6f3719adc6633e1b59302790cf8b02aa43a8a1cb
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_assert.h"
26 #include <ctype.h>
27 #include "gdb_string.h"
28 #include "event-top.h"
29 #include "exceptions.h"
30
31 #ifdef TUI
32 #include "tui/tui.h" /* For tui_get_command_dimension. */
33 #endif
34
35 #ifdef __GO32__
36 #include <pc.h>
37 #endif
38
39 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
40 #ifdef reg
41 #undef reg
42 #endif
43
44 #include <signal.h>
45 #include "gdbcmd.h"
46 #include "serial.h"
47 #include "bfd.h"
48 #include "target.h"
49 #include "demangle.h"
50 #include "expression.h"
51 #include "language.h"
52 #include "charset.h"
53 #include "annotate.h"
54 #include "filenames.h"
55 #include "symfile.h"
56 #include "gdb_obstack.h"
57 #include "top.h"
58
59 #include "inferior.h" /* for signed_pointer_to_address */
60
61 #include <sys/param.h> /* For MAXPATHLEN */
62
63 #include "gdb_curses.h"
64
65 #include "readline/readline.h"
66
67 #if !HAVE_DECL_MALLOC
68 extern PTR malloc (); /* OK: PTR */
69 #endif
70 #if !HAVE_DECL_REALLOC
71 extern PTR realloc (); /* OK: PTR */
72 #endif
73 #if !HAVE_DECL_FREE
74 extern void free ();
75 #endif
76
77 /* readline defines this. */
78 #undef savestring
79
80 void (*deprecated_error_begin_hook) (void);
81
82 /* Prototypes for local functions */
83
84 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
85 va_list, int) ATTR_FORMAT (printf, 2, 0);
86
87 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
88
89 static void do_my_cleanups (struct cleanup **, struct cleanup *);
90
91 static void prompt_for_continue (void);
92
93 static void set_screen_size (void);
94 static void set_width (void);
95
96 /* Chain of cleanup actions established with make_cleanup,
97 to be executed if an error happens. */
98
99 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
100 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
101 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
102 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
103 /* cleaned up on each error from within an execution command */
104 static struct cleanup *exec_error_cleanup_chain;
105
106 /* Pointer to what is left to do for an execution command after the
107 target stops. Used only in asynchronous mode, by targets that
108 support async execution. The finish and until commands use it. So
109 does the target extended-remote command. */
110 struct continuation *cmd_continuation;
111 struct continuation *intermediate_continuation;
112
113 /* Nonzero if we have job control. */
114
115 int job_control;
116
117 /* Nonzero means a quit has been requested. */
118
119 int quit_flag;
120
121 /* Nonzero means quit immediately if Control-C is typed now, rather
122 than waiting until QUIT is executed. Be careful in setting this;
123 code which executes with immediate_quit set has to be very careful
124 about being able to deal with being interrupted at any time. It is
125 almost always better to use QUIT; the only exception I can think of
126 is being able to quit out of a system call (using EINTR loses if
127 the SIGINT happens between the previous QUIT and the system call).
128 To immediately quit in the case in which a SIGINT happens between
129 the previous QUIT and setting immediate_quit (desirable anytime we
130 expect to block), call QUIT after setting immediate_quit. */
131
132 int immediate_quit;
133
134 /* Nonzero means that encoded C++/ObjC names should be printed out in their
135 C++/ObjC form rather than raw. */
136
137 int demangle = 1;
138 static void
139 show_demangle (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Demangling of encoded C++/ObjC names when displaying symbols is %s.\n"),
144 value);
145 }
146
147 /* Nonzero means that encoded C++/ObjC names should be printed out in their
148 C++/ObjC form even in assembler language displays. If this is set, but
149 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
150
151 int asm_demangle = 0;
152 static void
153 show_asm_demangle (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("\
157 Demangling of C++/ObjC names in disassembly listings is %s.\n"),
158 value);
159 }
160
161 /* Nonzero means that strings with character values >0x7F should be printed
162 as octal escapes. Zero means just print the value (e.g. it's an
163 international character, and the terminal or window can cope.) */
164
165 int sevenbit_strings = 0;
166 static void
167 show_sevenbit_strings (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("\
171 Printing of 8-bit characters in strings as \\nnn is %s.\n"),
172 value);
173 }
174
175 /* String to be printed before error messages, if any. */
176
177 char *error_pre_print;
178
179 /* String to be printed before quit messages, if any. */
180
181 char *quit_pre_print;
182
183 /* String to be printed before warning messages, if any. */
184
185 char *warning_pre_print = "\nwarning: ";
186
187 int pagination_enabled = 1;
188 static void
189 show_pagination_enabled (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("State of pagination is %s.\n"), value);
193 }
194
195 \f
196
197 /* Add a new cleanup to the cleanup_chain,
198 and return the previous chain pointer
199 to be passed later to do_cleanups or discard_cleanups.
200 Args are FUNCTION to clean up with, and ARG to pass to it. */
201
202 struct cleanup *
203 make_cleanup (make_cleanup_ftype *function, void *arg)
204 {
205 return make_my_cleanup (&cleanup_chain, function, arg);
206 }
207
208 struct cleanup *
209 make_final_cleanup (make_cleanup_ftype *function, void *arg)
210 {
211 return make_my_cleanup (&final_cleanup_chain, function, arg);
212 }
213
214 struct cleanup *
215 make_run_cleanup (make_cleanup_ftype *function, void *arg)
216 {
217 return make_my_cleanup (&run_cleanup_chain, function, arg);
218 }
219
220 struct cleanup *
221 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
222 {
223 return make_my_cleanup (&exec_cleanup_chain, function, arg);
224 }
225
226 struct cleanup *
227 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
228 {
229 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
230 }
231
232 static void
233 do_freeargv (void *arg)
234 {
235 freeargv ((char **) arg);
236 }
237
238 struct cleanup *
239 make_cleanup_freeargv (char **arg)
240 {
241 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
242 }
243
244 static void
245 do_bfd_close_cleanup (void *arg)
246 {
247 bfd_close (arg);
248 }
249
250 struct cleanup *
251 make_cleanup_bfd_close (bfd *abfd)
252 {
253 return make_cleanup (do_bfd_close_cleanup, abfd);
254 }
255
256 static void
257 do_close_cleanup (void *arg)
258 {
259 int *fd = arg;
260 close (*fd);
261 xfree (fd);
262 }
263
264 struct cleanup *
265 make_cleanup_close (int fd)
266 {
267 int *saved_fd = xmalloc (sizeof (fd));
268 *saved_fd = fd;
269 return make_cleanup (do_close_cleanup, saved_fd);
270 }
271
272 static void
273 do_ui_file_delete (void *arg)
274 {
275 ui_file_delete (arg);
276 }
277
278 struct cleanup *
279 make_cleanup_ui_file_delete (struct ui_file *arg)
280 {
281 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
282 }
283
284 static void
285 do_free_section_addr_info (void *arg)
286 {
287 free_section_addr_info (arg);
288 }
289
290 struct cleanup *
291 make_cleanup_free_section_addr_info (struct section_addr_info *addrs)
292 {
293 return make_my_cleanup (&cleanup_chain, do_free_section_addr_info, addrs);
294 }
295
296
297 struct cleanup *
298 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
299 void *arg)
300 {
301 struct cleanup *new
302 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
303 struct cleanup *old_chain = *pmy_chain;
304
305 new->next = *pmy_chain;
306 new->function = function;
307 new->arg = arg;
308 *pmy_chain = new;
309
310 return old_chain;
311 }
312
313 /* Discard cleanups and do the actions they describe
314 until we get back to the point OLD_CHAIN in the cleanup_chain. */
315
316 void
317 do_cleanups (struct cleanup *old_chain)
318 {
319 do_my_cleanups (&cleanup_chain, old_chain);
320 }
321
322 void
323 do_final_cleanups (struct cleanup *old_chain)
324 {
325 do_my_cleanups (&final_cleanup_chain, old_chain);
326 }
327
328 void
329 do_run_cleanups (struct cleanup *old_chain)
330 {
331 do_my_cleanups (&run_cleanup_chain, old_chain);
332 }
333
334 void
335 do_exec_cleanups (struct cleanup *old_chain)
336 {
337 do_my_cleanups (&exec_cleanup_chain, old_chain);
338 }
339
340 void
341 do_exec_error_cleanups (struct cleanup *old_chain)
342 {
343 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
344 }
345
346 static void
347 do_my_cleanups (struct cleanup **pmy_chain,
348 struct cleanup *old_chain)
349 {
350 struct cleanup *ptr;
351 while ((ptr = *pmy_chain) != old_chain)
352 {
353 *pmy_chain = ptr->next; /* Do this first incase recursion */
354 (*ptr->function) (ptr->arg);
355 xfree (ptr);
356 }
357 }
358
359 /* Discard cleanups, not doing the actions they describe,
360 until we get back to the point OLD_CHAIN in the cleanup_chain. */
361
362 void
363 discard_cleanups (struct cleanup *old_chain)
364 {
365 discard_my_cleanups (&cleanup_chain, old_chain);
366 }
367
368 void
369 discard_final_cleanups (struct cleanup *old_chain)
370 {
371 discard_my_cleanups (&final_cleanup_chain, old_chain);
372 }
373
374 void
375 discard_exec_error_cleanups (struct cleanup *old_chain)
376 {
377 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
378 }
379
380 void
381 discard_my_cleanups (struct cleanup **pmy_chain,
382 struct cleanup *old_chain)
383 {
384 struct cleanup *ptr;
385 while ((ptr = *pmy_chain) != old_chain)
386 {
387 *pmy_chain = ptr->next;
388 xfree (ptr);
389 }
390 }
391
392 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
393 struct cleanup *
394 save_cleanups (void)
395 {
396 return save_my_cleanups (&cleanup_chain);
397 }
398
399 struct cleanup *
400 save_final_cleanups (void)
401 {
402 return save_my_cleanups (&final_cleanup_chain);
403 }
404
405 struct cleanup *
406 save_my_cleanups (struct cleanup **pmy_chain)
407 {
408 struct cleanup *old_chain = *pmy_chain;
409
410 *pmy_chain = 0;
411 return old_chain;
412 }
413
414 /* Restore the cleanup chain from a previously saved chain. */
415 void
416 restore_cleanups (struct cleanup *chain)
417 {
418 restore_my_cleanups (&cleanup_chain, chain);
419 }
420
421 void
422 restore_final_cleanups (struct cleanup *chain)
423 {
424 restore_my_cleanups (&final_cleanup_chain, chain);
425 }
426
427 void
428 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
429 {
430 *pmy_chain = chain;
431 }
432
433 /* This function is useful for cleanups.
434 Do
435
436 foo = xmalloc (...);
437 old_chain = make_cleanup (free_current_contents, &foo);
438
439 to arrange to free the object thus allocated. */
440
441 void
442 free_current_contents (void *ptr)
443 {
444 void **location = ptr;
445 if (location == NULL)
446 internal_error (__FILE__, __LINE__,
447 _("free_current_contents: NULL pointer"));
448 if (*location != NULL)
449 {
450 xfree (*location);
451 *location = NULL;
452 }
453 }
454
455 /* Provide a known function that does nothing, to use as a base for
456 for a possibly long chain of cleanups. This is useful where we
457 use the cleanup chain for handling normal cleanups as well as dealing
458 with cleanups that need to be done as a result of a call to error().
