HPPA merge.
[deliverable/binutils-gdb.git] / gdb / tm-hppabsd.h
1 /* Parameters for execution on a Hewlett-Packard PA-RISC machine, running
2 HPUX or BSD.
3 Copyright (C) 1986, 1987, 1989, 1990, 1991 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 GDB is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 1, or (at your option)
13 any later version.
14
15 GDB is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GDB; see the file COPYING. If not, write to
22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24
25 /* Get at various relevent fields of an instruction word. */
26
27 #define MASK_5 0x1f
28 #define MASK_11 0x7ff
29 #define MASK_14 0x3fff
30 #define MASK_21 0x1fffff
31
32 /* This macro gets bit fields using HP's numbering (MSB = 0) */
33
34 #define GET_FIELD(X, FROM, TO) \
35 ((X) >> 31 - (TO) & (1 << ((TO) - (FROM) + 1)) - 1)
36
37 /* Watch out for NaNs */
38
39 #define IEEE_FLOAT
40
41 /* Groan */
42
43 #define ARGS_GROW_DOWN
44
45 /* Get rid of any system-imposed stack limit if possible. */
46
47
48
49 /* Define this if the C compiler puts an underscore at the front
50 of external names before giving them to the linker. */
51
52 /* #define NAMES_HAVE_UNDERSCORE */
53
54 /* Debugger information will be in DBX format. */
55
56 #define READ_DBX_FORMAT
57
58 /* Offset from address of function to start of its code.
59 Zero on most machines. */
60
61 #define FUNCTION_START_OFFSET 0
62
63 /* Advance PC across any function entry prologue instructions
64 to reach some "real" code. */
65
66 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
67 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
68
69 #define SKIP_PROLOGUE(pc) \
70 { if (read_memory_integer ((pc), 4) == 0x6BC23FD9) \
71 { if (read_memory_integer ((pc) + 4, 4) == 0x8040241) \
72 (pc) += 16; \
73 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) \
74 (pc) += 8;} \
75 else if (read_memory_integer ((pc), 4) == 0x8040241) \
76 (pc) += 12; \
77 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) \
78 (pc) += 4;}
79
80 /* Immediately after a function call, return the saved pc.
81 Can't go through the frames for this because on some machines
82 the new frame is not set up until the new function executes
83 some instructions. */
84
85 #define SAVED_PC_AFTER_CALL(frame) (read_register (RP_REGNUM) & ~3)
86
87 /* Address of end of stack space. Who knows. */
88
89 #define STACK_END_ADDR 0x80000000
90
91 /* Stack grows upward */
92
93 #define INNER_THAN >
94
95
96 /* Sequence of bytes for breakpoint instruction. */
97
98 /*#define BREAKPOINT {0x00, 0x00, 0x00, 0x00}*/
99 #ifdef KERNELDEBUG /* XXX */
100 #define BREAKPOINT {0x00, 0x00, 0xa0, 0x00}
101 #else
102 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
103 #endif
104
105 /* Amount PC must be decremented by after a breakpoint.
106 This is often the number of bytes in BREAKPOINT
107 but not always.
108
109 Not on the PA-RISC */
110
111 #define DECR_PC_AFTER_BREAK 0
112
113 /* return instruction is bv r0(rp) */
114
115 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0xE840C000)
116
117 /* Return 1 if P points to an invalid floating point value. */
118
119 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
120
121 /* Largest integer type */
122 #define LONGEST long
123
124 /* Name of the builtin type for the LONGEST type above. */
125 #define BUILTIN_TYPE_LONGEST builtin_type_long
126
127 /* Say how long (ordinary) registers are. */
128
129 #define REGISTER_TYPE long
130
131 /* Number of machine registers */
132
133 #define NUM_REGS 100
134
135 /* Initializer for an array of names of registers.
136 There should be NUM_REGS strings in this initializer. */
137
138 #define REGISTER_NAMES \
139 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
140 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
141 "r20", "r21", "r22", "arg3", "arg2", "arg1", "arg0", "dp", "ret0", "ret1", \
142 "sp", "r31", "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", \
143 "eiem", "iir", "isr", "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", \
144 "sr3", "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", "cr13", \
145 "cr24", "cr25", "cr26", "mpsfu_high", "mpsfu_low", "mpsfu_ovflo", "pad", \
146 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
147 "fp4", "fp5", "fp6", "fp7", "fp8", \
148 "fp9", "fp10", "fp11", "fp12", "fp13", "fp14", "fp15", \
149 "fp16", "fp17", "fp18", "fp19", "fp20", "fp21", "fp22", "fp23", \
150 "fp24", "fp25", "fp26", "fp27", "fp28", "fp29", "fp30", "fp31"}
151
152 /* Register numbers of various important registers.
