* tm-{irix3,mips,nindy960,pn,symmetry,vx960}.h: Move
[deliverable/binutils-gdb.git] / gdb / tm-pn.h
1 /* Parameters for targe of a Gould Powernode, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #define GOULD_PN
21
22 #define TARGET_BYTE_ORDER BIG_ENDIAN
23
24 /* This code appears in libraries on Gould machines. Ignore it. */
25 #define IGNORE_SYMBOL(type) (type == N_ENTRY)
26
27 /* We don't want the extra gnu symbols on the machine;
28 they will interfere with the shared segment symbols. */
29 #define NO_GNU_STABS
30
31 /* Macro for text-offset and data info (in PN a.out format). */
32 #define TEXTINFO \
33 text_offset = N_TXTOFF (exec_coffhdr); \
34 exec_data_offset = N_TXTOFF (exec_coffhdr) \
35 + exec_aouthdr.a_text
36
37 /* Macro for number of symbol table entries */
38 #define END_OF_TEXT_DEFAULT \
39 (0xffffff)
40
41 /* Macro for number of symbol table entries */
42 #define NUMBER_OF_SYMBOLS \
43 (coffhdr.f_nsyms)
44
45 /* Macro for file-offset of symbol table (in usual a.out format). */
46 #define SYMBOL_TABLE_OFFSET \
47 N_SYMOFF (coffhdr)
48
49 /* Macro for file-offset of string table (in usual a.out format). */
50 #define STRING_TABLE_OFFSET \
51 (N_STROFF (coffhdr) + sizeof(int))
52
53 /* Macro to store the length of the string table data in INTO. */
54 #define READ_STRING_TABLE_SIZE(INTO) \
55 { INTO = hdr.a_stsize; }
56
57 /* Macro to declare variables to hold the file's header data. */
58 #define DECLARE_FILE_HEADERS struct old_exec hdr; \
59 FILHDR coffhdr
60
61 /* Macro to read the header data from descriptor DESC and validate it.
62 NAME is the file name, for error messages. */
63 #define READ_FILE_HEADERS(DESC, NAME) \
64 { val = myread (DESC, &coffhdr, sizeof coffhdr); \
65 if (val < 0) \
66 perror_with_name (NAME); \
67 val = myread (DESC, &hdr, sizeof hdr); \
68 if (val < 0) \
69 perror_with_name (NAME); \
70 if (coffhdr.f_magic != GNP1MAGIC) \
71 error ("File \"%s\" not in coff executable format.", NAME); \
72 if (N_BADMAG (hdr)) \
73 error ("File \"%s\" not in executable format.", NAME); }
74
75 /* Define COFF and other symbolic names needed on NP1 */
76 #define NS32GMAGIC GDPMAGIC
77 #define NS32SMAGIC PN_MAGIC
78 /* Define this if the C compiler puts an underscore at the front
79 of external names before giving them to the linker. */
80 #define NAMES_HAVE_UNDERSCORE
81
82 /* Debugger information will be in DBX format. */
83 #define READ_DBX_FORMAT
84
85 /* Offset from address of function to start of its code.
