0046e0975cc0296314f9cd3fdcfb0562d5a062cd
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include "gdb_string.h"
25 #include "event-top.h"
26
27 #ifdef HAVE_CURSES_H
28 #include <curses.h>
29 #endif
30 #ifdef HAVE_TERM_H
31 #include <term.h>
32 #endif
33
34 #ifdef __GO32__
35 #include <pc.h>
36 #endif
37
38 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39 #ifdef reg
40 #undef reg
41 #endif
42
43 #include "signals.h"
44 #include "gdbcmd.h"
45 #include "serial.h"
46 #include "bfd.h"
47 #include "target.h"
48 #include "demangle.h"
49 #include "expression.h"
50 #include "language.h"
51 #include "annotate.h"
52
53 #include "inferior.h" /* for signed_pointer_to_address */
54
55 #include <readline/readline.h>
56
57 #undef XMALLOC
58 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
59
60 /* readline defines this. */
61 #undef savestring
62
63 void (*error_begin_hook) (void);
64
65 /* Holds the last error message issued by gdb */
66
67 static struct ui_file *gdb_lasterr;
68
69 /* Prototypes for local functions */
70
71 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
72 va_list, int);
73
74 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
75
76 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
77 static void malloc_botch (void);
78 #endif
79
80 static void prompt_for_continue (void);
81
82 static void set_width_command (char *, int, struct cmd_list_element *);
83
84 static void set_width (void);
85
86 /* Chain of cleanup actions established with make_cleanup,
87 to be executed if an error happens. */
88
89 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
90 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
91 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
92 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
93 /* cleaned up on each error from within an execution command */
94 static struct cleanup *exec_error_cleanup_chain;
95
96 /* Pointer to what is left to do for an execution command after the
97 target stops. Used only in asynchronous mode, by targets that
98 support async execution. The finish and until commands use it. So
99 does the target extended-remote command. */
100 struct continuation *cmd_continuation;
101 struct continuation *intermediate_continuation;
102
103 /* Nonzero if we have job control. */
104
105 int job_control;
106
107 /* Nonzero means a quit has been requested. */
108
109 int quit_flag;
110
111 /* Nonzero means quit immediately if Control-C is typed now, rather
112 than waiting until QUIT is executed. Be careful in setting this;
113 code which executes with immediate_quit set has to be very careful
114 about being able to deal with being interrupted at any time. It is
115 almost always better to use QUIT; the only exception I can think of
116 is being able to quit out of a system call (using EINTR loses if
117 the SIGINT happens between the previous QUIT and the system call).
118 To immediately quit in the case in which a SIGINT happens between
119 the previous QUIT and setting immediate_quit (desirable anytime we
120 expect to block), call QUIT after setting immediate_quit. */
121
122 int immediate_quit;
123
124 /* Nonzero means that encoded C++ names should be printed out in their
125 C++ form rather than raw. */
126
127 int demangle = 1;
128
129 /* Nonzero means that encoded C++ names should be printed out in their
130 C++ form even in assembler language displays. If this is set, but
131 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
132
133 int asm_demangle = 0;
134
135 /* Nonzero means that strings with character values >0x7F should be printed
136 as octal escapes. Zero means just print the value (e.g. it's an
137 international character, and the terminal or window can cope.) */
138
139 int sevenbit_strings = 0;
140
141 /* String to be printed before error messages, if any. */
142
143 char *error_pre_print;
144
145 /* String to be printed before quit messages, if any. */
146
147 char *quit_pre_print;
148
149 /* String to be printed before warning messages, if any. */
150
151 char *warning_pre_print = "\nwarning: ";
152
153 int pagination_enabled = 1;
154 \f
155
156 /* Add a new cleanup to the cleanup_chain,
157 and return the previous chain pointer
158 to be passed later to do_cleanups or discard_cleanups.
159 Args are FUNCTION to clean up with, and ARG to pass to it. */
160
161 struct cleanup *
162 make_cleanup (make_cleanup_ftype *function, void *arg)
163 {
164 return make_my_cleanup (&cleanup_chain, function, arg);
165 }
166
167 struct cleanup *
168 make_final_cleanup (make_cleanup_ftype *function, void *arg)
169 {
170 return make_my_cleanup (&final_cleanup_chain, function, arg);
171 }
172
173 struct cleanup *
174 make_run_cleanup (make_cleanup_ftype *function, void *arg)
175 {
176 return make_my_cleanup (&run_cleanup_chain, function, arg);
177 }
178
179 struct cleanup *
180 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
181 {
182 return make_my_cleanup (&exec_cleanup_chain, function, arg);
183 }
184
185 struct cleanup *
186 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
187 {
188 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
189 }
190
191 static void
192 do_freeargv (void *arg)
193 {
194 freeargv ((char **) arg);
195 }
196
197 struct cleanup *
198 make_cleanup_freeargv (char **arg)
199 {
200 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
201 }
202
203 static void
204 do_bfd_close_cleanup (void *arg)
205 {
206 bfd_close (arg);
207 }
208
209 struct cleanup *
210 make_cleanup_bfd_close (bfd *abfd)
211 {
212 return make_cleanup (do_bfd_close_cleanup, abfd);
213 }
214
215 static void
216 do_close_cleanup (void *arg)
217 {
218 close ((int) arg);
219 }
220
221 struct cleanup *
222 make_cleanup_close (int fd)
223 {
224 /* int into void*. Outch!! */
225 return make_cleanup (do_close_cleanup, (void *) fd);
226 }
227
228 static void
229 do_ui_file_delete (void *arg)
230 {
231 ui_file_delete (arg);
232 }
233
234 struct cleanup *
235 make_cleanup_ui_file_delete (struct ui_file *arg)
236 {
237 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
238 }
239
240 struct cleanup *
241 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
242 void *arg)
243 {
244 register struct cleanup *new
245 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
246 register struct cleanup *old_chain = *pmy_chain;
247
248 new->next = *pmy_chain;
249 new->function = function;
250 new->arg = arg;
251 *pmy_chain = new;
252
253 return old_chain;
254 }
255
256 /* Discard cleanups and do the actions they describe
257 until we get back to the point OLD_CHAIN in the cleanup_chain. */
258
259 void
260 do_cleanups (register struct cleanup *old_chain)
261 {
262 do_my_cleanups (&cleanup_chain, old_chain);
263 }
264
265 void
266 do_final_cleanups (register struct cleanup *old_chain)
267 {
268 do_my_cleanups (&final_cleanup_chain, old_chain);
269 }
270
271 void
272 do_run_cleanups (register struct cleanup *old_chain)
273 {
274 do_my_cleanups (&run_cleanup_chain, old_chain);
275 }
276
277 void
278 do_exec_cleanups (register struct cleanup *old_chain)
279 {
280 do_my_cleanups (&exec_cleanup_chain, old_chain);
281 }
282
283 void
284 do_exec_error_cleanups (register struct cleanup *old_chain)
285 {
286 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
287 }
288
289 void
290 do_my_cleanups (register struct cleanup **pmy_chain,
291 register struct cleanup *old_chain)
292 {
293 register struct cleanup *ptr;
294 while ((ptr = *pmy_chain) != old_chain)
295 {
296 *pmy_chain = ptr->next; /* Do this first incase recursion */
297 (*ptr->function) (ptr->arg);
298 free (ptr);
299 }
300 }
301
302 /* Discard cleanups, not doing the actions they describe,
303 until we get back to the point OLD_CHAIN in the cleanup_chain. */
304
305 void
306 discard_cleanups (register struct cleanup *old_chain)
307 {
308 discard_my_cleanups (&cleanup_chain, old_chain);
309 }
310
311 void
312 discard_final_cleanups (register struct cleanup *old_chain)
313 {
314 discard_my_cleanups (&final_cleanup_chain, old_chain);
315 }
316
317 void
318 discard_exec_error_cleanups (register struct cleanup *old_chain)
319 {
320 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
321 }
322
323 void
324 discard_my_cleanups (register struct cleanup **pmy_chain,
325 register struct cleanup *old_chain)
326 {
327 register struct cleanup *ptr;
328 while ((ptr = *pmy_chain) != old_chain)
329 {
330 *pmy_chain = ptr->next;
331 free (ptr);
332 }
333 }
334
335 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
336 struct cleanup *
337 save_cleanups (void)
338 {
339 return save_my_cleanups (&cleanup_chain);
340 }
341
342 struct cleanup *
343 save_final_cleanups (void)
344 {
345 return save_my_cleanups (&final_cleanup_chain);
346 }
347
348 struct cleanup *
349 save_my_cleanups (struct cleanup **pmy_chain)
350 {
351 struct cleanup *old_chain = *pmy_chain;
352
353 *pmy_chain = 0;
354 return old_chain;
355 }
356
357 /* Restore the cleanup chain from a previously saved chain. */
358 void
359 restore_cleanups (struct cleanup *chain)
360 {
361 restore_my_cleanups (&cleanup_chain, chain);
362 }
363
364 void
365 restore_final_cleanups (struct cleanup *chain)
366 {
367 restore_my_cleanups (&final_cleanup_chain, chain);
368 }
369
370 void
371 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
372 {
373 *pmy_chain = chain;
374 }
375
376 /* This function is useful for cleanups.
377 Do
378
379 foo = xmalloc (...);
380 old_chain = make_cleanup (free_current_contents, &foo);
381
382 to arrange to free the object thus allocated. */
383
384 void
385 free_current_contents (void *ptr)
386 {
387 void **location = ptr;
388 if (location == NULL)
389 internal_error ("free_current_contents: NULL pointer");
390 if (*location != NULL)
391 {
392 free (*location);
393 *location = NULL;
394 }
395 }
396
397 /* Provide a known function that does nothing, to use as a base for
398 for a possibly long chain of cleanups. This is useful where we
399 use the cleanup chain for handling normal cleanups as well as dealing
400 with cleanups that need to be done as a result of a call to error().
