Split non-target-dependent code out of target_attach routines.
[deliverable/binutils-gdb.git] / gdb / tm-pn.h
1 /* Parameters for targe of a Gould Powernode, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #define GOULD_PN
21
22 #define TARGET_BYTE_ORDER BIG_ENDIAN
23
24 /* This code appears in libraries on Gould machines. Ignore it. */
25 #define IGNORE_SYMBOL(type) (type == N_ENTRY)
26
27 /* We don't want the extra gnu symbols on the machine;
28 they will interfere with the shared segment symbols. */
29 #define NO_GNU_STABS
30
31 /* Macro for text-offset and data info (in PN a.out format). */
32 #define TEXTINFO \
33 text_offset = N_TXTOFF (exec_coffhdr); \
34 exec_data_offset = N_TXTOFF (exec_coffhdr) \
35 + exec_aouthdr.a_text
36
37 /* Macro for number of symbol table entries */
38 #define END_OF_TEXT_DEFAULT \
39 (0xffffff)
40
41 /* Macro for number of symbol table entries */
42 #define NUMBER_OF_SYMBOLS \
43 (coffhdr.f_nsyms)
44
45 /* Macro for file-offset of symbol table (in usual a.out format). */
46 #define SYMBOL_TABLE_OFFSET \
47 N_SYMOFF (coffhdr)
48
49 /* Macro for file-offset of string table (in usual a.out format). */
50 #define STRING_TABLE_OFFSET \
51 (N_STROFF (coffhdr) + sizeof(int))
52
53 /* Macro to store the length of the string table data in INTO. */
54 #define READ_STRING_TABLE_SIZE(INTO) \
55 { INTO = hdr.a_stsize; }
56
57 /* Macro to declare variables to hold the file's header data. */
58 #define DECLARE_FILE_HEADERS struct old_exec hdr; \
59 FILHDR coffhdr
60
61 /* Macro to read the header data from descriptor DESC and validate it.
62 NAME is the file name, for error messages. */
63 #define READ_FILE_HEADERS(DESC, NAME) \
64 { val = myread (DESC, &coffhdr, sizeof coffhdr); \
65 if (val < 0) \
66 perror_with_name (NAME); \
67 val = myread (DESC, &hdr, sizeof hdr); \
68 if (val < 0) \
69 perror_with_name (NAME); \
70 if (coffhdr.f_magic != GNP1MAGIC) \
71 error ("File \"%s\" not in coff executable format.", NAME); \
72 if (N_BADMAG (hdr)) \
73 error ("File \"%s\" not in executable format.", NAME); }
74
75 /* Define COFF and other symbolic names needed on NP1 */
76 #define NS32GMAGIC GDPMAGIC
77 #define NS32SMAGIC PN_MAGIC
78 /* Define this if the C compiler puts an underscore at the front
79 of external names before giving them to the linker. */
80 #define NAMES_HAVE_UNDERSCORE
81
82 /* Offset from address of function to start of its code.
