* vms-tir.c: Add missing prototypes.
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_assert.h"
25 #include <ctype.h>
26 #include "gdb_string.h"
27 #include "event-top.h"
28
29 #ifdef HAVE_CURSES_H
30 #include <curses.h>
31 #endif
32 #ifdef HAVE_TERM_H
33 #include <term.h>
34 #endif
35
36 #ifdef __GO32__
37 #include <pc.h>
38 #endif
39
40 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41 #ifdef reg
42 #undef reg
43 #endif
44
45 #include <signal.h>
46 #include "gdbcmd.h"
47 #include "serial.h"
48 #include "bfd.h"
49 #include "target.h"
50 #include "demangle.h"
51 #include "expression.h"
52 #include "language.h"
53 #include "annotate.h"
54
55 #include "inferior.h" /* for signed_pointer_to_address */
56
57 #include <readline/readline.h>
58
59 #ifndef MALLOC_INCOMPATIBLE
60 #ifdef NEED_DECLARATION_MALLOC
61 extern PTR malloc ();
62 #endif
63 #ifdef NEED_DECLARATION_REALLOC
64 extern PTR realloc ();
65 #endif
66 #ifdef NEED_DECLARATION_FREE
67 extern void free ();
68 #endif
69 #endif
70
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74 /* readline defines this. */
75 #undef savestring
76
77 void (*error_begin_hook) (void);
78
79 /* Holds the last error message issued by gdb */
80
81 static struct ui_file *gdb_lasterr;
82
83 /* Prototypes for local functions */
84
85 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
86 va_list, int);
87
88 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
89
90 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
91 static void malloc_botch (void);
92 #endif
93
94 static void prompt_for_continue (void);
95
96 static void set_width_command (char *, int, struct cmd_list_element *);
97
98 static void set_width (void);
99
100 /* Chain of cleanup actions established with make_cleanup,
101 to be executed if an error happens. */
102
103 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
104 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
105 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
106 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
107 /* cleaned up on each error from within an execution command */
108 static struct cleanup *exec_error_cleanup_chain;
109
110 /* Pointer to what is left to do for an execution command after the
111 target stops. Used only in asynchronous mode, by targets that
112 support async execution. The finish and until commands use it. So
113 does the target extended-remote command. */
114 struct continuation *cmd_continuation;
115 struct continuation *intermediate_continuation;
116
117 /* Nonzero if we have job control. */
118
119 int job_control;
120
121 /* Nonzero means a quit has been requested. */
122
123 int quit_flag;
124
125 /* Nonzero means quit immediately if Control-C is typed now, rather
126 than waiting until QUIT is executed. Be careful in setting this;
127 code which executes with immediate_quit set has to be very careful
128 about being able to deal with being interrupted at any time. It is
129 almost always better to use QUIT; the only exception I can think of
130 is being able to quit out of a system call (using EINTR loses if
131 the SIGINT happens between the previous QUIT and the system call).
132 To immediately quit in the case in which a SIGINT happens between
133 the previous QUIT and setting immediate_quit (desirable anytime we
134 expect to block), call QUIT after setting immediate_quit. */
135
136 int immediate_quit;
137
138 /* Nonzero means that encoded C++ names should be printed out in their
139 C++ form rather than raw. */
140
141 int demangle = 1;
142
143 /* Nonzero means that encoded C++ names should be printed out in their
144 C++ form even in assembler language displays. If this is set, but
145 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
146
147 int asm_demangle = 0;
148
149 /* Nonzero means that strings with character values >0x7F should be printed
150 as octal escapes. Zero means just print the value (e.g. it's an
151 international character, and the terminal or window can cope.) */
152
153 int sevenbit_strings = 0;
154
155 /* String to be printed before error messages, if any. */
156
157 char *error_pre_print;
158
159 /* String to be printed before quit messages, if any. */
160
161 char *quit_pre_print;
162
163 /* String to be printed before warning messages, if any. */
164
165 char *warning_pre_print = "\nwarning: ";
166
167 int pagination_enabled = 1;
168 \f
169
170 /* Add a new cleanup to the cleanup_chain,
171 and return the previous chain pointer
172 to be passed later to do_cleanups or discard_cleanups.