459 In such cases, we may not be certain where the first cleanup is, unless
460 we have a do-nothing one to always use as the base. */
461
462 void
463 null_cleanup (void *arg)
464 {
465 }
466
467 /* Add a continuation to the continuation list, the global list
468 cmd_continuation. The new continuation will be added at the front.*/
469 void
470 add_continuation (void (*continuation_hook) (struct continuation_arg *),
471 struct continuation_arg *arg_list)
472 {
473 struct continuation *continuation_ptr;
474
475 continuation_ptr =
476 (struct continuation *) xmalloc (sizeof (struct continuation));
477 continuation_ptr->continuation_hook = continuation_hook;
478 continuation_ptr->arg_list = arg_list;
479 continuation_ptr->next = cmd_continuation;
480 cmd_continuation = continuation_ptr;
481 }
482
483 /* Walk down the cmd_continuation list, and execute all the
484 continuations. There is a problem though. In some cases new
485 continuations may be added while we are in the middle of this
486 loop. If this happens they will be added in the front, and done
487 before we have a chance of exhausting those that were already
488 there. We need to then save the beginning of the list in a pointer
489 and do the continuations from there on, instead of using the
490 global beginning of list as our iteration pointer. */
491 void
492 do_all_continuations (void)
493 {
494 struct continuation *continuation_ptr;
495 struct continuation *saved_continuation;
496
497 /* Copy the list header into another pointer, and set the global
498 list header to null, so that the global list can change as a side
499 effect of invoking the continuations and the processing of
500 the preexisting continuations will not be affected. */
501 continuation_ptr = cmd_continuation;
502 cmd_continuation = NULL;
503
504 /* Work now on the list we have set aside. */
505 while (continuation_ptr)
506 {
507 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
508 saved_continuation = continuation_ptr;
509 continuation_ptr = continuation_ptr->next;
510 xfree (saved_continuation);
511 }
512 }
513
514 /* Walk down the cmd_continuation list, and get rid of all the
515 continuations. */
516 void
517 discard_all_continuations (void)
518 {
519 struct continuation *continuation_ptr;
520
521 while (cmd_continuation)
522 {
523 continuation_ptr = cmd_continuation;
524 cmd_continuation = continuation_ptr->next;
525 xfree (continuation_ptr);
526 }
527 }
528
529 /* Add a continuation to the continuation list, the global list
530 intermediate_continuation. The new continuation will be added at
531 the front. */
532 void
533 add_intermediate_continuation (void (*continuation_hook)
534 (struct continuation_arg *),
535 struct continuation_arg *arg_list)
536 {
537 struct continuation *continuation_ptr;
538
539 continuation_ptr =
540 (struct continuation *) xmalloc (sizeof (struct continuation));
541 continuation_ptr->continuation_hook = continuation_hook;
542 continuation_ptr->arg_list = arg_list;
543 continuation_ptr->next = intermediate_continuation;
544 intermediate_continuation = continuation_ptr;
545 }
546
547 /* Walk down the cmd_continuation list, and execute all the
548 continuations. There is a problem though. In some cases new
549 continuations may be added while we are in the middle of this
550 loop. If this happens they will be added in the front, and done
551 before we have a chance of exhausting those that were already
552 there. We need to then save the beginning of the list in a pointer
553 and do the continuations from there on, instead of using the
554 global beginning of list as our iteration pointer.*/
555 void
556 do_all_intermediate_continuations (void)
557 {
558 struct continuation *continuation_ptr;
559 struct continuation *saved_continuation;
560
561 /* Copy the list header into another pointer, and set the global
562 list header to null, so that the global list can change as a side
563 effect of invoking the continuations and the processing of
564 the preexisting continuations will not be affected. */
565 continuation_ptr = intermediate_continuation;
566 intermediate_continuation = NULL;
567
568 /* Work now on the list we have set aside. */
569 while (continuation_ptr)
570 {
571 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
572 saved_continuation = continuation_ptr;
573 continuation_ptr = continuation_ptr->next;
574 xfree (saved_continuation);
575 }
576 }
577
578 /* Walk down the cmd_continuation list, and get rid of all the
579 continuations. */
580 void
581 discard_all_intermediate_continuations (void)
582 {
583 struct continuation *continuation_ptr;
584
585 while (intermediate_continuation)
586 {
587 continuation_ptr = intermediate_continuation;
588 intermediate_continuation = continuation_ptr->next;
589 xfree (continuation_ptr);
590 }
591 }
592 \f
593
594
595 /* Print a warning message. The first argument STRING is the warning
596 message, used as an fprintf format string, the second is the
597 va_list of arguments for that string. A warning is unfiltered (not
598 paginated) so that the user does not need to page through each
599 screen full of warnings when there are lots of them. */
600
601 void
602 vwarning (const char *string, va_list args)
603 {
604 if (deprecated_warning_hook)
605 (*deprecated_warning_hook) (string, args);
606 else
607 {
608 target_terminal_ours ();
609 wrap_here (""); /* Force out any buffered output */
610 gdb_flush (gdb_stdout);
611 if (warning_pre_print)
612 fputs_unfiltered (warning_pre_print, gdb_stderr);
613 vfprintf_unfiltered (gdb_stderr, string, args);
614 fprintf_unfiltered (gdb_stderr, "\n");
615 va_end (args);
616 }
617 }
618
619 /* Print a warning message.
620 The first argument STRING is the warning message, used as a fprintf string,
621 and the remaining args are passed as arguments to it.
622 The primary difference between warnings and errors is that a warning
623 does not force the return to command level. */
624
625 void
626 warning (const char *string, ...)
627 {
628 va_list args;
629 va_start (args, string);
630 vwarning (string, args);
631 va_end (args);
632 }
633
634 /* Print an error message and return to command level.
635 The first argument STRING is the error message, used as a fprintf string,
636 and the remaining args are passed as arguments to it. */
637
638 NORETURN void
639 verror (const char *string, va_list args)
640 {
641 throw_verror (GENERIC_ERROR, string, args);
642 }
643
644 NORETURN void
645 error (const char *string, ...)
646 {
647 va_list args;
648 va_start (args, string);
649 throw_verror (GENERIC_ERROR, string, args);
650 va_end (args);
651 }
652
653 /* Print an error message and quit.
654 The first argument STRING is the error message, used as a fprintf string,
655 and the remaining args are passed as arguments to it. */
656
657 NORETURN void
658 vfatal (const char *string, va_list args)
659 {
660 throw_vfatal (string, args);
661 }
662
663 NORETURN void
664 fatal (const char *string, ...)
665 {
666 va_list args;
667 va_start (args, string);
668 throw_vfatal (string, args);
669 va_end (args);
670 }
671
672 NORETURN void
673 error_stream (struct ui_file *stream)
674 {
675 long len;
676 char *message = ui_file_xstrdup (stream, &len);
677 make_cleanup (xfree, message);
678 error (("%s"), message);
679 }
680
681 /* Print a message reporting an internal error/warning. Ask the user
682 if they want to continue, dump core, or just exit. Return
683 something to indicate a quit. */
684
685 struct internal_problem
686 {
687 const char *name;
688 /* FIXME: cagney/2002-08-15: There should be ``maint set/show''
689 commands available for controlling these variables. */
690 enum auto_boolean should_quit;
691 enum auto_boolean should_dump_core;
692 };
693
694 /* Report a problem, internal to GDB, to the user. Once the problem
695 has been reported, and assuming GDB didn't quit, the caller can
696 either allow execution to resume or throw an error. */
697
698 static void ATTR_FORMAT (printf, 4, 0)
699 internal_vproblem (struct internal_problem *problem,
700 const char *file, int line, const char *fmt, va_list ap)
701 {
702 static int dejavu;
703 int quit_p;
704 int dump_core_p;
705 char *reason;
706
707 /* Don't allow infinite error/warning recursion. */
708 {
709 static char msg[] = "Recursive internal problem.\n";
710 switch (dejavu)
711 {
712 case 0:
713 dejavu = 1;
714 break;
715 case 1:
716 dejavu = 2;
717 fputs_unfiltered (msg, gdb_stderr);
718 abort (); /* NOTE: GDB has only three calls to abort(). */
719 default:
720 dejavu = 3;
721 write (STDERR_FILENO, msg, sizeof (msg));
722 exit (1);
723 }
724 }
725
726 /* Try to get the message out and at the start of a new line. */
727 target_terminal_ours ();
728 begin_line ();
729
730 /* Create a string containing the full error/warning message. Need
731 to call query with this full string, as otherwize the reason
732 (error/warning) and question become separated. Format using a
733 style similar to a compiler error message. Include extra detail
734 so that the user knows that they are living on the edge. */
735 {
736 char *msg;
737 msg = xstrvprintf (fmt, ap);
738 reason = xstrprintf ("\
739 %s:%d: %s: %s\n\
740 A problem internal to GDB has been detected,\n\
741 further debugging may prove unreliable.", file, line, problem->name, msg);
742 xfree (msg);
743 make_cleanup (xfree, reason);
744 }
745
746 switch (problem->should_quit)
747 {
748 case AUTO_BOOLEAN_AUTO:
749 /* Default (yes/batch case) is to quit GDB. When in batch mode
750 this lessens the likelhood of GDB going into an infinate
751 loop. */
752 quit_p = query (_("%s\nQuit this debugging session? "), reason);
753 break;
754 case AUTO_BOOLEAN_TRUE:
755 quit_p = 1;
756 break;
757 case AUTO_BOOLEAN_FALSE:
758 quit_p = 0;
759 break;
760 default:
761 internal_error (__FILE__, __LINE__, _("bad switch"));
762 }
763
764 switch (problem->should_dump_core)
765 {
766 case AUTO_BOOLEAN_AUTO:
767 /* Default (yes/batch case) is to dump core. This leaves a GDB
768 `dropping' so that it is easier to see that something went
769 wrong in GDB. */
770 dump_core_p = query (_("%s\nCreate a core file of GDB? "), reason);
771 break;
772 break;
773 case AUTO_BOOLEAN_TRUE:
774 dump_core_p = 1;
775 break;
776 case AUTO_BOOLEAN_FALSE:
777 dump_core_p = 0;
778 break;
779 default:
780 internal_error (__FILE__, __LINE__, _("bad switch"));
781 }
782
783 if (quit_p)
784 {
785 if (dump_core_p)
786 abort (); /* NOTE: GDB has only three calls to abort(). */
787 else
788 exit (1);
789 }
790 else
791 {
792 if (dump_core_p)
793 {
794 #ifdef HAVE_WORKING_FORK
795 if (fork () == 0)
796 abort (); /* NOTE: GDB has only three calls to abort(). */
797 #endif
798 }
799 }
800
801 dejavu = 0;
802 }
803
804 static struct internal_problem internal_error_problem = {
805 "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
806 };
807
808 NORETURN void
809 internal_verror (const char *file, int line, const char *fmt, va_list ap)
810 {
811 internal_vproblem (&internal_error_problem, file, line, fmt, ap);
812 deprecated_throw_reason (RETURN_ERROR);
813 }
814
815 NORETURN void
816 internal_error (const char *file, int line, const char *string, ...)
817 {
818 va_list ap;
819 va_start (ap, string);
820 internal_verror (file, line, string, ap);
821 va_end (ap);
822 }
823
824 static struct internal_problem internal_warning_problem = {
825 "internal-warning", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
826 };
827
828 void
829 internal_vwarning (const char *file, int line, const char *fmt, va_list ap)
830 {
831 internal_vproblem (&internal_warning_problem, file, line, fmt, ap);
832 }
833
834 void
835 internal_warning (const char *file, int line, const char *string, ...)
836 {
837 va_list ap;
838 va_start (ap, string);
839 internal_vwarning (file, line, string, ap);
840 va_end (ap);
841 }
842
843 /* Print the system error message for errno, and also mention STRING
844 as the file name for which the error was encountered.
