr_saved_on_stack_p;
387 LONGEST prev_sp_value;
388 int i, j;
389
390 if (start_addr >= end_addr
391 || (start_addr % TILEGX_BUNDLE_ALIGNMENT_IN_BYTES) != 0)
392 return end_addr;
393
394 /* Initialize the reverse frame. This maps the CURRENT frame's
395 registers to the outer frame's registers (the frame on the
396 stack goes the other way). */
397 memcpy (&reverse_frame, &template_reverse_regs, sizeof (reverse_frame));
398
399 prolog_done = 0;
400 branch_seen = 0;
401 prev_sp_value = 0;
402 lr_saved_on_stack_p = 0;
403
404 /* To cut down on round-trip overhead, we fetch multiple bundles
405 at once. These variables describe the range of memory we have
406 prefetched. */
407 instbuf_start = 0;
408 instbuf_size = 0;
409
410 for (next_addr = start_addr;
411 next_addr < end_addr;
412 next_addr += TILEGX_BUNDLE_SIZE_IN_BYTES)
413 {
414 /* Retrieve the next instruction. */
415 if (next_addr - instbuf_start >= instbuf_size)
416 {
417 /* Figure out how many bytes to fetch. Don't span a page
418 boundary since that might cause an unnecessary memory
419 error. */
420 unsigned int size_on_same_page = 4096 - (next_addr & 4095);
421
422 instbuf_size = sizeof instbuf;
423
424 if (instbuf_size > size_on_same_page)
425 instbuf_size = size_on_same_page;
426
427 instbuf_size = std::min ((CORE_ADDR) instbuf_size,
428 (end_addr - next_addr));
429 instbuf_start = next_addr;
430
431 status = safe_frame_unwind_memory (next_frame, instbuf_start,
432 instbuf, instbuf_size);
433 if (status == 0)
434 memory_error (TARGET_XFER_E_IO, next_addr);
435 }
436
437 reverse_frame_valid = 0;
438
439 bundle = extract_unsigned_integer (&instbuf[next_addr - instbuf_start],
440 8, byte_order);
441
442 num_insns = parse_insn_tilegx (bundle, next_addr, decoded);
443
444 for (i = 0; i < num_insns; i++)
445 {
446 struct tilegx_decoded_instruction *this_insn = &decoded[i];
447 long long *operands = this_insn->operand_values;
448 const struct tilegx_opcode *opcode = this_insn->opcode;
449
450 switch (opcode->mnemonic)
451 {
452 case TILEGX_OPC_ST:
453 if (cache
454 && reverse_frame[operands[0]].state == REVERSE_STATE_VALUE
455 && reverse_frame[operands[1]].state
456 == REVERSE_STATE_REGISTER)
457 {
458 LONGEST saved_address = reverse_frame[operands[0]].value;
459 unsigned saved_register
460 = (unsigned) reverse_frame[operands[1]].value;
461
462 /* realreg >= 0 and addr != -1 indicates that the
463 value of saved_register is in memory location
464 saved_address. The value of realreg is not
465 meaningful in this case but it must be >= 0.
