Add h8300.exp.
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 89, 90, 91, 92, 95, 1996 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #ifdef ANSI_PROTOTYPES
22 #include <stdarg.h>
23 #else
24 #include <varargs.h>
25 #endif
26 #include <ctype.h>
27 #include "gdb_string.h"
28 #ifdef HAVE_UNISTD_H
29 #include <unistd.h>
30 #endif
31
32 #include "signals.h"
33 #include "gdbcmd.h"
34 #include "serial.h"
35 #include "bfd.h"
36 #include "target.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "language.h"
40 #include "annotate.h"
41
42 #include "readline.h"
43
44 /* readline defines this. */
45 #undef savestring
46
47 /* Prototypes for local functions */
48
49 static void vfprintf_maybe_filtered PARAMS ((FILE *, const char *, va_list, int));
50
51 static void fputs_maybe_filtered PARAMS ((const char *, FILE *, int));
52
53 #if !defined (NO_MMALLOC) && !defined (NO_MMCHECK)
54 static void malloc_botch PARAMS ((void));
55 #endif
56
57 static void
58 fatal_dump_core PARAMS((char *, ...));
59
60 static void
61 prompt_for_continue PARAMS ((void));
62
63 static void
64 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
65
66 /* If this definition isn't overridden by the header files, assume
67 that isatty and fileno exist on this system. */
68 #ifndef ISATTY
69 #define ISATTY(FP) (isatty (fileno (FP)))
70 #endif
71
72 /* Chain of cleanup actions established with make_cleanup,
73 to be executed if an error happens. */
74
75 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
76 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
77
78 /* Nonzero if we have job control. */
79
80 int job_control;
81
82 /* Nonzero means a quit has been requested. */
83
84 int quit_flag;
85
86 /* Nonzero means quit immediately if Control-C is typed now, rather
87 than waiting until QUIT is executed. Be careful in setting this;
88 code which executes with immediate_quit set has to be very careful
89 about being able to deal with being interrupted at any time. It is
90 almost always better to use QUIT; the only exception I can think of
91 is being able to quit out of a system call (using EINTR loses if
92 the SIGINT happens between the previous QUIT and the system call).
93 To immediately quit in the case in which a SIGINT happens between
94 the previous QUIT and setting immediate_quit (desirable anytime we
95 expect to block), call QUIT after setting immediate_quit. */
96
97 int immediate_quit;
98
99 /* Nonzero means that encoded C++ names should be printed out in their
100 C++ form rather than raw. */
101
102 int demangle = 1;
103
104 /* Nonzero means that encoded C++ names should be printed out in their
105 C++ form even in assembler language displays. If this is set, but
106 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
107
108 int asm_demangle = 0;
109
110 /* Nonzero means that strings with character values >0x7F should be printed
111 as octal escapes. Zero means just print the value (e.g. it's an
112 international character, and the terminal or window can cope.) */
113
114 int sevenbit_strings = 0;
115
116 /* String to be printed before error messages, if any. */
117
118 char *error_pre_print;
119
120 /* String to be printed before quit messages, if any. */
121
122 char *quit_pre_print;
123
124 /* String to be printed before warning messages, if any. */
125
126 char *warning_pre_print = "\nwarning: ";
127 \f
128 /* Add a new cleanup to the cleanup_chain,
129 and return the previous chain pointer
130 to be passed later to do_cleanups or discard_cleanups.
131 Args are FUNCTION to clean up with, and ARG to pass to it. */
132
133 struct cleanup *
134 make_cleanup (function, arg)
135 void (*function) PARAMS ((PTR));
136 PTR arg;
137 {
138 return make_my_cleanup (&cleanup_chain, function, arg);
139 }
140
141 struct cleanup *
142 make_final_cleanup (function, arg)
143 void (*function) PARAMS ((PTR));
144 PTR arg;
145 {
146 return make_my_cleanup (&final_cleanup_chain, function, arg);
147 }
148 struct cleanup *
149 make_my_cleanup (pmy_chain, function, arg)
150 struct cleanup **pmy_chain;
151 void (*function) PARAMS ((PTR));
152 PTR arg;
153 {
154 register struct cleanup *new
155 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
156 register struct cleanup *old_chain = *pmy_chain;
157
158 new->next = *pmy_chain;
159 new->function = function;
160 new->arg = arg;
161 *pmy_chain = new;
162
163 return old_chain;
164 }
165
166 /* Discard cleanups and do the actions they describe
167 until we get back to the point OLD_CHAIN in the cleanup_chain. */
168
169 void
170 do_cleanups (old_chain)
171 register struct cleanup *old_chain;
172 {
173 do_my_cleanups (&cleanup_chain, old_chain);
174 }
175
176 void
177 do_final_cleanups (old_chain)
178 register struct cleanup *old_chain;
179 {
180 do_my_cleanups (&final_cleanup_chain, old_chain);
181 }
182
183 void
184 do_my_cleanups (pmy_chain, old_chain)
185 register struct cleanup **pmy_chain;
186 register struct cleanup *old_chain;
187 {
188 register struct cleanup *ptr;
189 while ((ptr = *pmy_chain) != old_chain)
190 {
191 *pmy_chain = ptr->next; /* Do this first incase recursion */
192 (*ptr->function) (ptr->arg);
193 free (ptr);
194 }
195 }
196
197 /* Discard cleanups, not doing the actions they describe,
198 until we get back to the point OLD_CHAIN in the cleanup_chain. */
199
200 void
201 discard_cleanups (old_chain)
202 register struct cleanup *old_chain;
203 {
204 discard_my_cleanups (&cleanup_chain, old_chain);
205 }
206
207 void
208 discard_final_cleanups (old_chain)
209 register struct cleanup *old_chain;
210 {
211 discard_my_cleanups (&final_cleanup_chain, old_chain);
212 }
213
214 void
215 discard_my_cleanups (pmy_chain, old_chain)
216 register struct cleanup **pmy_chain;
217 register struct cleanup *old_chain;
218 {
219 register struct cleanup *ptr;
220 while ((ptr = *pmy_chain) != old_chain)
221 {
222 *pmy_chain = ptr->next;
223 free ((PTR)ptr);
224 }
225 }
226
227 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
228 struct cleanup *
229 save_cleanups ()
230 {
231 return save_my_cleanups (&cleanup_chain);
232 }
233
234 struct cleanup *
235 save_final_cleanups ()
236 {
237 return save_my_cleanups (&final_cleanup_chain);
238 }
239
240 struct cleanup *
241 save_my_cleanups (pmy_chain)
242 struct cleanup **pmy_chain;
243 {
244 struct cleanup *old_chain = *pmy_chain;
245
246 *pmy_chain = 0;
247 return old_chain;
248 }
249
250 /* Restore the cleanup chain from a previously saved chain. */
251 void
252 restore_cleanups (chain)
253 struct cleanup *chain;
254 {
255 restore_my_cleanups (&cleanup_chain, chain);
256 }
257
258 void
259 restore_final_cleanups (chain)
260 struct cleanup *chain;
261 {
262 restore_my_cleanups (&final_cleanup_chain, chain);
263 }
264
265 void
266 restore_my_cleanups (pmy_chain, chain)
267 struct cleanup **pmy_chain;
268 struct cleanup *chain;
269 {
270 *pmy_chain = chain;
271 }
272
273 /* This function is useful for cleanups.
274 Do
275
276 foo = xmalloc (...);
277 old_chain = make_cleanup (free_current_contents, &foo);
278
279 to arrange to free the object thus allocated. */
280
281 void
282 free_current_contents (location)
283 char **location;
284 {
285 free (*location);
286 }
287
288 /* Provide a known function that does nothing, to use as a base for
289 for a possibly long chain of cleanups. This is useful where we
290 use the cleanup chain for handling normal cleanups as well as dealing
291 with cleanups that need to be done as a result of a call to error().
292 In such cases, we may not be certain where the first cleanup is, unless
293 we have a do-nothing one to always use as the base. */
294
295 /* ARGSUSED */
296 void
297 null_cleanup (arg)
298 PTR arg;
299 {
300 }
301
302 \f
303 /* Print a warning message. Way to use this is to call warning_begin,
304 output the warning message (use unfiltered output to gdb_stderr),
305 ending in a newline. There is not currently a warning_end that you
306 call afterwards, but such a thing might be added if it is useful
307 for a GUI to separate warning messages from other output.
308
309 FIXME: Why do warnings use unfiltered output and errors filtered?
310 Is this anything other than a historical accident? */
311
312 void
313 warning_begin ()
314 {
315 target_terminal_ours ();
316 wrap_here(""); /* Force out any buffered output */
317 gdb_flush (gdb_stdout);
318 if (warning_pre_print)
319 fprintf_unfiltered (gdb_stderr, warning_pre_print);
320 }
321
322 /* Print a warning message.