845 Then return to command level. */
846
847 NORETURN void
848 perror_with_name (const char *string)
849 {
850 char *err;
851 char *combined;
852
853 err = safe_strerror (errno);
854 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
855 strcpy (combined, string);
856 strcat (combined, ": ");
857 strcat (combined, err);
858
859 /* I understand setting these is a matter of taste. Still, some people
860 may clear errno but not know about bfd_error. Doing this here is not
861 unreasonable. */
862 bfd_set_error (bfd_error_no_error);
863 errno = 0;
864
865 error (_("%s."), combined);
866 }
867
868 /* Print the system error message for ERRCODE, and also mention STRING
869 as the file name for which the error was encountered. */
870
871 void
872 print_sys_errmsg (const char *string, int errcode)
873 {
874 char *err;
875 char *combined;
876
877 err = safe_strerror (errcode);
878 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
879 strcpy (combined, string);
880 strcat (combined, ": ");
881 strcat (combined, err);
882
883 /* We want anything which was printed on stdout to come out first, before
884 this message. */
885 gdb_flush (gdb_stdout);
886 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
887 }
888
889 /* Control C eventually causes this to be called, at a convenient time. */
890
891 void
892 quit (void)
893 {
894 #ifdef __MSDOS__
895 /* No steenking SIGINT will ever be coming our way when the
896 program is resumed. Don't lie. */
897 fatal ("Quit");
898 #else
899 if (job_control
900 /* If there is no terminal switching for this target, then we can't
901 possibly get screwed by the lack of job control. */
902 || current_target.to_terminal_ours == NULL)
903 fatal ("Quit");
904 else
905 fatal ("Quit (expect signal SIGINT when the program is resumed)");
906 #endif
907 }
908
909 \f
910 /* Called when a memory allocation fails, with the number of bytes of
911 memory requested in SIZE. */
912
913 NORETURN void
914 nomem (long size)
915 {
916 if (size > 0)
917 {
918 internal_error (__FILE__, __LINE__,
919 _("virtual memory exhausted: can't allocate %ld bytes."),
920 size);
921 }
922 else
923 {
924 internal_error (__FILE__, __LINE__, _("virtual memory exhausted."));
925 }
926 }
927
928 /* The xmalloc() (libiberty.h) family of memory management routines.
929
930 These are like the ISO-C malloc() family except that they implement
931 consistent semantics and guard against typical memory management
932 problems. */
933
934 /* NOTE: These are declared using PTR to ensure consistency with
935 "libiberty.h". xfree() is GDB local. */
936
937 PTR /* OK: PTR */
938 xmalloc (size_t size)
939 {
940 void *val;
941
942 /* See libiberty/xmalloc.c. This function need's to match that's
943 semantics. It never returns NULL. */
944 if (size == 0)
945 size = 1;
946
947 val = malloc (size); /* OK: malloc */
948 if (val == NULL)
949 nomem (size);
950
951 return (val);
952 }
953
954 void *
955 xzalloc (size_t size)
956 {
957 return xcalloc (1, size);
958 }
959
960 PTR /* OK: PTR */
961 xrealloc (PTR ptr, size_t size) /* OK: PTR */
962 {
963 void *val;
964
965 /* See libiberty/xmalloc.c. This function need's to match that's
966 semantics. It never returns NULL. */
967 if (size == 0)
968 size = 1;
969
970 if (ptr != NULL)
971 val = realloc (ptr, size); /* OK: realloc */
972 else
973 val = malloc (size); /* OK: malloc */
974 if (val == NULL)
975 nomem (size);
976
977 return (val);
978 }
979
980 PTR /* OK: PTR */
981 xcalloc (size_t number, size_t size)
982 {
983 void *mem;
984
985 /* See libiberty/xmalloc.c. This function need's to match that's
986 semantics. It never returns NULL. */
987 if (number == 0 || size == 0)
988 {
989 number = 1;
990 size = 1;
991 }
992
993 mem = calloc (number, size); /* OK: xcalloc */
994 if (mem == NULL)
995 nomem (number * size);
996
997 return mem;
998 }
999
1000 void
1001 xfree (void *ptr)
1002 {
1003 if (ptr != NULL)
1004 free (ptr); /* OK: free */
1005 }
1006 \f
1007
1008 /* Like asprintf/vasprintf but get an internal_error if the call
1009 fails. */
1010
1011 char *
1012 xstrprintf (const char *format, ...)
1013 {
1014 char *ret;
1015 va_list args;
1016 va_start (args, format);
1017 ret = xstrvprintf (format, args);
1018 va_end (args);
1019 return ret;
1020 }
1021
1022 void
1023 xasprintf (char **ret, const char *format, ...)
1024 {
1025 va_list args;
1026 va_start (args, format);
1027 (*ret) = xstrvprintf (format, args);
1028 va_end (args);
1029 }
1030
1031 void
1032 xvasprintf (char **ret, const char *format, va_list ap)
1033 {
1034 (*ret) = xstrvprintf (format, ap);
1035 }
1036
1037 char *
1038 xstrvprintf (const char *format, va_list ap)
1039 {
1040 char *ret = NULL;
1041 int status = vasprintf (&ret, format, ap);
1042 /* NULL is returned when there was a memory allocation problem, or
1043 any other error (for instance, a bad format string). A negative
1044 status (the printed length) with a non-NULL buffer should never
1045 happen, but just to be sure. */
1046 if (ret == NULL || status < 0)
1047 internal_error (__FILE__, __LINE__, _("vasprintf call failed"));
1048 return ret;
1049 }
1050
1051 int
1052 xsnprintf (char *str, size_t size, const char *format, ...)
1053 {
1054 va_list args;
1055 int ret;
1056
1057 va_start (args, format);
1058 ret = vsnprintf (str, size, format, args);
1059 gdb_assert (ret < size);
1060 va_end (args);
1061
1062 return ret;
1063 }
1064
1065 /* My replacement for the read system call.
1066 Used like `read' but keeps going if `read' returns too soon. */
1067
1068 int
1069 myread (int desc, char *addr, int len)
1070 {
1071 int val;
1072 int orglen = len;
1073
1074 while (len > 0)
1075 {
1076 val = read (desc, addr, len);
1077 if (val < 0)
1078 return val;
1079 if (val == 0)
1080 return orglen - len;
1081 len -= val;
1082 addr += val;
1083 }
1084 return orglen;
1085 }
1086 \f
1087 /* Make a copy of the string at PTR with SIZE characters
1088 (and add a null character at the end in the copy).
1089 Uses malloc to get the space. Returns the address of the copy. */
1090
1091 char *
1092 savestring (const char *ptr, size_t size)
1093 {
1094 char *p = (char *) xmalloc (size + 1);
1095 memcpy (p, ptr, size);
1096 p[size] = 0;
1097 return p;
1098 }
1099
1100 void
1101 print_spaces (int n, struct ui_file *file)
1102 {
1103 fputs_unfiltered (n_spaces (n), file);
1104 }
1105
1106 /* Print a host address. */
1107
1108 void
1109 gdb_print_host_address (const void *addr, struct ui_file *stream)
1110 {
1111
1112 /* We could use the %p conversion specifier to fprintf if we had any
1113 way of knowing whether this host supports it. But the following
1114 should work on the Alpha and on 32 bit machines. */
1115
1116 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1117 }
1118 \f
1119
1120 /* This function supports the query, nquery, and yquery functions.
1121 Ask user a y-or-n question and return 0 if answer is no, 1 if
1122 answer is yes, or default the answer to the specified default
1123 (for yquery or nquery). DEFCHAR may be 'y' or 'n' to provide a
1124 default answer, or '\0' for no default.
1125 CTLSTR is the control string and should end in "? ". It should
1126 not say how to answer, because we do that.
1127 ARGS are the arguments passed along with the CTLSTR argument to
1128 printf. */
1129
1130 static int ATTR_FORMAT (printf, 1, 0)
1131 defaulted_query (const char *ctlstr, const char defchar, va_list args)
1132 {
1133 int answer;
1134 int ans2;
1135 int retval;
1136 int def_value;
1137 char def_answer, not_def_answer;
1138 char *y_string, *n_string, *question;
1139
1140 /* Set up according to which answer is the default. */
1141 if (defchar == '\0')
1142 {
1143 def_value = 1;
1144 def_answer = 'Y';
1145 not_def_answer = 'N';
1146 y_string = "y";
1147 n_string = "n";
1148 }
1149 else if (defchar == 'y')
1150 {
1151 def_value = 1;
1152 def_answer = 'Y';
1153 not_def_answer = 'N';
1154 y_string = "[y]";
1155 n_string = "n";
1156 }
1157 else
1158 {
1159 def_value = 0;
1160 def_answer = 'N';
1161 not_def_answer = 'Y';
1162 y_string = "y";
1163 n_string = "[n]";
1164 }
1165
1166 /* Automatically answer the default value if the user did not want
1167 prompts. */
1168 if (! caution)
1169 return def_value;
1170
1171 /* If input isn't coming from the user directly, just say what
1172 question we're asking, and then answer "yes" automatically. This
1173 way, important error messages don't get lost when talking to GDB
1174 over a pipe. */
1175 if (! input_from_terminal_p ())
1176 {
1177 wrap_here ("");
1178 vfprintf_filtered (gdb_stdout, ctlstr, args);
1179
1180 printf_filtered (_("(%s or %s) [answered %c; input not from terminal]\n"),
1181 y_string, n_string, def_answer);
1182 gdb_flush (gdb_stdout);
1183
1184 return def_value;
1185 }
1186
1187 /* Automatically answer the default value if input is not from the user
1188 directly, or if the user did not want prompts. */
1189 if (!input_from_terminal_p () || !caution)
1190 return def_value;
1191
1192 if (deprecated_query_hook)
1193 {
1194 return deprecated_query_hook (ctlstr, args);
1195 }
1196
1197 /* Format the question outside of the loop, to avoid reusing args. */
1198 question = xstrvprintf (ctlstr, args);
1199
1200 while (1)
1201 {
1202 wrap_here (""); /* Flush any buffered output */
1203 gdb_flush (gdb_stdout);
1204
1205 if (annotation_level > 1)
1206 printf_filtered (("\n\032\032pre-query\n"));
1207
1208 fputs_filtered (question, gdb_stdout);
1209 printf_filtered (_("(%s or %s) "), y_string, n_string);
1210
1211 if (annotation_level > 1)
1212 printf_filtered (("\n\032\032query\n"));
1213
1214 wrap_here ("");
1215 gdb_flush (gdb_stdout);
1216
1217 answer = fgetc (stdin);
1218 clearerr (stdin); /* in case of C-d */
1219 if (answer == EOF) /* C-d */
1220 {
1221 printf_filtered ("EOF [assumed %c]\n", def_answer);
1222 retval = def_value;
1223 break;
1224 }
1225 /* Eat rest of input line, to EOF or newline */
1226 if (answer != '\n')
1227 do
1228 {
1229 ans2 = fgetc (stdin);
1230 clearerr (stdin);
1231 }
1232 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1233
1234 if (answer >= 'a')
1235 answer -= 040;
1236 /* Check answer. For the non-default, the user must specify
1237 the non-default explicitly. */
1238 if (answer == not_def_answer)
1239 {
1240 retval = !def_value;
1241 break;
1242 }
1243 /* Otherwise, if a default was specified, the user may either
1244 specify the required input or have it default by entering
1245 nothing. */
1246 if (answer == def_answer
1247 || (defchar != '\0' &&
1248 (answer == '\n' || answer == '\r' || answer == EOF)))
1249 {
1250 retval = def_value;
1251 break;
1252 }
1253 /* Invalid entries are not defaulted and require another selection. */
1254 printf_filtered (_("Please answer %s or %s.\n"),
1255 y_string, n_string);
1256 }
1257
1258 xfree (question);
1259 if (annotation_level > 1)
1260 printf_filtered (("\n\032\032post-query\n"));
1261 return retval;
1262 }
1263 \f
1264
1265 /* Ask user a y-or-n question and return 0 if answer is no, 1 if
1266 answer is yes, or 0 if answer is defaulted.
1267 Takes three args which are given to printf to print the question.
1268 The first, a control string, should end in "? ".
1269 It should not say how to answer, because we do that. */
1270
1271 int
1272 nquery (const char *ctlstr, ...)
1273 {
1274 va_list args;
1275
1276 va_start (args, ctlstr);
1277 return defaulted_query (ctlstr, 'n', args);
1278 va_end (args);
1279 }
1280
1281 /* Ask user a y-or-n question and return 0 if answer is no, 1 if
1282 answer is yes, or 1 if answer is defaulted.