466 See trad-frame.h. */
467 cache->saved_regs[saved_register].realreg = saved_register;
468 cache->saved_regs[saved_register].addr = saved_address;
469 }
470 else if (cache
471 && (operands[0] == TILEGX_SP_REGNUM)
472 && (operands[1] == TILEGX_LR_REGNUM))
473 lr_saved_on_stack_p = 1;
474 break;
475 case TILEGX_OPC_ADDI:
476 case TILEGX_OPC_ADDLI:
477 if (cache
478 && operands[0] == TILEGX_SP_REGNUM
479 && operands[1] == TILEGX_SP_REGNUM
480 && reverse_frame[operands[1]].state == REVERSE_STATE_REGISTER)
481 {
482 /* Special case. We're fixing up the stack frame. */
483 uint64_t hopefully_sp
484 = (unsigned) reverse_frame[operands[1]].value;
485 short op2_as_short = (short) operands[2];
486 signed char op2_as_char = (signed char) operands[2];
487
488 /* Fix up the sign-extension. */
489 if (opcode->mnemonic == TILEGX_OPC_ADDI)
490 op2_as_short = op2_as_char;
491 prev_sp_value = (cache->saved_regs[hopefully_sp].addr
492 - op2_as_short);
493
494 new_reverse_frame[i].state = REVERSE_STATE_VALUE;
495 new_reverse_frame[i].value
496 = cache->saved_regs[hopefully_sp].addr;
497 trad_frame_set_value (cache->saved_regs,
498 hopefully_sp, prev_sp_value);
499 }
500 else
501 {
502 short op2_as_short = (short) operands[2];
503 signed char op2_as_char = (signed char) operands[2];
504
505 /* Fix up the sign-extension. */
506 if (opcode->mnemonic == TILEGX_OPC_ADDI)
507 op2_as_short = op2_as_char;
508
509 new_reverse_frame[i] = reverse_frame[operands[1]];
510 if (new_reverse_frame[i].state == REVERSE_STATE_VALUE)
511 new_reverse_frame[i].value += op2_as_short;
512 else
513 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
514 }
515 reverse_frame_valid |= 1 << i;
516 dest_regs[i] = operands[0];
517 break;
518 case TILEGX_OPC_ADD:
519 if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE
520 && reverse_frame[operands[2]].state == REVERSE_STATE_VALUE)
521 {
522 /* We have values -- we can do this. */
523 new_reverse_frame[i] = reverse_frame[operands[2]];
524 new_reverse_frame[i].value
525 += reverse_frame[operands[i]].value;
526 }
527 else
528 {
529 /* We don't know anything about the values. Punt. */
530 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
531 }
532 reverse_frame_valid |= 1 << i;
533 dest_regs[i] = operands[0];
534 break;
535 case TILEGX_OPC_MOVE:
536 new_reverse_frame[i] = reverse_frame[operands[1]];
537 reverse_frame_valid |= 1 << i;
538 dest_regs[i] = operands[0];
539 break;
540 case TILEGX_OPC_MOVEI:
541 case TILEGX_OPC_MOVELI:
542 new_reverse_frame[i].state = REVERSE_STATE_VALUE;
543 new_reverse_frame[i].value = operands[1];
544 reverse_frame_valid |= 1 << i;
545 dest_regs[i] = operands[0];
546 break;
547 case TILEGX_OPC_ORI:
548 if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE)
549 {
550 /* We have a value in A -- we can do this. */
551 new_reverse_frame[i] = reverse_frame[operands[1]];
552 new_reverse_frame[i].value
553 = reverse_frame[operands[1]].value | operands[2];
554 }
555 else if (operands[2] == 0)
556 {
557 /* This is a move. */
558 new_reverse_frame[i] = reverse_frame[operands[1]];
559 }
560 else
561 {
562 /* We don't know anything about the values. Punt. */
563 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
564 }
565 reverse_frame_valid |= 1 << i;
566 dest_regs[i] = operands[0];
567 break;
568 case TILEGX_OPC_OR:
569 if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE
570 && reverse_frame[operands[1]].value == 0)
571 {
572 /* This is a move. */
573 new_reverse_frame[i] = reverse_frame[operands[2]];
574 }
575 else if (reverse_frame[operands[2]].state == REVERSE_STATE_VALUE
576 && reverse_frame[operands[2]].value == 0)
577 {
578 /* This is a move. */
579 new_reverse_frame[i] = reverse_frame[operands[1]];
580 }
581 else
582 {
583 /* We don't know anything about the values. Punt. */
584 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
585 }
586 reverse_frame_valid |= 1 << i;
587 dest_regs[i] = operands[0];
588 break;
589 case TILEGX_OPC_SUB:
590 if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE
591 && reverse_frame[operands[2]].state == REVERSE_STATE_VALUE)
592 {
593 /* We have values -- we can do this. */
594 new_reverse_frame[i] = reverse_frame[operands[1]];
595 new_reverse_frame[i].value
596 -= reverse_frame[operands[2]].value;
597 }
598 else
599 {
600 /* We don't know anything about the values. Punt. */
601 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
602 }
603 reverse_frame_valid |= 1 << i;
604 dest_regs[i] = operands[0];
605 break;
606
607 case TILEGX_OPC_FNOP:
608 case TILEGX_OPC_INFO:
609 case TILEGX_OPC_INFOL:
610 /* Nothing to see here, move on.
611 Note that real NOP is treated as a 'real' instruction
612 because someone must have intended that it be there.