153 Note that some of these values are "real" register numbers,
154 and correspond to the general registers of the machine,
155 and some are "phony" register numbers which are too large
156 to be actual register numbers as far as the user is concerned
157 but do serve to get the desired values when passed to read_register. */
158
159 #define RP_REGNUM 2 /* return pointer */
160 #define FP_REGNUM 4 /* Contains address of executing stack */
161 /* frame */
162 #define SP_REGNUM 30 /* Contains address of top of stack */
163 #define SAR_REGNUM 32 /* shift amount register */
164 #define IPSW_REGNUM 41 /* processor status word. ? */
165 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
166 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
167 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
168 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
169 #define FP0_REGNUM 64 /* floating point reg. 0 */
170 #define FP4_REGNUM 72
171
172 /* compatibility with the rest of gdb. */
173 #define PC_REGNUM PCOQ_HEAD_REGNUM
174 #define NPC_REGNUM PCOQ_TAIL_REGNUM
175
176 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
177 of register dumps. */
178
179 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
180
181 /* PA specific macro to see if the current instruction is nullified. */
182 #define INSTRUCTION_NULLIFIED ((int)read_register (IPSW_REGNUM) & 0x00200000)
183
184 /* Total amount of space needed to store our copies of the machine's
185 register state, the array `registers'. */
186 #define REGISTER_BYTES (32 * 4 + 11 * 4 + 8 * 4 + 12 * 4 + 4 + 32 * 8)
187
188 /* Index within `registers' of the first byte of the space for
189 register N. */
190
191 #define REGISTER_BYTE(N) \
192 ((N) >= FP4_REGNUM ? ((N) - FP4_REGNUM) * 8 + 288 : (N) * 4)
193
194 /* Number of bytes of storage in the actual machine representation
195 for register N. On the PA-RISC, all regs are 4 bytes
196 except the floating point regs which are 8 bytes. */
197
198 #define REGISTER_RAW_SIZE(N) ((N) < FP4_REGNUM ? 4 : 8)
199
200 /* Number of bytes of storage in the program's representation
201 for register N. */
202
203 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
204
205 /* Largest value REGISTER_RAW_SIZE can have. */
206
207 #define MAX_REGISTER_RAW_SIZE 8
208
209 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
210
211 #define MAX_REGISTER_VIRTUAL_SIZE 8
212
213 /* Nonzero if register N requires conversion
214 from raw format to virtual format. */
215
216 #define REGISTER_CONVERTIBLE(N) 0
217
218 /* Convert data from raw format for register REGNUM
219 to virtual format for register REGNUM. */
220
221 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
222 { bcopy ((FROM), (TO), (REGNUM) < FP4_REGNUM ? 4 : 8); }
223
224 /* Convert data from virtual format for register REGNUM
225 to raw format for register REGNUM. */
226
227 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
228 { bcopy ((FROM), (TO), (REGNUM) < FP4_REGNUM ? 4 : 8); }
229
230 /* Return the GDB type object for the "standard" data type
231 of data in register N. */
232
233 #define REGISTER_VIRTUAL_TYPE(N) \
234 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_double)
235
236 /* Store the address of the place in which to copy the structure the
237 subroutine will return. This is called from call_function. */
238
239 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
240
241 /* Extract from an array REGBUF containing the (raw) register state
242 a function return value of type TYPE, and copy that, in virtual format,
243 into VALBUF. */
244
245 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
246 bcopy ((REGBUF) + REGISTER_BYTE(TYPE_LENGTH(TYPE) > 4 ? \
247 FP4_REGNUM :28), VALBUF, TYPE_LENGTH (TYPE))
248
249 /* Write into appropriate registers a function return value
250 of type TYPE, given in virtual format. */
251
252 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
253 write_register_bytes (TYPE_LENGTH(TYPE) > 4 ? FP4_REGNUM :28, \
254 VALBUF, TYPE_LENGTH (TYPE))
255
256 /* Extract from an array REGBUF containing the (raw) register state
257 the address in which a function should return its structure value,
258 as a CORE_ADDR (or an expression that can be used as one). */
259
260 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)((REGBUF) + 28))
261
262 /* This is a piece of magic that is given a register number REGNO
263 and as BLOCKEND the address in the system of the end of the user structure
264 and stores in ADDR the address in the kernel or core dump
265 of that register. */
266
267
268 /* Describe the pointer in each stack frame to the previous stack frame
269 (its caller). */
270
271 /* FRAME_CHAIN takes a frame's nominal address
272 and produces the frame's chain-pointer.