86 Zero on most machines. */
87 #define FUNCTION_START_OFFSET 4
88
89 /* Advance PC across any function entry prologue instructions
90 to reach some "real" code. One PN we can have one or two startup
91 sequences depending on the size of the local stack:
92
93 Either:
94 "suabr b2, #"
95 of
96 "lil r4, #", "suabr b2, #(r4)"
97
98 "lwbr b6, #", "stw r1, 8(b2)"
99 Optional "stwbr b3, c(b2)"
100 Optional "trr r2,r7" (Gould first argument register passing)
101 or
102 Optional "stw r2,8(b3)" (Gould first argument register passing)
103 */
104 #define SKIP_PROLOGUE(pc) { \
105 register int op = read_memory_integer ((pc), 4); \
106 if ((op & 0xffff0000) == 0x580B0000) { \
107 pc += 4; \
108 op = read_memory_integer ((pc), 4); \
109 if ((op & 0xffff0000) == 0x59400000) { \
110 pc += 4; \
111 op = read_memory_integer ((pc), 4); \
112 if ((op & 0xffff0000) == 0x5F000000) { \
113 pc += 4; \
114 op = read_memory_integer ((pc), 4); \
115 if (op == 0xD4820008) { \
116 pc += 4; \
117 op = read_memory_integer ((pc), 4); \
118 if (op == 0x5582000C) { \
119 pc += 4; \
120 op = read_memory_integer ((pc), 2); \
121 if (op == 0x2fa0) { \
122 pc += 2; \
123 } else { \
124 op = read_memory_integer ((pc), 4); \
125 if (op == 0xd5030008) { \
126 pc += 4; \
127 } \
128 } \
129 } else { \
130 op = read_memory_integer ((pc), 2); \
131 if (op == 0x2fa0) { \
132 pc += 2; \
133 } \
134 } \
135 } \
136 } \
137 } \
138 } \
139 if ((op & 0xffff0000) == 0x59000000) { \
140 pc += 4; \
141 op = read_memory_integer ((pc), 4); \
142 if ((op & 0xffff0000) == 0x5F000000) { \
143 pc += 4; \
144 op = read_memory_integer ((pc), 4); \
145 if (op == 0xD4820008) { \
146 pc += 4; \
147 op = read_memory_integer ((pc), 4); \
148 if (op == 0x5582000C) { \
149 pc += 4; \
150 op = read_memory_integer ((pc), 2); \
151 if (op == 0x2fa0) { \
152 pc += 2; \
153 } else { \
154 op = read_memory_integer ((pc), 4); \
155 if (op == 0xd5030008) { \
156 pc += 4; \
157 } \
158 } \
159 } else { \
160 op = read_memory_integer ((pc), 2); \
161 if (op == 0x2fa0) { \
162 pc += 2; \
163 } \
164 } \
165 } \
166 } \
167 } \
168 }
169
170 /* Immediately after a function call, return the saved pc.
171 Can't go through the frames for this because on some machines
172 the new frame is not set up until the new function executes
173 some instructions. True on PN! Return address is in R1.
174 Note: true return location is 4 bytes past R1! */
175 #define SAVED_PC_AFTER_CALL(frame) \
176 (read_register(R1_REGNUM) + 4)
177
178 /* Address of end of stack space. */
179 #define STACK_END_ADDR 0x480000
180
181 /* Stack grows downward. */
182 #define INNER_THAN <
183
184 /* Sequence of bytes for breakpoint instruction. */
185 #define BREAKPOINT {0x28, 0x09}
186
187 /* Amount PC must be decremented by after a breakpoint.
188 This is often the number of bytes in BREAKPOINT
189 but not always. */
190 #define DECR_PC_AFTER_BREAK 2
191
192 /* Nonzero if instruction at PC is a return instruction. "bu 4(r1)" */
193 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0xEC100004)
194
195 /* Return 1 if P points to an invalid floating point value. */
196 #define INVALID_FLOAT(p, len) ((*(short *)p & 0xff80) == 0x8000)
197
198 /* Say how long (ordinary) registers are. */
199 #define REGISTER_TYPE long
200
201 /* Number of machine registers */
202 #define NUM_REGS 19
203 #define NUM_GEN_REGS 16
204 #define NUM_CPU_REGS 3
205
206 /* Initializer for an array of names of registers.
207 There should be NUM_REGS strings in this initializer. */
208 #define REGISTER_NAMES { \
209 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
210 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
211 "sp", "ps", "pc", \
212 }
213
214 /* Register numbers of various important registers.