401 In such cases, we may not be certain where the first cleanup is, unless
402 we have a do-nothing one to always use as the base. */
403
404 /* ARGSUSED */
405 void
406 null_cleanup (void *arg)
407 {
408 }
409
410 /* Add a continuation to the continuation list, the gloabl list
411 cmd_continuation. The new continuation will be added at the front.*/
412 void
413 add_continuation (continuation_hook, arg_list)
414 void (*continuation_hook) (struct continuation_arg *);
415 struct continuation_arg *arg_list;
416 {
417 struct continuation *continuation_ptr;
418
419 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
420 continuation_ptr->continuation_hook = continuation_hook;
421 continuation_ptr->arg_list = arg_list;
422 continuation_ptr->next = cmd_continuation;
423 cmd_continuation = continuation_ptr;
424 }
425
426 /* Walk down the cmd_continuation list, and execute all the
427 continuations. There is a problem though. In some cases new
428 continuations may be added while we are in the middle of this
429 loop. If this happens they will be added in the front, and done
430 before we have a chance of exhausting those that were already
431 there. We need to then save the beginning of the list in a pointer
432 and do the continuations from there on, instead of using the
433 global beginning of list as our iteration pointer.*/
434 void
435 do_all_continuations (void)
436 {
437 struct continuation *continuation_ptr;
438 struct continuation *saved_continuation;
439
440 /* Copy the list header into another pointer, and set the global
441 list header to null, so that the global list can change as a side
442 effect of invoking the continuations and the processing of
443 the preexisting continuations will not be affected. */
444 continuation_ptr = cmd_continuation;
445 cmd_continuation = NULL;
446
447 /* Work now on the list we have set aside. */
448 while (continuation_ptr)
449 {
450 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
451 saved_continuation = continuation_ptr;
452 continuation_ptr = continuation_ptr->next;
453 free (saved_continuation);
454 }
455 }
456
457 /* Walk down the cmd_continuation list, and get rid of all the
458 continuations. */
459 void
460 discard_all_continuations (void)
461 {
462 struct continuation *continuation_ptr;
463
464 while (cmd_continuation)
465 {
466 continuation_ptr = cmd_continuation;
467 cmd_continuation = continuation_ptr->next;
468 free (continuation_ptr);
469 }
470 }
471
472 /* Add a continuation to the continuation list, the global list
473 intermediate_continuation. The new continuation will be added at the front.*/
474 void
475 add_intermediate_continuation (continuation_hook, arg_list)
476 void (*continuation_hook) (struct continuation_arg *);
477 struct continuation_arg *arg_list;
478 {
479 struct continuation *continuation_ptr;
480
481 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
482 continuation_ptr->continuation_hook = continuation_hook;
483 continuation_ptr->arg_list = arg_list;
484 continuation_ptr->next = intermediate_continuation;
485 intermediate_continuation = continuation_ptr;
486 }
487
488 /* Walk down the cmd_continuation list, and execute all the
489 continuations. There is a problem though. In some cases new
490 continuations may be added while we are in the middle of this
491 loop. If this happens they will be added in the front, and done
492 before we have a chance of exhausting those that were already
493 there. We need to then save the beginning of the list in a pointer
494 and do the continuations from there on, instead of using the
495 global beginning of list as our iteration pointer.*/
496 void
497 do_all_intermediate_continuations (void)
498 {
499 struct continuation *continuation_ptr;
500 struct continuation *saved_continuation;
501
502 /* Copy the list header into another pointer, and set the global
503 list header to null, so that the global list can change as a side
504 effect of invoking the continuations and the processing of
505 the preexisting continuations will not be affected. */
506 continuation_ptr = intermediate_continuation;
507 intermediate_continuation = NULL;
508
509 /* Work now on the list we have set aside. */
510 while (continuation_ptr)
511 {
512 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
513 saved_continuation = continuation_ptr;
514 continuation_ptr = continuation_ptr->next;
515 free (saved_continuation);
516 }
517 }
518
519 /* Walk down the cmd_continuation list, and get rid of all the
520 continuations. */
521 void
522 discard_all_intermediate_continuations (void)
523 {
524 struct continuation *continuation_ptr;
525
526 while (intermediate_continuation)
527 {
528 continuation_ptr = intermediate_continuation;
529 intermediate_continuation = continuation_ptr->next;
530 free (continuation_ptr);
531 }
532 }
533
534 \f
535
536 /* Print a warning message. Way to use this is to call warning_begin,
537 output the warning message (use unfiltered output to gdb_stderr),
538 ending in a newline. There is not currently a warning_end that you
539 call afterwards, but such a thing might be added if it is useful
540 for a GUI to separate warning messages from other output.
541
542 FIXME: Why do warnings use unfiltered output and errors filtered?
543 Is this anything other than a historical accident? */
544
545 void
546 warning_begin (void)
547 {
548 target_terminal_ours ();
549 wrap_here (""); /* Force out any buffered output */
550 gdb_flush (gdb_stdout);
551 if (warning_pre_print)
552 fprintf_unfiltered (gdb_stderr, warning_pre_print);
553 }
554
555 /* Print a warning message.
556 The first argument STRING is the warning message, used as a fprintf string,
557 and the remaining args are passed as arguments to it.
558 The primary difference between warnings and errors is that a warning
559 does not force the return to command level. */
560
561 void
562 warning (const char *string,...)
563 {
564 va_list args;
565 va_start (args, string);
566 if (warning_hook)
567 (*warning_hook) (string, args);
568 else
569 {
570 warning_begin ();
571 vfprintf_unfiltered (gdb_stderr, string, args);
572 fprintf_unfiltered (gdb_stderr, "\n");
573 va_end (args);
574 }
575 }
576
577 /* Start the printing of an error message. Way to use this is to call
578 this, output the error message (use filtered output to gdb_stderr
579 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
580 in a newline, and then call return_to_top_level (RETURN_ERROR).
581 error() provides a convenient way to do this for the special case
582 that the error message can be formatted with a single printf call,
583 but this is more general. */
584 void
585 error_begin (void)
586 {
587 if (error_begin_hook)
588 error_begin_hook ();
589
590 target_terminal_ours ();
591 wrap_here (""); /* Force out any buffered output */
592 gdb_flush (gdb_stdout);
593
594 annotate_error_begin ();
595
596 if (error_pre_print)
597 fprintf_filtered (gdb_stderr, error_pre_print);
598 }
599
600 /* Print an error message and return to command level.
601 The first argument STRING is the error message, used as a fprintf string,
602 and the remaining args are passed as arguments to it. */
603
604 NORETURN void
605 verror (const char *string, va_list args)
606 {
607 char *err_string;
608 struct cleanup *err_string_cleanup;
609 /* FIXME: cagney/1999-11-10: All error calls should come here.
610 Unfortunately some code uses the sequence: error_begin(); print
611 error message; return_to_top_level. That code should be
612 flushed. */
613 error_begin ();
614 /* NOTE: It's tempting to just do the following...
615 vfprintf_filtered (gdb_stderr, string, args);
616 and then follow with a similar looking statement to cause the message
617 to also go to gdb_lasterr. But if we do this, we'll be traversing the
618 va_list twice which works on some platforms and fails miserably on
619 others. */
620 /* Save it as the last error */
621 ui_file_rewind (gdb_lasterr);
622 vfprintf_filtered (gdb_lasterr, string, args);
623 /* Retrieve the last error and print it to gdb_stderr */
624 err_string = error_last_message ();
625 err_string_cleanup = make_cleanup (free, err_string);
626 fputs_filtered (err_string, gdb_stderr);
627 fprintf_filtered (gdb_stderr, "\n");
628 do_cleanups (err_string_cleanup);
629 return_to_top_level (RETURN_ERROR);
630 }
631
632 NORETURN void
633 error (const char *string,...)
634 {
635 va_list args;
636 va_start (args, string);
637 verror (string, args);
638 va_end (args);
639 }
640
641 NORETURN void
642 error_stream (struct ui_file *stream)
643 {
644 long size;
645 char *msg = ui_file_xstrdup (stream, &size);
646 make_cleanup (free, msg);
647 error ("%s", msg);
648 }
649
650 /* Get the last error message issued by gdb */
651
652 char *
653 error_last_message (void)
654 {
655 long len;
656 return ui_file_xstrdup (gdb_lasterr, &len);
657 }
658
659 /* This is to be called by main() at the very beginning */
660
661 void
662 error_init (void)
663 {
664 gdb_lasterr = mem_fileopen ();
665 }
666
667 /* Print a message reporting an internal error. Ask the user if they
668 want to continue, dump core, or just exit. */
669
670 NORETURN void
671 internal_verror (const char *fmt, va_list ap)
672 {
673 static char msg[] = "Internal GDB error: recursive internal error.\n";
674 static int dejavu = 0;
675 int continue_p;
676 int dump_core_p;
677
678 /* don't allow infinite error recursion. */
679 switch (dejavu)
680 {
681 case 0:
682 dejavu = 1;
683 break;
684 case 1:
685 dejavu = 2;
686 fputs_unfiltered (msg, gdb_stderr);
687 abort ();
688 default:
689 dejavu = 3;
690 write (STDERR_FILENO, msg, sizeof (msg));
691 exit (1);
692 }
693
694 /* Try to get the message out */
695 target_terminal_ours ();
696 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
697 vfprintf_unfiltered (gdb_stderr, fmt, ap);
698 fputs_unfiltered ("\n", gdb_stderr);
699
700 /* Default (no case) is to quit GDB. When in batch mode this
701 lessens the likelhood of GDB going into an infinate loop. */
702 continue_p = query ("\
703 An internal GDB error was detected. This may make make further\n\
704 debugging unreliable. Continue this debugging session? ");
705
706 /* Default (no case) is to not dump core. Lessen the chance of GDB
707 leaving random core files around. */
708 dump_core_p = query ("\
709 Create a core file containing the current state of GDB? ");
710
711 if (continue_p)
712 {
713 if (dump_core_p)
714 {
715 if (fork () == 0)
716 abort ();
717 }
718 }
719 else
720 {
721 if (dump_core_p)
722 abort ();
723 else
724 exit (1);
725 }
726
727 dejavu = 0;
728 return_to_top_level (RETURN_ERROR);
729 }
730
731 NORETURN void
732 internal_error (char *string, ...)