173 Args are FUNCTION to clean up with, and ARG to pass to it. */
174
175 struct cleanup *
176 make_cleanup (make_cleanup_ftype *function, void *arg)
177 {
178 return make_my_cleanup (&cleanup_chain, function, arg);
179 }
180
181 struct cleanup *
182 make_final_cleanup (make_cleanup_ftype *function, void *arg)
183 {
184 return make_my_cleanup (&final_cleanup_chain, function, arg);
185 }
186
187 struct cleanup *
188 make_run_cleanup (make_cleanup_ftype *function, void *arg)
189 {
190 return make_my_cleanup (&run_cleanup_chain, function, arg);
191 }
192
193 struct cleanup *
194 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
195 {
196 return make_my_cleanup (&exec_cleanup_chain, function, arg);
197 }
198
199 struct cleanup *
200 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
201 {
202 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
203 }
204
205 static void
206 do_freeargv (void *arg)
207 {
208 freeargv ((char **) arg);
209 }
210
211 struct cleanup *
212 make_cleanup_freeargv (char **arg)
213 {
214 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
215 }
216
217 static void
218 do_bfd_close_cleanup (void *arg)
219 {
220 bfd_close (arg);
221 }
222
223 struct cleanup *
224 make_cleanup_bfd_close (bfd *abfd)
225 {
226 return make_cleanup (do_bfd_close_cleanup, abfd);
227 }
228
229 static void
230 do_close_cleanup (void *arg)
231 {
232 int *fd = arg;
233 close (*fd);
234 xfree (fd);
235 }
236
237 struct cleanup *
238 make_cleanup_close (int fd)
239 {
240 int *saved_fd = xmalloc (sizeof (fd));
241 *saved_fd = fd;
242 return make_cleanup (do_close_cleanup, saved_fd);
243 }
244
245 static void
246 do_ui_file_delete (void *arg)
247 {
248 ui_file_delete (arg);
249 }
250
251 struct cleanup *
252 make_cleanup_ui_file_delete (struct ui_file *arg)
253 {
254 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
255 }
256
257 struct cleanup *
258 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
259 void *arg)
260 {
261 register struct cleanup *new
262 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
263 register struct cleanup *old_chain = *pmy_chain;
264
265 new->next = *pmy_chain;
266 new->function = function;
267 new->arg = arg;
268 *pmy_chain = new;
269
270 return old_chain;
271 }
272
273 /* Discard cleanups and do the actions they describe
274 until we get back to the point OLD_CHAIN in the cleanup_chain. */
275
276 void
277 do_cleanups (register struct cleanup *old_chain)
278 {
279 do_my_cleanups (&cleanup_chain, old_chain);
280 }
281
282 void
283 do_final_cleanups (register struct cleanup *old_chain)
284 {
285 do_my_cleanups (&final_cleanup_chain, old_chain);
286 }
287
288 void
289 do_run_cleanups (register struct cleanup *old_chain)
290 {
291 do_my_cleanups (&run_cleanup_chain, old_chain);
292 }
293
294 void
295 do_exec_cleanups (register struct cleanup *old_chain)
296 {
297 do_my_cleanups (&exec_cleanup_chain, old_chain);
298 }
299
300 void
301 do_exec_error_cleanups (register struct cleanup *old_chain)
302 {
303 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
304 }
305
306 void
307 do_my_cleanups (register struct cleanup **pmy_chain,
308 register struct cleanup *old_chain)
309 {
310 register struct cleanup *ptr;
311 while ((ptr = *pmy_chain) != old_chain)
312 {
313 *pmy_chain = ptr->next; /* Do this first incase recursion */
314 (*ptr->function) (ptr->arg);
315 xfree (ptr);
316 }
317 }
318
319 /* Discard cleanups, not doing the actions they describe,
320 until we get back to the point OLD_CHAIN in the cleanup_chain. */
321
322 void
323 discard_cleanups (register struct cleanup *old_chain)
324 {
325 discard_my_cleanups (&cleanup_chain, old_chain);
326 }
327
328 void
329 discard_final_cleanups (register struct cleanup *old_chain)
330 {
331 discard_my_cleanups (&final_cleanup_chain, old_chain);
332 }
333
334 void
335 discard_exec_error_cleanups (register struct cleanup *old_chain)
336 {
337 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
338 }
339
340 void
341 discard_my_cleanups (register struct cleanup **pmy_chain,
342 register struct cleanup *old_chain)
343 {
344 register struct cleanup *ptr;
345 while ((ptr = *pmy_chain) != old_chain)