83 Zero on most machines. */
84 #define FUNCTION_START_OFFSET 4
85
86 /* Advance PC across any function entry prologue instructions
87 to reach some "real" code. One PN we can have one or two startup
88 sequences depending on the size of the local stack:
89
90 Either:
91 "suabr b2, #"
92 of
93 "lil r4, #", "suabr b2, #(r4)"
94
95 "lwbr b6, #", "stw r1, 8(b2)"
96 Optional "stwbr b3, c(b2)"
97 Optional "trr r2,r7" (Gould first argument register passing)
98 or
99 Optional "stw r2,8(b3)" (Gould first argument register passing)
100 */
101 #define SKIP_PROLOGUE(pc) { \
102 register int op = read_memory_integer ((pc), 4); \
103 if ((op & 0xffff0000) == 0x580B0000) { \
104 pc += 4; \
105 op = read_memory_integer ((pc), 4); \
106 if ((op & 0xffff0000) == 0x59400000) { \
107 pc += 4; \
108 op = read_memory_integer ((pc), 4); \
109 if ((op & 0xffff0000) == 0x5F000000) { \
110 pc += 4; \
111 op = read_memory_integer ((pc), 4); \
112 if (op == 0xD4820008) { \
113 pc += 4; \
114 op = read_memory_integer ((pc), 4); \
115 if (op == 0x5582000C) { \
116 pc += 4; \
117 op = read_memory_integer ((pc), 2); \
118 if (op == 0x2fa0) { \
119 pc += 2; \
120 } else { \
121 op = read_memory_integer ((pc), 4); \
122 if (op == 0xd5030008) { \
123 pc += 4; \
124 } \
125 } \
126 } else { \
127 op = read_memory_integer ((pc), 2); \
128 if (op == 0x2fa0) { \
129 pc += 2; \
130 } \
131 } \
132 } \
133 } \
134 } \
135 } \
136 if ((op & 0xffff0000) == 0x59000000) { \
137 pc += 4; \
138 op = read_memory_integer ((pc), 4); \
139 if ((op & 0xffff0000) == 0x5F000000) { \
140 pc += 4; \
141 op = read_memory_integer ((pc), 4); \
142 if (op == 0xD4820008) { \
143 pc += 4; \
144 op = read_memory_integer ((pc), 4); \
145 if (op == 0x5582000C) { \
146 pc += 4; \
147 op = read_memory_integer ((pc), 2); \
148 if (op == 0x2fa0) { \
149 pc += 2; \
150 } else { \
151 op = read_memory_integer ((pc), 4); \
152 if (op == 0xd5030008) { \
153 pc += 4; \
154 } \
155 } \
156 } else { \
157 op = read_memory_integer ((pc), 2); \
158 if (op == 0x2fa0) { \
159 pc += 2; \
160 } \
161 } \
162 } \
163 } \
164 } \
165 }
166
167 /* Immediately after a function call, return the saved pc.
168 Can't go through the frames for this because on some machines
169 the new frame is not set up until the new function executes
170 some instructions. True on PN! Return address is in R1.
171 Note: true return location is 4 bytes past R1! */
172 #define SAVED_PC_AFTER_CALL(frame) \
173 (read_register(R1_REGNUM) + 4)
174
175 /* Address of end of stack space. */
176 #define STACK_END_ADDR 0x480000
177
178 /* Stack grows downward. */
179 #define INNER_THAN <
180
181 /* Sequence of bytes for breakpoint instruction. */
182 #define BREAKPOINT {0x28, 0x09}
183
184 /* Amount PC must be decremented by after a breakpoint.
185 This is often the number of bytes in BREAKPOINT
186 but not always. */
187 #define DECR_PC_AFTER_BREAK 2
188
189 /* Nonzero if instruction at PC is a return instruction. "bu 4(r1)" */
190 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0xEC100004)
191
192 /* Return 1 if P points to an invalid floating point value. */
193 #define INVALID_FLOAT(p, len) ((*(short *)p & 0xff80) == 0x8000)
194
195 /* Say how long (ordinary) registers are. */
196 #define REGISTER_TYPE long
197
198 /* Number of machine registers */
199 #define NUM_REGS 19
200 #define NUM_GEN_REGS 16
201 #define NUM_CPU_REGS 3
202
203 /* Initializer for an array of names of registers.
204 There should be NUM_REGS strings in this initializer. */
205 #define REGISTER_NAMES { \
206 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
207 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
208 "sp", "ps", "pc", \
209 }
210
211 /* Register numbers of various important registers.