733 {
734 va_list ap;
735 va_start (ap, string);
736
737 internal_verror (string, ap);
738 va_end (ap);
739 }
740
741 /* The strerror() function can return NULL for errno values that are
742 out of range. Provide a "safe" version that always returns a
743 printable string. */
744
745 char *
746 safe_strerror (int errnum)
747 {
748 char *msg;
749 static char buf[32];
750
751 if ((msg = strerror (errnum)) == NULL)
752 {
753 sprintf (buf, "(undocumented errno %d)", errnum);
754 msg = buf;
755 }
756 return (msg);
757 }
758
759 /* Print the system error message for errno, and also mention STRING
760 as the file name for which the error was encountered.
761 Then return to command level. */
762
763 NORETURN void
764 perror_with_name (char *string)
765 {
766 char *err;
767 char *combined;
768
769 err = safe_strerror (errno);
770 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
771 strcpy (combined, string);
772 strcat (combined, ": ");
773 strcat (combined, err);
774
775 /* I understand setting these is a matter of taste. Still, some people
776 may clear errno but not know about bfd_error. Doing this here is not
777 unreasonable. */
778 bfd_set_error (bfd_error_no_error);
779 errno = 0;
780
781 error ("%s.", combined);
782 }
783
784 /* Print the system error message for ERRCODE, and also mention STRING
785 as the file name for which the error was encountered. */
786
787 void
788 print_sys_errmsg (char *string, int errcode)
789 {
790 char *err;
791 char *combined;
792
793 err = safe_strerror (errcode);
794 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
795 strcpy (combined, string);
796 strcat (combined, ": ");
797 strcat (combined, err);
798
799 /* We want anything which was printed on stdout to come out first, before
800 this message. */
801 gdb_flush (gdb_stdout);
802 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
803 }
804
805 /* Control C eventually causes this to be called, at a convenient time. */
806
807 void
808 quit (void)
809 {
810 serial_t gdb_stdout_serial = serial_fdopen (1);
811
812 target_terminal_ours ();
813
814 /* We want all output to appear now, before we print "Quit". We
815 have 3 levels of buffering we have to flush (it's possible that
816 some of these should be changed to flush the lower-level ones
817 too): */
818
819 /* 1. The _filtered buffer. */
820 wrap_here ((char *) 0);
821
822 /* 2. The stdio buffer. */
823 gdb_flush (gdb_stdout);
824 gdb_flush (gdb_stderr);
825
826 /* 3. The system-level buffer. */
827 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
828 SERIAL_UN_FDOPEN (gdb_stdout_serial);
829
830 annotate_error_begin ();
831
832 /* Don't use *_filtered; we don't want to prompt the user to continue. */
833 if (quit_pre_print)
834 fprintf_unfiltered (gdb_stderr, quit_pre_print);
835
836 #ifdef __MSDOS__
837 /* No steenking SIGINT will ever be coming our way when the
838 program is resumed. Don't lie. */
839 fprintf_unfiltered (gdb_stderr, "Quit\n");
840 #else
841 if (job_control
842 /* If there is no terminal switching for this target, then we can't
843 possibly get screwed by the lack of job control. */
844 || current_target.to_terminal_ours == NULL)
845 fprintf_unfiltered (gdb_stderr, "Quit\n");
846 else
847 fprintf_unfiltered (gdb_stderr,
848 "Quit (expect signal SIGINT when the program is resumed)\n");
849 #endif
850 return_to_top_level (RETURN_QUIT);
851 }
852
853
854 #if defined(_MSC_VER) /* should test for wingdb instead? */
855
856 /*
857 * Windows translates all keyboard and mouse events
858 * into a message which is appended to the message
859 * queue for the process.
860 */
861
862 void
863 notice_quit (void)
864 {
865 int k = win32pollquit ();
866 if (k == 1)
867 quit_flag = 1;
868 else if (k == 2)
869 immediate_quit = 1;
870 }
871
872 #else /* !defined(_MSC_VER) */
873
874 void
875 notice_quit (void)
876 {
877 /* Done by signals */
878 }
879
880 #endif /* !defined(_MSC_VER) */
881
882 /* Control C comes here */
883 void
884 request_quit (int signo)
885 {
886 quit_flag = 1;
887 /* Restore the signal handler. Harmless with BSD-style signals, needed
888 for System V-style signals. So just always do it, rather than worrying
889 about USG defines and stuff like that. */
890 signal (signo, request_quit);
891
892 #ifdef REQUEST_QUIT
893 REQUEST_QUIT;
894 #else
895 if (immediate_quit)
896 quit ();
897 #endif
898 }
899 \f
900 /* Memory management stuff (malloc friends). */
901
902 /* Make a substitute size_t for non-ANSI compilers. */
903
904 #ifndef HAVE_STDDEF_H
905 #ifndef size_t
906 #define size_t unsigned int
907 #endif
908 #endif
909
910 #if !defined (USE_MMALLOC)
911
912 PTR
913 mcalloc (PTR md, size_t number, size_t size)
914 {
915 return calloc (number, size);
916 }
917
918 PTR
919 mmalloc (PTR md, size_t size)
920 {
921 return malloc (size);
922 }
923
924 PTR
925 mrealloc (PTR md, PTR ptr, size_t size)
926 {
927 if (ptr == 0) /* Guard against old realloc's */
928 return malloc (size);
929 else
930 return realloc (ptr, size);
931 }
932
933 void
934 mfree (PTR md, PTR ptr)
935 {
936 free (ptr);
937 }
938
939 #endif /* USE_MMALLOC */
940
941 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
942
943 void
944 init_malloc (void *md)
945 {
946 }
947
948 #else /* Have mmalloc and want corruption checking */
949
950 static void
951 malloc_botch (void)
952 {
953 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
954 abort ();
955 }
956
957 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
958 by MD, to detect memory corruption. Note that MD may be NULL to specify
959 the default heap that grows via sbrk.
960
961 Note that for freshly created regions, we must call mmcheckf prior to any
962 mallocs in the region. Otherwise, any region which was allocated prior to
963 installing the checking hooks, which is later reallocated or freed, will
964 fail the checks! The mmcheck function only allows initial hooks to be
965 installed before the first mmalloc. However, anytime after we have called
966 mmcheck the first time to install the checking hooks, we can call it again
967 to update the function pointer to the memory corruption handler.
968
969 Returns zero on failure, non-zero on success. */
970
971 #ifndef MMCHECK_FORCE
972 #define MMCHECK_FORCE 0
973 #endif
974
975 void
976 init_malloc (void *md)
977 {
978 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
979 {
980 /* Don't use warning(), which relies on current_target being set
981 to something other than dummy_target, until after
982 initialize_all_files(). */
983
984 fprintf_unfiltered
985 (gdb_stderr, "warning: failed to install memory consistency checks; ");
986 fprintf_unfiltered
987 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
988 }
989
990 mmtrace ();
991 }
992
993 #endif /* Have mmalloc and want corruption checking */
994
995 /* Called when a memory allocation fails, with the number of bytes of
996 memory requested in SIZE. */
997
998 NORETURN void
999 nomem (long size)
1000 {
1001 if (size > 0)
1002 {
1003 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1004 }
1005 else
1006 {
1007 internal_error ("virtual memory exhausted.");
1008 }
1009 }
1010
1011 /* Like mmalloc but get error if no storage available, and protect against
1012 the caller wanting to allocate zero bytes. Whether to return NULL for
1013 a zero byte request, or translate the request into a request for one
1014 byte of zero'd storage, is a religious issue. */
1015
1016 PTR
1017 xmmalloc (PTR md, long size)
1018 {
1019 register PTR val;
1020
1021 if (size == 0)
1022 {
1023 val = NULL;
1024 }
1025 else if ((val = mmalloc (md, size)) == NULL)
1026 {
1027 nomem (size);
1028 }
1029 return (val);
1030 }
1031
1032 /* Like mrealloc but get error if no storage available. */
1033
1034 PTR
1035 xmrealloc (PTR md, PTR ptr, long size)
1036 {
1037 register PTR val;
1038
1039 if (ptr != NULL)
1040 {
1041 val = mrealloc (md, ptr, size);
1042 }
1043 else
1044 {
1045 val = mmalloc (md, size);
1046 }
1047 if (val == NULL)
1048 {
1049 nomem (size);
1050 }
1051 return (val);
1052 }
1053
1054 /* Like malloc but get error if no storage available, and protect against
1055 the caller wanting to allocate zero bytes. */
1056
1057 PTR
1058 xmalloc (size_t size)
1059 {
1060 return (xmmalloc ((PTR) NULL, size));
1061 }
1062
1063 /* Like calloc but get error if no storage available */
1064
1065 PTR
1066 xcalloc (size_t number, size_t size)
1067 {
1068 void *mem = mcalloc (NULL, number, size);
1069 if (mem == NULL)
1070 nomem (number * size);
1071 return mem;
1072 }
1073
1074 /* Like mrealloc but get error if no storage available. */
1075
1076 PTR
1077 xrealloc (PTR ptr, size_t size)
1078 {
1079 return (xmrealloc ((PTR) NULL, ptr, size));
1080 }
1081 \f
1082
1083 /* My replacement for the read system call.
1084 Used like `read' but keeps going if `read' returns too soon. */
1085
1086 int
1087 myread (int desc, char *addr, int len)
1088 {
1089 register int val;
1090 int orglen = len;
1091
1092 while (len > 0)
1093 {
1094 val = read (desc, addr, len);
1095 if (val < 0)
1096 return val;
1097 if (val == 0)
1098 return orglen - len;
1099 len -= val;
1100 addr += val;
1101 }
1102 return orglen;
1103 }
1104 \f
1105 /* Make a copy of the string at PTR with SIZE characters
1106 (and add a null character at the end in the copy).