273
274 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
275 and produces the nominal address of the caller frame.
276
277 However, if FRAME_CHAIN_VALID returns zero,
278 it means the given frame is the outermost one and has no caller.
279 In that case, FRAME_CHAIN_COMBINE is not used. */
280
281 /* In the case of the PA-RISC, the frame's nominal address
282 is the address of a 4-byte word containing the calling frame's
283 address (previous FP). */
284
285 #define FRAME_CHAIN(thisframe) \
286 (inside_entry_file ((thisframe)->pc) ? \
287 read_memory_integer ((thisframe)->frame, 4) :\
288 0)
289
290 #define FRAME_CHAIN_VALID(chain, thisframe) \
291 frame_chain_valid (chain, thisframe)
292
293 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
294
295 /* Define other aspects of the stack frame. */
296
297 /* A macro that tells us whether the function invocation represented
298 by FI does not have a frame on the stack associated with it. If it
299 does not, FRAMELESS is set to 1, else 0. */
300 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
301 (FRAMELESS) = frameless_look_for_prologue(FI)
302
303 #define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
304
305 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
306
307 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
308 /* Set VAL to the number of args passed to frame described by FI.
309 Can set VAL to -1, meaning no way to tell. */
310
311 /* We can't tell how many args there are
312 now that the C compiler delays popping them. */
313 #define FRAME_NUM_ARGS(val,fi) (val = -1)
314
315 /* Return number of bytes at start of arglist that are not really args. */
316
317 #define FRAME_ARGS_SKIP 0
318
319 /* Put here the code to store, into a struct frame_saved_regs,
320 the addresses of the saved registers of frame described by FRAME_INFO.
321 This includes special registers such as pc and fp saved in special
322 ways in the stack frame. sp is even more special:
323 the address we return for it IS the sp for the next frame. */
324
325 /* Deal with dummy functions later. */
326
327 #define STW_P(INSN) (((INSN) & 0xfc000000) == 0x68000000)
328 #define ADDIL_P(INSN) (((INSN) & 0xfc000000) == 0x28000000)
329 #define LDO_P(INSN) (((INSN) & 0xfc00c000) == 0x34000000)
330
331
332 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
333 { register int regnum; \
334 register CORE_ADDR next_addr; \
335 register CORE_ADDR pc; \
336 unsigned this_insn; \
337 unsigned address; \
338 \
339 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
340 if ((frame_info)->pc <= ((frame_info)->frame - CALL_DUMMY_LENGTH - \
341 FP_REGNUM * 4 - 16 * 8) \
342 && (frame_info)->pc > (frame_info)->frame) \
343 find_dummy_frame_regs ((frame_info), &(frame_saved_regs)); \
344 else \
345 { pc = get_pc_function_start ((frame_info)->pc); \
346 if (read_memory_integer (pc, 4) == 0x6BC23FD9) \
347 { (frame_saved_regs).regs[RP_REGNUM] = (frame_info)->frame - 20;\
348 pc = pc + 4; \
349 } \
350 if (read_memory_integer (pc, 4) != 0x8040241) goto lose; \
351 pc += 8; /* skip "copy 4,1; copy 30, 4" */ \
352 /* skip either "stw 1,0(4);addil L'fsize,30;ldo R'fsize(1),30" \
353 or "stwm 1,fsize(30)" */ \
354 if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) \
355 pc += 12; \
356 else \
357 pc += 4; \
358 while (1) \
359 { this_insn = read_memory_integer(pc, 4); \
360 if (STW_P (this_insn)) /* stw */ \
361 { regnum = GET_FIELD (this_insn, 11, 15); \
362 if (!regnum) goto lose; \
363 (frame_saved_regs).regs[regnum] = (frame_info)->frame + \
364 extract_14 (this_insn); \
365 pc += 4; \
366 } \
367 else if (ADDIL_P (this_insn)) /* addil */ \
368 { int next_insn; \
369 next_insn = read_memory_integer(pc + 4, 4); \
370 if (STW_P (next_insn)) /* stw */ \
371 { regnum = GET_FIELD (this_insn, 6, 10); \
372 if (!regnum) goto lose; \
373 (frame_saved_regs).regs[regnum] = (frame_info)->frame +\
374 (extract_21 (this_insn) << 11) + extract_14 (next_insn);\
375 pc += 8; \