323 The first argument STRING is the warning message, used as a fprintf string,
324 and the remaining args are passed as arguments to it.
325 The primary difference between warnings and errors is that a warning
326 does not force the return to command level. */
327
328 /* VARARGS */
329 void
330 #ifdef ANSI_PROTOTYPES
331 warning (const char *string, ...)
332 #else
333 warning (va_alist)
334 va_dcl
335 #endif
336 {
337 va_list args;
338 #ifdef ANSI_PROTOTYPES
339 va_start (args, string);
340 #else
341 char *string;
342
343 va_start (args);
344 string = va_arg (args, char *);
345 #endif
346 warning_begin ();
347 vfprintf_unfiltered (gdb_stderr, string, args);
348 fprintf_unfiltered (gdb_stderr, "\n");
349 va_end (args);
350 }
351
352 /* Start the printing of an error message. Way to use this is to call
353 this, output the error message (use filtered output to gdb_stderr
354 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
355 in a newline, and then call return_to_top_level (RETURN_ERROR).
356 error() provides a convenient way to do this for the special case
357 that the error message can be formatted with a single printf call,
358 but this is more general. */
359 void
360 error_begin ()
361 {
362 target_terminal_ours ();
363 wrap_here (""); /* Force out any buffered output */
364 gdb_flush (gdb_stdout);
365
366 annotate_error_begin ();
367
368 if (error_pre_print)
369 fprintf_filtered (gdb_stderr, error_pre_print);
370 }
371
372 /* Print an error message and return to command level.
373 The first argument STRING is the error message, used as a fprintf string,
374 and the remaining args are passed as arguments to it. */
375
376 #ifdef ANSI_PROTOTYPES
377 NORETURN void
378 error (const char *string, ...)
379 #else
380 void
381 error (va_alist)
382 va_dcl
383 #endif
384 {
385 va_list args;
386 #ifdef ANSI_PROTOTYPES
387 va_start (args, string);
388 #else
389 va_start (args);
390 #endif
391 if (error_hook)
392 (*error_hook) ();
393 else
394 {
395 error_begin ();
396 #ifdef ANSI_PROTOTYPES
397 vfprintf_filtered (gdb_stderr, string, args);
398 #else
399 {
400 char *string1;
401
402 string1 = va_arg (args, char *);
403 vfprintf_filtered (gdb_stderr, string1, args);
404 }
405 #endif
406 fprintf_filtered (gdb_stderr, "\n");
407 va_end (args);
408 return_to_top_level (RETURN_ERROR);
409 }
410 }
411
412
413 /* Print an error message and exit reporting failure.
414 This is for a error that we cannot continue from.
415 The arguments are printed a la printf.
416
417 This function cannot be declared volatile (NORETURN) in an
418 ANSI environment because exit() is not declared volatile. */
419
420 /* VARARGS */
421 NORETURN void
422 #ifdef ANSI_PROTOTYPES
423 fatal (char *string, ...)
424 #else
425 fatal (va_alist)
426 va_dcl
427 #endif
428 {
429 va_list args;
430 #ifdef ANSI_PROTOTYPES
431 va_start (args, string);
432 #else
433 char *string;
434 va_start (args);
435 string = va_arg (args, char *);
436 #endif
437 fprintf_unfiltered (gdb_stderr, "\ngdb: ");
438 vfprintf_unfiltered (gdb_stderr, string, args);
439 fprintf_unfiltered (gdb_stderr, "\n");
440 va_end (args);
441 exit (1);
442 }
443
444 /* Print an error message and exit, dumping core.
445 The arguments are printed a la printf (). */
446
447 /* VARARGS */
448 static void
449 #ifdef ANSI_PROTOTYPES
450 fatal_dump_core (char *string, ...)
451 #else
452 fatal_dump_core (va_alist)
453 va_dcl
454 #endif
455 {
456 va_list args;
457 #ifdef ANSI_PROTOTYPES
458 va_start (args, string);
459 #else
460 char *string;
461
462 va_start (args);
463 string = va_arg (args, char *);
464 #endif
465 /* "internal error" is always correct, since GDB should never dump
466 core, no matter what the input. */
467 fprintf_unfiltered (gdb_stderr, "\ngdb internal error: ");
468 vfprintf_unfiltered (gdb_stderr, string, args);
469 fprintf_unfiltered (gdb_stderr, "\n");
470 va_end (args);
471
472 signal (SIGQUIT, SIG_DFL);
473 kill (getpid (), SIGQUIT);
474 /* We should never get here, but just in case... */
475 exit (1);
476 }
477
478 /* The strerror() function can return NULL for errno values that are
479 out of range. Provide a "safe" version that always returns a
480 printable string. */
481
482 char *
483 safe_strerror (errnum)
484 int errnum;
485 {
486 char *msg;
487 static char buf[32];
488
489 if ((msg = strerror (errnum)) == NULL)
490 {
491 sprintf (buf, "(undocumented errno %d)", errnum);
492 msg = buf;
493 }
494 return (msg);
495 }
496
497 /* The strsignal() function can return NULL for signal values that are
498 out of range. Provide a "safe" version that always returns a
499 printable string. */
500
501 char *
502 safe_strsignal (signo)
503 int signo;
504 {
505 char *msg;
506 static char buf[32];
507
508 if ((msg = strsignal (signo)) == NULL)
509 {
510 sprintf (buf, "(undocumented signal %d)", signo);
511 msg = buf;
512 }
513 return (msg);
514 }
515
516
517 /* Print the system error message for errno, and also mention STRING
518 as the file name for which the error was encountered.
519 Then return to command level. */
520
521 void
522 perror_with_name (string)
523 char *string;
524 {
525 char *err;
526 char *combined;
527
528 err = safe_strerror (errno);
529 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
530 strcpy (combined, string);
531 strcat (combined, ": ");
532 strcat (combined, err);
533
534 /* I understand setting these is a matter of taste. Still, some people
535 may clear errno but not know about bfd_error. Doing this here is not
536 unreasonable. */
537 bfd_set_error (bfd_error_no_error);
538 errno = 0;
539
540 error ("%s.", combined);
541 }
542
543 /* Print the system error message for ERRCODE, and also mention STRING
544 as the file name for which the error was encountered. */
545
546 void
547 print_sys_errmsg (string, errcode)
548 char *string;
549 int errcode;
550 {
551 char *err;
552 char *combined;
553
554 err = safe_strerror (errcode);
555 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
556 strcpy (combined, string);
557 strcat (combined, ": ");
558 strcat (combined, err);
559
560 /* We want anything which was printed on stdout to come out first, before
561 this message. */
562 gdb_flush (gdb_stdout);
563 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
564 }
565
566 /* Control C eventually causes this to be called, at a convenient time. */
567
568 void
569 quit ()
570 {
571 serial_t gdb_stdout_serial = serial_fdopen (1);
572
573 target_terminal_ours ();
574
575 /* We want all output to appear now, before we print "Quit". We
576 have 3 levels of buffering we have to flush (it's possible that
577 some of these should be changed to flush the lower-level ones
578 too): */
579
580 /* 1. The _filtered buffer. */
581 wrap_here ((char *)0);
582
583 /* 2. The stdio buffer. */
584 gdb_flush (gdb_stdout);
585 gdb_flush (gdb_stderr);
586
587 /* 3. The system-level buffer. */
588 SERIAL_FLUSH_OUTPUT (gdb_stdout_serial);
589 SERIAL_UN_FDOPEN (gdb_stdout_serial);
590
591 annotate_error_begin ();
592
593 /* Don't use *_filtered; we don't want to prompt the user to continue. */
594 if (quit_pre_print)
595 fprintf_unfiltered (gdb_stderr, quit_pre_print);
596
597 if (job_control
598 /* If there is no terminal switching for this target, then we can't
599 possibly get screwed by the lack of job control. */
600 || current_target.to_terminal_ours == NULL)
601 fprintf_unfiltered (gdb_stderr, "Quit\n");
602 else
603 fprintf_unfiltered (gdb_stderr,
604 "Quit (expect signal SIGINT when the program is resumed)\n");
605 return_to_top_level (RETURN_QUIT);
606 }
607
608
609 #if defined(__GO32__) || defined (_WIN32)
610
611 #ifndef _MSC_VER
612 /* In the absence of signals, poll keyboard for a quit.
613 Called from #define QUIT pollquit() in xm-go32.h. */
614
615 void
616 pollquit()
617 {
618 if (kbhit ())
619 {
620 int k = getkey ();
621 if (k == 1) {
622 quit_flag = 1;
623 quit();
624 }
625 else if (k == 2) {
626 immediate_quit = 1;
627 quit ();
628 }
629 else
630 {
631 /* We just ignore it */
632 /* FIXME!! Don't think this actually works! */
633 fprintf_unfiltered (gdb_stderr, "CTRL-A to quit, CTRL-B to quit harder\n");
634 }
635 }
636 }
637 #else /* !_MSC_VER */
638
639 /* This above code is not valid for wingdb unless
640 * getkey and kbhit were to be rewritten.