613 It therefore terminates the prolog. */
614 break;
615
616 case TILEGX_OPC_J:
617 case TILEGX_OPC_JAL:
618
619 case TILEGX_OPC_BEQZ:
620 case TILEGX_OPC_BEQZT:
621 case TILEGX_OPC_BGEZ:
622 case TILEGX_OPC_BGEZT:
623 case TILEGX_OPC_BGTZ:
624 case TILEGX_OPC_BGTZT:
625 case TILEGX_OPC_BLBC:
626 case TILEGX_OPC_BLBCT:
627 case TILEGX_OPC_BLBS:
628 case TILEGX_OPC_BLBST:
629 case TILEGX_OPC_BLEZ:
630 case TILEGX_OPC_BLEZT:
631 case TILEGX_OPC_BLTZ:
632 case TILEGX_OPC_BLTZT:
633 case TILEGX_OPC_BNEZ:
634 case TILEGX_OPC_BNEZT:
635
636 case TILEGX_OPC_IRET:
637 case TILEGX_OPC_JALR:
638 case TILEGX_OPC_JALRP:
639 case TILEGX_OPC_JR:
640 case TILEGX_OPC_JRP:
641 case TILEGX_OPC_SWINT0:
642 case TILEGX_OPC_SWINT1:
643 case TILEGX_OPC_SWINT2:
644 case TILEGX_OPC_SWINT3:
645 /* We're really done -- this is a branch. */
646 branch_seen = 1;
647 prolog_done = 1;
648 break;
649 default:
650 /* We don't know or care what this instruction is.
651 All we know is that it isn't part of a prolog, and if
652 there's a destination register, we're trashing it. */
653 prolog_done = 1;
654 for (j = 0; j < opcode->num_operands; j++)
655 {
656 if (this_insn->operands[j]->is_dest_reg)
657 {
658 dest_regs[i] = operands[j];
659 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
660 reverse_frame_valid |= 1 << i;
661 break;
662 }
663 }
664 break;
665 }
666 }
667
668 /* Now update the reverse frames. */
669 for (i = 0; i < num_insns; i++)
670 {
671 /* ISSUE: Does this properly handle "network" registers? */
672 if ((reverse_frame_valid & (1 << i))
673 && dest_regs[i] != TILEGX_ZERO_REGNUM)
674 reverse_frame[dest_regs[i]] = new_reverse_frame[i];
675 }
676
677 if (prev_sp_value != 0)
678 {
679 /* GCC uses R52 as a frame pointer. Have we seen "move r52, sp"? */
680 if (reverse_frame[TILEGX_R52_REGNUM].state == REVERSE_STATE_REGISTER
681 && reverse_frame[TILEGX_R52_REGNUM].value == TILEGX_SP_REGNUM)
682 {
683 reverse_frame[TILEGX_R52_REGNUM].state = REVERSE_STATE_VALUE;
684 reverse_frame[TILEGX_R52_REGNUM].value = prev_sp_value;
685 }
686
687 prev_sp_value = 0;
688 }
689
690 if (prolog_done && prolog_end == end_addr)
691 {
692 /* We found non-prolog code. As such, _this_ instruction
693 is the one after the prolog. We keep processing, because
694 there may be more prolog code in there, but this is what
695 we'll return. */
696 /* ISSUE: There may not have actually been a prologue, and
697 we may have simply skipped some random instructions. */
698 prolog_end = next_addr;
699 }
700 if (branch_seen)
701 {
702 /* We saw a branch. The prolog absolutely must be over. */
703 break;
704 }
705 }
706
707 if (prolog_end == end_addr && cache)
708 {
709 /* We may have terminated the prolog early, and we're certainly
710 at THIS point right now. It's possible that the values of
711 registers we need are currently actually in other registers
712 (and haven't been written to memory yet). Go find them. */
713 for (i = 0; i < TILEGX_NUM_PHYS_REGS; i++)
714 {
715 if (reverse_frame[i].state == REVERSE_STATE_REGISTER
716 && reverse_frame[i].value != i)
717 {
718 unsigned saved_register = (unsigned) reverse_frame[i].value;
719
720 cache->saved_regs[saved_register].realreg = i;
721 cache->saved_regs[saved_register].addr = (LONGEST) -1;
722 }
723 }
724 }
725