376 } \
377 else \
378 break; \
379 } \
380 else \
381 { pc += 4; \
382 break; \
383 } \
384 } \
385 this_insn = read_memory_integer (pc, 4); \
386 if (LDO_P (this_insn)) \
387 { next_addr = (frame_info)->frame + extract_14 (this_insn); \
388 pc += 4; \
389 } \
390 else if (ADDIL_P (this_insn)) \
391 { next_addr = (frame_info)->frame + (extract_21 (this_insn) << 11)\
392 + extract_14 (read_memory_integer (pc + 4, 4)); \
393 pc += 8; \
394 } \
395 while (1) \
396 { this_insn = read_memory_integer (pc, 4); \
397 if ((this_insn & 0xfc001fe0) == 0x2c001220) /* fstds,ma */ \
398 { regnum = GET_FIELD (this_insn, 27, 31); \
399 (frame_saved_regs).regs[regnum + FP0_REGNUM] = next_addr; \
400 next_addr += 8; \
401 } \
402 else \
403 break; \
404 } \
405 lose: \
406 (frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
407 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame -4; \
408 }}
409 \f
410 /* Things needed for making the inferior call functions. */
411
412 /* Push an empty stack frame, to record the current PC, etc. */
413
414 #define PUSH_DUMMY_FRAME \
415 { register CORE_ADDR sp = read_register (SP_REGNUM); \
416 register int regnum; \
417 int int_buffer; \
418 double freg_buffer; \
419 /* Space for "arguments"; the RP goes in here. */ \
420 sp += 48; \
421 int_buffer = read_register (RP_REGNUM) | 0x3; \
422 write_memory (sp - 20, &int_buffer, 4); \
423 int_buffer = read_register (FP_REGNUM); \
424 write_memory (sp, &int_buffer, 4); \
425 write_register (FP_REGNUM, sp); \
426 sp += 4; \
427 for (regnum = 1; regnum < 31; regnum++) \
428 if (regnum != RP_REGNUM && regnum != FP_REGNUM) \
429 sp = push_word (sp, read_register (regnum)); \
430 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) \
431 { read_register_bytes (REGISTER_BYTE (regnum), &freg_buffer, 8); \
432 sp = push_bytes (sp, &freg_buffer, 8);} \
433 sp = push_word (sp, read_register (IPSW_REGNUM)); \
434 sp = push_word (sp, read_register (SAR_REGNUM)); \
435 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM)); \
436 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM)); \
437 write_register (SP_REGNUM, sp);}
438
439 /* Discard from the stack the innermost frame,
440 restoring all saved registers. */
441 #define POP_FRAME \
442 { register FRAME frame = get_current_frame (); \
443 register CORE_ADDR fp; \
444 register int regnum; \
445 struct frame_saved_regs fsr; \
446 struct frame_info *fi; \
447 double freg_buffer; \
448 fi = get_frame_info (frame); \
449 fp = fi->frame; \
450 get_frame_saved_regs (fi, &fsr); \
451 for (regnum = 31; regnum > 0; regnum--) \
452 if (fsr.regs[regnum]) \
453 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
454 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) \
455 if (fsr.regs[regnum]) \
456 { read_memory (fsr.regs[regnum], &freg_buffer, 8); \
457 write_register_bytes (REGISTER_BYTE (regnum), &freg_buffer, 8); }\
458 if (fsr.regs[IPSW_REGNUM]) \
459 write_register (IPSW_REGNUM, \
460 read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); \
461 if (fsr.regs[SAR_REGNUM]) \
462 write_register (SAR_REGNUM, \
463 read_memory_integer (fsr.regs[SAR_REGNUM], 4)); \
464 if (fsr.regs[PCOQ_TAIL_REGNUM]) \
465 write_register (PCOQ_TAIL_REGNUM, \
466 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));\
467 if (fsr.regs[PCSQ_TAIL_REGNUM]) \
468 write_register (PCSQ_TAIL_REGNUM, \
469 read_memory_integer (fsr.regs[PCSQ_TAIL_REGNUM], 4));\
470 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
471 write_register (SP_REGNUM, fp + 8); \
472 flush_cached_frames (); \
473 set_current_frame (create_new_frame (read_register (FP_REGNUM),\
474 read_pc ())); }
475
476 /* This sequence of words is the instructions
477
478 ; Call stack frame has already been built by gdb. Since we could be calling
479 ; a varargs function, and we do not have the benefit of a stub to put things in
480 ; the right place, we load the first 4 word of arguments into both the general
481 ; and fp registers.