641 * Windows translates all keyboard and mouse events
642 * into a message which is appended to the message
643 * queue for the process.
644 */
645 void
646 pollquit()
647 {
648 int k = win32pollquit();
649 if (k == 1)
650 {
651 quit_flag = 1;
652 quit ();
653 }
654 else if (k == 2)
655 {
656 immediate_quit = 1;
657 quit ();
658 }
659 }
660 #endif /* !_MSC_VER */
661
662
663 #ifndef _MSC_VER
664 void notice_quit()
665 {
666 if (kbhit ())
667 {
668 int k = getkey ();
669 if (k == 1) {
670 quit_flag = 1;
671 }
672 else if (k == 2)
673 {
674 immediate_quit = 1;
675 }
676 else
677 {
678 fprintf_unfiltered (gdb_stderr, "CTRL-A to quit, CTRL-B to quit harder\n");
679 }
680 }
681 }
682 #else /* !_MSC_VER */
683
684 void notice_quit()
685 {
686 int k = win32pollquit();
687 if (k == 1)
688 quit_flag = 1;
689 else if (k == 2)
690 immediate_quit = 1;
691 }
692 #endif /* !_MSC_VER */
693
694 #else
695 void notice_quit()
696 {
697 /* Done by signals */
698 }
699 #endif /* defined(__GO32__) || defined(_WIN32) */
700
701 /* Control C comes here */
702
703 void
704 request_quit (signo)
705 int signo;
706 {
707 quit_flag = 1;
708 /* Restore the signal handler. Harmless with BSD-style signals, needed
709 for System V-style signals. So just always do it, rather than worrying
710 about USG defines and stuff like that. */
711 signal (signo, request_quit);
712
713 /* start-sanitize-gm */
714 #ifdef GENERAL_MAGIC
715 target_kill ();
716 #endif /* GENERAL_MAGIC */
717 /* end-sanitize-gm */
718
719 #ifdef REQUEST_QUIT
720 REQUEST_QUIT;
721 #else
722 if (immediate_quit)
723 quit ();
724 #endif
725 }
726
727 \f
728 /* Memory management stuff (malloc friends). */
729
730 /* Make a substitute size_t for non-ANSI compilers. */
731
732 #ifndef HAVE_STDDEF_H
733 #ifndef size_t
734 #define size_t unsigned int
735 #endif
736 #endif
737
738 #if defined (NO_MMALLOC)
739
740 PTR
741 mmalloc (md, size)
742 PTR md;
743 size_t size;
744 {
745 return malloc (size);
746 }
747
748 PTR
749 mrealloc (md, ptr, size)
750 PTR md;
751 PTR ptr;
752 size_t size;
753 {
754 if (ptr == 0) /* Guard against old realloc's */
755 return malloc (size);
756 else
757 return realloc (ptr, size);
758 }
759
760 void
761 mfree (md, ptr)
762 PTR md;
763 PTR ptr;
764 {
765 free (ptr);
766 }
767
768 #endif /* NO_MMALLOC */
769
770 #if defined (NO_MMALLOC) || defined (NO_MMCHECK)
771
772 void
773 init_malloc (md)
774 PTR md;
775 {
776 }
777
778 #else /* Have mmalloc and want corruption checking */
779
780 static void
781 malloc_botch ()
782 {
783 fatal_dump_core ("Memory corruption");
784 }
785
786 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
787 by MD, to detect memory corruption. Note that MD may be NULL to specify
788 the default heap that grows via sbrk.
789
790 Note that for freshly created regions, we must call mmcheckf prior to any
791 mallocs in the region. Otherwise, any region which was allocated prior to
792 installing the checking hooks, which is later reallocated or freed, will
793 fail the checks! The mmcheck function only allows initial hooks to be
794 installed before the first mmalloc. However, anytime after we have called
795 mmcheck the first time to install the checking hooks, we can call it again
796 to update the function pointer to the memory corruption handler.
797
798 Returns zero on failure, non-zero on success. */
799
800 #ifndef MMCHECK_FORCE
801 #define MMCHECK_FORCE 0
802 #endif
803
804 void
805 init_malloc (md)
806 PTR md;
807 {
808 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
809 {
810 /* Don't use warning(), which relies on current_target being set
811 to something other than dummy_target, until after
812 initialize_all_files(). */
813
814 fprintf_unfiltered
815 (gdb_stderr, "warning: failed to install memory consistency checks; ");
816 fprintf_unfiltered
817 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
818 }
819
820 mmtrace ();
821 }
822
823 #endif /* Have mmalloc and want corruption checking */
824
825 /* Called when a memory allocation fails, with the number of bytes of
826 memory requested in SIZE. */
827
828 NORETURN void
829 nomem (size)
830 long size;
831 {
832 if (size > 0)
833 {
834 fatal ("virtual memory exhausted: can't allocate %ld bytes.", size);
835 }
836 else
837 {
838 fatal ("virtual memory exhausted.");
839 }
840 }
841
842 /* Like mmalloc but get error if no storage available, and protect against
843 the caller wanting to allocate zero bytes. Whether to return NULL for
844 a zero byte request, or translate the request into a request for one
845 byte of zero'd storage, is a religious issue. */
846
847 PTR
848 xmmalloc (md, size)
849 PTR md;
850 long size;
851 {
852 register PTR val;
853
854 if (size == 0)
855 {
856 val = NULL;
857 }
858 else if ((val = mmalloc (md, size)) == NULL)
859 {
860 nomem (size);
861 }
862 return (val);
863 }
864
865 /* Like mrealloc but get error if no storage available. */
866
867 PTR
868 xmrealloc (md, ptr, size)
869 PTR md;
870 PTR ptr;
871 long size;
872 {
873 register PTR val;
874
875 if (ptr != NULL)
876 {
877 val = mrealloc (md, ptr, size);
878 }
879 else
880 {
881 val = mmalloc (md, size);
882 }
883 if (val == NULL)
884 {
885 nomem (size);
886 }
887 return (val);
888 }
889
890 /* Like malloc but get error if no storage available, and protect against
891 the caller wanting to allocate zero bytes. */
892
893 PTR
894 xmalloc (size)
895 size_t size;
896 {
897 return (xmmalloc ((PTR) NULL, size));
898 }
899
900 /* Like mrealloc but get error if no storage available. */
901
902 PTR
903 xrealloc (ptr, size)
904 PTR ptr;
905 size_t size;
906 {
907 return (xmrealloc ((PTR) NULL, ptr, size));
908 }
909
910 \f
911 /* My replacement for the read system call.
912 Used like `read' but keeps going if `read' returns too soon. */
913
914 int
915 myread (desc, addr, len)
916 int desc;
917 char *addr;
918 int len;
919 {
920 register int val;
921 int orglen = len;
922
923 while (len > 0)
924 {
925 val = read (desc, addr, len);
926 if (val < 0)
927 return val;
928 if (val == 0)
929 return orglen - len;
930 len -= val;
931 addr += val;
932 }
933 return orglen;
934 }
935 \f
936 /* Make a copy of the string at PTR with SIZE characters
937 (and add a null character at the end in the copy).
938 Uses malloc to get the space. Returns the address of the copy. */
939
940 char *
941 savestring (ptr, size)
942 const char *ptr;
943 int size;
944 {
945 register char *p = (char *) xmalloc (size + 1);
946 memcpy (p, ptr, size);
947 p[size] = 0;
948 return p;
949 }
950
951 char *
952 msavestring (md, ptr, size)
953 PTR md;
954 const char *ptr;
955 int size;
956 {
957 register char *p = (char *) xmmalloc (md, size + 1);
958 memcpy (p, ptr, size);
959 p[size] = 0;
960 return p;
961 }
962
963 /* The "const" is so it compiles under DGUX (which prototypes strsave
964 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
965 Doesn't real strsave return NULL if out of memory? */
966 char *
967 strsave (ptr)
968 const char *ptr;
969 {
970 return savestring (ptr, strlen (ptr));
971 }
972
973 char *
974 mstrsave (md, ptr)
975 PTR md;
976 const char *ptr;
977 {
978 return (msavestring (md, ptr, strlen (ptr)));
979 }
980
981 void
982 print_spaces (n, file)
983 register int n;
984 register FILE *file;
985 {
986 while (n-- > 0)
987 fputc (' ', file);
988 }
989
990 /* Print a host address. */
991
992 void
993 gdb_print_address (addr, stream)
994 PTR addr;
995 GDB_FILE *stream;
996 {
997
998 /* We could use the %p conversion specifier to fprintf if we had any
999 way of knowing whether this host supports it. But the following
1000 should work on the Alpha and on 32 bit machines. */
1001
1002 fprintf_filtered (stream, "0x%lx", (unsigned long)addr);
1003 }
1004
1005 /* Ask user a y-or-n question and return 1 iff answer is yes.