1107 Uses malloc to get the space. Returns the address of the copy. */
1108
1109 char *
1110 savestring (const char *ptr, int size)
1111 {
1112 register char *p = (char *) xmalloc (size + 1);
1113 memcpy (p, ptr, size);
1114 p[size] = 0;
1115 return p;
1116 }
1117
1118 char *
1119 msavestring (void *md, const char *ptr, int size)
1120 {
1121 register char *p = (char *) xmmalloc (md, size + 1);
1122 memcpy (p, ptr, size);
1123 p[size] = 0;
1124 return p;
1125 }
1126
1127 /* The "const" is so it compiles under DGUX (which prototypes strsave
1128 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1129 Doesn't real strsave return NULL if out of memory? */
1130 char *
1131 strsave (const char *ptr)
1132 {
1133 return savestring (ptr, strlen (ptr));
1134 }
1135
1136 char *
1137 mstrsave (void *md, const char *ptr)
1138 {
1139 return (msavestring (md, ptr, strlen (ptr)));
1140 }
1141
1142 void
1143 print_spaces (register int n, register struct ui_file *file)
1144 {
1145 fputs_unfiltered (n_spaces (n), file);
1146 }
1147
1148 /* Print a host address. */
1149
1150 void
1151 gdb_print_host_address (void *addr, struct ui_file *stream)
1152 {
1153
1154 /* We could use the %p conversion specifier to fprintf if we had any
1155 way of knowing whether this host supports it. But the following
1156 should work on the Alpha and on 32 bit machines. */
1157
1158 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1159 }
1160
1161 /* Ask user a y-or-n question and return 1 iff answer is yes.
1162 Takes three args which are given to printf to print the question.
1163 The first, a control string, should end in "? ".
1164 It should not say how to answer, because we do that. */
1165
1166 /* VARARGS */
1167 int
1168 query (char *ctlstr,...)
1169 {
1170 va_list args;
1171 register int answer;
1172 register int ans2;
1173 int retval;
1174
1175 va_start (args, ctlstr);
1176
1177 if (query_hook)
1178 {
1179 return query_hook (ctlstr, args);
1180 }
1181
1182 /* Automatically answer "yes" if input is not from a terminal. */
1183 if (!input_from_terminal_p ())
1184 return 1;
1185 #ifdef MPW
1186 /* FIXME Automatically answer "yes" if called from MacGDB. */
1187 if (mac_app)
1188 return 1;
1189 #endif /* MPW */
1190
1191 while (1)
1192 {
1193 wrap_here (""); /* Flush any buffered output */
1194 gdb_flush (gdb_stdout);
1195
1196 if (annotation_level > 1)
1197 printf_filtered ("\n\032\032pre-query\n");
1198
1199 vfprintf_filtered (gdb_stdout, ctlstr, args);
1200 printf_filtered ("(y or n) ");
1201
1202 if (annotation_level > 1)
1203 printf_filtered ("\n\032\032query\n");
1204
1205 #ifdef MPW
1206 /* If not in MacGDB, move to a new line so the entered line doesn't
1207 have a prompt on the front of it. */
1208 if (!mac_app)
1209 fputs_unfiltered ("\n", gdb_stdout);
1210 #endif /* MPW */
1211
1212 wrap_here ("");
1213 gdb_flush (gdb_stdout);
1214
1215 #if defined(TUI)
1216 if (!tui_version || cmdWin == tuiWinWithFocus ())
1217 #endif
1218 answer = fgetc (stdin);
1219 #if defined(TUI)
1220 else
1221 answer = (unsigned char) tuiBufferGetc ();
1222
1223 #endif
1224 clearerr (stdin); /* in case of C-d */
1225 if (answer == EOF) /* C-d */
1226 {
1227 retval = 1;
1228 break;
1229 }
1230 /* Eat rest of input line, to EOF or newline */
1231 if ((answer != '\n') || (tui_version && answer != '\r'))
1232 do
1233 {
1234 #if defined(TUI)
1235 if (!tui_version || cmdWin == tuiWinWithFocus ())
1236 #endif
1237 ans2 = fgetc (stdin);
1238 #if defined(TUI)
1239 else
1240 ans2 = (unsigned char) tuiBufferGetc ();
1241 #endif
1242 clearerr (stdin);
1243 }
1244 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1245 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1246
1247 if (answer >= 'a')
1248 answer -= 040;
1249 if (answer == 'Y')
1250 {
1251 retval = 1;
1252 break;
1253 }
1254 if (answer == 'N')
1255 {
1256 retval = 0;
1257 break;
1258 }
1259 printf_filtered ("Please answer y or n.\n");
1260 }
1261
1262 if (annotation_level > 1)
1263 printf_filtered ("\n\032\032post-query\n");
1264 return retval;
1265 }
1266 \f
1267
1268 /* Parse a C escape sequence. STRING_PTR points to a variable
1269 containing a pointer to the string to parse. That pointer
1270 should point to the character after the \. That pointer
1271 is updated past the characters we use. The value of the
1272 escape sequence is returned.
1273
1274 A negative value means the sequence \ newline was seen,
1275 which is supposed to be equivalent to nothing at all.
1276
1277 If \ is followed by a null character, we return a negative
1278 value and leave the string pointer pointing at the null character.
1279
1280 If \ is followed by 000, we return 0 and leave the string pointer
1281 after the zeros. A value of 0 does not mean end of string. */
1282
1283 int
1284 parse_escape (char **string_ptr)
1285 {
1286 register int c = *(*string_ptr)++;
1287 switch (c)
1288 {
1289 case 'a':
1290 return 007; /* Bell (alert) char */
1291 case 'b':
1292 return '\b';
1293 case 'e': /* Escape character */
1294 return 033;
1295 case 'f':
1296 return '\f';
1297 case 'n':
1298 return '\n';
1299 case 'r':
1300 return '\r';
1301 case 't':
1302 return '\t';
1303 case 'v':
1304 return '\v';
1305 case '\n':
1306 return -2;
1307 case 0:
1308 (*string_ptr)--;
1309 return 0;
1310 case '^':
1311 c = *(*string_ptr)++;
1312 if (c == '\\')
1313 c = parse_escape (string_ptr);
1314 if (c == '?')
1315 return 0177;
1316 return (c & 0200) | (c & 037);
1317
1318 case '0':
1319 case '1':
1320 case '2':
1321 case '3':
1322 case '4':
1323 case '5':
1324 case '6':
1325 case '7':
1326 {
1327 register int i = c - '0';
1328 register int count = 0;
1329 while (++count < 3)
1330 {
1331 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1332 {
1333 i *= 8;
1334 i += c - '0';
1335 }
1336 else
1337 {
1338 (*string_ptr)--;
1339 break;
1340 }
1341 }
1342 return i;
1343 }
1344 default:
1345 return c;
1346 }
1347 }
1348 \f
1349 /* Print the character C on STREAM as part of the contents of a literal
1350 string whose delimiter is QUOTER. Note that this routine should only
1351 be call for printing things which are independent of the language
1352 of the program being debugged. */
1353
1354 static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
1355
1356 static void
1357 printchar (c, do_fputs, do_fprintf, stream, quoter)
1358 int c;
1359 void (*do_fputs) (const char *, struct ui_file *);
1360 void (*do_fprintf) (struct ui_file *, const char *, ...);
1361 struct ui_file *stream;
1362 int quoter;
1363 {
1364
1365 c &= 0xFF; /* Avoid sign bit follies */
1366
1367 if (c < 0x20 || /* Low control chars */
1368 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1369 (sevenbit_strings && c >= 0x80))
1370 { /* high order bit set */
1371 switch (c)
1372 {
1373 case '\n':
1374 do_fputs ("\\n", stream);
1375 break;
1376 case '\b':
1377 do_fputs ("\\b", stream);
1378 break;
1379 case '\t':
1380 do_fputs ("\\t", stream);
1381 break;
1382 case '\f':
1383 do_fputs ("\\f", stream);
1384 break;
1385 case '\r':
1386 do_fputs ("\\r", stream);
1387 break;
1388 case '\033':
1389 do_fputs ("\\e", stream);
1390 break;
1391 case '\007':
1392 do_fputs ("\\a", stream);
1393 break;
1394 default:
1395 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1396 break;
1397 }
1398 }
1399 else
1400 {
1401 if (c == '\\' || c == quoter)
1402 do_fputs ("\\", stream);
1403 do_fprintf (stream, "%c", c);
1404 }
1405 }
1406
1407 /* Print the character C on STREAM as part of the contents of a
1408 literal string whose delimiter is QUOTER. Note that these routines
1409 should only be call for printing things which are independent of
1410 the language of the program being debugged. */
1411
1412 void
1413 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1414 {
1415 while (*str)
1416 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1417 }
1418
1419 void
1420 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1421 {
1422 while (*str)
1423 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1424 }
1425
1426 void
1427 fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
1428 {
1429 int i;
1430 for (i = 0; i < n; i++)
1431 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1432 }
1433
1434 \f
1435
1436 /* Number of lines per page or UINT_MAX if paging is disabled. */
1437 static unsigned int lines_per_page;
1438 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1439 static unsigned int chars_per_line;
1440 /* Current count of lines printed on this page, chars on this line. */
1441 static unsigned int lines_printed, chars_printed;
1442
1443 /* Buffer and start column of buffered text, for doing smarter word-
1444 wrapping. When someone calls wrap_here(), we start buffering output
1445 that comes through fputs_filtered(). If we see a newline, we just
1446 spit it out and forget about the wrap_here(). If we see another
1447 wrap_here(), we spit it out and remember the newer one. If we see
1448 the end of the line, we spit out a newline, the indent, and then
1449 the buffered output. */
1450
1451 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1452 are waiting to be output (they have already been counted in chars_printed).