1283 Takes three args which are given to printf to print the question.
1284 The first, a control string, should end in "? ".
1285 It should not say how to answer, because we do that. */
1286
1287 int
1288 yquery (const char *ctlstr, ...)
1289 {
1290 va_list args;
1291
1292 va_start (args, ctlstr);
1293 return defaulted_query (ctlstr, 'y', args);
1294 va_end (args);
1295 }
1296
1297 /* Ask user a y-or-n question and return 1 iff answer is yes.
1298 Takes three args which are given to printf to print the question.
1299 The first, a control string, should end in "? ".
1300 It should not say how to answer, because we do that. */
1301
1302 int
1303 query (const char *ctlstr, ...)
1304 {
1305 va_list args;
1306
1307 va_start (args, ctlstr);
1308 return defaulted_query (ctlstr, '\0', args);
1309 va_end (args);
1310 }
1311
1312 /* Print an error message saying that we couldn't make sense of a
1313 \^mumble sequence in a string or character constant. START and END
1314 indicate a substring of some larger string that contains the
1315 erroneous backslash sequence, missing the initial backslash. */
1316 static NORETURN int
1317 no_control_char_error (const char *start, const char *end)
1318 {
1319 int len = end - start;
1320 char *copy = alloca (end - start + 1);
1321
1322 memcpy (copy, start, len);
1323 copy[len] = '\0';
1324
1325 error (_("There is no control character `\\%s' in the `%s' character set."),
1326 copy, target_charset ());
1327 }
1328
1329 /* Parse a C escape sequence. STRING_PTR points to a variable
1330 containing a pointer to the string to parse. That pointer
1331 should point to the character after the \. That pointer
1332 is updated past the characters we use. The value of the
1333 escape sequence is returned.
1334
1335 A negative value means the sequence \ newline was seen,
1336 which is supposed to be equivalent to nothing at all.
1337
1338 If \ is followed by a null character, we return a negative
1339 value and leave the string pointer pointing at the null character.
1340
1341 If \ is followed by 000, we return 0 and leave the string pointer
1342 after the zeros. A value of 0 does not mean end of string. */
1343
1344 int
1345 parse_escape (char **string_ptr)
1346 {
1347 int target_char;
1348 int c = *(*string_ptr)++;
1349 if (c_parse_backslash (c, &target_char))
1350 return target_char;
1351 else
1352 switch (c)
1353 {
1354 case '\n':
1355 return -2;
1356 case 0:
1357 (*string_ptr)--;
1358 return 0;
1359 case '^':
1360 {
1361 /* Remember where this escape sequence started, for reporting
1362 errors. */
1363 char *sequence_start_pos = *string_ptr - 1;
1364
1365 c = *(*string_ptr)++;
1366
1367 if (c == '?')
1368 {
1369 /* XXXCHARSET: What is `delete' in the host character set? */
1370 c = 0177;
1371
1372 if (!host_char_to_target (c, &target_char))
1373 error (_("There is no character corresponding to `Delete' "
1374 "in the target character set `%s'."), host_charset ());
1375
1376 return target_char;
1377 }
1378 else if (c == '\\')
1379 target_char = parse_escape (string_ptr);
1380 else
1381 {
1382 if (!host_char_to_target (c, &target_char))
1383 no_control_char_error (sequence_start_pos, *string_ptr);
1384 }
1385
1386 /* Now target_char is something like `c', and we want to find
1387 its control-character equivalent. */
1388 if (!target_char_to_control_char (target_char, &target_char))
1389 no_control_char_error (sequence_start_pos, *string_ptr);
1390
1391 return target_char;
1392 }
1393
1394 /* XXXCHARSET: we need to use isdigit and value-of-digit
1395 methods of the host character set here. */
1396
1397 case '0':
1398 case '1':
1399 case '2':
1400 case '3':
1401 case '4':
1402 case '5':
1403 case '6':
1404 case '7':
1405 {
1406 int i = c - '0';
1407 int count = 0;
1408 while (++count < 3)
1409 {
1410 c = (**string_ptr);
1411 if (c >= '0' && c <= '7')
1412 {
1413 (*string_ptr)++;
1414 i *= 8;
1415 i += c - '0';
1416 }
1417 else
1418 {
1419 break;
1420 }
1421 }
1422 return i;
1423 }
1424 default:
1425 if (!host_char_to_target (c, &target_char))
1426 error
1427 ("The escape sequence `\%c' is equivalent to plain `%c', which"
1428 " has no equivalent\n" "in the `%s' character set.", c, c,
1429 target_charset ());
1430 return target_char;
1431 }
1432 }
1433 \f
1434 /* Print the character C on STREAM as part of the contents of a literal
1435 string whose delimiter is QUOTER. Note that this routine should only
1436 be call for printing things which are independent of the language
1437 of the program being debugged. */
1438
1439 static void
1440 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1441 void (*do_fprintf) (struct ui_file *, const char *, ...)
1442 ATTRIBUTE_FPTR_PRINTF_2, struct ui_file *stream, int quoter)
1443 {
1444
1445 c &= 0xFF; /* Avoid sign bit follies */
1446
1447 if (c < 0x20 || /* Low control chars */
1448 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1449 (sevenbit_strings && c >= 0x80))
1450 { /* high order bit set */
1451 switch (c)
1452 {
1453 case '\n':
1454 do_fputs ("\\n", stream);
1455 break;
1456 case '\b':
1457 do_fputs ("\\b", stream);
1458 break;
1459 case '\t':
1460 do_fputs ("\\t", stream);
1461 break;
1462 case '\f':
1463 do_fputs ("\\f", stream);
1464 break;
1465 case '\r':
1466 do_fputs ("\\r", stream);
1467 break;
1468 case '\033':
1469 do_fputs ("\\e", stream);
1470 break;
1471 case '\007':
1472 do_fputs ("\\a", stream);
1473 break;
1474 default:
1475 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1476 break;
1477 }
1478 }
1479 else
1480 {
1481 if (c == '\\' || c == quoter)
1482 do_fputs ("\\", stream);
1483 do_fprintf (stream, "%c", c);
1484 }
1485 }
1486
1487 /* Print the character C on STREAM as part of the contents of a
1488 literal string whose delimiter is QUOTER. Note that these routines
1489 should only be call for printing things which are independent of
1490 the language of the program being debugged. */
1491
1492 void
1493 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1494 {
1495 while (*str)
1496 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1497 }
1498
1499 void
1500 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1501 {
1502 while (*str)
1503 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1504 }
1505
1506 void
1507 fputstrn_filtered (const char *str, int n, int quoter,
1508 struct ui_file *stream)
1509 {
1510 int i;
1511 for (i = 0; i < n; i++)
1512 printchar (str[i], fputs_filtered, fprintf_filtered, stream, quoter);
1513 }
1514
1515 void
1516 fputstrn_unfiltered (const char *str, int n, int quoter,
1517 struct ui_file *stream)
1518 {
1519 int i;
1520 for (i = 0; i < n; i++)
1521 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1522 }
1523 \f
1524
1525 /* Number of lines per page or UINT_MAX if paging is disabled. */
1526 static unsigned int lines_per_page;
1527 static void
1528 show_lines_per_page (struct ui_file *file, int from_tty,
1529 struct cmd_list_element *c, const char *value)
1530 {
1531 fprintf_filtered (file, _("\
1532 Number of lines gdb thinks are in a page is %s.\n"),
1533 value);
1534 }
1535
1536 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1537 static unsigned int chars_per_line;
1538 static void
1539 show_chars_per_line (struct ui_file *file, int from_tty,
1540 struct cmd_list_element *c, const char *value)
1541 {
1542 fprintf_filtered (file, _("\
1543 Number of characters gdb thinks are in a line is %s.\n"),
1544 value);
1545 }
1546
1547 /* Current count of lines printed on this page, chars on this line. */
1548 static unsigned int lines_printed, chars_printed;
1549
1550 /* Buffer and start column of buffered text, for doing smarter word-
1551 wrapping. When someone calls wrap_here(), we start buffering output
1552 that comes through fputs_filtered(). If we see a newline, we just
1553 spit it out and forget about the wrap_here(). If we see another
1554 wrap_here(), we spit it out and remember the newer one. If we see
1555 the end of the line, we spit out a newline, the indent, and then
1556 the buffered output. */
1557
1558 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1559 are waiting to be output (they have already been counted in chars_printed).
1560 When wrap_buffer[0] is null, the buffer is empty. */
1561 static char *wrap_buffer;
1562
1563 /* Pointer in wrap_buffer to the next character to fill. */
1564 static char *wrap_pointer;
1565
1566 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1567 is non-zero. */
1568 static char *wrap_indent;
1569
1570 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1571 is not in effect. */
1572 static int wrap_column;
1573 \f
1574
1575 /* Inialize the number of lines per page and chars per line. */
1576
1577 void
1578 init_page_info (void)
1579 {
1580 #if defined(TUI)
1581 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
1582 #endif
1583 {
1584 int rows, cols;
1585
1586 #if defined(__GO32__)
1587 rows = ScreenRows ();
1588 cols = ScreenCols ();
1589 lines_per_page = rows;
1590 chars_per_line = cols;
1591 #else
1592 /* Make sure Readline has initialized its terminal settings. */
1593 rl_reset_terminal (NULL);
1594
1595 /* Get the screen size from Readline. */
1596 rl_get_screen_size (&rows, &cols);
1597 lines_per_page = rows;
1598 chars_per_line = cols;
1599
1600 /* Readline should have fetched the termcap entry for us. */
1601 if (tgetnum ("li") < 0 || getenv ("EMACS"))
1602 {
1603 /* The number of lines per page is not mentioned in the
1604 terminal description. This probably means that paging is
1605 not useful (e.g. emacs shell window), so disable paging. */
1606 lines_per_page = UINT_MAX;
1607 }
1608
1609 /* FIXME: Get rid of this junk. */
1610 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1611 SIGWINCH_HANDLER (SIGWINCH);
1612 #endif
1613
1614 /* If the output is not a terminal, don't paginate it. */
1615 if (!ui_file_isatty (gdb_stdout))
1616 lines_per_page = UINT_MAX;
1617 #endif
1618 }
1619
1620 set_screen_size ();
1621 set_width ();
1622 }
1623
1624 /* Set the screen size based on LINES_PER_PAGE and CHARS_PER_LINE. */
1625
1626 static void
1627 set_screen_size (void)
1628 {
1629 int rows = lines_per_page;
1630 int cols = chars_per_line;
1631
1632 if (rows <= 0)
1633 rows = INT_MAX;
1634
1635 if (cols <= 0)
1636 cols = INT_MAX;
1637
1638 /* Update Readline's idea of the terminal size. */
1639 rl_set_screen_size (rows, cols);
1640 }
1641
1642 /* Reinitialize WRAP_BUFFER according to the current value of
1643 CHARS_PER_LINE. */
1644
1645 static void
1646 set_width (void)
1647 {
1648 if (chars_per_line == 0)
1649 init_page_info ();
1650
1651 if (!wrap_buffer)
1652 {
1653 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1654 wrap_buffer[0] = '\0';
1655 }
1656 else
1657 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1658 wrap_pointer = wrap_buffer; /* Start it at the beginning. */
1659 }
1660
1661 static void
1662 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1663 {
1664 set_screen_size ();
1665 set_width ();
1666 }
1667
1668 static void
1669 set_height_command (char *args, int from_tty, struct cmd_list_element *c)
1670 {
1671 set_screen_size ();
1672 }
1673
1674 /* Wait, so the user can read what's on the screen. Prompt the user
1675 to continue by pressing RETURN. */
1676
1677 static void
1678 prompt_for_continue (void)
1679 {
1680 char *ignore;
1681 char cont_prompt[120];
1682
1683 if (annotation_level > 1)
1684 printf_unfiltered (("\n\032\032pre-prompt-for-continue\n"));
1685
1686 strcpy (cont_prompt,
1687 "---Type <return> to continue, or q <return> to quit---");
1688 if (annotation_level > 1)
1689 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1690
1691 /* We must do this *before* we call gdb_readline, else it will eventually
1692 call us -- thinking that we're trying to print beyond the end of the
1693 screen. */
1694 reinitialize_more_filter ();
1695
1696 immediate_quit++;
1697 /* On a real operating system, the user can quit with SIGINT.