1006 Takes three args which are given to printf to print the question.
1007 The first, a control string, should end in "? ".
1008 It should not say how to answer, because we do that. */
1009
1010 /* VARARGS */
1011 int
1012 #ifdef ANSI_PROTOTYPES
1013 query (char *ctlstr, ...)
1014 #else
1015 query (va_alist)
1016 va_dcl
1017 #endif
1018 {
1019 va_list args;
1020 register int answer;
1021 register int ans2;
1022 int retval;
1023
1024 #ifdef ANSI_PROTOTYPES
1025 va_start (args, ctlstr);
1026 #else
1027 char *ctlstr;
1028 va_start (args);
1029 ctlstr = va_arg (args, char *);
1030 #endif
1031
1032 if (query_hook)
1033 {
1034 return query_hook (ctlstr, args);
1035 }
1036
1037 /* Automatically answer "yes" if input is not from a terminal. */
1038 if (!input_from_terminal_p ())
1039 return 1;
1040 #ifdef MPW
1041 /* FIXME Automatically answer "yes" if called from MacGDB. */
1042 if (mac_app)
1043 return 1;
1044 #endif /* MPW */
1045
1046 while (1)
1047 {
1048 wrap_here (""); /* Flush any buffered output */
1049 gdb_flush (gdb_stdout);
1050
1051 if (annotation_level > 1)
1052 printf_filtered ("\n\032\032pre-query\n");
1053
1054 vfprintf_filtered (gdb_stdout, ctlstr, args);
1055 printf_filtered ("(y or n) ");
1056
1057 if (annotation_level > 1)
1058 printf_filtered ("\n\032\032query\n");
1059
1060 #ifdef MPW
1061 /* If not in MacGDB, move to a new line so the entered line doesn't
1062 have a prompt on the front of it. */
1063 if (!mac_app)
1064 fputs_unfiltered ("\n", gdb_stdout);
1065 #endif /* MPW */
1066
1067 gdb_flush (gdb_stdout);
1068 answer = fgetc (stdin);
1069 clearerr (stdin); /* in case of C-d */
1070 if (answer == EOF) /* C-d */
1071 {
1072 retval = 1;
1073 break;
1074 }
1075 if (answer != '\n') /* Eat rest of input line, to EOF or newline */
1076 do
1077 {
1078 ans2 = fgetc (stdin);
1079 clearerr (stdin);
1080 }
1081 while (ans2 != EOF && ans2 != '\n');
1082 if (answer >= 'a')
1083 answer -= 040;
1084 if (answer == 'Y')
1085 {
1086 retval = 1;
1087 break;
1088 }
1089 if (answer == 'N')
1090 {
1091 retval = 0;
1092 break;
1093 }
1094 printf_filtered ("Please answer y or n.\n");
1095 }
1096
1097 if (annotation_level > 1)
1098 printf_filtered ("\n\032\032post-query\n");
1099 return retval;
1100 }
1101
1102 \f
1103 /* Parse a C escape sequence. STRING_PTR points to a variable
1104 containing a pointer to the string to parse. That pointer
1105 should point to the character after the \. That pointer
1106 is updated past the characters we use. The value of the
1107 escape sequence is returned.
1108
1109 A negative value means the sequence \ newline was seen,
1110 which is supposed to be equivalent to nothing at all.
1111
1112 If \ is followed by a null character, we return a negative
1113 value and leave the string pointer pointing at the null character.
1114
1115 If \ is followed by 000, we return 0 and leave the string pointer
1116 after the zeros. A value of 0 does not mean end of string. */
1117
1118 int
1119 parse_escape (string_ptr)
1120 char **string_ptr;
1121 {
1122 register int c = *(*string_ptr)++;
1123 switch (c)
1124 {
1125 case 'a':
1126 return 007; /* Bell (alert) char */
1127 case 'b':
1128 return '\b';
1129 case 'e': /* Escape character */
1130 return 033;
1131 case 'f':
1132 return '\f';
1133 case 'n':
1134 return '\n';
1135 case 'r':
1136 return '\r';
1137 case 't':
1138 return '\t';
1139 case 'v':
1140 return '\v';
1141 case '\n':
1142 return -2;
1143 case 0:
1144 (*string_ptr)--;
1145 return 0;
1146 case '^':
1147 c = *(*string_ptr)++;
1148 if (c == '\\')
1149 c = parse_escape (string_ptr);
1150 if (c == '?')
1151 return 0177;
1152 return (c & 0200) | (c & 037);
1153
1154 case '0':
1155 case '1':
1156 case '2':
1157 case '3':
1158 case '4':
1159 case '5':
1160 case '6':
1161 case '7':
1162 {
1163 register int i = c - '0';
1164 register int count = 0;
1165 while (++count < 3)
1166 {
1167 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1168 {
1169 i *= 8;
1170 i += c - '0';
1171 }
1172 else
1173 {
1174 (*string_ptr)--;
1175 break;
1176 }
1177 }
1178 return i;
1179 }
1180 default:
1181 return c;
1182 }
1183 }
1184 \f
1185 /* Print the character C on STREAM as part of the contents of a literal
1186 string whose delimiter is QUOTER. Note that this routine should only
1187 be call for printing things which are independent of the language
1188 of the program being debugged. */
1189
1190 void
1191 gdb_printchar (c, stream, quoter)
1192 register int c;
1193 FILE *stream;
1194 int quoter;
1195 {
1196
1197 c &= 0xFF; /* Avoid sign bit follies */
1198
1199 if ( c < 0x20 || /* Low control chars */
1200 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1201 (sevenbit_strings && c >= 0x80)) { /* high order bit set */
1202 switch (c)
1203 {
1204 case '\n':
1205 fputs_filtered ("\\n", stream);
1206 break;
1207 case '\b':
1208 fputs_filtered ("\\b", stream);
1209 break;
1210 case '\t':
1211 fputs_filtered ("\\t", stream);
1212 break;
1213 case '\f':
1214 fputs_filtered ("\\f", stream);
1215 break;
1216 case '\r':
1217 fputs_filtered ("\\r", stream);
1218 break;
1219 case '\033':
1220 fputs_filtered ("\\e", stream);
1221 break;
1222 case '\007':
1223 fputs_filtered ("\\a", stream);
1224 break;
1225 default:
1226 fprintf_filtered (stream, "\\%.3o", (unsigned int) c);
1227 break;
1228 }
1229 } else {
1230 if (c == '\\' || c == quoter)
1231 fputs_filtered ("\\", stream);
1232 fprintf_filtered (stream, "%c", c);
1233 }
1234 }
1235 \f
1236 /* Number of lines per page or UINT_MAX if paging is disabled. */
1237 static unsigned int lines_per_page;
1238 /* Number of chars per line or UNIT_MAX is line folding is disabled. */
1239 static unsigned int chars_per_line;
1240 /* Current count of lines printed on this page, chars on this line. */
1241 static unsigned int lines_printed, chars_printed;
1242
1243 /* Buffer and start column of buffered text, for doing smarter word-
1244 wrapping. When someone calls wrap_here(), we start buffering output
1245 that comes through fputs_filtered(). If we see a newline, we just
1246 spit it out and forget about the wrap_here(). If we see another
1247 wrap_here(), we spit it out and remember the newer one. If we see
1248 the end of the line, we spit out a newline, the indent, and then
1249 the buffered output. */
1250
1251 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1252 are waiting to be output (they have already been counted in chars_printed).
1253 When wrap_buffer[0] is null, the buffer is empty. */
1254 static char *wrap_buffer;
1255
1256 /* Pointer in wrap_buffer to the next character to fill. */
1257 static char *wrap_pointer;
1258
1259 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1260 is non-zero. */
1261 static char *wrap_indent;
1262
1263 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1264 is not in effect. */
1265 static int wrap_column;
1266
1267 /* ARGSUSED */
1268 static void
1269 set_width_command (args, from_tty, c)
1270 char *args;
1271 int from_tty;
1272 struct cmd_list_element *c;
1273 {
1274 if (!wrap_buffer)
1275 {
1276 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1277 wrap_buffer[0] = '\0';
1278 }
1279 else
1280 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1281 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1282 }
1283
1284 /* Wait, so the user can read what's on the screen. Prompt the user
1285 to continue by pressing RETURN. */
1286
1287 static void
1288 prompt_for_continue ()
1289 {
1290 char *ignore;
1291 char cont_prompt[120];
1292
1293 if (annotation_level > 1)
1294 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1295
1296 strcpy (cont_prompt,
1297 "---Type <return> to continue, or q <return> to quit---");
1298 if (annotation_level > 1)
1299 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1300
1301 /* We must do this *before* we call gdb_readline, else it will eventually
1302 call us -- thinking that we're trying to print beyond the end of the
1303 screen. */
1304 reinitialize_more_filter ();
1305
1306 immediate_quit++;
1307 /* On a real operating system, the user can quit with SIGINT.