726 if (lr_saved_on_stack_p)
727 {
728 cache->saved_regs[TILEGX_LR_REGNUM].realreg = TILEGX_LR_REGNUM;
729 cache->saved_regs[TILEGX_LR_REGNUM].addr =
730 cache->saved_regs[TILEGX_SP_REGNUM].addr;
731 }
732
733 return prolog_end;
734 }
735
736 /* This is the implementation of gdbarch method skip_prologue. */
737
738 static CORE_ADDR
739 tilegx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
740 {
741 CORE_ADDR func_start, end_pc;
742 struct obj_section *s;
743
744 /* This is the preferred method, find the end of the prologue by
745 using the debugging information. */
746 if (find_pc_partial_function (start_pc, NULL, &func_start, NULL))
747 {
748 CORE_ADDR post_prologue_pc
749 = skip_prologue_using_sal (gdbarch, func_start);
750
751 if (post_prologue_pc != 0)
752 return std::max (start_pc, post_prologue_pc);
753 }
754
755 /* Don't straddle a section boundary. */
756 s = find_pc_section (start_pc);
757 end_pc = start_pc + 8 * TILEGX_BUNDLE_SIZE_IN_BYTES;
758 if (s != NULL)
759 end_pc = std::min (end_pc, obj_section_endaddr (s));
760
761 /* Otherwise, try to skip prologue the hard way. */
762 return tilegx_analyze_prologue (gdbarch,
763 start_pc,
764 end_pc,
765 NULL, NULL);
766 }
767
768 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */
769
770 static int
771 tilegx_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
772 {
773 CORE_ADDR func_addr = 0, func_end = 0;
774
775 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
776 {
777 CORE_ADDR addr = func_end - TILEGX_BUNDLE_SIZE_IN_BYTES;
778
779 /* FIXME: Find the actual epilogue. */
780 /* HACK: Just assume the final bundle is the "ret" instruction". */
781 if (pc > addr)
782 return 1;
783 }
784 return 0;
785 }
786
787 /* This is the implementation of gdbarch method get_longjmp_target. */
788
789 static int
790 tilegx_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
791 {
792 struct gdbarch *gdbarch = get_frame_arch (frame);
793 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
794 CORE_ADDR jb_addr;
795 gdb_byte buf[8];
796
797 jb_addr = get_frame_register_unsigned (frame, TILEGX_R0_REGNUM);
798
799 /* TileGX jmp_buf contains 32 elements of type __uint_reg_t which
800 has a size of 8 bytes. The return address is stored in the 25th
801 slot. */
802 if (target_read_memory (jb_addr + 25 * 8, buf, 8))
803 return 0;
804
805 *pc = extract_unsigned_integer (buf, 8, byte_order);
806
807 return 1;
808 }
809
810 /* by assigning the 'faultnum' reg in kernel pt_regs with this value,
811 kernel do_signal will not check r0. see tilegx kernel/signal.c
812 for details. */
813 #define INT_SWINT_1_SIGRETURN (~0)
814
815 /* Implement the "write_pc" gdbarch method. */
816
817 static void
818 tilegx_write_pc (struct regcache *regcache, CORE_ADDR pc)
819 {
820 regcache_cooked_write_unsigned (regcache, TILEGX_PC_REGNUM, pc);
821
822 /* We must be careful with modifying the program counter. If we
823 just interrupted a system call, the kernel might try to restart
824 it when we resume the inferior. On restarting the system call,
825 the kernel will try backing up the program counter even though it
826 no longer points at the system call. This typically results in a
827 SIGSEGV or SIGILL. We can prevent this by writing INT_SWINT_1_SIGRETURN
828 in the "faultnum" pseudo-register.