215 Note that some of these values are "real" register numbers,
216 and correspond to the general registers of the machine,
217 and some are "phony" register numbers which are too large
218 to be actual register numbers as far as the user is concerned
219 but do serve to get the desired values when passed to read_register. */
220 #define R1_REGNUM 1 /* Gr1 => return address of caller */
221 #define R4_REGNUM 4 /* Gr4 => register save area */
222 #define R5_REGNUM 5 /* Gr5 => register save area */
223 #define R6_REGNUM 6 /* Gr6 => register save area */
224 #define R7_REGNUM 7 /* Gr7 => register save area */
225 #define B1_REGNUM 9 /* Br1 => start of this code routine */
226 #define FP_REGNUM 10 /* Br2 == (sp) */
227 #define AP_REGNUM 11 /* Br3 == (ap) */
228 #define SP_REGNUM 16 /* A copy of Br2 saved in trap */
229 #define PS_REGNUM 17 /* Contains processor status */
230 #define PC_REGNUM 18 /* Contains program counter */
231
232 /* Total amount of space needed to store our copies of the machine's
233 register state, the array `registers'. */
234 #define REGISTER_BYTES (NUM_GEN_REGS*4 + NUM_CPU_REGS*4)
235
236 /* Index within `registers' of the first byte of the space for
237 register N. */
238 #define REGISTER_BYTE(N) ((N) * 4)
239
240 /* Number of bytes of storage in the actual machine representation
241 for register N. On the PN, all normal regs are 4 bytes. */
242 #define REGISTER_RAW_SIZE(N) (4)
243
244 /* Number of bytes of storage in the program's representation
245 for register N. On the PN, all regs are 4 bytes. */
246 #define REGISTER_VIRTUAL_SIZE(N) (4)
247
248 /* Largest value REGISTER_RAW_SIZE can have. */
249 #define MAX_REGISTER_RAW_SIZE (4)
250
251 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
252 #define MAX_REGISTER_VIRTUAL_SIZE (4)
253
254 /* Nonzero if register N requires conversion
255 from raw format to virtual format. */
256 #define REGISTER_CONVERTIBLE(N) (0)
257
258 /* Convert data from raw format for register REGNUM
259 to virtual format for register REGNUM. */
260 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
261 bcopy ((FROM), (TO), REGISTER_RAW_SIZE(REGNUM));
262
263 /* Convert data from virtual format for register REGNUM
264 to raw format for register REGNUM. */
265 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
266 bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
267
268 /* Return the GDB type object for the "standard" data type
269 of data in register N. */
270 #define REGISTER_VIRTUAL_TYPE(N) (builtin_type_int)
271
272 /* Store the address of the place in which to copy the structure the
273 subroutine will return. This is called from call_function.
274
275 On this machine this is a no-op, because gcc isn't used on it
276 yet. So this calling convention is not used. */
277
278 #define STORE_STRUCT_RETURN(ADDR, SP)
279
280 /* Extract from an arrary REGBUF containing the (raw) register state
281 a function return value of type TYPE, and copy that, in virtual format,
282 into VALBUF. */
283
284 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
285 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
286
287 /* Write into appropriate registers a function return value
288 of type TYPE, given in virtual format. */
289
290 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
291 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
292
293 /* Extract from an array REGBUF containing the (raw) register state
294 the address in which a function should return its structure value,
295 as a CORE_ADDR (or an expression that can be used as one). */
296
297 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
298
299 \f
300 /* Describe the pointer in each stack frame to the previous stack frame
301 (its caller). */
302
303 /* FRAME_CHAIN takes a frame's nominal address
304 and produces the frame's chain-pointer.
305
306 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
307 and produces the nominal address of the caller frame.
308
309 However, if FRAME_CHAIN_VALID returns zero,
310 it means the given frame is the outermost one and has no caller.
311 In that case, FRAME_CHAIN_COMBINE is not used. */
312
313 /* In the case of the NPL, the frame's norminal address is Br2 and the
314 previous routines frame is up the stack X bytes, where X is the
315 value stored in the code function header xA(Br1). */
316 #define FRAME_CHAIN(thisframe) (findframe(thisframe))
317
318 #define FRAME_CHAIN_VALID(chain, thisframe) \
319 (chain != 0 && chain != (thisframe)->frame)
320
321 #define FRAME_CHAIN_COMBINE(chain, thisframe) \
322 (chain)
323
324 /* Define other aspects of the stack frame on NPL. */
325 #define FRAME_SAVED_PC(frame) \
326 (read_memory_integer ((frame)->frame + 8, 4))
327
328 #define FRAME_ARGS_ADDRESS(fi) \
329 ((fi)->next_frame ? \
330 read_memory_integer ((fi)->frame + 12, 4) : \
331 read_register (AP_REGNUM))
332
333 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame + 80)
334
335 /* Set VAL to the number of args passed to frame described by FI.
