* am29k-tdep.c (initialize_29k): Fix call_scratch_address doc.
[deliverable/binutils-gdb.git] / gdb / tm-np1.h
1 /* Parameters for targeting on a Gould NP1, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #define GOULD_NPL
21
22 #define TARGET_BYTE_ORDER BIG_ENDIAN
23
24 /* N_ENTRY appears in libraries on Gould machines.
25 Don't know what 0xa4 is; it's mentioned in stab.h
26 but only in the sdb symbol list. */
27 #define IGNORE_SYMBOL(type) (type == N_ENTRY || type == 0xa4)
28
29 /* We don't want the extra gnu symbols on the machine;
30 they will interfere with the shared segment symbols. */
31 #define NO_GNU_STABS
32
33 /* Macro for text-offset and data info (in NPL a.out format). */
34 #define TEXTINFO \
35 text_offset = N_TXTOFF (exec_coffhdr, exec_aouthdr); \
36 exec_data_offset = N_TXTOFF (exec_coffhdr, exec_aouthdr)\
37 + exec_aouthdr.a_text
38
39 /* Macro for number of symbol table entries */
40 #define NUMBER_OF_SYMBOLS \
41 (coffhdr.f_nsyms)
42
43 /* Macro for file-offset of symbol table (in NPL a.out format). */
44 #define SYMBOL_TABLE_OFFSET \
45 N_SYMOFF (coffhdr)
46
47 /* Macro for file-offset of string table (in NPL a.out format). */
48 #define STRING_TABLE_OFFSET \
49 (N_STROFF (coffhdr))
50
51 /* Macro to store the length of the string table data in INTO. */
52 #define READ_STRING_TABLE_SIZE(INTO) \
53 { INTO = hdr.a_stsize; }
54
55 /* Macro to declare variables to hold the file's header data. */
56 #define DECLARE_FILE_HEADERS struct exec hdr; \
57 FILHDR coffhdr
58
59 /* Macro to read the header data from descriptor DESC and validate it.
60 NAME is the file name, for error messages. */
61 #define READ_FILE_HEADERS(DESC, NAME) \
62 { val = myread (DESC, &coffhdr, sizeof coffhdr); \
63 if (val < 0) \
64 perror_with_name (NAME); \
65 val = myread (DESC, &hdr, sizeof hdr); \
66 if (val < 0) \
67 perror_with_name (NAME); \
68 if (coffhdr.f_magic != GNP1MAGIC) \
69 error ("File \"%s\" not in coff executable format.", NAME); \
70 if (N_BADMAG (hdr)) \
71 error ("File \"%s\" not in executable format.", NAME); }
72
73 /* Define COFF and other symbolic names needed on NP1 */
74 #define NS32GMAGIC GNP1MAGIC
75 #define NS32SMAGIC GPNMAGIC
76
77 /* Address of blocks in N_LBRAC and N_RBRAC symbols are absolute addresses,
78 not relative to start of source address. */
79 #define BLOCK_ADDRESS_ABSOLUTE
80
81 /* Offset from address of function to start of its code.