829
830 Note that "faultnum" is saved when setting up a dummy call frame.
831 This means that it is properly restored when that frame is
832 popped, and that the interrupted system call will be restarted
833 when we resume the inferior on return from a function call from
834 within GDB. In all other cases the system call will not be
835 restarted. */
836 regcache_cooked_write_unsigned (regcache, TILEGX_FAULTNUM_REGNUM,
837 INT_SWINT_1_SIGRETURN);
838 }
839
840 /* 64-bit pattern for a { bpt ; nop } bundle. */
841 constexpr gdb_byte tilegx_break_insn[] =
842 { 0x00, 0x50, 0x48, 0x51, 0xae, 0x44, 0x6a, 0x28 };
843
844 typedef BP_MANIPULATION (tilegx_break_insn) tilegx_breakpoint;
845
846 /* Normal frames. */
847
848 static struct tilegx_frame_cache *
849 tilegx_frame_cache (struct frame_info *this_frame, void **this_cache)
850 {
851 struct gdbarch *gdbarch = get_frame_arch (this_frame);
852 struct tilegx_frame_cache *cache;
853 CORE_ADDR current_pc;
854
855 if (*this_cache)
856 return (struct tilegx_frame_cache *) *this_cache;
857
858 cache = FRAME_OBSTACK_ZALLOC (struct tilegx_frame_cache);
859 *this_cache = cache;
860 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
861 cache->base = 0;
862 cache->start_pc = get_frame_func (this_frame);
863 current_pc = get_frame_pc (this_frame);
864
865 cache->base = get_frame_register_unsigned (this_frame, TILEGX_SP_REGNUM);
866 trad_frame_set_value (cache->saved_regs, TILEGX_SP_REGNUM, cache->base);
867
868 if (cache->start_pc)
869 tilegx_analyze_prologue (gdbarch, cache->start_pc, current_pc,
870 cache, this_frame);
871
872 cache->saved_regs[TILEGX_PC_REGNUM] = cache->saved_regs[TILEGX_LR_REGNUM];
873
874 return cache;
875 }
876
877 /* Retrieve the value of REGNUM in FRAME. */
878
879 static struct value*
880 tilegx_frame_prev_register (struct frame_info *this_frame,
881 void **this_cache,
882 int regnum)
883 {
884 struct tilegx_frame_cache *info =
885 tilegx_frame_cache (this_frame, this_cache);
886
887 return trad_frame_get_prev_register (this_frame, info->saved_regs,
888 regnum);
889 }
890
891 /* Build frame id. */
892
893 static void
894 tilegx_frame_this_id (struct frame_info *this_frame, void **this_cache,
895 struct frame_id *this_id)
896 {
897 struct tilegx_frame_cache *info =
898 tilegx_frame_cache (this_frame, this_cache);
899
900 /* This marks the outermost frame. */
901 if (info->base == 0)
902 return;
903
904 (*this_id) = frame_id_build (info->base, info->start_pc);
905 }
906
907 static CORE_ADDR
908 tilegx_frame_base_address (struct frame_info *this_frame, void **this_cache)
909 {
910 struct tilegx_frame_cache *cache =
911 tilegx_frame_cache (this_frame, this_cache);
912
913 return cache->base;
914 }
915
916 static const struct frame_unwind tilegx_frame_unwind = {
917 NORMAL_FRAME,
918 default_frame_unwind_stop_reason,
919 tilegx_frame_this_id,
920 tilegx_frame_prev_register,
921 NULL, /* const struct frame_data *unwind_data */
922 default_frame_sniffer, /* frame_sniffer_ftype *sniffer */
923 NULL /* frame_prev_pc_ftype *prev_pc */
924 };
925
926 static const struct frame_base tilegx_frame_base = {
927 &tilegx_frame_unwind,
928 tilegx_frame_base_address,
929 tilegx_frame_base_address,
930 tilegx_frame_base_address
931 };
932
933 static CORE_ADDR
934 tilegx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
935 {
936 return frame_unwind_register_unsigned (next_frame, TILEGX_SP_REGNUM);
937 }
938
939 static CORE_ADDR
940 tilegx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
941 {
942 return frame_unwind_register_unsigned (next_frame, TILEGX_PC_REGNUM);
943 }
944
945 static struct frame_id
946 tilegx_unwind_dummy_id (struct gdbarch *gdbarch,
947 struct frame_info *this_frame)
948 {
949 CORE_ADDR sp;
950
951 sp = get_frame_register_unsigned (this_frame, TILEGX_SP_REGNUM);
952 return frame_id_build (sp, get_frame_pc (this_frame));
953 }
954
955
956 /* We cannot read/write the "special" registers. */
957
958 static int
959 tilegx_cannot_reference_register (struct gdbarch *gdbarch, int regno)
960 {