346 {
347 *pmy_chain = ptr->next;
348 xfree (ptr);
349 }
350 }
351
352 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
353 struct cleanup *
354 save_cleanups (void)
355 {
356 return save_my_cleanups (&cleanup_chain);
357 }
358
359 struct cleanup *
360 save_final_cleanups (void)
361 {
362 return save_my_cleanups (&final_cleanup_chain);
363 }
364
365 struct cleanup *
366 save_my_cleanups (struct cleanup **pmy_chain)
367 {
368 struct cleanup *old_chain = *pmy_chain;
369
370 *pmy_chain = 0;
371 return old_chain;
372 }
373
374 /* Restore the cleanup chain from a previously saved chain. */
375 void
376 restore_cleanups (struct cleanup *chain)
377 {
378 restore_my_cleanups (&cleanup_chain, chain);
379 }
380
381 void
382 restore_final_cleanups (struct cleanup *chain)
383 {
384 restore_my_cleanups (&final_cleanup_chain, chain);
385 }
386
387 void
388 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
389 {
390 *pmy_chain = chain;
391 }
392
393 /* This function is useful for cleanups.
394 Do
395
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
398
399 to arrange to free the object thus allocated. */
400
401 void
402 free_current_contents (void *ptr)
403 {
404 void **location = ptr;
405 if (location == NULL)
406 internal_error (__FILE__, __LINE__,
407 "free_current_contents: NULL pointer");
408 if (*location != NULL)
409 {
410 xfree (*location);
411 *location = NULL;
412 }
413 }
414
415 /* Provide a known function that does nothing, to use as a base for
416 for a possibly long chain of cleanups. This is useful where we
417 use the cleanup chain for handling normal cleanups as well as dealing
418 with cleanups that need to be done as a result of a call to error().
419 In such cases, we may not be certain where the first cleanup is, unless
420 we have a do-nothing one to always use as the base. */
421
422 /* ARGSUSED */
423 void
424 null_cleanup (void *arg)
425 {
426 }
427
428 /* Add a continuation to the continuation list, the global list
429 cmd_continuation. The new continuation will be added at the front.*/
430 void
431 add_continuation (void (*continuation_hook) (struct continuation_arg *),
432 struct continuation_arg *arg_list)
433 {
434 struct continuation *continuation_ptr;
435
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
441 }
442
443 /* Walk down the cmd_continuation list, and execute all the
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
451 void
452 do_all_continuations (void)
453 {
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
470 xfree (saved_continuation);
471 }
472 }
473
474 /* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476 void
477 discard_all_continuations (void)
478 {
479 struct continuation *continuation_ptr;
480
481 while (cmd_continuation)
482 {
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
485 xfree (continuation_ptr);
486 }
487 }
488
489 /* Add a continuation to the continuation list, the global list
490 intermediate_continuation. The new continuation will be added at the front.*/
491 void
492 add_intermediate_continuation (void (*continuation_hook)
493 (struct continuation_arg *),
494 struct continuation_arg *arg_list)
495 {
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503 }
504
505 /* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513 void
514 do_all_intermediate_continuations (void)
515 {
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
532 xfree (saved_continuation);
533 }
534 }
535
536 /* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538 void
539 discard_all_intermediate_continuations (void)
540 {
541 struct continuation *continuation_ptr;
542
543 while (intermediate_continuation)
544 {
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
547 xfree (continuation_ptr);
548 }
549 }
550
551 \f
552
553 /* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562 void
563 warning_begin (void)
564 {
565 target_terminal_ours ();
566 wrap_here (""); /* Force out any buffered output */
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570 }
571
572 /* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
578 void
579 warning (const char *string,...)