82 Zero on most machines. */
83 #define FUNCTION_START_OFFSET 8
84
85 /* Advance PC across any function entry prologue instructions
86 to reach some "real" code. One NPL we can have one two startup
87 sequences depending on the size of the local stack:
88
89 Either:
90 "suabr b2, #"
91 of
92 "lil r4, #", "suabr b2, #(r4)"
93
94 "lwbr b6, #", "stw r1, 8(b2)"
95 Optional "stwbr b3, c(b2)"
96 Optional "trr r2,r7" (Gould first argument register passing)
97 or
98 Optional "stw r2,8(b3)" (Gould first argument register passing)
99 */
100 #define SKIP_PROLOGUE(pc) { \
101 register int op = read_memory_integer ((pc), 4); \
102 if ((op & 0xffff0000) == 0xFA0B0000) { \
103 pc += 4; \
104 op = read_memory_integer ((pc), 4); \
105 if ((op & 0xffff0000) == 0x59400000) { \
106 pc += 4; \
107 op = read_memory_integer ((pc), 4); \
108 if ((op & 0xffff0000) == 0x5F000000) { \
109 pc += 4; \
110 op = read_memory_integer ((pc), 4); \
111 if (op == 0xD4820008) { \
112 pc += 4; \
113 op = read_memory_integer ((pc), 4); \
114 if (op == 0x5582000C) { \
115 pc += 4; \
116 op = read_memory_integer ((pc), 2); \
117 if (op == 0x2fa0) { \
118 pc += 2; \
119 } else { \
120 op = read_memory_integer ((pc), 4); \
121 if (op == 0xd5030008) { \
122 pc += 4; \
123 } \
124 } \
125 } else { \
126 op = read_memory_integer ((pc), 2); \
127 if (op == 0x2fa0) { \
128 pc += 2; \
129 } \
130 } \
131 } \
132 } \
133 } \
134 } \
135 if ((op & 0xffff0000) == 0x59000000) { \
136 pc += 4; \
137 op = read_memory_integer ((pc), 4); \
138 if ((op & 0xffff0000) == 0x5F000000) { \
139 pc += 4; \
140 op = read_memory_integer ((pc), 4); \
141 if (op == 0xD4820008) { \
142 pc += 4; \
143 op = read_memory_integer ((pc), 4); \
144 if (op == 0x5582000C) { \
145 pc += 4; \
146 op = read_memory_integer ((pc), 2); \
147 if (op == 0x2fa0) { \
148 pc += 2; \
149 } else { \
150 op = read_memory_integer ((pc), 4); \
151 if (op == 0xd5030008) { \
152 pc += 4; \
153 } \
154 } \
155 } else { \
156 op = read_memory_integer ((pc), 2); \
157 if (op == 0x2fa0) { \
158 pc += 2; \
159 } \
160 } \
161 } \
162 } \
163 } \
164 }
165
166 /* Immediately after a function call, return the saved pc.
167 Can't go through the frames for this because on some machines
168 the new frame is not set up until the new function executes
169 some instructions. True on NPL! Return address is in R1.
170 The true return address is REALLY 4 past that location! */
171 #define SAVED_PC_AFTER_CALL(frame) \
172 (read_register(R1_REGNUM) + 4)
173
174 /* Address of end of stack space. */
175 #define STACK_END_ADDR 0x7fffc000
176
177 /* Stack grows downward. */
178 #define INNER_THAN <
179
180 /* Sequence of bytes for breakpoint instruction.
181 This is padded out to the size of a machine word. When it was just
182 {0x28, 0x09} it gave problems if hit breakpoint on returning from a
183 function call. */
184 #define BREAKPOINT {0x28, 0x09, 0x0, 0x0}
185
186 /* Amount PC must be decremented by after a breakpoint.
187 This is often the number of bytes in BREAKPOINT
188 but not always. */
189 #define DECR_PC_AFTER_BREAK 2
190
191 /* Nonzero if instruction at PC is a return instruction. "bu 4(r1)" */
192 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x40100004)
193
194 /* Return 1 if P points to an invalid floating point value. */
195 #define INVALID_FLOAT(p, len) ((*(short *)p & 0xff80) == 0x8000)
196
197 /* Say how long (ordinary) registers are. */
198 #define REGISTER_TYPE long
199
200 /* Size of bytes of vector register (NP1 only), 32 elements * sizeof(int) */
201 #define VR_SIZE 128
202
203 /* Number of machine registers */
204 #define NUM_REGS 27
205 #define NUM_GEN_REGS 16
206 #define NUM_CPU_REGS 4
207 #define NUM_VECTOR_REGS 7
208
209 /* Initializer for an array of names of registers.
210 There should be NUM_REGS strings in this initializer. */
211 #define REGISTER_NAMES { \
212 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
213 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
214 "sp", "ps", "pc", "ve", \
215 "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
216 }
217
218 /* Register numbers of various important registers.