961 if (regno >= 0 && regno < TILEGX_NUM_EASY_REGS)
962 return 0;
963 else if (regno == TILEGX_PC_REGNUM
964 || regno == TILEGX_FAULTNUM_REGNUM)
965 return 0;
966 else
967 return 1;
968 }
969
970 static struct gdbarch *
971 tilegx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
972 {
973 struct gdbarch *gdbarch;
974 int arch_size = 64;
975
976 /* Handle arch_size == 32 or 64. Default to 64. */
977 if (info.abfd)
978 arch_size = bfd_get_arch_size (info.abfd);
979
980 /* Try to find a pre-existing architecture. */
981 for (arches = gdbarch_list_lookup_by_info (arches, &info);
982 arches != NULL;
983 arches = gdbarch_list_lookup_by_info (arches->next, &info))
984 {
985 /* We only have two flavors -- just make sure arch_size matches. */
986 if (gdbarch_ptr_bit (arches->gdbarch) == arch_size)
987 return (arches->gdbarch);
988 }
989
990 gdbarch = gdbarch_alloc (&info, NULL);
991
992 /* Basic register fields and methods, datatype sizes and stuff. */
993
994 /* There are 64 physical registers which can be referenced by
995 instructions (although only 56 of them can actually be
996 debugged) and 1 magic register (the PC). The other three
997 magic registers (ex1, syscall, orig_r0) which are known to
998 "ptrace" are ignored by "gdb". Note that we simply pretend
999 that there are 65 registers, and no "pseudo registers". */
1000 set_gdbarch_num_regs (gdbarch, TILEGX_NUM_REGS);
1001 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1002
1003 set_gdbarch_sp_regnum (gdbarch, TILEGX_SP_REGNUM);
1004 set_gdbarch_pc_regnum (gdbarch, TILEGX_PC_REGNUM);
1005
1006 set_gdbarch_register_name (gdbarch, tilegx_register_name);
1007 set_gdbarch_register_type (gdbarch, tilegx_register_type);
1008
1009 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1010 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1011 set_gdbarch_long_bit (gdbarch, arch_size);
1012 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1013
1014 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1015 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1016 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1017
1018 set_gdbarch_ptr_bit (gdbarch, arch_size);
1019 set_gdbarch_addr_bit (gdbarch, arch_size);
1020
1021 set_gdbarch_cannot_fetch_register (gdbarch,
1022 tilegx_cannot_reference_register);
1023 set_gdbarch_cannot_store_register (gdbarch,
1024 tilegx_cannot_reference_register);
1025
1026 /* Stack grows down. */
1027 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1028
1029 /* Frame Info. */
1030 set_gdbarch_unwind_sp (gdbarch, tilegx_unwind_sp);
1031 set_gdbarch_unwind_pc (gdbarch, tilegx_unwind_pc);
1032 set_gdbarch_dummy_id (gdbarch, tilegx_unwind_dummy_id);
1033 set_gdbarch_frame_align (gdbarch, tilegx_frame_align);
1034 frame_base_set_default (gdbarch, &tilegx_frame_base);
1035
1036 set_gdbarch_skip_prologue (gdbarch, tilegx_skip_prologue);
1037
1038 set_gdbarch_stack_frame_destroyed_p (gdbarch, tilegx_stack_frame_destroyed_p);
1039
1040 /* Map debug registers into internal register numbers. */
1041 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, tilegx_dwarf2_reg_to_regnum);
1042
1043 /* These values and methods are used when gdb calls a target function. */
1044 set_gdbarch_push_dummy_call (gdbarch, tilegx_push_dummy_call);
1045 set_gdbarch_get_longjmp_target (gdbarch, tilegx_get_longjmp_target);
1046 set_gdbarch_write_pc (gdbarch, tilegx_write_pc);
1047 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1048 tilegx_breakpoint::kind_from_pc);
1049 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1050 tilegx_breakpoint::bp_from_kind);
1051 set_gdbarch_return_value (gdbarch, tilegx_return_value);
1052
1053 gdbarch_init_osabi (info, gdbarch);
1054
1055 dwarf2_append_unwinders (gdbarch);
1056 frame_unwind_append_unwinder (gdbarch, &tilegx_frame_unwind);
1057
1058 return gdbarch;
1059 }
1060
1061 void
1062 _initialize_tilegx_tdep (void)
1063 {
1064 register_gdbarch_init (bfd_arch_tilegx, tilegx_gdbarch_init);
1065 }
This page took 0.051414 seconds and 4 git commands to generate.