580 {
581 va_list args;
582 va_start (args, string);
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
592 }
593
594 /* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601 void
602 error_begin (void)
603 {
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
608 wrap_here (""); /* Force out any buffered output */
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615 }
616
617 /* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
621 NORETURN void
622 verror (const char *string, va_list args)
623 {
624 char *err_string;
625 struct cleanup *err_string_cleanup;
626 /* FIXME: cagney/1999-11-10: All error calls should come here.
627 Unfortunately some code uses the sequence: error_begin(); print
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
638 ui_file_rewind (gdb_lasterr);
639 vfprintf_filtered (gdb_lasterr, string, args);
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
642 err_string_cleanup = make_cleanup (xfree, err_string);
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
646 return_to_top_level (RETURN_ERROR);
647 }
648
649 NORETURN void
650 error (const char *string,...)
651 {
652 va_list args;
653 va_start (args, string);
654 verror (string, args);
655 va_end (args);
656 }
657
658 NORETURN void
659 error_stream (struct ui_file *stream)
660 {
661 long size;
662 char *msg = ui_file_xstrdup (stream, &size);
663 make_cleanup (xfree, msg);
664 error ("%s", msg);
665 }
666
667 /* Get the last error message issued by gdb */
668
669 char *
670 error_last_message (void)
671 {
672 long len;
673 return ui_file_xstrdup (gdb_lasterr, &len);
674 }
675
676 /* This is to be called by main() at the very beginning */
677
678 void
679 error_init (void)
680 {
681 gdb_lasterr = mem_fileopen ();
682 }
683
684 /* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
686
687 NORETURN void
688 internal_verror (const char *file, int line,
689 const char *fmt, va_list ap)
690 {
691 static char msg[] = "Internal GDB error: recursive internal error.\n";
692 static int dejavu = 0;
693 int continue_p;
694 int dump_core_p;
695
696 /* don't allow infinite error recursion. */
697 switch (dejavu)
698 {
699 case 0:
700 dejavu = 1;
701 break;
702 case 1:
703 dejavu = 2;
704 fputs_unfiltered (msg, gdb_stderr);
705 internal_error (__FILE__, __LINE__, "failed internal consistency check");
706 default:
707 dejavu = 3;
708 write (STDERR_FILENO, msg, sizeof (msg));
709 exit (1);
710 }
711
712 /* Try to get the message out */
713 target_terminal_ours ();
714 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
715 vfprintf_unfiltered (gdb_stderr, fmt, ap);
716 fputs_unfiltered ("\n", gdb_stderr);
717
718 /* Default (no case) is to quit GDB. When in batch mode this
719 lessens the likelhood of GDB going into an infinate loop. */
720 continue_p = query ("\
721 An internal GDB error was detected. This may make further\n\
722 debugging unreliable. Continue this debugging session? ");
723
724 /* Default (no case) is to not dump core. Lessen the chance of GDB
725 leaving random core files around. */
726 dump_core_p = query ("\
727 Create a core file containing the current state of GDB? ");
728
729 if (continue_p)
730 {
731 if (dump_core_p)
732 {
733 if (fork () == 0)
734 internal_error (__FILE__, __LINE__, "failed internal consistency check");
735 }
736 }
737 else
738 {
739 if (dump_core_p)
740 internal_error (__FILE__, __LINE__, "failed internal consistency check");
741 else
742 exit (1);
743 }
744
745 dejavu = 0;
746 return_to_top_level (RETURN_ERROR);
747 }
748
749 NORETURN void
750 internal_error (const char *file, int line, const char *string, ...)