1453 When wrap_buffer[0] is null, the buffer is empty. */
1454 static char *wrap_buffer;
1455
1456 /* Pointer in wrap_buffer to the next character to fill. */
1457 static char *wrap_pointer;
1458
1459 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1460 is non-zero. */
1461 static char *wrap_indent;
1462
1463 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1464 is not in effect. */
1465 static int wrap_column;
1466 \f
1467
1468 /* Inialize the lines and chars per page */
1469 void
1470 init_page_info (void)
1471 {
1472 #if defined(TUI)
1473 if (tui_version && m_winPtrNotNull (cmdWin))
1474 {
1475 lines_per_page = cmdWin->generic.height;
1476 chars_per_line = cmdWin->generic.width;
1477 }
1478 else
1479 #endif
1480 {
1481 /* These defaults will be used if we are unable to get the correct
1482 values from termcap. */
1483 #if defined(__GO32__)
1484 lines_per_page = ScreenRows ();
1485 chars_per_line = ScreenCols ();
1486 #else
1487 lines_per_page = 24;
1488 chars_per_line = 80;
1489
1490 #if !defined (MPW) && !defined (_WIN32)
1491 /* No termcap under MPW, although might be cool to do something
1492 by looking at worksheet or console window sizes. */
1493 /* Initialize the screen height and width from termcap. */
1494 {
1495 char *termtype = getenv ("TERM");
1496
1497 /* Positive means success, nonpositive means failure. */
1498 int status;
1499
1500 /* 2048 is large enough for all known terminals, according to the
1501 GNU termcap manual. */
1502 char term_buffer[2048];
1503
1504 if (termtype)
1505 {
1506 status = tgetent (term_buffer, termtype);
1507 if (status > 0)
1508 {
1509 int val;
1510 int running_in_emacs = getenv ("EMACS") != NULL;
1511
1512 val = tgetnum ("li");
1513 if (val >= 0 && !running_in_emacs)
1514 lines_per_page = val;
1515 else
1516 /* The number of lines per page is not mentioned
1517 in the terminal description. This probably means
1518 that paging is not useful (e.g. emacs shell window),
1519 so disable paging. */
1520 lines_per_page = UINT_MAX;
1521
1522 val = tgetnum ("co");
1523 if (val >= 0)
1524 chars_per_line = val;
1525 }
1526 }
1527 }
1528 #endif /* MPW */
1529
1530 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1531
1532 /* If there is a better way to determine the window size, use it. */
1533 SIGWINCH_HANDLER (SIGWINCH);
1534 #endif
1535 #endif
1536 /* If the output is not a terminal, don't paginate it. */
1537 if (!ui_file_isatty (gdb_stdout))
1538 lines_per_page = UINT_MAX;
1539 } /* the command_line_version */
1540 set_width ();
1541 }
1542
1543 static void
1544 set_width (void)
1545 {
1546 if (chars_per_line == 0)
1547 init_page_info ();
1548
1549 if (!wrap_buffer)
1550 {
1551 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1552 wrap_buffer[0] = '\0';
1553 }
1554 else
1555 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1556 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1557 }
1558
1559 /* ARGSUSED */
1560 static void
1561 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1562 {
1563 set_width ();
1564 }
1565
1566 /* Wait, so the user can read what's on the screen. Prompt the user
1567 to continue by pressing RETURN. */
1568
1569 static void
1570 prompt_for_continue (void)
1571 {
1572 char *ignore;
1573 char cont_prompt[120];
1574
1575 if (annotation_level > 1)
1576 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1577
1578 strcpy (cont_prompt,
1579 "---Type <return> to continue, or q <return> to quit---");
1580 if (annotation_level > 1)
1581 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1582
1583 /* We must do this *before* we call gdb_readline, else it will eventually
1584 call us -- thinking that we're trying to print beyond the end of the
1585 screen. */
1586 reinitialize_more_filter ();
1587
1588 immediate_quit++;
1589 /* On a real operating system, the user can quit with SIGINT.
1590 But not on GO32.
1591
1592 'q' is provided on all systems so users don't have to change habits
1593 from system to system, and because telling them what to do in
1594 the prompt is more user-friendly than expecting them to think of
1595 SIGINT. */
1596 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1597 whereas control-C to gdb_readline will cause the user to get dumped
1598 out to DOS. */
1599 ignore = readline (cont_prompt);
1600
1601 if (annotation_level > 1)
1602 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1603
1604 if (ignore)
1605 {
1606 char *p = ignore;
1607 while (*p == ' ' || *p == '\t')
1608 ++p;
1609 if (p[0] == 'q')
1610 {
1611 if (!event_loop_p)
1612 request_quit (SIGINT);
1613 else
1614 async_request_quit (0);
1615 }
1616 free (ignore);
1617 }
1618 immediate_quit--;
1619
1620 /* Now we have to do this again, so that GDB will know that it doesn't
1621 need to save the ---Type <return>--- line at the top of the screen. */
1622 reinitialize_more_filter ();
1623
1624 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1625 }
1626
1627 /* Reinitialize filter; ie. tell it to reset to original values. */
1628
1629 void
1630 reinitialize_more_filter (void)
1631 {
1632 lines_printed = 0;
1633 chars_printed = 0;
1634 }
1635
1636 /* Indicate that if the next sequence of characters overflows the line,
1637 a newline should be inserted here rather than when it hits the end.
1638 If INDENT is non-null, it is a string to be printed to indent the
1639 wrapped part on the next line. INDENT must remain accessible until
1640 the next call to wrap_here() or until a newline is printed through
1641 fputs_filtered().
1642
1643 If the line is already overfull, we immediately print a newline and
1644 the indentation, and disable further wrapping.
1645
1646 If we don't know the width of lines, but we know the page height,
1647 we must not wrap words, but should still keep track of newlines
1648 that were explicitly printed.
1649
1650 INDENT should not contain tabs, as that will mess up the char count
1651 on the next line. FIXME.
1652
1653 This routine is guaranteed to force out any output which has been
1654 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1655 used to force out output from the wrap_buffer. */
1656
1657 void
1658 wrap_here (char *indent)
1659 {
1660 /* This should have been allocated, but be paranoid anyway. */
1661 if (!wrap_buffer)
1662 abort ();
1663
1664 if (wrap_buffer[0])
1665 {
1666 *wrap_pointer = '\0';
1667 fputs_unfiltered (wrap_buffer, gdb_stdout);
1668 }
1669 wrap_pointer = wrap_buffer;
1670 wrap_buffer[0] = '\0';
1671 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1672 {
1673 wrap_column = 0;
1674 }
1675 else if (chars_printed >= chars_per_line)
1676 {
1677 puts_filtered ("\n");
1678 if (indent != NULL)
1679 puts_filtered (indent);
1680 wrap_column = 0;
1681 }
1682 else
1683 {
1684 wrap_column = chars_printed;
1685 if (indent == NULL)
1686 wrap_indent = "";
1687 else
1688 wrap_indent = indent;
1689 }
1690 }
1691
1692 /* Ensure that whatever gets printed next, using the filtered output
1693 commands, starts at the beginning of the line. I.E. if there is
1694 any pending output for the current line, flush it and start a new
1695 line. Otherwise do nothing. */
1696
1697 void
1698 begin_line (void)
1699 {
1700 if (chars_printed > 0)
1701 {
1702 puts_filtered ("\n");
1703 }
1704 }
1705
1706
1707 /* Like fputs but if FILTER is true, pause after every screenful.
1708
1709 Regardless of FILTER can wrap at points other than the final
1710 character of a line.
1711
1712 Unlike fputs, fputs_maybe_filtered does not return a value.
1713 It is OK for LINEBUFFER to be NULL, in which case just don't print
1714 anything.
1715
1716 Note that a longjmp to top level may occur in this routine (only if
1717 FILTER is true) (since prompt_for_continue may do so) so this
1718 routine should not be called when cleanups are not in place. */
1719
1720 static void
1721 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1722 int filter)
1723 {
1724 const char *lineptr;
1725
1726 if (linebuffer == 0)
1727 return;
1728
1729 /* Don't do any filtering if it is disabled. */
1730 if ((stream != gdb_stdout) || !pagination_enabled
1731 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1732 {
1733 fputs_unfiltered (linebuffer, stream);
1734 return;
1735 }
1736
1737 /* Go through and output each character. Show line extension
1738 when this is necessary; prompt user for new page when this is
1739 necessary. */
1740
1741 lineptr = linebuffer;
1742 while (*lineptr)
1743 {
1744 /* Possible new page. */
1745 if (filter &&
1746 (lines_printed >= lines_per_page - 1))
1747 prompt_for_continue ();
1748
1749 while (*lineptr && *lineptr != '\n')
1750 {
1751 /* Print a single line. */
1752 if (*lineptr == '\t')
1753 {
1754 if (wrap_column)
1755 *wrap_pointer++ = '\t';
1756 else
1757 fputc_unfiltered ('\t', stream);
1758 /* Shifting right by 3 produces the number of tab stops
1759 we have already passed, and then adding one and
1760 shifting left 3 advances to the next tab stop. */
1761 chars_printed = ((chars_printed >> 3) + 1) << 3;
1762 lineptr++;
1763 }
1764 else
1765 {
1766 if (wrap_column)
1767 *wrap_pointer++ = *lineptr;
1768 else
1769 fputc_unfiltered (*lineptr, stream);
1770 chars_printed++;
1771 lineptr++;
1772 }
1773
1774 if (chars_printed >= chars_per_line)
1775 {
1776 unsigned int save_chars = chars_printed;
1777
1778 chars_printed = 0;
1779 lines_printed++;
1780 /* If we aren't actually wrapping, don't output newline --
1781 if chars_per_line is right, we probably just overflowed
1782 anyway; if it's wrong, let us keep going. */
1783 if (wrap_column)
1784 fputc_unfiltered ('\n', stream);
1785
1786 /* Possible new page. */
1787 if (lines_printed >= lines_per_page - 1)
1788 prompt_for_continue ();
1789
1790 /* Now output indentation and wrapped string */
1791 if (wrap_column)
1792 {
1793 fputs_unfiltered (wrap_indent, stream);
1794 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1795 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1796 /* FIXME, this strlen is what prevents wrap_indent from
1797 containing tabs. However, if we recurse to print it
1798 and count its chars, we risk trouble if wrap_indent is
1799 longer than (the user settable) chars_per_line.