212 Note that some of these values are "real" register numbers,
213 and correspond to the general registers of the machine,
214 and some are "phony" register numbers which are too large
215 to be actual register numbers as far as the user is concerned
216 but do serve to get the desired values when passed to read_register. */
217 #define R1_REGNUM 1 /* Gr1 => return address of caller */
218 #define R4_REGNUM 4 /* Gr4 => register save area */
219 #define R5_REGNUM 5 /* Gr5 => register save area */
220 #define R6_REGNUM 6 /* Gr6 => register save area */
221 #define R7_REGNUM 7 /* Gr7 => register save area */
222 #define B1_REGNUM 9 /* Br1 => start of this code routine */
223 #define FP_REGNUM 10 /* Br2 == (sp) */
224 #define AP_REGNUM 11 /* Br3 == (ap) */
225 #define SP_REGNUM 16 /* A copy of Br2 saved in trap */
226 #define PS_REGNUM 17 /* Contains processor status */
227 #define PC_REGNUM 18 /* Contains program counter */
228
229 /* Total amount of space needed to store our copies of the machine's
230 register state, the array `registers'. */
231 #define REGISTER_BYTES (NUM_GEN_REGS*4 + NUM_CPU_REGS*4)
232
233 /* Index within `registers' of the first byte of the space for
234 register N. */
235 #define REGISTER_BYTE(N) ((N) * 4)
236
237 /* Number of bytes of storage in the actual machine representation
238 for register N. On the PN, all normal regs are 4 bytes. */
239 #define REGISTER_RAW_SIZE(N) (4)
240
241 /* Number of bytes of storage in the program's representation
242 for register N. On the PN, all regs are 4 bytes. */
243 #define REGISTER_VIRTUAL_SIZE(N) (4)
244
245 /* Largest value REGISTER_RAW_SIZE can have. */
246 #define MAX_REGISTER_RAW_SIZE (4)
247
248 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
249 #define MAX_REGISTER_VIRTUAL_SIZE (4)
250
251 /* Nonzero if register N requires conversion
252 from raw format to virtual format. */
253 #define REGISTER_CONVERTIBLE(N) (0)
254
255 /* Convert data from raw format for register REGNUM
256 to virtual format for register REGNUM. */
257 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
258 bcopy ((FROM), (TO), REGISTER_RAW_SIZE(REGNUM));
259
260 /* Convert data from virtual format for register REGNUM
261 to raw format for register REGNUM. */
262 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
263 bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
264
265 /* Return the GDB type object for the "standard" data type
266 of data in register N. */
267 #define REGISTER_VIRTUAL_TYPE(N) (builtin_type_int)
268
269 /* Store the address of the place in which to copy the structure the
270 subroutine will return. This is called from call_function.
271
272 On this machine this is a no-op, because gcc isn't used on it
273 yet. So this calling convention is not used. */
274
275 #define STORE_STRUCT_RETURN(ADDR, SP)
276
277 /* Extract from an arrary REGBUF containing the (raw) register state
278 a function return value of type TYPE, and copy that, in virtual format,
279 into VALBUF. */
280
281 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
282 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
283
284 /* Write into appropriate registers a function return value
285 of type TYPE, given in virtual format. */
286
287 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
288 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
289
290 /* Extract from an array REGBUF containing the (raw) register state
291 the address in which a function should return its structure value,
292 as a CORE_ADDR (or an expression that can be used as one). */
293
294 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
295
296 \f
297 /* Describe the pointer in each stack frame to the previous stack frame
298 (its caller). */
299
300 /* FRAME_CHAIN takes a frame's nominal address
301 and produces the frame's chain-pointer.
302
303 However, if FRAME_CHAIN_VALID returns zero,
304 it means the given frame is the outermost one and has no caller. */
305
306 /* In the case of the NPL, the frame's norminal address is Br2 and the
307 previous routines frame is up the stack X bytes, where X is the
308 value stored in the code function header xA(Br1). */
309 #define FRAME_CHAIN(thisframe) (findframe(thisframe))
310
311 #define FRAME_CHAIN_VALID(chain, thisframe) \
312 (chain != 0 && chain != (thisframe)->frame)
313
314 /* Define other aspects of the stack frame on NPL. */
315 #define FRAME_SAVED_PC(frame) \
316 (read_memory_integer ((frame)->frame + 8, 4))
317
318 #define FRAME_ARGS_ADDRESS(fi) \
319 ((fi)->next_frame ? \
320 read_memory_integer ((fi)->frame + 12, 4) : \
321 read_register (AP_REGNUM))
322
323 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame + 80)
324
325 /* Set VAL to the number of args passed to frame described by FI.