751 {
752 va_list ap;
753 va_start (ap, string);
754
755 internal_verror (file, line, string, ap);
756 va_end (ap);
757 }
758
759 /* The strerror() function can return NULL for errno values that are
760 out of range. Provide a "safe" version that always returns a
761 printable string. */
762
763 char *
764 safe_strerror (int errnum)
765 {
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775 }
776
777 /* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781 NORETURN void
782 perror_with_name (char *string)
783 {
784 char *err;
785 char *combined;
786
787 err = safe_strerror (errno);
788 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
789 strcpy (combined, string);
790 strcat (combined, ": ");
791 strcat (combined, err);
792
793 /* I understand setting these is a matter of taste. Still, some people
794 may clear errno but not know about bfd_error. Doing this here is not
795 unreasonable. */
796 bfd_set_error (bfd_error_no_error);
797 errno = 0;
798
799 error ("%s.", combined);
800 }
801
802 /* Print the system error message for ERRCODE, and also mention STRING
803 as the file name for which the error was encountered. */
804
805 void
806 print_sys_errmsg (char *string, int errcode)
807 {
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821 }
822
823 /* Control C eventually causes this to be called, at a convenient time. */
824
825 void
826 quit (void)
827 {
828 struct serial *gdb_stdout_serial = serial_fdopen (1);
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
838 wrap_here ((char *) 0);
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
845 serial_drain_output (gdb_stdout_serial);
846 serial_un_fdopen (gdb_stdout_serial);
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
854 #ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858 #else
859 if (job_control
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
866 "Quit (expect signal SIGINT when the program is resumed)\n");
867 #endif
868 return_to_top_level (RETURN_QUIT);
869 }
870
871 /* Control C comes here */
872 void
873 request_quit (int signo)
874 {
875 quit_flag = 1;
876 /* Restore the signal handler. Harmless with BSD-style signals, needed
877 for System V-style signals. So just always do it, rather than worrying
878 about USG defines and stuff like that. */
879 signal (signo, request_quit);
880
881 #ifdef REQUEST_QUIT
882 REQUEST_QUIT;
883 #else
884 if (immediate_quit)
885 quit ();
886 #endif
887 }
888 \f
889 /* Memory management stuff (malloc friends). */
890
891 #if !defined (USE_MMALLOC)
892
893 /* NOTE: These must use PTR so that their definition matches the
894 declaration found in "mmalloc.h". */
895
896 PTR
897 mmalloc (PTR md, size_t size)
898 {
899 return malloc (size); /* NOTE: GDB's only call to malloc() */
900 }
901
902 PTR
903 mrealloc (PTR md, PTR ptr, size_t size)
904 {
905 if (ptr == 0) /* Guard against old realloc's */
906 return mmalloc (md, size);
907 else
908 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
909 }
910
911 PTR
912 mcalloc (PTR md, size_t number, size_t size)
913 {
914 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
915 }
916
917 void
918 mfree (PTR md, PTR ptr)
919 {
920 free (ptr); /* NOTE: GDB's only call to free() */
921 }
922
923 #endif /* USE_MMALLOC */
924
925 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
926
927 void
928 init_malloc (void *md)
929 {
930 }
931
932 #else /* Have mmalloc and want corruption checking */
933
934 static void
935 malloc_botch (void)
936 {
937 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
938 internal_error (__FILE__, __LINE__, "failed internal consistency check");
939 }
940
941 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
942 by MD, to detect memory corruption. Note that MD may be NULL to specify
943 the default heap that grows via sbrk.
944
945 Note that for freshly created regions, we must call mmcheckf prior to any
946 mallocs in the region. Otherwise, any region which was allocated prior to
947 installing the checking hooks, which is later reallocated or freed, will
948 fail the checks! The mmcheck function only allows initial hooks to be
949 installed before the first mmalloc. However, anytime after we have called
950 mmcheck the first time to install the checking hooks, we can call it again
951 to update the function pointer to the memory corruption handler.
952
953 Returns zero on failure, non-zero on success. */
954
955 #ifndef MMCHECK_FORCE
956 #define MMCHECK_FORCE 0
957 #endif
958
959 void
960 init_malloc (void *md)
961 {
962 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
963 {
964 /* Don't use warning(), which relies on current_target being set
965 to something other than dummy_target, until after
966 initialize_all_files(). */
967
968 fprintf_unfiltered
969 (gdb_stderr, "warning: failed to install memory consistency checks; ");
970 fprintf_unfiltered
971 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
972 }
973
974 mmtrace ();
975 }
976
977 #endif /* Have mmalloc and want corruption checking */
978
979 /* Called when a memory allocation fails, with the number of bytes of
980 memory requested in SIZE. */
981
982 NORETURN void
983 nomem (long size)
984 {
985 if (size > 0)
986 {
987 internal_error (__FILE__, __LINE__,
988 "virtual memory exhausted: can't allocate %ld bytes.", size);
989 }
990 else
991 {
992 internal_error (__FILE__, __LINE__,
993 "virtual memory exhausted.");
994 }
995 }
996
997 /* The xmmalloc() family of memory management routines.