1698 But not on GO32.
1699
1700 'q' is provided on all systems so users don't have to change habits
1701 from system to system, and because telling them what to do in
1702 the prompt is more user-friendly than expecting them to think of
1703 SIGINT. */
1704 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1705 whereas control-C to gdb_readline will cause the user to get dumped
1706 out to DOS. */
1707 ignore = gdb_readline_wrapper (cont_prompt);
1708
1709 if (annotation_level > 1)
1710 printf_unfiltered (("\n\032\032post-prompt-for-continue\n"));
1711
1712 if (ignore)
1713 {
1714 char *p = ignore;
1715 while (*p == ' ' || *p == '\t')
1716 ++p;
1717 if (p[0] == 'q')
1718 async_request_quit (0);
1719 xfree (ignore);
1720 }
1721 immediate_quit--;
1722
1723 /* Now we have to do this again, so that GDB will know that it doesn't
1724 need to save the ---Type <return>--- line at the top of the screen. */
1725 reinitialize_more_filter ();
1726
1727 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1728 }
1729
1730 /* Reinitialize filter; ie. tell it to reset to original values. */
1731
1732 void
1733 reinitialize_more_filter (void)
1734 {
1735 lines_printed = 0;
1736 chars_printed = 0;
1737 }
1738
1739 /* Indicate that if the next sequence of characters overflows the line,
1740 a newline should be inserted here rather than when it hits the end.
1741 If INDENT is non-null, it is a string to be printed to indent the
1742 wrapped part on the next line. INDENT must remain accessible until
1743 the next call to wrap_here() or until a newline is printed through
1744 fputs_filtered().
1745
1746 If the line is already overfull, we immediately print a newline and
1747 the indentation, and disable further wrapping.
1748
1749 If we don't know the width of lines, but we know the page height,
1750 we must not wrap words, but should still keep track of newlines
1751 that were explicitly printed.
1752
1753 INDENT should not contain tabs, as that will mess up the char count
1754 on the next line. FIXME.
1755
1756 This routine is guaranteed to force out any output which has been
1757 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1758 used to force out output from the wrap_buffer. */
1759
1760 void
1761 wrap_here (char *indent)
1762 {
1763 /* This should have been allocated, but be paranoid anyway. */
1764 if (!wrap_buffer)
1765 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1766
1767 if (wrap_buffer[0])
1768 {
1769 *wrap_pointer = '\0';
1770 fputs_unfiltered (wrap_buffer, gdb_stdout);
1771 }
1772 wrap_pointer = wrap_buffer;
1773 wrap_buffer[0] = '\0';
1774 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1775 {
1776 wrap_column = 0;
1777 }
1778 else if (chars_printed >= chars_per_line)
1779 {
1780 puts_filtered ("\n");
1781 if (indent != NULL)
1782 puts_filtered (indent);
1783 wrap_column = 0;
1784 }
1785 else
1786 {
1787 wrap_column = chars_printed;
1788 if (indent == NULL)
1789 wrap_indent = "";
1790 else
1791 wrap_indent = indent;
1792 }
1793 }
1794
1795 /* Print input string to gdb_stdout, filtered, with wrap,
1796 arranging strings in columns of n chars. String can be
1797 right or left justified in the column. Never prints
1798 trailing spaces. String should never be longer than
1799 width. FIXME: this could be useful for the EXAMINE
1800 command, which currently doesn't tabulate very well */
1801
1802 void
1803 puts_filtered_tabular (char *string, int width, int right)
1804 {
1805 int spaces = 0;
1806 int stringlen;
1807 char *spacebuf;
1808
1809 gdb_assert (chars_per_line > 0);
1810 if (chars_per_line == UINT_MAX)
1811 {
1812 fputs_filtered (string, gdb_stdout);
1813 fputs_filtered ("\n", gdb_stdout);
1814 return;
1815 }
1816
1817 if (((chars_printed - 1) / width + 2) * width >= chars_per_line)
1818 fputs_filtered ("\n", gdb_stdout);
1819
1820 if (width >= chars_per_line)
1821 width = chars_per_line - 1;
1822
1823 stringlen = strlen (string);
1824
1825 if (chars_printed > 0)
1826 spaces = width - (chars_printed - 1) % width - 1;
1827 if (right)
1828 spaces += width - stringlen;
1829
1830 spacebuf = alloca (spaces + 1);
1831 spacebuf[spaces] = '\0';
1832 while (spaces--)
1833 spacebuf[spaces] = ' ';
1834
1835 fputs_filtered (spacebuf, gdb_stdout);
1836 fputs_filtered (string, gdb_stdout);
1837 }
1838
1839
1840 /* Ensure that whatever gets printed next, using the filtered output
1841 commands, starts at the beginning of the line. I.E. if there is
1842 any pending output for the current line, flush it and start a new
1843 line. Otherwise do nothing. */
1844
1845 void
1846 begin_line (void)
1847 {
1848 if (chars_printed > 0)
1849 {
1850 puts_filtered ("\n");
1851 }
1852 }
1853
1854
1855 /* Like fputs but if FILTER is true, pause after every screenful.
1856
1857 Regardless of FILTER can wrap at points other than the final
1858 character of a line.
1859
1860 Unlike fputs, fputs_maybe_filtered does not return a value.
1861 It is OK for LINEBUFFER to be NULL, in which case just don't print
1862 anything.
1863
1864 Note that a longjmp to top level may occur in this routine (only if
1865 FILTER is true) (since prompt_for_continue may do so) so this
1866 routine should not be called when cleanups are not in place. */
1867
1868 static void
1869 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1870 int filter)
1871 {
1872 const char *lineptr;
1873
1874 if (linebuffer == 0)
1875 return;
1876
1877 /* Don't do any filtering if it is disabled. */
1878 if ((stream != gdb_stdout) || !pagination_enabled
1879 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1880 {
1881 fputs_unfiltered (linebuffer, stream);
1882 return;
1883 }
1884
1885 /* Go through and output each character. Show line extension
1886 when this is necessary; prompt user for new page when this is
1887 necessary. */
1888
1889 lineptr = linebuffer;
1890 while (*lineptr)
1891 {
1892 /* Possible new page. */
1893 if (filter && (lines_printed >= lines_per_page - 1))
1894 prompt_for_continue ();
1895
1896 while (*lineptr && *lineptr != '\n')
1897 {
1898 /* Print a single line. */
1899 if (*lineptr == '\t')
1900 {
1901 if (wrap_column)
1902 *wrap_pointer++ = '\t';
1903 else
1904 fputc_unfiltered ('\t', stream);
1905 /* Shifting right by 3 produces the number of tab stops
1906 we have already passed, and then adding one and
1907 shifting left 3 advances to the next tab stop. */
1908 chars_printed = ((chars_printed >> 3) + 1) << 3;
1909 lineptr++;
1910 }
1911 else
1912 {
1913 if (wrap_column)
1914 *wrap_pointer++ = *lineptr;
1915 else
1916 fputc_unfiltered (*lineptr, stream);
1917 chars_printed++;
1918 lineptr++;
1919 }
1920
1921 if (chars_printed >= chars_per_line)
1922 {
1923 unsigned int save_chars = chars_printed;
1924
1925 chars_printed = 0;
1926 lines_printed++;
1927 /* If we aren't actually wrapping, don't output newline --
1928 if chars_per_line is right, we probably just overflowed
1929 anyway; if it's wrong, let us keep going. */
1930 if (wrap_column)
1931 fputc_unfiltered ('\n', stream);
1932
1933 /* Possible new page. */
1934 if (lines_printed >= lines_per_page - 1)
1935 prompt_for_continue ();
1936
1937 /* Now output indentation and wrapped string */
1938 if (wrap_column)
1939 {
1940 fputs_unfiltered (wrap_indent, stream);
1941 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1942 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1943 /* FIXME, this strlen is what prevents wrap_indent from
1944 containing tabs. However, if we recurse to print it
1945 and count its chars, we risk trouble if wrap_indent is
1946 longer than (the user settable) chars_per_line.
1947 Note also that this can set chars_printed > chars_per_line
1948 if we are printing a long string. */
1949 chars_printed = strlen (wrap_indent)
1950 + (save_chars - wrap_column);
1951 wrap_pointer = wrap_buffer; /* Reset buffer */
1952 wrap_buffer[0] = '\0';
1953 wrap_column = 0; /* And disable fancy wrap */
1954 }
1955 }
1956 }
1957
1958 if (*lineptr == '\n')
1959 {
1960 chars_printed = 0;
1961 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1962 lines_printed++;
1963 fputc_unfiltered ('\n', stream);
1964 lineptr++;
1965 }
1966 }
1967 }
1968
1969 void
1970 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1971 {
1972 fputs_maybe_filtered (linebuffer, stream, 1);
1973 }
1974
1975 int
1976 putchar_unfiltered (int c)
1977 {
1978 char buf = c;
1979 ui_file_write (gdb_stdout, &buf, 1);
1980 return c;
1981 }
1982
1983 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1984 May return nonlocally. */
1985
1986 int
1987 putchar_filtered (int c)
1988 {
1989 return fputc_filtered (c, gdb_stdout);
1990 }
1991
1992 int
1993 fputc_unfiltered (int c, struct ui_file *stream)
1994 {
1995 char buf = c;
1996 ui_file_write (stream, &buf, 1);
1997 return c;
1998 }
1999
2000 int
2001 fputc_filtered (int c, struct ui_file *stream)
2002 {
2003 char buf[2];
2004
2005 buf[0] = c;
2006 buf[1] = 0;
2007 fputs_filtered (buf, stream);
2008 return c;
2009 }
2010
2011 /* puts_debug is like fputs_unfiltered, except it prints special
2012 characters in printable fashion. */
2013
2014 void
2015 puts_debug (char *prefix, char *string, char *suffix)
2016 {
2017 int ch;
2018
2019 /* Print prefix and suffix after each line. */
2020 static int new_line = 1;
2021 static int return_p = 0;
2022 static char *prev_prefix = "";
2023 static char *prev_suffix = "";
2024
2025 if (*string == '\n')
2026 return_p = 0;
2027
2028 /* If the prefix is changing, print the previous suffix, a new line,
2029 and the new prefix. */
2030 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
2031 {
2032 fputs_unfiltered (prev_suffix, gdb_stdlog);
2033 fputs_unfiltered ("\n", gdb_stdlog);
2034 fputs_unfiltered (prefix, gdb_stdlog);
2035 }
2036
2037 /* Print prefix if we printed a newline during the previous call. */
2038 if (new_line)
2039 {
2040 new_line = 0;
2041 fputs_unfiltered (prefix, gdb_stdlog);
2042 }
2043
2044 prev_prefix = prefix;
2045 prev_suffix = suffix;
2046
2047 /* Output characters in a printable format. */
2048 while ((ch = *string++) != '\0')
2049 {
2050 switch (ch)
2051 {
2052 default:
2053 if (isprint (ch))
2054 fputc_unfiltered (ch, gdb_stdlog);
2055
2056 else
2057 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
2058 break;
2059
2060 case '\\':
2061 fputs_unfiltered ("\\\\", gdb_stdlog);
2062 break;
2063 case '\b':
2064 fputs_unfiltered ("\\b", gdb_stdlog);
2065 break;
2066 case '\f':
2067 fputs_unfiltered ("\\f", gdb_stdlog);
2068 break;
2069 case '\n':
2070 new_line = 1;
2071 fputs_unfiltered ("\\n", gdb_stdlog);
2072 break;
2073 case '\r':
2074 fputs_unfiltered ("\\r", gdb_stdlog);
2075 break;
2076 case '\t':
2077 fputs_unfiltered ("\\t", gdb_stdlog);
2078 break;
2079 case '\v':
2080 fputs_unfiltered ("\\v", gdb_stdlog);
2081 break;
2082 }
2083
2084 return_p = ch == '\r';
2085 }
2086
2087 /* Print suffix if we printed a newline. */
2088 if (new_line)
2089 {
2090 fputs_unfiltered (suffix, gdb_stdlog);
2091 fputs_unfiltered ("\n", gdb_stdlog);
2092 }
2093 }
2094
2095
2096 /* Print a variable number of ARGS using format FORMAT. If this
2097 information is going to put the amount written (since the last call
2098 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2099 call prompt_for_continue to get the users permision to continue.