1800 Note also that this can set chars_printed > chars_per_line
1801 if we are printing a long string. */
1802 chars_printed = strlen (wrap_indent)
1803 + (save_chars - wrap_column);
1804 wrap_pointer = wrap_buffer; /* Reset buffer */
1805 wrap_buffer[0] = '\0';
1806 wrap_column = 0; /* And disable fancy wrap */
1807 }
1808 }
1809 }
1810
1811 if (*lineptr == '\n')
1812 {
1813 chars_printed = 0;
1814 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1815 lines_printed++;
1816 fputc_unfiltered ('\n', stream);
1817 lineptr++;
1818 }
1819 }
1820 }
1821
1822 void
1823 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1824 {
1825 fputs_maybe_filtered (linebuffer, stream, 1);
1826 }
1827
1828 int
1829 putchar_unfiltered (int c)
1830 {
1831 char buf = c;
1832 ui_file_write (gdb_stdout, &buf, 1);
1833 return c;
1834 }
1835
1836 int
1837 fputc_unfiltered (int c, struct ui_file *stream)
1838 {
1839 char buf = c;
1840 ui_file_write (stream, &buf, 1);
1841 return c;
1842 }
1843
1844 int
1845 fputc_filtered (int c, struct ui_file *stream)
1846 {
1847 char buf[2];
1848
1849 buf[0] = c;
1850 buf[1] = 0;
1851 fputs_filtered (buf, stream);
1852 return c;
1853 }
1854
1855 /* puts_debug is like fputs_unfiltered, except it prints special
1856 characters in printable fashion. */
1857
1858 void
1859 puts_debug (char *prefix, char *string, char *suffix)
1860 {
1861 int ch;
1862
1863 /* Print prefix and suffix after each line. */
1864 static int new_line = 1;
1865 static int return_p = 0;
1866 static char *prev_prefix = "";
1867 static char *prev_suffix = "";
1868
1869 if (*string == '\n')
1870 return_p = 0;
1871
1872 /* If the prefix is changing, print the previous suffix, a new line,
1873 and the new prefix. */
1874 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1875 {
1876 fputs_unfiltered (prev_suffix, gdb_stdlog);
1877 fputs_unfiltered ("\n", gdb_stdlog);
1878 fputs_unfiltered (prefix, gdb_stdlog);
1879 }
1880
1881 /* Print prefix if we printed a newline during the previous call. */
1882 if (new_line)
1883 {
1884 new_line = 0;
1885 fputs_unfiltered (prefix, gdb_stdlog);
1886 }
1887
1888 prev_prefix = prefix;
1889 prev_suffix = suffix;
1890
1891 /* Output characters in a printable format. */
1892 while ((ch = *string++) != '\0')
1893 {
1894 switch (ch)
1895 {
1896 default:
1897 if (isprint (ch))
1898 fputc_unfiltered (ch, gdb_stdlog);
1899
1900 else
1901 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1902 break;
1903
1904 case '\\':
1905 fputs_unfiltered ("\\\\", gdb_stdlog);
1906 break;
1907 case '\b':
1908 fputs_unfiltered ("\\b", gdb_stdlog);
1909 break;
1910 case '\f':
1911 fputs_unfiltered ("\\f", gdb_stdlog);
1912 break;
1913 case '\n':
1914 new_line = 1;
1915 fputs_unfiltered ("\\n", gdb_stdlog);
1916 break;
1917 case '\r':
1918 fputs_unfiltered ("\\r", gdb_stdlog);
1919 break;
1920 case '\t':
1921 fputs_unfiltered ("\\t", gdb_stdlog);
1922 break;
1923 case '\v':
1924 fputs_unfiltered ("\\v", gdb_stdlog);
1925 break;
1926 }
1927
1928 return_p = ch == '\r';
1929 }
1930
1931 /* Print suffix if we printed a newline. */
1932 if (new_line)
1933 {
1934 fputs_unfiltered (suffix, gdb_stdlog);
1935 fputs_unfiltered ("\n", gdb_stdlog);
1936 }
1937 }
1938
1939
1940 /* Print a variable number of ARGS using format FORMAT. If this
1941 information is going to put the amount written (since the last call
1942 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1943 call prompt_for_continue to get the users permision to continue.
1944
1945 Unlike fprintf, this function does not return a value.
1946
1947 We implement three variants, vfprintf (takes a vararg list and stream),
1948 fprintf (takes a stream to write on), and printf (the usual).
1949
1950 Note also that a longjmp to top level may occur in this routine
1951 (since prompt_for_continue may do so) so this routine should not be
1952 called when cleanups are not in place. */
1953
1954 static void
1955 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
1956 va_list args, int filter)
1957 {
1958 char *linebuffer;
1959 struct cleanup *old_cleanups;
1960
1961 vasprintf (&linebuffer, format, args);
1962 if (linebuffer == NULL)
1963 {
1964 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
1965 exit (1);
1966 }
1967 old_cleanups = make_cleanup (free, linebuffer);
1968 fputs_maybe_filtered (linebuffer, stream, filter);
1969 do_cleanups (old_cleanups);
1970 }
1971
1972
1973 void
1974 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
1975 {
1976 vfprintf_maybe_filtered (stream, format, args, 1);
1977 }
1978
1979 void
1980 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
1981 {
1982 char *linebuffer;
1983 struct cleanup *old_cleanups;
1984
1985 vasprintf (&linebuffer, format, args);
1986 if (linebuffer == NULL)
1987 {
1988 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
1989 exit (1);
1990 }
1991 old_cleanups = make_cleanup (free, linebuffer);
1992 fputs_unfiltered (linebuffer, stream);
1993 do_cleanups (old_cleanups);
1994 }
1995
1996 void
1997 vprintf_filtered (const char *format, va_list args)
1998 {
1999 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2000 }
2001
2002 void
2003 vprintf_unfiltered (const char *format, va_list args)
2004 {
2005 vfprintf_unfiltered (gdb_stdout, format, args);
2006 }
2007
2008 void
2009 fprintf_filtered (struct ui_file * stream, const char *format,...)
2010 {
2011 va_list args;
2012 va_start (args, format);
2013 vfprintf_filtered (stream, format, args);
2014 va_end (args);
2015 }
2016
2017 void
2018 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2019 {
2020 va_list args;
2021 va_start (args, format);
2022 vfprintf_unfiltered (stream, format, args);
2023 va_end (args);
2024 }
2025
2026 /* Like fprintf_filtered, but prints its result indented.
2027 Called as fprintfi_filtered (spaces, stream, format, ...); */
2028
2029 void
2030 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2031 {
2032 va_list args;
2033 va_start (args, format);
2034 print_spaces_filtered (spaces, stream);
2035
2036 vfprintf_filtered (stream, format, args);
2037 va_end (args);
2038 }
2039
2040
2041 void
2042 printf_filtered (const char *format,...)
2043 {
2044 va_list args;
2045 va_start (args, format);
2046 vfprintf_filtered (gdb_stdout, format, args);
2047 va_end (args);
2048 }
2049
2050
2051 void
2052 printf_unfiltered (const char *format,...)
2053 {
2054 va_list args;
2055 va_start (args, format);
2056 vfprintf_unfiltered (gdb_stdout, format, args);
2057 va_end (args);
2058 }
2059
2060 /* Like printf_filtered, but prints it's result indented.
2061 Called as printfi_filtered (spaces, format, ...); */
2062
2063 void
2064 printfi_filtered (int spaces, const char *format,...)
2065 {
2066 va_list args;
2067 va_start (args, format);
2068 print_spaces_filtered (spaces, gdb_stdout);
2069 vfprintf_filtered (gdb_stdout, format, args);
2070 va_end (args);
2071 }
2072
2073 /* Easy -- but watch out!
2074
2075 This routine is *not* a replacement for puts()! puts() appends a newline.
2076 This one doesn't, and had better not! */
2077
2078 void
2079 puts_filtered (const char *string)
2080 {
2081 fputs_filtered (string, gdb_stdout);
2082 }
2083
2084 void
2085 puts_unfiltered (const char *string)
2086 {
2087 fputs_unfiltered (string, gdb_stdout);
2088 }
2089
2090 /* Return a pointer to N spaces and a null. The pointer is good
2091 until the next call to here. */
2092 char *
2093 n_spaces (int n)
2094 {
2095 char *t;
2096 static char *spaces = 0;
2097 static int max_spaces = -1;
2098
2099 if (n > max_spaces)
2100 {
2101 if (spaces)
2102 free (spaces);
2103 spaces = (char *) xmalloc (n + 1);
2104 for (t = spaces + n; t != spaces;)
2105 *--t = ' ';
2106 spaces[n] = '\0';
2107 max_spaces = n;
2108 }
2109
2110 return spaces + max_spaces - n;
2111 }
2112
2113 /* Print N spaces. */
2114 void
2115 print_spaces_filtered (int n, struct ui_file *stream)
2116 {
2117 fputs_filtered (n_spaces (n), stream);
2118 }
2119 \f
2120 /* C++ demangler stuff. */
2121
2122 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2123 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2124 If the name is not mangled, or the language for the name is unknown, or
2125 demangling is off, the name is printed in its "raw" form. */
2126
2127 void
2128 fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2129 int arg_mode)
2130 {
2131 char *demangled;
2132
2133 if (name != NULL)
2134 {
2135 /* If user wants to see raw output, no problem. */
2136 if (!demangle)
2137 {
2138 fputs_filtered (name, stream);
2139 }
2140 else
2141 {
2142 switch (lang)
2143 {
2144 case language_cplus:
2145 demangled = cplus_demangle (name, arg_mode);
2146 break;
2147 case language_java:
2148 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2149 break;
2150 case language_chill:
2151 demangled = chill_demangle (name);
2152 break;
2153 default:
2154 demangled = NULL;
2155 break;
2156 }
2157 fputs_filtered (demangled ? demangled : name, stream);
2158 if (demangled != NULL)
2159 {
2160 free (demangled);
2161 }
2162 }
2163 }
2164 }
2165
2166 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2167 differences in whitespace. Returns 0 if they match, non-zero if they
2168 don't (slightly different than strcmp()'s range of return values).