219 Note that some of these values are "real" register numbers,
220 and correspond to the general registers of the machine,
221 and some are "phony" register numbers which are too large
222 to be actual register numbers as far as the user is concerned
223 but do serve to get the desired values when passed to read_register. */
224 #define R1_REGNUM 1 /* Gr1 => return address of caller */
225 #define R2_REGNUM 2 /* Gr2 => return value from function */
226 #define R4_REGNUM 4 /* Gr4 => register save area */
227 #define R5_REGNUM 5 /* Gr5 => register save area */
228 #define R6_REGNUM 6 /* Gr6 => register save area */
229 #define R7_REGNUM 7 /* Gr7 => register save area */
230 #define B1_REGNUM 9 /* Br1 => start of this code routine */
231 #define SP_REGNUM 10 /* Br2 == (sp) */
232 #define AP_REGNUM 11 /* Br3 == (ap) */
233 #define FP_REGNUM 16 /* A copy of Br2 saved in trap */
234 #define PS_REGNUM 17 /* Contains processor status */
235 #define PC_REGNUM 18 /* Contains program counter */
236 #define VE_REGNUM 19 /* Vector end (user setup) register */
237 #define V1_REGNUM 20 /* First vector register */
238 #define V7_REGNUM 26 /* First vector register */
239
240 /* Total amount of space needed to store our copies of the machine's
241 register state, the array `registers'. */
242 #define REGISTER_BYTES \
243 (NUM_GEN_REGS*4 + NUM_VECTOR_REGS*VR_SIZE + NUM_CPU_REGS*4)
244
245 /* Index within `registers' of the first byte of the space for
246 register N. */
247 #define REGISTER_BYTE(N) \
248 (((N) < V1_REGNUM) ? ((N) * 4) : (((N) - V1_REGNUM) * VR_SIZE) + 80)
249
250 /* Number of bytes of storage in the actual machine representation
251 for register N. On the NP1, all normal regs are 4 bytes, but
252 the vector registers are VR_SIZE*4 bytes long. */
253 #define REGISTER_RAW_SIZE(N) \
254 (((N) < V1_REGNUM) ? 4 : VR_SIZE)
255
256 /* Number of bytes of storage in the program's representation
257 for register N. On the NP1, all regs are 4 bytes. */
258 #define REGISTER_VIRTUAL_SIZE(N) \
259 (((N) < V1_REGNUM) ? 4 : VR_SIZE)
260
261 /* Largest value REGISTER_RAW_SIZE can have. */
262 #define MAX_REGISTER_RAW_SIZE VR_SIZE
263
264 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
265 #define MAX_REGISTER_VIRTUAL_SIZE VR_SIZE
266
267 /* Nonzero if register N requires conversion
268 from raw format to virtual format. */
269 #define REGISTER_CONVERTIBLE(N) (0)
270
271 /* Convert data from raw format for register REGNUM
272 to virtual format for register REGNUM. */
273 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
274 bcopy ((FROM), (TO), REGISTER_RAW_SIZE(REGNUM));
275
276 /* Convert data from virtual format for register REGNUM
277 to raw format for register REGNUM. */
278 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
279 bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
280
281 /* Return the GDB type object for the "standard" data type
282 of data in register N. */
283 #define REGISTER_VIRTUAL_TYPE(N) \
284 ((N) > VE_REGNUM ? builtin_type_np1_vector : builtin_type_int)
285 extern struct type *builtin_type_np1_vector;
286
287 /* Store the address of the place in which to copy the structure the
288 subroutine will return. This is called from call_function.