2100
2101 Unlike fprintf, this function does not return a value.
2102
2103 We implement three variants, vfprintf (takes a vararg list and stream),
2104 fprintf (takes a stream to write on), and printf (the usual).
2105
2106 Note also that a longjmp to top level may occur in this routine
2107 (since prompt_for_continue may do so) so this routine should not be
2108 called when cleanups are not in place. */
2109
2110 static void
2111 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2112 va_list args, int filter)
2113 {
2114 char *linebuffer;
2115 struct cleanup *old_cleanups;
2116
2117 linebuffer = xstrvprintf (format, args);
2118 old_cleanups = make_cleanup (xfree, linebuffer);
2119 fputs_maybe_filtered (linebuffer, stream, filter);
2120 do_cleanups (old_cleanups);
2121 }
2122
2123
2124 void
2125 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2126 {
2127 vfprintf_maybe_filtered (stream, format, args, 1);
2128 }
2129
2130 void
2131 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2132 {
2133 char *linebuffer;
2134 struct cleanup *old_cleanups;
2135
2136 linebuffer = xstrvprintf (format, args);
2137 old_cleanups = make_cleanup (xfree, linebuffer);
2138 fputs_unfiltered (linebuffer, stream);
2139 do_cleanups (old_cleanups);
2140 }
2141
2142 void
2143 vprintf_filtered (const char *format, va_list args)
2144 {
2145 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2146 }
2147
2148 void
2149 vprintf_unfiltered (const char *format, va_list args)
2150 {
2151 vfprintf_unfiltered (gdb_stdout, format, args);
2152 }
2153
2154 void
2155 fprintf_filtered (struct ui_file *stream, const char *format, ...)
2156 {
2157 va_list args;
2158 va_start (args, format);
2159 vfprintf_filtered (stream, format, args);
2160 va_end (args);
2161 }
2162
2163 void
2164 fprintf_unfiltered (struct ui_file *stream, const char *format, ...)
2165 {
2166 va_list args;
2167 va_start (args, format);
2168 vfprintf_unfiltered (stream, format, args);
2169 va_end (args);
2170 }
2171
2172 /* Like fprintf_filtered, but prints its result indented.
2173 Called as fprintfi_filtered (spaces, stream, format, ...); */
2174
2175 void
2176 fprintfi_filtered (int spaces, struct ui_file *stream, const char *format,
2177 ...)
2178 {
2179 va_list args;
2180 va_start (args, format);
2181 print_spaces_filtered (spaces, stream);
2182
2183 vfprintf_filtered (stream, format, args);
2184 va_end (args);
2185 }
2186
2187
2188 void
2189 printf_filtered (const char *format, ...)
2190 {
2191 va_list args;
2192 va_start (args, format);
2193 vfprintf_filtered (gdb_stdout, format, args);
2194 va_end (args);
2195 }
2196
2197
2198 void
2199 printf_unfiltered (const char *format, ...)
2200 {
2201 va_list args;
2202 va_start (args, format);
2203 vfprintf_unfiltered (gdb_stdout, format, args);
2204 va_end (args);
2205 }
2206
2207 /* Like printf_filtered, but prints it's result indented.
2208 Called as printfi_filtered (spaces, format, ...); */
2209
2210 void
2211 printfi_filtered (int spaces, const char *format, ...)
2212 {
2213 va_list args;
2214 va_start (args, format);
2215 print_spaces_filtered (spaces, gdb_stdout);
2216 vfprintf_filtered (gdb_stdout, format, args);
2217 va_end (args);
2218 }
2219
2220 /* Easy -- but watch out!
2221
2222 This routine is *not* a replacement for puts()! puts() appends a newline.
2223 This one doesn't, and had better not! */
2224
2225 void
2226 puts_filtered (const char *string)
2227 {
2228 fputs_filtered (string, gdb_stdout);
2229 }
2230
2231 void
2232 puts_unfiltered (const char *string)
2233 {
2234 fputs_unfiltered (string, gdb_stdout);
2235 }
2236
2237 /* Return a pointer to N spaces and a null. The pointer is good
2238 until the next call to here. */
2239 char *
2240 n_spaces (int n)
2241 {
2242 char *t;
2243 static char *spaces = 0;
2244 static int max_spaces = -1;
2245
2246 if (n > max_spaces)
2247 {
2248 if (spaces)
2249 xfree (spaces);
2250 spaces = (char *) xmalloc (n + 1);
2251 for (t = spaces + n; t != spaces;)
2252 *--t = ' ';
2253 spaces[n] = '\0';
2254 max_spaces = n;
2255 }
2256
2257 return spaces + max_spaces - n;
2258 }
2259
2260 /* Print N spaces. */
2261 void
2262 print_spaces_filtered (int n, struct ui_file *stream)
2263 {
2264 fputs_filtered (n_spaces (n), stream);
2265 }
2266 \f
2267 /* C++/ObjC demangler stuff. */
2268
2269 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2270 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2271 If the name is not mangled, or the language for the name is unknown, or
2272 demangling is off, the name is printed in its "raw" form. */
2273
2274 void
2275 fprintf_symbol_filtered (struct ui_file *stream, char *name,
2276 enum language lang, int arg_mode)
2277 {
2278 char *demangled;
2279
2280 if (name != NULL)
2281 {
2282 /* If user wants to see raw output, no problem. */
2283 if (!demangle)
2284 {
2285 fputs_filtered (name, stream);
2286 }
2287 else
2288 {
2289 demangled = language_demangle (language_def (lang), name, arg_mode);
2290 fputs_filtered (demangled ? demangled : name, stream);
2291 if (demangled != NULL)
2292 {
2293 xfree (demangled);
2294 }
2295 }
2296 }
2297 }
2298
2299 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2300 differences in whitespace. Returns 0 if they match, non-zero if they
2301 don't (slightly different than strcmp()'s range of return values).
2302
2303 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2304 This "feature" is useful when searching for matching C++ function names
2305 (such as if the user types 'break FOO', where FOO is a mangled C++
2306 function). */
2307
2308 int
2309 strcmp_iw (const char *string1, const char *string2)
2310 {
2311 while ((*string1 != '\0') && (*string2 != '\0'))
2312 {
2313 while (isspace (*string1))
2314 {
2315 string1++;
2316 }
2317 while (isspace (*string2))
2318 {
2319 string2++;
2320 }
2321 if (*string1 != *string2)
2322 {
2323 break;
2324 }
2325 if (*string1 != '\0')
2326 {
2327 string1++;
2328 string2++;
2329 }
2330 }
2331 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2332 }
2333
2334 /* This is like strcmp except that it ignores whitespace and treats
2335 '(' as the first non-NULL character in terms of ordering. Like
2336 strcmp (and unlike strcmp_iw), it returns negative if STRING1 <
2337 STRING2, 0 if STRING2 = STRING2, and positive if STRING1 > STRING2
2338 according to that ordering.
2339
2340 If a list is sorted according to this function and if you want to
2341 find names in the list that match some fixed NAME according to
2342 strcmp_iw(LIST_ELT, NAME), then the place to start looking is right
2343 where this function would put NAME.
2344
2345 Here are some examples of why using strcmp to sort is a bad idea:
2346
2347 Whitespace example:
2348
2349 Say your partial symtab contains: "foo<char *>", "goo". Then, if
2350 we try to do a search for "foo<char*>", strcmp will locate this
2351 after "foo<char *>" and before "goo". Then lookup_partial_symbol
2352 will start looking at strings beginning with "goo", and will never
2353 see the correct match of "foo<char *>".
2354
2355 Parenthesis example:
2356
2357 In practice, this is less like to be an issue, but I'll give it a
2358 shot. Let's assume that '$' is a legitimate character to occur in
2359 symbols. (Which may well even be the case on some systems.) Then
2360 say that the partial symbol table contains "foo$" and "foo(int)".
2361 strcmp will put them in this order, since '$' < '('. Now, if the
2362 user searches for "foo", then strcmp will sort "foo" before "foo$".
2363 Then lookup_partial_symbol will notice that strcmp_iw("foo$",
2364 "foo") is false, so it won't proceed to the actual match of
2365 "foo(int)" with "foo". */
2366
2367 int
2368 strcmp_iw_ordered (const char *string1, const char *string2)
2369 {
2370 while ((*string1 != '\0') && (*string2 != '\0'))
2371 {
2372 while (isspace (*string1))
2373 {
2374 string1++;
2375 }
2376 while (isspace (*string2))
2377 {
2378 string2++;
2379 }
2380 if (*string1 != *string2)
2381 {
2382 break;
2383 }
2384 if (*string1 != '\0')
2385 {
2386 string1++;
2387 string2++;
2388 }
2389 }
2390
2391 switch (*string1)
2392 {
2393 /* Characters are non-equal unless they're both '\0'; we want to
2394 make sure we get the comparison right according to our
2395 comparison in the cases where one of them is '\0' or '('. */
2396 case '\0':
2397 if (*string2 == '\0')
2398 return 0;
2399 else
2400 return -1;
2401 case '(':
2402 if (*string2 == '\0')
2403 return 1;
2404 else
2405 return -1;
2406 default:
2407 if (*string2 == '(')
2408 return 1;
2409 else
2410 return *string1 - *string2;
2411 }
2412 }
2413
2414 /* A simple comparison function with opposite semantics to strcmp. */
2415
2416 int
2417 streq (const char *lhs, const char *rhs)
2418 {
2419 return !strcmp (lhs, rhs);
2420 }
2421 \f
2422
2423 /*
2424 ** subset_compare()
2425 ** Answer whether string_to_compare is a full or partial match to
2426 ** template_string. The partial match must be in sequence starting
2427 ** at index 0.