1308 But not on GO32.
1309
1310 'q' is provided on all systems so users don't have to change habits
1311 from system to system, and because telling them what to do in
1312 the prompt is more user-friendly than expecting them to think of
1313 SIGINT. */
1314 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1315 whereas control-C to gdb_readline will cause the user to get dumped
1316 out to DOS. */
1317 ignore = readline (cont_prompt);
1318
1319 if (annotation_level > 1)
1320 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1321
1322 if (ignore)
1323 {
1324 char *p = ignore;
1325 while (*p == ' ' || *p == '\t')
1326 ++p;
1327 if (p[0] == 'q')
1328 request_quit (SIGINT);
1329 free (ignore);
1330 }
1331 immediate_quit--;
1332
1333 /* Now we have to do this again, so that GDB will know that it doesn't
1334 need to save the ---Type <return>--- line at the top of the screen. */
1335 reinitialize_more_filter ();
1336
1337 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1338 }
1339
1340 /* Reinitialize filter; ie. tell it to reset to original values. */
1341
1342 void
1343 reinitialize_more_filter ()
1344 {
1345 lines_printed = 0;
1346 chars_printed = 0;
1347 }
1348
1349 /* Indicate that if the next sequence of characters overflows the line,
1350 a newline should be inserted here rather than when it hits the end.
1351 If INDENT is non-null, it is a string to be printed to indent the
1352 wrapped part on the next line. INDENT must remain accessible until
1353 the next call to wrap_here() or until a newline is printed through
1354 fputs_filtered().
1355
1356 If the line is already overfull, we immediately print a newline and
1357 the indentation, and disable further wrapping.
1358
1359 If we don't know the width of lines, but we know the page height,
1360 we must not wrap words, but should still keep track of newlines
1361 that were explicitly printed.
1362
1363 INDENT should not contain tabs, as that will mess up the char count
1364 on the next line. FIXME.
1365
1366 This routine is guaranteed to force out any output which has been
1367 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1368 used to force out output from the wrap_buffer. */
1369
1370 void
1371 wrap_here(indent)
1372 char *indent;
1373 {
1374 /* This should have been allocated, but be paranoid anyway. */
1375 if (!wrap_buffer)
1376 abort ();
1377
1378 if (wrap_buffer[0])
1379 {
1380 *wrap_pointer = '\0';
1381 fputs_unfiltered (wrap_buffer, gdb_stdout);
1382 }
1383 wrap_pointer = wrap_buffer;
1384 wrap_buffer[0] = '\0';
1385 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1386 {
1387 wrap_column = 0;
1388 }
1389 else if (chars_printed >= chars_per_line)
1390 {
1391 puts_filtered ("\n");
1392 if (indent != NULL)
1393 puts_filtered (indent);
1394 wrap_column = 0;
1395 }
1396 else
1397 {
1398 wrap_column = chars_printed;
1399 if (indent == NULL)
1400 wrap_indent = "";
1401 else
1402 wrap_indent = indent;
1403 }
1404 }
1405
1406 /* Ensure that whatever gets printed next, using the filtered output
1407 commands, starts at the beginning of the line. I.E. if there is
1408 any pending output for the current line, flush it and start a new
1409 line. Otherwise do nothing. */
1410
1411 void
1412 begin_line ()
1413 {
1414 if (chars_printed > 0)
1415 {
1416 puts_filtered ("\n");
1417 }
1418 }
1419
1420
1421 GDB_FILE *
1422 gdb_fopen (name, mode)
1423 char * name;
1424 char * mode;
1425 {
1426 return fopen (name, mode);
1427 }
1428
1429 void
1430 gdb_flush (stream)
1431 FILE *stream;
1432 {
1433 if (flush_hook
1434 && (stream == gdb_stdout
1435 || stream == gdb_stderr))
1436 {
1437 flush_hook (stream);
1438 return;
1439 }
1440
1441 fflush (stream);
1442 }
1443
1444 /* Like fputs but if FILTER is true, pause after every screenful.
1445
1446 Regardless of FILTER can wrap at points other than the final
1447 character of a line.
1448
1449 Unlike fputs, fputs_maybe_filtered does not return a value.
1450 It is OK for LINEBUFFER to be NULL, in which case just don't print
1451 anything.
1452
1453 Note that a longjmp to top level may occur in this routine (only if
1454 FILTER is true) (since prompt_for_continue may do so) so this
1455 routine should not be called when cleanups are not in place. */
1456
1457 static void
1458 fputs_maybe_filtered (linebuffer, stream, filter)
1459 const char *linebuffer;
1460 FILE *stream;
1461 int filter;
1462 {
1463 const char *lineptr;
1464
1465 if (linebuffer == 0)
1466 return;
1467
1468 /* Don't do any filtering if it is disabled. */
1469 if (stream != gdb_stdout
1470 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1471 {
1472 fputs_unfiltered (linebuffer, stream);
1473 return;
1474 }
1475
1476 /* Go through and output each character. Show line extension
1477 when this is necessary; prompt user for new page when this is
1478 necessary. */
1479
1480 lineptr = linebuffer;
1481 while (*lineptr)
1482 {
1483 /* Possible new page. */
1484 if (filter &&
1485 (lines_printed >= lines_per_page - 1))
1486 prompt_for_continue ();
1487
1488 while (*lineptr && *lineptr != '\n')
1489 {
1490 /* Print a single line. */
1491 if (*lineptr == '\t')
1492 {
1493 if (wrap_column)
1494 *wrap_pointer++ = '\t';
1495 else
1496 fputc_unfiltered ('\t', stream);
1497 /* Shifting right by 3 produces the number of tab stops
1498 we have already passed, and then adding one and
1499 shifting left 3 advances to the next tab stop. */
1500 chars_printed = ((chars_printed >> 3) + 1) << 3;
1501 lineptr++;
1502 }
1503 else
1504 {
1505 if (wrap_column)
1506 *wrap_pointer++ = *lineptr;
1507 else
1508 fputc_unfiltered (*lineptr, stream);
1509 chars_printed++;
1510 lineptr++;
1511 }
1512
1513 if (chars_printed >= chars_per_line)
1514 {
1515 unsigned int save_chars = chars_printed;
1516
1517 chars_printed = 0;
1518 lines_printed++;
1519 /* If we aren't actually wrapping, don't output newline --
1520 if chars_per_line is right, we probably just overflowed
1521 anyway; if it's wrong, let us keep going. */
1522 if (wrap_column)
1523 fputc_unfiltered ('\n', stream);
1524
1525 /* Possible new page. */
1526 if (lines_printed >= lines_per_page - 1)
1527 prompt_for_continue ();
1528
1529 /* Now output indentation and wrapped string */
1530 if (wrap_column)
1531 {
1532 fputs_unfiltered (wrap_indent, stream);
1533 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1534 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1535 /* FIXME, this strlen is what prevents wrap_indent from
1536 containing tabs. However, if we recurse to print it
1537 and count its chars, we risk trouble if wrap_indent is
1538 longer than (the user settable) chars_per_line.
1539 Note also that this can set chars_printed > chars_per_line
1540 if we are printing a long string. */
1541 chars_printed = strlen (wrap_indent)
1542 + (save_chars - wrap_column);
1543 wrap_pointer = wrap_buffer; /* Reset buffer */
1544 wrap_buffer[0] = '\0';
1545 wrap_column = 0; /* And disable fancy wrap */
1546 }
1547 }
1548 }
1549
1550 if (*lineptr == '\n')
1551 {
1552 chars_printed = 0;
1553 wrap_here ((char *)0); /* Spit out chars, cancel further wraps */
1554 lines_printed++;
1555 fputc_unfiltered ('\n', stream);
1556 lineptr++;
1557 }
1558 }
1559 }
1560
1561 void
1562 fputs_filtered (linebuffer, stream)
1563 const char *linebuffer;
1564 FILE *stream;
1565 {
1566 fputs_maybe_filtered (linebuffer, stream, 1);
1567 }
1568
1569 int
1570 putchar_unfiltered (c)
1571 int c;
1572 {
1573 char buf[2];
1574
1575 buf[0] = c;
1576 buf[1] = 0;
1577 fputs_unfiltered (buf, gdb_stdout);
1578 return c;
1579 }
1580
1581 int
1582 fputc_unfiltered (c, stream)
1583 int c;
1584 FILE * stream;
1585 {
1586 char buf[2];
1587
1588 buf[0] = c;
1589 buf[1] = 0;
1590 fputs_unfiltered (buf, stream);
1591 return c;
1592 }
1593
1594
1595 /* Print a variable number of ARGS using format FORMAT. If this
1596 information is going to put the amount written (since the last call
1597 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1598 call prompt_for_continue to get the users permision to continue.