336 Can set VAL to -1, meaning no way to tell. */
337
338 /* We can check the stab info to see how
339 many arg we have. No info in stack will tell us */
340 #define FRAME_NUM_ARGS(val,fi) (val = findarg(fi))
341
342 /* Return number of bytes at start of arglist that are not really args. */
343 #define FRAME_ARGS_SKIP 8
344
345 /* Put here the code to store, into a struct frame_saved_regs,
346 the addresses of the saved registers of frame described by FRAME_INFO.
347 This includes special registers such as pc and fp saved in special
348 ways in the stack frame. sp is even more special:
349 the address we return for it IS the sp for the next frame. */
350
351 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
352 { \
353 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
354 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 8; \
355 (frame_saved_regs).regs[R4_REGNUM] = (frame_info)->frame + 0x30; \
356 (frame_saved_regs).regs[R5_REGNUM] = (frame_info)->frame + 0x34; \
357 (frame_saved_regs).regs[R6_REGNUM] = (frame_info)->frame + 0x38; \
358 (frame_saved_regs).regs[R7_REGNUM] = (frame_info)->frame + 0x3C; \
359 }
360 \f
361 /* Things needed for making the inferior call functions. */
362
363 /* Push an empty stack frame, to record the current PC, etc. */
364
365 #define PUSH_DUMMY_FRAME \
366 { register CORE_ADDR sp = read_register (SP_REGNUM); \
367 register int regnum; \
368 sp = push_word (sp, read_register (PC_REGNUM)); \
369 sp = push_word (sp, read_register (FP_REGNUM)); \
370 write_register (FP_REGNUM, sp); \
371 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
372 sp = push_word (sp, read_register (regnum)); \
373 sp = push_word (sp, read_register (PS_REGNUM)); \
374 write_register (SP_REGNUM, sp); }
375
376 /* Discard from the stack the innermost frame,
377 restoring all saved registers. */
378
379 #define POP_FRAME \
380 { register FRAME frame = get_current_frame (); \
381 register CORE_ADDR fp; \
382 register int regnum; \
383 struct frame_saved_regs fsr; \
384 struct frame_info *fi; \
385 fi = get_frame_info (frame); \
386 fp = fi->frame; \
387 get_frame_saved_regs (fi, &fsr); \
388 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
389 if (fsr.regs[regnum]) \
390 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
391 if (fsr.regs[PS_REGNUM]) \
392 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
393 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
394 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
395 write_register (SP_REGNUM, fp + 8); \
396 flush_cached_frames (); \
397 set_current_frame ( create_new_frame (read_register (FP_REGNUM),\
398 read_pc ())); }
399
400 /* This sequence of words is the instructions:
401 halt
402 halt
403 halt
404 halt
405 suabr b2, #<stacksize>
406 lwbr b6, #con
407 stw r1, 8(b2) - save caller address, do we care?
408 lw r2, 60(b2) - arg1
409 labr b3, 50(b2)
410 std r4, 30(b2) - save r4-r7
411 std r6, 38(b2)
412 lwbr b1, #<func> - load function call address
413 brlnk r1, 8(b1) - call function
414 halt
415 halt
416 ld r4, 30(b2) - restore r4-r7
417 ld r6, 38(b2)
418
419 Setup our stack frame, load argumemts, call and then restore registers.
420 */
421
422 #define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e4f4e71}
423
424 #define CALL_DUMMY_LENGTH 28
425
426 #define CALL_DUMMY_START_OFFSET 12
427
428 /* Insert the specified number of args and function address
429 into a call sequence of the above form stored at DUMMYNAME. */
430
431 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
432 { *(int *)((char *) dummyname + 20) = nargs * 4; \
433 *(int *)((char *) dummyname + 14) = fun; }
This page took 0.039118 seconds and 5 git commands to generate.