289
290 On this machine this is a no-op, because gcc isn't used on it
291 yet. So this calling convention is not used. */
292
293 #define STORE_STRUCT_RETURN(ADDR, SP) push_word(SP + 8, ADDR)
294
295 /* Extract from an arrary REGBUF containing the (raw) register state
296 a function return value of type TYPE, and copy that, in virtual format,
297 into VALBUF. */
298
299 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
300 bcopy (((int *)(REGBUF)) + 2, VALBUF, TYPE_LENGTH (TYPE))
301
302 /* Write into appropriate registers a function return value
303 of type TYPE, given in virtual format. */
304
305 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
306 write_register_bytes (REGISTER_BYTE (R2_REGNUM), VALBUF, \
307 TYPE_LENGTH (TYPE))
308
309 /* Extract from an array REGBUF containing the (raw) register state
310 the address in which a function should return its structure value,
311 as a CORE_ADDR (or an expression that can be used as one). */
312
313 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*((int *)(REGBUF) + 2))
314
315 /* Both gcc and cc return small structs in registers (i.e. in GDB
316 terminology, small structs don't use the struct return convention). */
317 #define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH(type) > 8)
318 \f
319 /* Describe the pointer in each stack frame to the previous stack frame
320 (its caller). */
321
322 /* FRAME_CHAIN takes a frame's nominal address
323 and produces the frame's chain-pointer.
324
325 However, if FRAME_CHAIN_VALID returns zero,
326 it means the given frame is the outermost one and has no caller. */
327
328 /* In the case of the NPL, the frame's norminal address is Br2 and the
329 previous routines frame is up the stack X bytes, where X is the
330 value stored in the code function header xA(Br1). */
331 #define FRAME_CHAIN(thisframe) (findframe(thisframe))
332
333 #define FRAME_CHAIN_VALID(chain, thisframe) \
334 (chain != 0 && chain != (thisframe)->frame)
335
336 /* Define other aspects of the stack frame on NPL. */
337 #define FRAME_SAVED_PC(FRAME) \
338 (read_memory_integer ((FRAME)->frame + 8, 4))
339
340 #define FRAME_ARGS_ADDRESS(fi) \
341 ((fi)->next_frame ? \
342 read_memory_integer ((fi)->frame + 12, 4) : \
343 read_register (AP_REGNUM))
344
345 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
346
347 /* Set VAL to the number of args passed to frame described by FI.
348 Can set VAL to -1, meaning no way to tell. */
349
350 /* We can check the stab info to see how
351 many arg we have. No info in stack will tell us */
352 #define FRAME_NUM_ARGS(val,fi) (val = findarg(fi))
353
354 /* Return number of bytes at start of arglist that are not really args. */
355 #define FRAME_ARGS_SKIP 8
356
357 /* Put here the code to store, into a struct frame_saved_regs,
358 the addresses of the saved registers of frame described by FRAME_INFO.
359 This includes special registers such as pc and fp saved in special
360 ways in the stack frame. sp is even more special:
361 the address we return for it IS the sp for the next frame. */
362
363 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
364 { \
365 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
366 (frame_saved_regs).regs[SP_REGNUM] = framechain (frame_info); \
367 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 8; \
368 (frame_saved_regs).regs[R4_REGNUM] = (frame_info)->frame + 0x30; \
369 (frame_saved_regs).regs[R5_REGNUM] = (frame_info)->frame + 0x34; \
370 (frame_saved_regs).regs[R6_REGNUM] = (frame_info)->frame + 0x38; \
371 (frame_saved_regs).regs[R7_REGNUM] = (frame_info)->frame + 0x3C; \
372 }
373 \f
374 /* Things needed for making the inferior call functions. */
375
376 #define CALL_DUMMY_LOCATION BEFORE_TEXT_END
377 #define NEED_TEXT_START_END
378
379 /* Push an empty stack frame, to record the current PC, etc. */
380
381 #define PUSH_DUMMY_FRAME \