1599
1600 Unlike fprintf, this function does not return a value.
1601
1602 We implement three variants, vfprintf (takes a vararg list and stream),
1603 fprintf (takes a stream to write on), and printf (the usual).
1604
1605 Note also that a longjmp to top level may occur in this routine
1606 (since prompt_for_continue may do so) so this routine should not be
1607 called when cleanups are not in place. */
1608
1609 static void
1610 vfprintf_maybe_filtered (stream, format, args, filter)
1611 FILE *stream;
1612 const char *format;
1613 va_list args;
1614 int filter;
1615 {
1616 char *linebuffer;
1617 struct cleanup *old_cleanups;
1618
1619 vasprintf (&linebuffer, format, args);
1620 if (linebuffer == NULL)
1621 {
1622 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
1623 exit (1);
1624 }
1625 old_cleanups = make_cleanup (free, linebuffer);
1626 fputs_maybe_filtered (linebuffer, stream, filter);
1627 do_cleanups (old_cleanups);
1628 }
1629
1630
1631 void
1632 vfprintf_filtered (stream, format, args)
1633 FILE *stream;
1634 const char *format;
1635 va_list args;
1636 {
1637 vfprintf_maybe_filtered (stream, format, args, 1);
1638 }
1639
1640 void
1641 vfprintf_unfiltered (stream, format, args)
1642 FILE *stream;
1643 const char *format;
1644 va_list args;
1645 {
1646 char *linebuffer;
1647 struct cleanup *old_cleanups;
1648
1649 vasprintf (&linebuffer, format, args);
1650 if (linebuffer == NULL)
1651 {
1652 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
1653 exit (1);
1654 }
1655 old_cleanups = make_cleanup (free, linebuffer);
1656 fputs_unfiltered (linebuffer, stream);
1657 do_cleanups (old_cleanups);
1658 }
1659
1660 void
1661 vprintf_filtered (format, args)
1662 const char *format;
1663 va_list args;
1664 {
1665 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
1666 }
1667
1668 void
1669 vprintf_unfiltered (format, args)
1670 const char *format;
1671 va_list args;
1672 {
1673 vfprintf_unfiltered (gdb_stdout, format, args);
1674 }
1675
1676 /* VARARGS */
1677 void
1678 #ifdef ANSI_PROTOTYPES
1679 fprintf_filtered (FILE *stream, const char *format, ...)
1680 #else
1681 fprintf_filtered (va_alist)
1682 va_dcl
1683 #endif
1684 {
1685 va_list args;
1686 #ifdef ANSI_PROTOTYPES
1687 va_start (args, format);
1688 #else
1689 FILE *stream;
1690 char *format;
1691
1692 va_start (args);
1693 stream = va_arg (args, FILE *);
1694 format = va_arg (args, char *);
1695 #endif
1696 vfprintf_filtered (stream, format, args);
1697 va_end (args);
1698 }
1699
1700 /* VARARGS */
1701 void
1702 #ifdef ANSI_PROTOTYPES
1703 fprintf_unfiltered (FILE *stream, const char *format, ...)
1704 #else
1705 fprintf_unfiltered (va_alist)
1706 va_dcl
1707 #endif
1708 {
1709 va_list args;
1710 #ifdef ANSI_PROTOTYPES
1711 va_start (args, format);
1712 #else
1713 FILE *stream;
1714 char *format;
1715
1716 va_start (args);
1717 stream = va_arg (args, FILE *);
1718 format = va_arg (args, char *);
1719 #endif
1720 vfprintf_unfiltered (stream, format, args);
1721 va_end (args);
1722 }
1723
1724 /* Like fprintf_filtered, but prints its result indented.
1725 Called as fprintfi_filtered (spaces, stream, format, ...); */
1726
1727 /* VARARGS */
1728 void
1729 #ifdef ANSI_PROTOTYPES
1730 fprintfi_filtered (int spaces, FILE *stream, const char *format, ...)
1731 #else
1732 fprintfi_filtered (va_alist)
1733 va_dcl
1734 #endif
1735 {
1736 va_list args;
1737 #ifdef ANSI_PROTOTYPES
1738 va_start (args, format);
1739 #else
1740 int spaces;
1741 FILE *stream;
1742 char *format;
1743
1744 va_start (args);
1745 spaces = va_arg (args, int);
1746 stream = va_arg (args, FILE *);
1747 format = va_arg (args, char *);
1748 #endif
1749 print_spaces_filtered (spaces, stream);
1750
1751 vfprintf_filtered (stream, format, args);
1752 va_end (args);
1753 }
1754
1755
1756 /* VARARGS */
1757 void
1758 #ifdef ANSI_PROTOTYPES
1759 printf_filtered (const char *format, ...)
1760 #else
1761 printf_filtered (va_alist)
1762 va_dcl
1763 #endif
1764 {
1765 va_list args;
1766 #ifdef ANSI_PROTOTYPES
1767 va_start (args, format);
1768 #else
1769 char *format;
1770
1771 va_start (args);
1772 format = va_arg (args, char *);
1773 #endif
1774 vfprintf_filtered (gdb_stdout, format, args);
1775 va_end (args);
1776 }
1777
1778
1779 /* VARARGS */
1780 void
1781 #ifdef ANSI_PROTOTYPES
1782 printf_unfiltered (const char *format, ...)
1783 #else
1784 printf_unfiltered (va_alist)
1785 va_dcl
1786 #endif
1787 {
1788 va_list args;
1789 #ifdef ANSI_PROTOTYPES
1790 va_start (args, format);
1791 #else
1792 char *format;
1793
1794 va_start (args);
1795 format = va_arg (args, char *);
1796 #endif
1797 vfprintf_unfiltered (gdb_stdout, format, args);
1798 va_end (args);
1799 }
1800
1801 /* Like printf_filtered, but prints it's result indented.
1802 Called as printfi_filtered (spaces, format, ...); */
1803
1804 /* VARARGS */
1805 void
1806 #ifdef ANSI_PROTOTYPES
1807 printfi_filtered (int spaces, const char *format, ...)
1808 #else
1809 printfi_filtered (va_alist)
1810 va_dcl
1811 #endif
1812 {
1813 va_list args;
1814 #ifdef ANSI_PROTOTYPES
1815 va_start (args, format);
1816 #else
1817 int spaces;
1818 char *format;
1819
1820 va_start (args);
1821 spaces = va_arg (args, int);
1822 format = va_arg (args, char *);
1823 #endif
1824 print_spaces_filtered (spaces, gdb_stdout);
1825 vfprintf_filtered (gdb_stdout, format, args);
1826 va_end (args);
1827 }
1828
1829 /* Easy -- but watch out!
1830
1831 This routine is *not* a replacement for puts()! puts() appends a newline.
1832 This one doesn't, and had better not! */
1833
1834 void
1835 puts_filtered (string)
1836 const char *string;
1837 {
1838 fputs_filtered (string, gdb_stdout);
1839 }
1840
1841 void
1842 puts_unfiltered (string)
1843 const char *string;
1844 {
1845 fputs_unfiltered (string, gdb_stdout);
1846 }
1847
1848 /* Return a pointer to N spaces and a null. The pointer is good
1849 until the next call to here. */
1850 char *
1851 n_spaces (n)
1852 int n;
1853 {
1854 register char *t;
1855 static char *spaces;
1856 static int max_spaces;
1857
1858 if (n > max_spaces)
1859 {
1860 if (spaces)
1861 free (spaces);
1862 spaces = (char *) xmalloc (n+1);
1863 for (t = spaces+n; t != spaces;)
1864 *--t = ' ';
1865 spaces[n] = '\0';
1866 max_spaces = n;
1867 }
1868
1869 return spaces + max_spaces - n;
1870 }
1871
1872 /* Print N spaces. */
1873 void
1874 print_spaces_filtered (n, stream)
1875 int n;
1876 FILE *stream;
1877 {
1878 fputs_filtered (n_spaces (n), stream);
1879 }
1880 \f
1881 /* C++ demangler stuff. */
1882
1883 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
1884 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
1885 If the name is not mangled, or the language for the name is unknown, or
1886 demangling is off, the name is printed in its "raw" form. */
1887
1888 void
1889 fprintf_symbol_filtered (stream, name, lang, arg_mode)
1890 FILE *stream;
1891 char *name;
1892 enum language lang;
1893 int arg_mode;
1894 {
1895 char *demangled;
1896
1897 if (name != NULL)
1898 {
1899 /* If user wants to see raw output, no problem. */
1900 if (!demangle)
1901 {
1902 fputs_filtered (name, stream);
1903 }
1904 else
1905 {
1906 switch (lang)
1907 {
1908 case language_cplus:
1909 demangled = cplus_demangle (name, arg_mode);
1910 break;
1911 case language_chill:
1912 demangled = chill_demangle (name);
1913 break;
1914 default:
1915 demangled = NULL;
1916 break;
1917 }
1918 fputs_filtered (demangled ? demangled : name, stream);
1919 if (demangled != NULL)
1920 {
1921 free (demangled);
1922 }
1923 }
1924 }
1925 }
1926
1927 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
1928 differences in whitespace. Returns 0 if they match, non-zero if they
1929 don't (slightly different than strcmp()'s range of return values).