326 Can set VAL to -1, meaning no way to tell. */
327
328 /* We can check the stab info to see how
329 many arg we have. No info in stack will tell us */
330 #define FRAME_NUM_ARGS(val,fi) (val = findarg(fi))
331
332 /* Return number of bytes at start of arglist that are not really args. */
333 #define FRAME_ARGS_SKIP 8
334
335 /* Put here the code to store, into a struct frame_saved_regs,
336 the addresses of the saved registers of frame described by FRAME_INFO.
337 This includes special registers such as pc and fp saved in special
338 ways in the stack frame. sp is even more special:
339 the address we return for it IS the sp for the next frame. */
340
341 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
342 { \
343 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
344 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 8; \
345 (frame_saved_regs).regs[R4_REGNUM] = (frame_info)->frame + 0x30; \
346 (frame_saved_regs).regs[R5_REGNUM] = (frame_info)->frame + 0x34; \
347 (frame_saved_regs).regs[R6_REGNUM] = (frame_info)->frame + 0x38; \
348 (frame_saved_regs).regs[R7_REGNUM] = (frame_info)->frame + 0x3C; \
349 }
350 \f
351 /* Things needed for making the inferior call functions. */
352
353 /* Push an empty stack frame, to record the current PC, etc. */
354
355 #define PUSH_DUMMY_FRAME \
356 { register CORE_ADDR sp = read_register (SP_REGNUM); \
357 register int regnum; \
358 sp = push_word (sp, read_register (PC_REGNUM)); \
359 sp = push_word (sp, read_register (FP_REGNUM)); \
360 write_register (FP_REGNUM, sp); \
361 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
362 sp = push_word (sp, read_register (regnum)); \
363 sp = push_word (sp, read_register (PS_REGNUM)); \
364 write_register (SP_REGNUM, sp); }
365
366 /* Discard from the stack the innermost frame,
367 restoring all saved registers. */
368
369 #define POP_FRAME \
370 { register FRAME frame = get_current_frame (); \
371 register CORE_ADDR fp; \
372 register int regnum; \
373 struct frame_saved_regs fsr; \
374 struct frame_info *fi; \
375 fi = get_frame_info (frame); \
376 fp = fi->frame; \
377 get_frame_saved_regs (fi, &fsr); \
378 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
379 if (fsr.regs[regnum]) \
380 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
381 if (fsr.regs[PS_REGNUM]) \
382 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
383 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
384 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
385 write_register (SP_REGNUM, fp + 8); \
386 flush_cached_frames (); \
387 set_current_frame ( create_new_frame (read_register (FP_REGNUM),\
388 read_pc ())); }
389
390 /* This sequence of words is the instructions:
391 halt
392 halt
393 halt
394 halt
395 suabr b2, #<stacksize>
396 lwbr b6, #con
397 stw r1, 8(b2) - save caller address, do we care?
398 lw r2, 60(b2) - arg1
399 labr b3, 50(b2)
400 std r4, 30(b2) - save r4-r7
401 std r6, 38(b2)
402 lwbr b1, #<func> - load function call address
403 brlnk r1, 8(b1) - call function
404 halt
405 halt
406 ld r4, 30(b2) - restore r4-r7
407 ld r6, 38(b2)
408
409 Setup our stack frame, load argumemts, call and then restore registers.
410 */
411
412 /* FIXME: The below defines an m68k CALL_DUMMY, which looks nothing like what
413 is documented above. */
414
415 #define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e4f4e71}
416
417 #define CALL_DUMMY_LENGTH 28
418
419 #define CALL_DUMMY_START_OFFSET 12
420
421 /* Insert the specified number of args and function address
422 into a call sequence of the above form stored at DUMMYNAME. */
423
424 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
425 { *(int *)((char *) dummyname + 20) = nargs * 4; \
426 *(int *)((char *) dummyname + 14) = fun; }
This page took 0.049937 seconds and 4 git commands to generate.