2169
2170 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2171 This "feature" is useful when searching for matching C++ function names
2172 (such as if the user types 'break FOO', where FOO is a mangled C++
2173 function). */
2174
2175 int
2176 strcmp_iw (const char *string1, const char *string2)
2177 {
2178 while ((*string1 != '\0') && (*string2 != '\0'))
2179 {
2180 while (isspace (*string1))
2181 {
2182 string1++;
2183 }
2184 while (isspace (*string2))
2185 {
2186 string2++;
2187 }
2188 if (*string1 != *string2)
2189 {
2190 break;
2191 }
2192 if (*string1 != '\0')
2193 {
2194 string1++;
2195 string2++;
2196 }
2197 }
2198 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2199 }
2200 \f
2201
2202 /*
2203 ** subset_compare()
2204 ** Answer whether string_to_compare is a full or partial match to
2205 ** template_string. The partial match must be in sequence starting
2206 ** at index 0.
2207 */
2208 int
2209 subset_compare (char *string_to_compare, char *template_string)
2210 {
2211 int match;
2212 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2213 strlen (string_to_compare) <= strlen (template_string))
2214 match = (strncmp (template_string,
2215 string_to_compare,
2216 strlen (string_to_compare)) == 0);
2217 else
2218 match = 0;
2219 return match;
2220 }
2221
2222
2223 static void pagination_on_command (char *arg, int from_tty);
2224 static void
2225 pagination_on_command (char *arg, int from_tty)
2226 {
2227 pagination_enabled = 1;
2228 }
2229
2230 static void pagination_on_command (char *arg, int from_tty);
2231 static void
2232 pagination_off_command (char *arg, int from_tty)
2233 {
2234 pagination_enabled = 0;
2235 }
2236 \f
2237
2238 void
2239 initialize_utils (void)
2240 {
2241 struct cmd_list_element *c;
2242
2243 c = add_set_cmd ("width", class_support, var_uinteger,
2244 (char *) &chars_per_line,
2245 "Set number of characters gdb thinks are in a line.",
2246 &setlist);
2247 add_show_from_set (c, &showlist);
2248 c->function.sfunc = set_width_command;
2249
2250 add_show_from_set
2251 (add_set_cmd ("height", class_support,
2252 var_uinteger, (char *) &lines_per_page,
2253 "Set number of lines gdb thinks are in a page.", &setlist),
2254 &showlist);
2255
2256 init_page_info ();
2257
2258 /* If the output is not a terminal, don't paginate it. */
2259 if (!ui_file_isatty (gdb_stdout))
2260 lines_per_page = UINT_MAX;
2261
2262 set_width_command ((char *) NULL, 0, c);
2263
2264 add_show_from_set
2265 (add_set_cmd ("demangle", class_support, var_boolean,
2266 (char *) &demangle,
2267 "Set demangling of encoded C++ names when displaying symbols.",
2268 &setprintlist),
2269 &showprintlist);
2270
2271 add_show_from_set
2272 (add_set_cmd ("pagination", class_support,
2273 var_boolean, (char *) &pagination_enabled,
2274 "Set state of pagination.", &setlist),
2275 &showlist);
2276
2277 if (xdb_commands)
2278 {
2279 add_com ("am", class_support, pagination_on_command,
2280 "Enable pagination");
2281 add_com ("sm", class_support, pagination_off_command,
2282 "Disable pagination");
2283 }
2284
2285 add_show_from_set
2286 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2287 (char *) &sevenbit_strings,
2288 "Set printing of 8-bit characters in strings as \\nnn.",
2289 &setprintlist),
2290 &showprintlist);
2291
2292 add_show_from_set
2293 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2294 (char *) &asm_demangle,
2295 "Set demangling of C++ names in disassembly listings.",
2296 &setprintlist),
2297 &showprintlist);
2298 }
2299
2300 /* Machine specific function to handle SIGWINCH signal. */
2301
2302 #ifdef SIGWINCH_HANDLER_BODY
2303 SIGWINCH_HANDLER_BODY
2304 #endif
2305 \f
2306 /* Support for converting target fp numbers into host DOUBLEST format. */
2307
2308 /* XXX - This code should really be in libiberty/floatformat.c, however
2309 configuration issues with libiberty made this very difficult to do in the
2310 available time. */
2311
2312 #include "floatformat.h"
2313 #include <math.h> /* ldexp */
2314
2315 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2316 going to bother with trying to muck around with whether it is defined in
2317 a system header, what we do if not, etc. */
2318 #define FLOATFORMAT_CHAR_BIT 8
2319
2320 static unsigned long get_field (unsigned char *,
2321 enum floatformat_byteorders,
2322 unsigned int, unsigned int, unsigned int);
2323
2324 /* Extract a field which starts at START and is LEN bytes long. DATA and
2325 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2326 static unsigned long
2327 get_field (unsigned char *data, enum floatformat_byteorders order,
2328 unsigned int total_len, unsigned int start, unsigned int len)
2329 {
2330 unsigned long result;
2331 unsigned int cur_byte;
2332 int cur_bitshift;
2333
2334 /* Start at the least significant part of the field. */
2335 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2336 {
2337 /* We start counting from the other end (i.e, from the high bytes
2338 rather than the low bytes). As such, we need to be concerned
2339 with what happens if bit 0 doesn't start on a byte boundary.
2340 I.e, we need to properly handle the case where total_len is
2341 not evenly divisible by 8. So we compute ``excess'' which
2342 represents the number of bits from the end of our starting
2343 byte needed to get to bit 0. */
2344 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2345 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2346 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2347 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2348 - FLOATFORMAT_CHAR_BIT;
2349 }
2350 else
2351 {
2352 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2353 cur_bitshift =
2354 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2355 }
2356 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2357 result = *(data + cur_byte) >> (-cur_bitshift);
2358 else
2359 result = 0;
2360 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2361 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2362 ++cur_byte;
2363 else
2364 --cur_byte;
2365
2366 /* Move towards the most significant part of the field. */
2367 while (cur_bitshift < len)
2368 {
2369 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2370 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2371 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2372 ++cur_byte;
2373 else
2374 --cur_byte;
2375 }
2376 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2377 /* Mask out bits which are not part of the field */
2378 result &= ((1UL << len) - 1);
2379 return result;
2380 }
2381
2382 /* Convert from FMT to a DOUBLEST.
2383 FROM is the address of the extended float.
2384 Store the DOUBLEST in *TO. */
2385
2386 void
2387 floatformat_to_doublest (const struct floatformat *fmt, char *from,
2388 DOUBLEST *to)
2389 {
2390 unsigned char *ufrom = (unsigned char *) from;
2391 DOUBLEST dto;
2392 long exponent;
2393 unsigned long mant;
2394 unsigned int mant_bits, mant_off;
2395 int mant_bits_left;
2396 int special_exponent; /* It's a NaN, denorm or zero */
2397
2398 /* If the mantissa bits are not contiguous from one end of the
2399 mantissa to the other, we need to make a private copy of the
2400 source bytes that is in the right order since the unpacking
2401 algorithm assumes that the bits are contiguous.
2402
2403 Swap the bytes individually rather than accessing them through
2404 "long *" since we have no guarantee that they start on a long
2405 alignment, and also sizeof(long) for the host could be different
2406 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2407 for the target is 4. */
2408
2409 if (fmt->byteorder == floatformat_littlebyte_bigword)
2410 {
2411 static unsigned char *newfrom;
2412 unsigned char *swapin, *swapout;
2413 int longswaps;
2414
2415 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2416 longswaps >>= 3;
2417
2418 if (newfrom == NULL)
2419 {
2420 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2421 }
2422 swapout = newfrom;
2423 swapin = ufrom;
2424 ufrom = newfrom;
2425 while (longswaps-- > 0)
2426 {
2427 /* This is ugly, but efficient */
2428 *swapout++ = swapin[4];
2429 *swapout++ = swapin[5];
2430 *swapout++ = swapin[6];
2431 *swapout++ = swapin[7];
2432 *swapout++ = swapin[0];
2433 *swapout++ = swapin[1];
2434 *swapout++ = swapin[2];
2435 *swapout++ = swapin[3];
2436 swapin += 8;
2437 }
2438 }
2439
2440 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2441 fmt->exp_start, fmt->exp_len);
2442 /* Note that if exponent indicates a NaN, we can't really do anything useful
2443 (not knowing if the host has NaN's, or how to build one). So it will
2444 end up as an infinity or something close; that is OK. */
2445
2446 mant_bits_left = fmt->man_len;
2447 mant_off = fmt->man_start;
2448 dto = 0.0;
2449
2450 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2451
2452 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2453 we don't check for zero as the exponent doesn't matter. */
2454 if (!special_exponent)
2455 exponent -= fmt->exp_bias;
2456 else if (exponent == 0)
2457 exponent = 1 - fmt->exp_bias;
2458
2459 /* Build the result algebraically. Might go infinite, underflow, etc;
2460 who cares. */
2461
2462 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2463 increment the exponent by one to account for the integer bit. */
2464
2465 if (!special_exponent)
2466 {
2467 if (fmt->intbit == floatformat_intbit_no)
2468 dto = ldexp (1.0, exponent);
2469 else
2470 exponent++;
2471 }
2472
2473 while (mant_bits_left > 0)
2474 {
2475 mant_bits = min (mant_bits_left, 32);
2476
2477 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2478 mant_off, mant_bits);
2479
2480 dto += ldexp ((double) mant, exponent - mant_bits);
2481 exponent -= mant_bits;
2482 mant_off += mant_bits;
2483 mant_bits_left -= mant_bits;
2484 }
2485
2486 /* Negate it if negative. */
2487 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2488 dto = -dto;
2489 *to = dto;
2490 }
2491 \f
2492 static void put_field (unsigned char *, enum floatformat_byteorders,
2493 unsigned int,