1930
1931 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
1932 This "feature" is useful when searching for matching C++ function names
1933 (such as if the user types 'break FOO', where FOO is a mangled C++
1934 function). */
1935
1936 int
1937 strcmp_iw (string1, string2)
1938 const char *string1;
1939 const char *string2;
1940 {
1941 while ((*string1 != '\0') && (*string2 != '\0'))
1942 {
1943 while (isspace (*string1))
1944 {
1945 string1++;
1946 }
1947 while (isspace (*string2))
1948 {
1949 string2++;
1950 }
1951 if (*string1 != *string2)
1952 {
1953 break;
1954 }
1955 if (*string1 != '\0')
1956 {
1957 string1++;
1958 string2++;
1959 }
1960 }
1961 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
1962 }
1963
1964 \f
1965 void
1966 initialize_utils ()
1967 {
1968 struct cmd_list_element *c;
1969
1970 c = add_set_cmd ("width", class_support, var_uinteger,
1971 (char *)&chars_per_line,
1972 "Set number of characters gdb thinks are in a line.",
1973 &setlist);
1974 add_show_from_set (c, &showlist);
1975 c->function.sfunc = set_width_command;
1976
1977 add_show_from_set
1978 (add_set_cmd ("height", class_support,
1979 var_uinteger, (char *)&lines_per_page,
1980 "Set number of lines gdb thinks are in a page.", &setlist),
1981 &showlist);
1982
1983 /* These defaults will be used if we are unable to get the correct
1984 values from termcap. */
1985 #if defined(__GO32__)
1986 lines_per_page = ScreenRows();
1987 chars_per_line = ScreenCols();
1988 #else
1989 lines_per_page = 24;
1990 chars_per_line = 80;
1991
1992 #if !defined (MPW) && !defined (_WIN32)
1993 /* No termcap under MPW, although might be cool to do something
1994 by looking at worksheet or console window sizes. */
1995 /* Initialize the screen height and width from termcap. */
1996 {
1997 char *termtype = getenv ("TERM");
1998
1999 /* Positive means success, nonpositive means failure. */
2000 int status;
2001
2002 /* 2048 is large enough for all known terminals, according to the
2003 GNU termcap manual. */
2004 char term_buffer[2048];
2005
2006 if (termtype)
2007 {
2008 status = tgetent (term_buffer, termtype);
2009 if (status > 0)
2010 {
2011 int val;
2012
2013 val = tgetnum ("li");
2014 if (val >= 0)
2015 lines_per_page = val;
2016 else
2017 /* The number of lines per page is not mentioned
2018 in the terminal description. This probably means
2019 that paging is not useful (e.g. emacs shell window),
2020 so disable paging. */
2021 lines_per_page = UINT_MAX;
2022
2023 val = tgetnum ("co");
2024 if (val >= 0)
2025 chars_per_line = val;
2026 }
2027 }
2028 }
2029 #endif /* MPW */
2030
2031 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
2032
2033 /* If there is a better way to determine the window size, use it. */
2034 SIGWINCH_HANDLER ();
2035 #endif
2036 #endif
2037 /* If the output is not a terminal, don't paginate it. */
2038 if (!ISATTY (gdb_stdout))
2039 lines_per_page = UINT_MAX;
2040
2041 set_width_command ((char *)NULL, 0, c);
2042
2043 add_show_from_set
2044 (add_set_cmd ("demangle", class_support, var_boolean,
2045 (char *)&demangle,
2046 "Set demangling of encoded C++ names when displaying symbols.",
2047 &setprintlist),
2048 &showprintlist);
2049
2050 add_show_from_set
2051 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2052 (char *)&sevenbit_strings,
2053 "Set printing of 8-bit characters in strings as \\nnn.",
2054 &setprintlist),
2055 &showprintlist);
2056
2057 add_show_from_set
2058 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2059 (char *)&asm_demangle,
2060 "Set demangling of C++ names in disassembly listings.",
2061 &setprintlist),
2062 &showprintlist);
2063 }
2064
2065 /* Machine specific function to handle SIGWINCH signal. */
2066
2067 #ifdef SIGWINCH_HANDLER_BODY
2068 SIGWINCH_HANDLER_BODY
2069 #endif
2070 \f
2071 /* Support for converting target fp numbers into host DOUBLEST format. */
2072
2073 /* XXX - This code should really be in libiberty/floatformat.c, however
2074 configuration issues with libiberty made this very difficult to do in the
2075 available time. */
2076
2077 #include "floatformat.h"
2078 #include <math.h> /* ldexp */
2079
2080 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2081 going to bother with trying to muck around with whether it is defined in
2082 a system header, what we do if not, etc. */
2083 #define FLOATFORMAT_CHAR_BIT 8
2084
2085 static unsigned long get_field PARAMS ((unsigned char *,
2086 enum floatformat_byteorders,
2087 unsigned int,
2088 unsigned int,
2089 unsigned int));
2090
2091 /* Extract a field which starts at START and is LEN bytes long. DATA and
2092 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2093 static unsigned long
2094 get_field (data, order, total_len, start, len)
2095 unsigned char *data;
2096 enum floatformat_byteorders order;
2097 unsigned int total_len;
2098 unsigned int start;
2099 unsigned int len;
2100 {
2101 unsigned long result;
2102 unsigned int cur_byte;
2103 int cur_bitshift;
2104
2105 /* Start at the least significant part of the field. */
2106 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2107 if (order == floatformat_little)
2108 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
2109 cur_bitshift =
2110 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2111 result = *(data + cur_byte) >> (-cur_bitshift);
2112 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2113 if (order == floatformat_little)
2114 ++cur_byte;
2115 else
2116 --cur_byte;
2117
2118 /* Move towards the most significant part of the field. */
2119 while (cur_bitshift < len)
2120 {
2121 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2122 /* This is the last byte; zero out the bits which are not part of
2123 this field. */
2124 result |=
2125 (*(data + cur_byte) & ((1 << (len - cur_bitshift)) - 1))
2126 << cur_bitshift;
2127 else
2128 result |= *(data + cur_byte) << cur_bitshift;
2129 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2130 if (order == floatformat_little)
2131 ++cur_byte;
2132 else
2133 --cur_byte;
2134 }
2135 return result;
2136 }
2137
2138 /* Convert from FMT to a DOUBLEST.