2428 */
2429 int
2430 subset_compare (char *string_to_compare, char *template_string)
2431 {
2432 int match;
2433 if (template_string != (char *) NULL && string_to_compare != (char *) NULL
2434 && strlen (string_to_compare) <= strlen (template_string))
2435 match =
2436 (strncmp
2437 (template_string, string_to_compare, strlen (string_to_compare)) == 0);
2438 else
2439 match = 0;
2440 return match;
2441 }
2442
2443 static void
2444 pagination_on_command (char *arg, int from_tty)
2445 {
2446 pagination_enabled = 1;
2447 }
2448
2449 static void
2450 pagination_off_command (char *arg, int from_tty)
2451 {
2452 pagination_enabled = 0;
2453 }
2454 \f
2455
2456 void
2457 initialize_utils (void)
2458 {
2459 struct cmd_list_element *c;
2460
2461 add_setshow_uinteger_cmd ("width", class_support, &chars_per_line, _("\
2462 Set number of characters gdb thinks are in a line."), _("\
2463 Show number of characters gdb thinks are in a line."), NULL,
2464 set_width_command,
2465 show_chars_per_line,
2466 &setlist, &showlist);
2467
2468 add_setshow_uinteger_cmd ("height", class_support, &lines_per_page, _("\
2469 Set number of lines gdb thinks are in a page."), _("\
2470 Show number of lines gdb thinks are in a page."), NULL,
2471 set_height_command,
2472 show_lines_per_page,
2473 &setlist, &showlist);
2474
2475 init_page_info ();
2476
2477 add_setshow_boolean_cmd ("demangle", class_support, &demangle, _("\
2478 Set demangling of encoded C++/ObjC names when displaying symbols."), _("\
2479 Show demangling of encoded C++/ObjC names when displaying symbols."), NULL,
2480 NULL,
2481 show_demangle,
2482 &setprintlist, &showprintlist);
2483
2484 add_setshow_boolean_cmd ("pagination", class_support,
2485 &pagination_enabled, _("\
2486 Set state of pagination."), _("\
2487 Show state of pagination."), NULL,
2488 NULL,
2489 show_pagination_enabled,
2490 &setlist, &showlist);
2491
2492 if (xdb_commands)
2493 {
2494 add_com ("am", class_support, pagination_on_command,
2495 _("Enable pagination"));
2496 add_com ("sm", class_support, pagination_off_command,
2497 _("Disable pagination"));
2498 }
2499
2500 add_setshow_boolean_cmd ("sevenbit-strings", class_support,
2501 &sevenbit_strings, _("\
2502 Set printing of 8-bit characters in strings as \\nnn."), _("\
2503 Show printing of 8-bit characters in strings as \\nnn."), NULL,
2504 NULL,
2505 show_sevenbit_strings,
2506 &setprintlist, &showprintlist);
2507
2508 add_setshow_boolean_cmd ("asm-demangle", class_support, &asm_demangle, _("\
2509 Set demangling of C++/ObjC names in disassembly listings."), _("\
2510 Show demangling of C++/ObjC names in disassembly listings."), NULL,
2511 NULL,
2512 show_asm_demangle,
2513 &setprintlist, &showprintlist);
2514 }
2515
2516 /* Machine specific function to handle SIGWINCH signal. */
2517
2518 #ifdef SIGWINCH_HANDLER_BODY
2519 SIGWINCH_HANDLER_BODY
2520 #endif
2521 /* print routines to handle variable size regs, etc. */
2522 /* temporary storage using circular buffer */
2523 #define NUMCELLS 16
2524 #define CELLSIZE 50
2525 static char *
2526 get_cell (void)
2527 {
2528 static char buf[NUMCELLS][CELLSIZE];
2529 static int cell = 0;
2530 if (++cell >= NUMCELLS)
2531 cell = 0;
2532 return buf[cell];
2533 }
2534
2535 int
2536 strlen_paddr (void)
2537 {
2538 return (TARGET_ADDR_BIT / 8 * 2);
2539 }
2540
2541 char *
2542 paddr (CORE_ADDR addr)
2543 {
2544 return phex (addr, TARGET_ADDR_BIT / 8);
2545 }
2546
2547 char *
2548 paddr_nz (CORE_ADDR addr)
2549 {
2550 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2551 }
2552
2553 const char *
2554 paddress (CORE_ADDR addr)
2555 {
2556 /* Truncate address to the size of a target address, avoiding shifts
2557 larger or equal than the width of a CORE_ADDR. The local
2558 variable ADDR_BIT stops the compiler reporting a shift overflow
2559 when it won't occur. */
2560 /* NOTE: This assumes that the significant address information is
2561 kept in the least significant bits of ADDR - the upper bits were
2562 either zero or sign extended. Should gdbarch_address_to_pointer or
2563 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
2564
2565 int addr_bit = TARGET_ADDR_BIT;
2566
2567 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2568 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
2569 return hex_string (addr);
2570 }
2571
2572 static char *
2573 decimal2str (char *sign, ULONGEST addr, int width)
2574 {
2575 /* Steal code from valprint.c:print_decimal(). Should this worry
2576 about the real size of addr as the above does? */
2577 unsigned long temp[3];
2578 char *str = get_cell ();
2579
2580 int i = 0;
2581 do
2582 {
2583 temp[i] = addr % (1000 * 1000 * 1000);
2584 addr /= (1000 * 1000 * 1000);
2585 i++;
2586 width -= 9;
2587 }
2588 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2589
2590 width += 9;
2591 if (width < 0)
2592 width = 0;
2593
2594 switch (i)
2595 {
2596 case 1:
2597 xsnprintf (str, CELLSIZE, "%s%0*lu", sign, width, temp[0]);
2598 break;
2599 case 2:
2600 xsnprintf (str, CELLSIZE, "%s%0*lu%09lu", sign, width,
2601 temp[1], temp[0]);
2602 break;
2603 case 3:
2604 xsnprintf (str, CELLSIZE, "%s%0*lu%09lu%09lu", sign, width,
2605 temp[2], temp[1], temp[0]);
2606 break;
2607 default:
2608 internal_error (__FILE__, __LINE__,
2609 _("failed internal consistency check"));
2610 }
2611
2612 return str;
2613 }
2614
2615 static char *
2616 octal2str (ULONGEST addr, int width)
2617 {
2618 unsigned long temp[3];
2619 char *str = get_cell ();
2620
2621 int i = 0;
2622 do
2623 {
2624 temp[i] = addr % (0100000 * 0100000);
2625 addr /= (0100000 * 0100000);
2626 i++;
2627 width -= 10;
2628 }
2629 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2630
2631 width += 10;
2632 if (width < 0)
2633 width = 0;
2634
2635 switch (i)
2636 {
2637 case 1:
2638 if (temp[0] == 0)
2639 xsnprintf (str, CELLSIZE, "%*o", width, 0);
2640 else
2641 xsnprintf (str, CELLSIZE, "0%0*lo", width, temp[0]);
2642 break;
2643 case 2:
2644 xsnprintf (str, CELLSIZE, "0%0*lo%010lo", width, temp[1], temp[0]);
2645 break;
2646 case 3:
2647 xsnprintf (str, CELLSIZE, "0%0*lo%010lo%010lo", width,
2648 temp[2], temp[1], temp[0]);
2649 break;
2650 default:
2651 internal_error (__FILE__, __LINE__,
2652 _("failed internal consistency check"));
2653 }
2654
2655 return str;
2656 }
2657
2658 char *
2659 paddr_u (CORE_ADDR addr)
2660 {
2661 return decimal2str ("", addr, 0);
2662 }
2663
2664 char *
2665 paddr_d (LONGEST addr)
2666 {
2667 if (addr < 0)
2668 return decimal2str ("-", -addr, 0);
2669 else
2670 return decimal2str ("", addr, 0);
2671 }
2672
2673 /* Eliminate warning from compiler on 32-bit systems. */
2674 static int thirty_two = 32;
2675
2676 char *
2677 phex (ULONGEST l, int sizeof_l)
2678 {
2679 char *str;
2680
2681 switch (sizeof_l)
2682 {
2683 case 8:
2684 str = get_cell ();
2685 xsnprintf (str, CELLSIZE, "%08lx%08lx",
2686 (unsigned long) (l >> thirty_two),
2687 (unsigned long) (l & 0xffffffff));
2688 break;
2689 case 4:
2690 str = get_cell ();
2691 xsnprintf (str, CELLSIZE, "%08lx", (unsigned long) l);
2692 break;
2693 case 2:
2694 str = get_cell ();
2695 xsnprintf (str, CELLSIZE, "%04x", (unsigned short) (l & 0xffff));
2696 break;
2697 default:
2698 str = phex (l, sizeof (l));
2699 break;
2700 }
2701
2702 return str;
2703 }
2704
2705 char *
2706 phex_nz (ULONGEST l, int sizeof_l)
2707 {
2708 char *str;
2709
2710 switch (sizeof_l)
2711 {
2712 case 8:
2713 {
2714 unsigned long high = (unsigned long) (l >> thirty_two);
2715 str = get_cell ();
2716 if (high == 0)
2717 xsnprintf (str, CELLSIZE, "%lx",
2718 (unsigned long) (l & 0xffffffff));
2719 else
2720 xsnprintf (str, CELLSIZE, "%lx%08lx", high,
2721 (unsigned long) (l & 0xffffffff));
2722 break;
2723 }
2724 case 4:
2725 str = get_cell ();
2726 xsnprintf (str, CELLSIZE, "%lx", (unsigned long) l);
2727 break;
2728 case 2:
2729 str = get_cell ();
2730 xsnprintf (str, CELLSIZE, "%x", (unsigned short) (l & 0xffff));
2731 break;
2732 default:
2733 str = phex_nz (l, sizeof (l));
2734 break;
2735 }
2736
2737 return str;
2738 }
2739
2740 /* Converts a LONGEST to a C-format hexadecimal literal and stores it
2741 in a static string. Returns a pointer to this string. */
2742 char *
2743 hex_string (LONGEST num)
2744 {
2745 char *result = get_cell ();
2746 xsnprintf (result, CELLSIZE, "0x%s", phex_nz (num, sizeof (num)));
2747 return result;
2748 }
2749
2750 /* Converts a LONGEST number to a C-format hexadecimal literal and
2751 stores it in a static string. Returns a pointer to this string
2752 that is valid until the next call. The number is padded on the
2753 left with 0s to at least WIDTH characters. */
2754 char *
2755 hex_string_custom (LONGEST num, int width)
2756 {
2757 char *result = get_cell ();
2758 char *result_end = result + CELLSIZE - 1;
2759 const char *hex = phex_nz (num, sizeof (num));
2760 int hex_len = strlen (hex);
2761
2762 if (hex_len > width)
2763 width = hex_len;
2764 if (width + 2 >= CELLSIZE)
2765 internal_error (__FILE__, __LINE__,
2766 _("hex_string_custom: insufficient space to store result"));
2767
2768 strcpy (result_end - width - 2, "0x");
2769 memset (result_end - width, '0', width);
2770 strcpy (result_end - hex_len, hex);
2771 return result_end - width - 2;
2772 }
2773
2774 /* Convert VAL to a numeral in the given radix. For
2775 * radix 10, IS_SIGNED may be true, indicating a signed quantity;
2776 * otherwise VAL is interpreted as unsigned. If WIDTH is supplied,
2777 * it is the minimum width (0-padded if needed). USE_C_FORMAT means
2778 * to use C format in all cases. If it is false, then 'x'
2779 * and 'o' formats do not include a prefix (0x or leading 0). */
2780
2781 char *
2782 int_string (LONGEST val, int radix, int is_signed, int width,
2783 int use_c_format)
2784 {
2785 switch (radix)
2786 {
2787 case 16:
2788 {
2789 char *result;
2790 if (width == 0)
2791 result = hex_string (val);
2792 else
2793 result = hex_string_custom (val, width);
2794 if (! use_c_format)
2795 result += 2;
2796 return result;
2797 }
2798 case 10:
2799 {
2800 if (is_signed && val < 0)
2801 return decimal2str ("-", -val, width);
2802 else
2803 return decimal2str ("", val, width);
2804 }
2805 case 8:
2806 {
2807 char *result = octal2str (val, width);
2808 if (use_c_format || val == 0)
2809 return result;
2810 else
2811 return result + 1;
2812 }
2813 default:
2814 internal_error (__FILE__, __LINE__,
2815 _("failed internal consistency check"));
2816 }
2817 }
2818
2819 /* Convert a CORE_ADDR into a string. */
2820 const char *
2821 core_addr_to_string (const CORE_ADDR addr)
2822 {
2823 char *str = get_cell ();
2824 strcpy (str, "0x");
2825 strcat (str, phex (addr, sizeof (addr)));
2826 return str;
2827 }
2828
2829 const char *
2830 core_addr_to_string_nz (const CORE_ADDR addr)
2831 {
2832 char *str = get_cell ();
2833 strcpy (str, "0x");
2834 strcat (str, phex_nz (addr, sizeof (addr)));
2835 return str;
2836 }
2837
2838 /* Convert a string back into a CORE_ADDR. */
2839 CORE_ADDR
2840 string_to_core_addr (const char *my_string)
2841 {
2842 CORE_ADDR addr = 0;
2843 if (my_string[0] == '0' && tolower (my_string[1]) == 'x')
2844 {
2845 /* Assume that it is in hex. */
2846 int i;
2847 for (i = 2; my_string[i] != '\0'; i++)
2848 {
2849 if (isdigit (my_string[i]))
2850 addr = (my_string[i] - '0') + (addr * 16);
2851 else if (isxdigit (my_string[i]))
2852 addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16);
2853 else
2854 error (_("invalid hex \"%s\""), my_string);
2855 }
2856 }
2857 else
2858 {
2859 /* Assume that it is in decimal. */
2860 int i;
2861 for (i = 0; my_string[i] != '\0'; i++)
2862 {
2863 if (isdigit (my_string[i]))
2864 addr = (my_string[i] - '0') + (addr * 10);
2865 else
2866 error (_("invalid decimal \"%s\""), my_string);
2867 }
2868 }
2869 return addr;
2870 }
2871
2872 char *
2873 gdb_realpath (const char *filename)
2874 {
2875 /* Method 1: The system has a compile time upper bound on a filename