482 call_dummy
483 ldw -36(sp), arg0
484 ldw -40(sp), arg1
485 ldw -44(sp), arg2
486 ldw -48(sp), arg3
487 ldo -36(sp), r1
488 fldws 0(0, r1), fr4
489 fldds -4(0, r1), fr5
490 fldws -8(0, r1), fr6
491 fldds -12(0, r1), fr7
492 ldil 0, r22 ; target will be placed here.
493 ldo 0(r22), r22
494 ldsid (0,r22), r3
495 ldil 0, r1 ; _sr4export will be placed here.
496 ldo 0(r1), r1
497 ldsid (0,r1), r4
498 combt,=,n r3, r4, text_space ; If target is in data space, do a
499 ble 0(sr5, r22) ; "normal" procedure call
500 copy r31, r2
501 break 4, 8
502 text_space ; Otherwise, go through _sr4export,
503 ble (sr4, r1) ; which will return back here.
504 stw 31,-24(r30)
505 break 4, 8
506
507 The dummy decides if the target is in text space or data space. If
508 it's in data space, there's no problem because the target can
509 return back to the dummy. However, if the target is in text space,
510 the dummy calls the secret, undocumented routine _sr4export, which
511 calls a function in text space and can return to any space. Instead
512 of including fake instructions to represent saved registers, we
513 know that the frame is associated with the call dummy and treat it
514 specially. */
515
516 #define CALL_DUMMY { 0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1, \
517 0x37c13fb9, 0x24201004, 0x2c391005, 0x24311006, \
518 0x2c291007, 0x22c00000, 0x36d60000, 0x02c010a3, \
519 0x20200000, 0x34210000, 0x002010a4, 0x80832012, \
520 0xe6c06000, 0x081f0242, 0x00010004, 0xe4202000, \
521 0x6bdf3fd1, 0x00010004}
522
523 #define CALL_DUMMY_LENGTH 88
524 #define CALL_DUMMY_START_OFFSET 0
525 /* Insert the specified number of args and function address
526 into a call sequence of the above form stored at DUMMYNAME. */
527 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
528 { static CORE_ADDR sr4export_address = 0; \
529 \
530 if (!sr4export_address) \
531 { \
532 struct minimal_symbol *msymbol; \
533 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);\
534 if (msymbol = NULL) \
535 error ("Can't find an address for _sr4export trampoline"); \
536 else \
537 sr4export_address = msymbol -> address; \
538 } \
539 dummyname[9] = deposit_21 (fun >> 11, dummyname[9]); \
540 dummyname[10] = deposit_14 (fun & MASK_11, dummyname[10]); \
541 dummyname[12] = deposit_21 (sr4export_address >> 11, dummyname[12]); \
542 dummyname[13] = deposit_14 (sr4export_address & MASK_11, dummyname[13]);\
543 }
544
545 /* Write the PC to a random value.
546 On PA-RISC, we need to be sure that the PC space queue is correct. */
547
548 #define WRITE_PC(addr) \
549 { int space_reg, space = ((addr) >> 30); \
550 int space_val; \
551 if (space == 0) \
552 space_reg = 43; /* Space reg sr4 */ \
553 else if (space == 1) \
554 space_reg = 48; /* Space reg sr5*/ \
555 else \
556 error ("pc = %x is in illegal space.", addr); \
557 space_val = read_register (space_reg); \
558 write_register (PCOQ_HEAD_REGNUM, addr); \
559 write_register (PCSQ_HEAD_REGNUM, space_val); \
560 write_register (PCOQ_TAIL_REGNUM, addr); \
561 write_register (PCSQ_TAIL_REGNUM, space_val);}
562
563
564 # ifndef SEEK_SET
565 # define SEEK_SET 0 /* Set file pointer to "offset" */
566 # define SEEK_CUR 1 /* Set file pointer to current plus "offset" */
567 # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */
568 # endif /* SEEK_SET */
569
570
This page took 0.049147 seconds and 4 git commands to generate.