2139 FROM is the address of the extended float.
2140 Store the DOUBLEST in *TO. */
2141
2142 void
2143 floatformat_to_doublest (fmt, from, to)
2144 const struct floatformat *fmt;
2145 char *from;
2146 DOUBLEST *to;
2147 {
2148 unsigned char *ufrom = (unsigned char *)from;
2149 DOUBLEST dto;
2150 long exponent;
2151 unsigned long mant;
2152 unsigned int mant_bits, mant_off;
2153 int mant_bits_left;
2154 int special_exponent; /* It's a NaN, denorm or zero */
2155
2156 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2157 fmt->exp_start, fmt->exp_len);
2158 /* Note that if exponent indicates a NaN, we can't really do anything useful
2159 (not knowing if the host has NaN's, or how to build one). So it will
2160 end up as an infinity or something close; that is OK. */
2161
2162 mant_bits_left = fmt->man_len;
2163 mant_off = fmt->man_start;
2164 dto = 0.0;
2165
2166 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2167
2168 /* Don't bias zero's, denorms or NaNs. */
2169 if (!special_exponent)
2170 exponent -= fmt->exp_bias;
2171
2172 /* Build the result algebraically. Might go infinite, underflow, etc;
2173 who cares. */
2174
2175 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2176 increment the exponent by one to account for the integer bit. */
2177
2178 if (!special_exponent)
2179 if (fmt->intbit == floatformat_intbit_no)
2180 dto = ldexp (1.0, exponent);
2181 else
2182 exponent++;
2183
2184 while (mant_bits_left > 0)
2185 {
2186 mant_bits = min (mant_bits_left, 32);
2187
2188 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2189 mant_off, mant_bits);
2190
2191 dto += ldexp ((double)mant, exponent - mant_bits);
2192 exponent -= mant_bits;
2193 mant_off += mant_bits;
2194 mant_bits_left -= mant_bits;
2195 }
2196
2197 /* Negate it if negative. */
2198 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2199 dto = -dto;
2200 *to = dto;
2201 }
2202 \f
2203 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2204 unsigned int,
2205 unsigned int,
2206 unsigned int,
2207 unsigned long));
2208
2209 /* Set a field which starts at START and is LEN bytes long. DATA and
2210 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2211 static void
2212 put_field (data, order, total_len, start, len, stuff_to_put)
2213 unsigned char *data;
2214 enum floatformat_byteorders order;
2215 unsigned int total_len;
2216 unsigned int start;
2217 unsigned int len;
2218 unsigned long stuff_to_put;
2219 {
2220 unsigned int cur_byte;
2221 int cur_bitshift;
2222
2223 /* Start at the least significant part of the field. */
2224 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2225 if (order == floatformat_little)
2226 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
2227 cur_bitshift =
2228 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2229 *(data + cur_byte) &=
2230 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) << (-cur_bitshift));
2231 *(data + cur_byte) |=
2232 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2233 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2234 if (order == floatformat_little)
2235 ++cur_byte;
2236 else
2237 --cur_byte;
2238
2239 /* Move towards the most significant part of the field. */
2240 while (cur_bitshift < len)
2241 {
2242 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2243 {
2244 /* This is the last byte. */
2245 *(data + cur_byte) &=
2246 ~((1 << (len - cur_bitshift)) - 1);
2247 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2248 }
2249 else
2250 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2251 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2252 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2253 if (order == floatformat_little)
2254 ++cur_byte;
2255 else
2256 --cur_byte;
2257 }
2258 }
2259
2260 #ifdef HAVE_LONG_DOUBLE
2261 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2262 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2263 frexp, but operates on the long double data type. */
2264
2265 static long double ldfrexp PARAMS ((long double value, int *eptr));
2266
2267 static long double
2268 ldfrexp (value, eptr)
2269 long double value;
2270 int *eptr;
2271 {
2272 long double tmp;
2273 int exp;
2274
2275 /* Unfortunately, there are no portable functions for extracting the exponent
2276 of a long double, so we have to do it iteratively by multiplying or dividing
2277 by two until the fraction is between 0.5 and 1.0. */
2278
2279 if (value < 0.0l)
2280 value = -value;
2281
2282 tmp = 1.0l;
2283 exp = 0;
2284
2285 if (value >= tmp) /* Value >= 1.0 */
2286 while (value >= tmp)
2287 {
2288 tmp *= 2.0l;
2289 exp++;
2290 }
2291 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2292 {
2293 while (value < tmp)
2294 {
2295 tmp /= 2.0l;
2296 exp--;
2297 }
2298 tmp *= 2.0l;
2299 exp++;
2300 }
2301
2302 *eptr = exp;
2303 return value/tmp;
2304 }
2305 #endif /* HAVE_LONG_DOUBLE */
2306
2307
2308 /* The converse: convert the DOUBLEST *FROM to an extended float
2309 and store where TO points. Neither FROM nor TO have any alignment
2310 restrictions. */
2311
2312 void
2313 floatformat_from_doublest (fmt, from, to)
2314 CONST struct floatformat *fmt;
2315 DOUBLEST *from;
2316 char *to;
2317 {
2318 DOUBLEST dfrom;
2319 int exponent;
2320 DOUBLEST mant;
2321 unsigned int mant_bits, mant_off;
2322 int mant_bits_left;
2323 unsigned char *uto = (unsigned char *)to;
2324
2325 memcpy (&dfrom, from, sizeof (dfrom));
2326 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
2327 if (dfrom == 0)
2328 return; /* Result is zero */
2329 if (dfrom != dfrom)
2330 {
2331 /* From is NaN */
2332 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2333 fmt->exp_len, fmt->exp_nan);
2334 /* Be sure it's not infinity, but NaN value is irrel */
2335 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2336 32, 1);
2337 return;
2338 }
2339
2340 /* If negative, set the sign bit. */
2341 if (dfrom < 0)
2342 {
2343 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2344 dfrom = -dfrom;
2345 }
2346
2347 /* How to tell an infinity from an ordinary number? FIXME-someday */
2348
2349 #ifdef HAVE_LONG_DOUBLE
2350 mant = ldfrexp (dfrom, &exponent);
2351 #else
2352 mant = frexp (dfrom, &exponent);
2353 #endif
2354
2355 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2356 exponent + fmt->exp_bias - 1);
2357
2358 mant_bits_left = fmt->man_len;
2359 mant_off = fmt->man_start;
2360 while (mant_bits_left > 0)
2361 {
2362 unsigned long mant_long;
2363 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2364
2365 mant *= 4294967296.0;
2366 mant_long = (unsigned long)mant;
2367 mant -= mant_long;
2368
2369 /* If the integer bit is implicit, then we need to discard it.
2370 If we are discarding a zero, we should be (but are not) creating
2371 a denormalized number which means adjusting the exponent
2372 (I think). */
2373 if (mant_bits_left == fmt->man_len
2374 && fmt->intbit == floatformat_intbit_no)
2375 {
2376 mant_long <<= 1;
2377 mant_bits -= 1;
2378 }
2379
2380 if (mant_bits < 32)
2381 {
2382 /* The bits we want are in the most significant MANT_BITS bits of
2383 mant_long. Move them to the least significant. */
2384 mant_long >>= 32 - mant_bits;
2385 }
2386
2387 put_field (uto, fmt->byteorder, fmt->totalsize,
2388 mant_off, mant_bits, mant_long);
2389 mant_off += mant_bits;
2390 mant_bits_left -= mant_bits;
2391 }
2392 }
2393
2394 /* temporary storage using circular buffer */
2395 #define NUMCELLS 16
2396 #define CELLSIZE 32
2397 static char*
2398 get_cell()
2399 {
2400 static char buf[NUMCELLS][CELLSIZE];
2401 static int cell=0;
2402 if (++cell>=NUMCELLS) cell=0;
2403 return buf[cell];
2404 }
2405
2406 /* print routines to handle variable size regs, etc */
2407 static int thirty_two = 32; /* eliminate warning from compiler on 32-bit systems */
2408
2409 char*
2410 paddr(addr)
2411 t_addr addr;
2412 {
2413 char *paddr_str=get_cell();
2414 switch (sizeof(t_addr))
2415 {
2416 case 8:
2417 sprintf(paddr_str,"%08x%08x",
2418 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
2419 break;
2420 case 4:
2421 sprintf(paddr_str,"%08x",(unsigned long)addr);
2422 break;
2423 case 2:
2424 sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
2425 break;
2426 default:
2427 sprintf(paddr_str,"%x",addr);
2428 }
2429 return paddr_str;
2430 }
2431
2432 char*
2433 preg(reg)
2434 t_reg reg;
2435 {
2436 char *preg_str=get_cell();
2437 switch (sizeof(t_reg))
2438 {
2439 case 8:
2440 sprintf(preg_str,"%08x%08x",
2441 (unsigned long)(reg>>thirty_two),(unsigned long)(reg&0xffffffff));
2442 break;
2443 case 4:
2444 sprintf(preg_str,"%08x",(unsigned long)reg);
2445 break;
2446 case 2:
2447 sprintf(preg_str,"%04x",(unsigned short)(reg&0xffff));
2448 break;
2449 default:
2450 sprintf(preg_str,"%x",reg);
2451 }
2452 return preg_str;
2453 }
2454
2455 char*
2456 paddr_nz(addr)
2457 t_addr addr;
2458 {
2459 char *paddr_str=get_cell();
2460 switch (sizeof(t_addr))
2461 {
2462 case 8:
2463 {
2464 unsigned long high = (unsigned long)(addr>>thirty_two);
2465 if (high == 0)
2466 sprintf(paddr_str,"%x", (unsigned long)(addr&0xffffffff));
2467 else
2468 sprintf(paddr_str,"%x%08x",
2469 high, (unsigned long)(addr&0xffffffff));
2470 break;
2471 }
2472 case 4:
2473 sprintf(paddr_str,"%x",(unsigned long)addr);
2474 break;
2475 case 2:
2476 sprintf(paddr_str,"%x",(unsigned short)(addr&0xffff));
2477 break;
2478 default:
2479 sprintf(paddr_str,"%x",addr);
2480 }
2481 return paddr_str;
2482 }
2483
2484 char*
2485 preg_nz(reg)
2486 t_reg reg;
2487 {
2488 char *preg_str=get_cell();
2489 switch (sizeof(t_reg))
2490 {
2491 case 8:
2492 {
2493 unsigned long high = (unsigned long)(reg>>thirty_two);
2494 if (high == 0)
2495 sprintf(preg_str,"%x", (unsigned long)(reg&0xffffffff));
2496 else
2497 sprintf(preg_str,"%x%08x",
2498 high, (unsigned long)(reg&0xffffffff));
2499 break;
2500 }
2501 case 4:
2502 sprintf(preg_str,"%x",(unsigned long)reg);
2503 break;
2504 case 2:
2505 sprintf(preg_str,"%x",(unsigned short)(reg&0xffff));
2506 break;
2507 default:
2508 sprintf(preg_str,"%x",reg);
2509 }
2510 return preg_str;
2511 }
This page took 0.082784 seconds and 4 git commands to generate.