382 { register CORE_ADDR sp = read_register (SP_REGNUM); \
383 register int regnum; \
384 for (regnum = 0; regnum < FP_REGNUM; regnum++) \
385 sp = push_word (sp, read_register (regnum)); \
386 sp = push_word (sp, read_register (PS_REGNUM)); \
387 sp = push_word (sp, read_register (PC_REGNUM)); \
388 write_register (SP_REGNUM, sp);}
389
390 /* Discard from the stack the innermost frame,
391 restoring all saved registers. */
392
393 #define POP_FRAME \
394 { CORE_ADDR sp = read_register(SP_REGNUM); \
395 REGISTER_TYPE reg; \
396 int regnum; \
397 for(regnum = 0;regnum < FP_REGNUM;regnum++){ \
398 sp-=sizeof(REGISTER_TYPE); \
399 read_memory(sp,&reg,sizeof(REGISTER_TYPE)); \
400 write_register(regnum,reg);} \
401 sp-=sizeof(REGISTER_TYPE); \
402 read_memory(sp,&reg,sizeof(REGISTER_TYPE)); \
403 write_register(PS_REGNUM,reg); \
404 sp-=sizeof(REGISTER_TYPE); \
405 read_memory(sp,&reg,sizeof(REGISTER_TYPE)); \
406 write_register(PC_REGNUM,reg);}
407
408 /* MJD - Size of dummy frame pushed onto stack by PUSH_DUMMY_FRAME */
409
410 #define DUMMY_FRAME_SIZE (0x48)
411
412 /* MJD - The sequence of words in the instructions is
413 halt
414 halt
415 halt
416 halt
417 subr b2,stack size,0 grab stack space for dummy call
418 labr b3,x0(b2),0 set AP_REGNUM to point at arguments
419 lw r2,x8(b3),0 load r2 with first argument
420 lwbr b1,arguments size(b2),0 load address of function to be called
421 brlnk r1,x8(b1),0 call function
422 halt
423 halt
424 labr b2,stack size(b2),0 give back stack
425 break break
426 */
427
428 #define CALL_DUMMY {0x00000000, \
429 0x00000000, \
430 0x59000000, \
431 0x598a0000, \
432 0xb5030008, \
433 0x5c820000, \
434 0x44810008, \
435 0x00000000, \
436 0x590a0000, \
437 0x28090000 }
438
439 #define CALL_DUMMY_LENGTH 40
440
441 #define CALL_DUMMY_START_OFFSET 8
442
443 #define CALL_DUMMY_STACK_ADJUST 8
444
445 /* MJD - Fixup CALL_DUMMY for the specific function call.
446 OK heres the problems
447 1) On a trap there are two copies of the stack pointer, one in SP_REGNUM
448 which is read/write and one in FP_REGNUM which is only read. It seems
449 that when restarting the GOULD NP1 uses FP_REGNUM's value.
450 2) Loading function address into b1 looks a bit difficult if bigger than
451 0x0000fffc, infact from what I can tell the compiler sets up table of
452 function address in base3 through which function calls are referenced.
453
454 OK my solutions
455 Calculate the size of the dummy stack frame and do adjustments of
456 SP_REGNUM in the dummy call.
457 Push function address onto the stack and load it in the dummy call
458 */
459
460 #define FIX_CALL_DUMMY(dummyname, sp, fun, nargs, args, type, gcc_p) \
461 { int i;\
462 int arg_len = 0, total_len;\
463 old_sp = push_word(old_sp,fun);\
464 for(i = nargs - 1;i >= 0;i--)\
465 arg_len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));\
466 if(struct_return)\
467 arg_len += TYPE_LENGTH(value_type);\
468 total_len = DUMMY_FRAME_SIZE+CALL_DUMMY_STACK_ADJUST+4+arg_len;\
469 dummyname[0] += total_len;\
470 dummyname[2] += total_len;\
471 dummyname[5] += arg_len+CALL_DUMMY_STACK_ADJUST;\
472 dummyname[8] += total_len;}
473
474 /* MJD - So the stack should end up looking like this
475
476 | Normal stack frame |
477 | from normal program |
478 | flow |
479 +---------------------+ <- Final sp - 0x08 - argument size
480 | | - 0x4 - dummy_frame_size
481 | Pushed dummy frame |
482 | b0-b7, r0-r7 |
483 | pc and ps |
484 | |
485 +---------------------+
486 | Function address |
487 +---------------------+ <- Final sp - 0x8 - arguments size
488 | |
489 | |
490 | |
491 | Arguments to |
492 | Function |
493 | |
494 | |
495 | |
496 +---------------------+ <- Final sp - 0x8
497 | Dummy_stack_adjust |
498 +---------------------+ <- Final sp
499 | |
500 | where call will |
501 | build frame |
502 */
This page took 0.039652 seconds and 4 git commands to generate.