2494 unsigned int, unsigned int, unsigned long);
2495
2496 /* Set a field which starts at START and is LEN bytes long. DATA and
2497 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2498 static void
2499 put_field (unsigned char *data, enum floatformat_byteorders order,
2500 unsigned int total_len, unsigned int start, unsigned int len,
2501 unsigned long stuff_to_put)
2502 {
2503 unsigned int cur_byte;
2504 int cur_bitshift;
2505
2506 /* Start at the least significant part of the field. */
2507 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2508 {
2509 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2510 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2511 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2512 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2513 - FLOATFORMAT_CHAR_BIT;
2514 }
2515 else
2516 {
2517 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2518 cur_bitshift =
2519 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2520 }
2521 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2522 {
2523 *(data + cur_byte) &=
2524 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2525 << (-cur_bitshift));
2526 *(data + cur_byte) |=
2527 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2528 }
2529 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2530 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2531 ++cur_byte;
2532 else
2533 --cur_byte;
2534
2535 /* Move towards the most significant part of the field. */
2536 while (cur_bitshift < len)
2537 {
2538 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2539 {
2540 /* This is the last byte. */
2541 *(data + cur_byte) &=
2542 ~((1 << (len - cur_bitshift)) - 1);
2543 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2544 }
2545 else
2546 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2547 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2548 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2549 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2550 ++cur_byte;
2551 else
2552 --cur_byte;
2553 }
2554 }
2555
2556 #ifdef HAVE_LONG_DOUBLE
2557 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2558 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2559 frexp, but operates on the long double data type. */
2560
2561 static long double ldfrexp (long double value, int *eptr);
2562
2563 static long double
2564 ldfrexp (long double value, int *eptr)
2565 {
2566 long double tmp;
2567 int exp;
2568
2569 /* Unfortunately, there are no portable functions for extracting the exponent
2570 of a long double, so we have to do it iteratively by multiplying or dividing
2571 by two until the fraction is between 0.5 and 1.0. */
2572
2573 if (value < 0.0l)
2574 value = -value;
2575
2576 tmp = 1.0l;
2577 exp = 0;
2578
2579 if (value >= tmp) /* Value >= 1.0 */
2580 while (value >= tmp)
2581 {
2582 tmp *= 2.0l;
2583 exp++;
2584 }
2585 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2586 {
2587 while (value < tmp)
2588 {
2589 tmp /= 2.0l;
2590 exp--;
2591 }
2592 tmp *= 2.0l;
2593 exp++;
2594 }
2595
2596 *eptr = exp;
2597 return value / tmp;
2598 }
2599 #endif /* HAVE_LONG_DOUBLE */
2600
2601
2602 /* The converse: convert the DOUBLEST *FROM to an extended float
2603 and store where TO points. Neither FROM nor TO have any alignment
2604 restrictions. */
2605
2606 void
2607 floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from,
2608 char *to)
2609 {
2610 DOUBLEST dfrom;
2611 int exponent;
2612 DOUBLEST mant;
2613 unsigned int mant_bits, mant_off;
2614 int mant_bits_left;
2615 unsigned char *uto = (unsigned char *) to;
2616
2617 memcpy (&dfrom, from, sizeof (dfrom));
2618 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2619 / FLOATFORMAT_CHAR_BIT);
2620 if (dfrom == 0)
2621 return; /* Result is zero */
2622 if (dfrom != dfrom) /* Result is NaN */
2623 {
2624 /* From is NaN */
2625 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2626 fmt->exp_len, fmt->exp_nan);
2627 /* Be sure it's not infinity, but NaN value is irrel */
2628 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2629 32, 1);
2630 return;
2631 }
2632
2633 /* If negative, set the sign bit. */
2634 if (dfrom < 0)
2635 {
2636 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2637 dfrom = -dfrom;
2638 }
2639
2640 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2641 {
2642 /* Infinity exponent is same as NaN's. */
2643 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2644 fmt->exp_len, fmt->exp_nan);
2645 /* Infinity mantissa is all zeroes. */
2646 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2647 fmt->man_len, 0);
2648 return;
2649 }
2650
2651 #ifdef HAVE_LONG_DOUBLE
2652 mant = ldfrexp (dfrom, &exponent);
2653 #else
2654 mant = frexp (dfrom, &exponent);
2655 #endif
2656
2657 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2658 exponent + fmt->exp_bias - 1);
2659
2660 mant_bits_left = fmt->man_len;
2661 mant_off = fmt->man_start;
2662 while (mant_bits_left > 0)
2663 {
2664 unsigned long mant_long;
2665 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2666
2667 mant *= 4294967296.0;
2668 mant_long = ((unsigned long) mant) & 0xffffffffL;
2669 mant -= mant_long;
2670
2671 /* If the integer bit is implicit, then we need to discard it.
2672 If we are discarding a zero, we should be (but are not) creating
2673 a denormalized number which means adjusting the exponent
2674 (I think). */
2675 if (mant_bits_left == fmt->man_len
2676 && fmt->intbit == floatformat_intbit_no)
2677 {
2678 mant_long <<= 1;
2679 mant_long &= 0xffffffffL;
2680 mant_bits -= 1;
2681 }
2682
2683 if (mant_bits < 32)
2684 {
2685 /* The bits we want are in the most significant MANT_BITS bits of
2686 mant_long. Move them to the least significant. */
2687 mant_long >>= 32 - mant_bits;
2688 }
2689
2690 put_field (uto, fmt->byteorder, fmt->totalsize,
2691 mant_off, mant_bits, mant_long);
2692 mant_off += mant_bits;
2693 mant_bits_left -= mant_bits;
2694 }
2695 if (fmt->byteorder == floatformat_littlebyte_bigword)
2696 {
2697 int count;
2698 unsigned char *swaplow = uto;
2699 unsigned char *swaphigh = uto + 4;
2700 unsigned char tmp;
2701
2702 for (count = 0; count < 4; count++)
2703 {
2704 tmp = *swaplow;
2705 *swaplow++ = *swaphigh;
2706 *swaphigh++ = tmp;
2707 }
2708 }
2709 }
2710
2711 /* print routines to handle variable size regs, etc. */
2712
2713 /* temporary storage using circular buffer */
2714 #define NUMCELLS 16
2715 #define CELLSIZE 32
2716 static char *
2717 get_cell (void)
2718 {
2719 static char buf[NUMCELLS][CELLSIZE];
2720 static int cell = 0;
2721 if (++cell >= NUMCELLS)
2722 cell = 0;
2723 return buf[cell];
2724 }
2725
2726 int
2727 strlen_paddr (void)
2728 {
2729 return (TARGET_PTR_BIT / 8 * 2);
2730 }
2731
2732 char *
2733 paddr (CORE_ADDR addr)
2734 {
2735 return phex (addr, TARGET_PTR_BIT / 8);
2736 }
2737
2738 char *
2739 paddr_nz (CORE_ADDR addr)
2740 {
2741 return phex_nz (addr, TARGET_PTR_BIT / 8);
2742 }
2743
2744 static void
2745 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2746 {
2747 /* steal code from valprint.c:print_decimal(). Should this worry
2748 about the real size of addr as the above does? */
2749 unsigned long temp[3];
2750 int i = 0;
2751 do
2752 {
2753 temp[i] = addr % (1000 * 1000 * 1000);
2754 addr /= (1000 * 1000 * 1000);
2755 i++;
2756 }
2757 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2758 switch (i)
2759 {
2760 case 1:
2761 sprintf (paddr_str, "%s%lu",
2762 sign, temp[0]);
2763 break;
2764 case 2:
2765 sprintf (paddr_str, "%s%lu%09lu",
2766 sign, temp[1], temp[0]);
2767 break;
2768 case 3:
2769 sprintf (paddr_str, "%s%lu%09lu%09lu",
2770 sign, temp[2], temp[1], temp[0]);
2771 break;
2772 default:
2773 abort ();
2774 }
2775 }
2776
2777 char *
2778 paddr_u (CORE_ADDR addr)
2779 {
2780 char *paddr_str = get_cell ();
2781 decimal2str (paddr_str, "", addr);
2782 return paddr_str;
2783 }
2784
2785 char *
2786 paddr_d (LONGEST addr)
2787 {
2788 char *paddr_str = get_cell ();
2789 if (addr < 0)
2790 decimal2str (paddr_str, "-", -addr);
2791 else
2792 decimal2str (paddr_str, "", addr);
2793 return paddr_str;
2794 }
2795
2796 /* eliminate warning from compiler on 32-bit systems */
2797 static int thirty_two = 32;
2798
2799 char *
2800 phex (ULONGEST l, int sizeof_l)
2801 {
2802 char *str = get_cell ();
2803 switch (sizeof_l)
2804 {
2805 case 8:
2806 sprintf (str, "%08lx%08lx",
2807 (unsigned long) (l >> thirty_two),
2808 (unsigned long) (l & 0xffffffff));
2809 break;
2810 case 4:
2811 sprintf (str, "%08lx", (unsigned long) l);
2812 break;
2813 case 2:
2814 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2815 break;
2816 default:
2817 phex (l, sizeof (l));
2818 break;
2819 }
2820 return str;
2821 }
2822
2823 char *
2824 phex_nz (ULONGEST l, int sizeof_l)
2825 {
2826 char *str = get_cell ();
2827 switch (sizeof_l)
2828 {
2829 case 8:
2830 {
2831 unsigned long high = (unsigned long) (l >> thirty_two);
2832 if (high == 0)
2833 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2834 else
2835 sprintf (str, "%lx%08lx",
2836 high, (unsigned long) (l & 0xffffffff));
2837 break;
2838 }
2839 case 4:
2840 sprintf (str, "%lx", (unsigned long) l);
2841 break;
2842 case 2:
2843 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2844 break;
2845 default:
2846 phex_nz (l, sizeof (l));
2847 break;
2848 }
2849 return str;
2850 }
2851
2852
2853 /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2854 using the target's conversion routines. */
2855 CORE_ADDR
2856 host_pointer_to_address (void *ptr)
2857 {
2858 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
2859 internal_error ("core_addr_to_void_ptr: bad cast");
2860 return POINTER_TO_ADDRESS (builtin_type_ptr, &ptr);
2861 }
2862
2863 void *
2864 address_to_host_pointer (CORE_ADDR addr)
2865 {
2866 void *ptr;
2867 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
2868 internal_error ("core_addr_to_void_ptr: bad cast");
2869 ADDRESS_TO_POINTER (builtin_type_ptr, &ptr, addr);
2870 return ptr;
2871 }
This page took 0.104807 seconds and 4 git commands to generate.