2876 path. Use that and realpath() to canonicalize the name. This is
2877 the most common case. Note that, if there isn't a compile time
2878 upper bound, you want to avoid realpath() at all costs. */
2879 #if defined(HAVE_REALPATH)
2880 {
2881 # if defined (PATH_MAX)
2882 char buf[PATH_MAX];
2883 # define USE_REALPATH
2884 # elif defined (MAXPATHLEN)
2885 char buf[MAXPATHLEN];
2886 # define USE_REALPATH
2887 # endif
2888 # if defined (USE_REALPATH)
2889 const char *rp = realpath (filename, buf);
2890 if (rp == NULL)
2891 rp = filename;
2892 return xstrdup (rp);
2893 # endif
2894 }
2895 #endif /* HAVE_REALPATH */
2896
2897 /* Method 2: The host system (i.e., GNU) has the function
2898 canonicalize_file_name() which malloc's a chunk of memory and
2899 returns that, use that. */
2900 #if defined(HAVE_CANONICALIZE_FILE_NAME)
2901 {
2902 char *rp = canonicalize_file_name (filename);
2903 if (rp == NULL)
2904 return xstrdup (filename);
2905 else
2906 return rp;
2907 }
2908 #endif
2909
2910 /* FIXME: cagney/2002-11-13:
2911
2912 Method 2a: Use realpath() with a NULL buffer. Some systems, due
2913 to the problems described in in method 3, have modified their
2914 realpath() implementation so that it will allocate a buffer when
2915 NULL is passed in. Before this can be used, though, some sort of
2916 configure time test would need to be added. Otherwize the code
2917 will likely core dump. */
2918
2919 /* Method 3: Now we're getting desperate! The system doesn't have a
2920 compile time buffer size and no alternative function. Query the
2921 OS, using pathconf(), for the buffer limit. Care is needed
2922 though, some systems do not limit PATH_MAX (return -1 for
2923 pathconf()) making it impossible to pass a correctly sized buffer
2924 to realpath() (it could always overflow). On those systems, we
2925 skip this. */
2926 #if defined (HAVE_REALPATH) && defined (HAVE_UNISTD_H) && defined(HAVE_ALLOCA)
2927 {
2928 /* Find out the max path size. */
2929 long path_max = pathconf ("/", _PC_PATH_MAX);
2930 if (path_max > 0)
2931 {
2932 /* PATH_MAX is bounded. */
2933 char *buf = alloca (path_max);
2934 char *rp = realpath (filename, buf);
2935 return xstrdup (rp ? rp : filename);
2936 }
2937 }
2938 #endif
2939
2940 /* This system is a lost cause, just dup the buffer. */
2941 return xstrdup (filename);
2942 }
2943
2944 /* Return a copy of FILENAME, with its directory prefix canonicalized
2945 by gdb_realpath. */
2946
2947 char *
2948 xfullpath (const char *filename)
2949 {
2950 const char *base_name = lbasename (filename);
2951 char *dir_name;
2952 char *real_path;
2953 char *result;
2954
2955 /* Extract the basename of filename, and return immediately
2956 a copy of filename if it does not contain any directory prefix. */
2957 if (base_name == filename)
2958 return xstrdup (filename);
2959
2960 dir_name = alloca ((size_t) (base_name - filename + 2));
2961 /* Allocate enough space to store the dir_name + plus one extra
2962 character sometimes needed under Windows (see below), and
2963 then the closing \000 character */
2964 strncpy (dir_name, filename, base_name - filename);
2965 dir_name[base_name - filename] = '\000';
2966
2967 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
2968 /* We need to be careful when filename is of the form 'd:foo', which
2969 is equivalent of d:./foo, which is totally different from d:/foo. */
2970 if (strlen (dir_name) == 2 && isalpha (dir_name[0]) && dir_name[1] == ':')
2971 {
2972 dir_name[2] = '.';
2973 dir_name[3] = '\000';
2974 }
2975 #endif
2976
2977 /* Canonicalize the directory prefix, and build the resulting
2978 filename. If the dirname realpath already contains an ending
2979 directory separator, avoid doubling it. */
2980 real_path = gdb_realpath (dir_name);
2981 if (IS_DIR_SEPARATOR (real_path[strlen (real_path) - 1]))
2982 result = concat (real_path, base_name, (char *)NULL);
2983 else
2984 result = concat (real_path, SLASH_STRING, base_name, (char *)NULL);
2985
2986 xfree (real_path);
2987 return result;
2988 }
2989
2990
2991 /* This is the 32-bit CRC function used by the GNU separate debug
2992 facility. An executable may contain a section named
2993 .gnu_debuglink, which holds the name of a separate executable file
2994 containing its debug info, and a checksum of that file's contents,
2995 computed using this function. */
2996 unsigned long
2997 gnu_debuglink_crc32 (unsigned long crc, unsigned char *buf, size_t len)
2998 {
2999 static const unsigned long crc32_table[256] = {
3000 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
3001 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
3002 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
3003 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
3004 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
3005 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
3006 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
3007 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
3008 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
3009 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
3010 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
3011 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
3012 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
3013 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
3014 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
3015 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
3016 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
3017 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
3018 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
3019 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
3020 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
3021 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
3022 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
3023 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
3024 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
3025 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
3026 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
3027 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
3028 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
3029 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
3030 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
3031 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
3032 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
3033 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
3034 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
3035 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
3036 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
3037 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
3038 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
3039 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
3040 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
3041 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
3042 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
3043 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
3044 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
3045 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
3046 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
3047 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
3048 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
3049 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
3050 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
3051 0x2d02ef8d
3052 };
3053 unsigned char *end;
3054
3055 crc = ~crc & 0xffffffff;
3056 for (end = buf + len; buf < end; ++buf)
3057 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
3058 return ~crc & 0xffffffff;;
3059 }
3060
3061 ULONGEST
3062 align_up (ULONGEST v, int n)
3063 {
3064 /* Check that N is really a power of two. */
3065 gdb_assert (n && (n & (n-1)) == 0);
3066 return (v + n - 1) & -n;
3067 }
3068
3069 ULONGEST
3070 align_down (ULONGEST v, int n)
3071 {
3072 /* Check that N is really a power of two. */
3073 gdb_assert (n && (n & (n-1)) == 0);
3074 return (v & -n);
3075 }
3076
3077 /* Allocation function for the libiberty hash table which uses an
3078 obstack. The obstack is passed as DATA. */
3079
3080 void *
3081 hashtab_obstack_allocate (void *data, size_t size, size_t count)
3082 {
3083 unsigned int total = size * count;
3084 void *ptr = obstack_alloc ((struct obstack *) data, total);
3085 memset (ptr, 0, total);
3086 return ptr;
3087 }
3088
3089 /* Trivial deallocation function for the libiberty splay tree and hash
3090 table - don't deallocate anything. Rely on later deletion of the
3091 obstack. DATA will be the obstack, although it is not needed
3092 here. */
3093
3094 void
3095 dummy_obstack_deallocate (void *object, void *data)
3096 {
3097 return;
3098 }
3099
3100 /* The bit offset of the highest byte in a ULONGEST, for overflow
3101 checking. */
3102
3103 #define HIGH_BYTE_POSN ((sizeof (ULONGEST) - 1) * HOST_CHAR_BIT)
3104
3105 /* True (non-zero) iff DIGIT is a valid digit in radix BASE,
3106 where 2 <= BASE <= 36. */
3107
3108 static int
3109 is_digit_in_base (unsigned char digit, int base)
3110 {
3111 if (!isalnum (digit))
3112 return 0;
3113 if (base <= 10)
3114 return (isdigit (digit) && digit < base + '0');
3115 else
3116 return (isdigit (digit) || tolower (digit) < base - 10 + 'a');
3117 }
3118
3119 static int
3120 digit_to_int (unsigned char c)
3121 {
3122 if (isdigit (c))
3123 return c - '0';
3124 else
3125 return tolower (c) - 'a' + 10;
3126 }
3127
3128 /* As for strtoul, but for ULONGEST results. */
3129
3130 ULONGEST
3131 strtoulst (const char *num, const char **trailer, int base)
3132 {
3133 unsigned int high_part;
3134 ULONGEST result;
3135 int minus = 0;
3136 int i = 0;
3137
3138 /* Skip leading whitespace. */
3139 while (isspace (num[i]))
3140 i++;
3141
3142 /* Handle prefixes. */
3143 if (num[i] == '+')
3144 i++;
3145 else if (num[i] == '-')
3146 {
3147 minus = 1;
3148 i++;
3149 }
3150
3151 if (base == 0 || base == 16)
3152 {
3153 if (num[i] == '0' && (num[i + 1] == 'x' || num[i + 1] == 'X'))
3154 {
3155 i += 2;
3156 if (base == 0)
3157 base = 16;
3158 }
3159 }
3160
3161 if (base == 0 && num[i] == '0')
3162 base = 8;
3163
3164 if (base == 0)
3165 base = 10;
3166
3167 if (base < 2 || base > 36)
3168 {
3169 errno = EINVAL;
3170 return 0;
3171 }
3172
3173 result = high_part = 0;
3174 for (; is_digit_in_base (num[i], base); i += 1)
3175 {
3176 result = result * base + digit_to_int (num[i]);
3177 high_part = high_part * base + (unsigned int) (result >> HIGH_BYTE_POSN);
3178 result &= ((ULONGEST) 1 << HIGH_BYTE_POSN) - 1;
3179 if (high_part > 0xff)
3180 {
3181 errno = ERANGE;
3182 result = ~ (ULONGEST) 0;
3183 high_part = 0;
3184 minus = 0;
3185 break;
3186 }
3187 }
3188
3189 if (trailer != NULL)
3190 *trailer = &num[i];
3191
3192 result = result + ((ULONGEST) high_part << HIGH_BYTE_POSN);
3193 if (minus)
3194 return -result;
3195 else
3196 return result;
3197 }
3198
3199 /* Simple, portable version of dirname that does not modify its
3200 argument. */
3201
3202 char *
3203 ldirname (const char *filename)
3204 {
3205 const char *base = lbasename (filename);
3206 char *dirname;
3207
3208 while (base > filename && IS_DIR_SEPARATOR (base[-1]))
3209 --base;
3210
3211 if (base == filename)
3212 return NULL;
3213
3214 dirname = xmalloc (base - filename + 2);
3215 memcpy (dirname, filename, base - filename);
3216
3217 /* On DOS based file systems, convert "d:foo" to "d:.", so that we
3218 create "d:./bar" later instead of the (different) "d:/bar". */
3219 if (base - filename == 2 && IS_ABSOLUTE_PATH (base)
3220 && !IS_DIR_SEPARATOR (filename[0]))
3221 dirname[base++ - filename] = '.';
3222
3223 dirname[base - filename] = '\0';
3224 return dirname;
3225 }
This page took 0.144777 seconds and 3 git commands to generate.