998
999 These are are like the mmalloc() family except that they implement
1000 consistent semantics and guard against typical memory management
1001 problems: if a malloc fails, an internal error is thrown; if
1002 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1003 is returned.
1004
1005 All these routines are implemented using the mmalloc() family. */
1006
1007 void *
1008 xmmalloc (void *md, size_t size)
1009 {
1010 void *val;
1011
1012 if (size == 0)
1013 {
1014 val = NULL;
1015 }
1016 else
1017 {
1018 val = mmalloc (md, size);
1019 if (val == NULL)
1020 nomem (size);
1021 }
1022 return (val);
1023 }
1024
1025 void *
1026 xmrealloc (void *md, void *ptr, size_t size)
1027 {
1028 void *val;
1029
1030 if (size == 0)
1031 {
1032 if (ptr != NULL)
1033 mfree (md, ptr);
1034 val = NULL;
1035 }
1036 else
1037 {
1038 if (ptr != NULL)
1039 {
1040 val = mrealloc (md, ptr, size);
1041 }
1042 else
1043 {
1044 val = mmalloc (md, size);
1045 }
1046 if (val == NULL)
1047 {
1048 nomem (size);
1049 }
1050 }
1051 return (val);
1052 }
1053
1054 void *
1055 xmcalloc (void *md, size_t number, size_t size)
1056 {
1057 void *mem;
1058 if (number == 0 || size == 0)
1059 mem = NULL;
1060 else
1061 {
1062 mem = mcalloc (md, number, size);
1063 if (mem == NULL)
1064 nomem (number * size);
1065 }
1066 return mem;
1067 }
1068
1069 void
1070 xmfree (void *md, void *ptr)
1071 {
1072 if (ptr != NULL)
1073 mfree (md, ptr);
1074 }
1075
1076 /* The xmalloc() (libiberty.h) family of memory management routines.
1077
1078 These are like the ISO-C malloc() family except that they implement
1079 consistent semantics and guard against typical memory management
1080 problems. See xmmalloc() above for further information.
1081
1082 All these routines are wrappers to the xmmalloc() family. */
1083
1084 /* NOTE: These are declared using PTR to ensure consistency with
1085 "libiberty.h". xfree() is GDB local. */
1086
1087 PTR
1088 xmalloc (size_t size)
1089 {
1090 return xmmalloc (NULL, size);
1091 }
1092
1093 PTR
1094 xrealloc (PTR ptr, size_t size)
1095 {
1096 return xmrealloc (NULL, ptr, size);
1097 }
1098
1099 PTR
1100 xcalloc (size_t number, size_t size)
1101 {
1102 return xmcalloc (NULL, number, size);
1103 }
1104
1105 void
1106 xfree (void *ptr)
1107 {
1108 xmfree (NULL, ptr);
1109 }
1110 \f
1111
1112 /* Like asprintf/vasprintf but get an internal_error if the call
1113 fails. */
1114
1115 void
1116 xasprintf (char **ret, const char *format, ...)
1117 {
1118 va_list args;
1119 va_start (args, format);
1120 xvasprintf (ret, format, args);
1121 va_end (args);
1122 }
1123
1124 void
1125 xvasprintf (char **ret, const char *format, va_list ap)
1126 {
1127 int status = vasprintf (ret, format, ap);
1128 /* NULL could be returned due to a memory allocation problem; a
1129 badly format string; or something else. */
1130 if ((*ret) == NULL)
1131 internal_error (__FILE__, __LINE__,
1132 "vasprintf returned NULL buffer (errno %d)",
1133 errno);
1134 /* A negative status with a non-NULL buffer shouldn't never
1135 happen. But to be sure. */
1136 if (status < 0)
1137 internal_error (__FILE__, __LINE__,
1138 "vasprintf call failed (errno %d)",
1139 errno);
1140 }
1141
1142
1143 /* My replacement for the read system call.
1144 Used like `read' but keeps going if `read' returns too soon. */
1145
1146 int
1147 myread (int desc, char *addr, int len)
1148 {
1149 register int val;
1150 int orglen = len;
1151
1152 while (len > 0)
1153 {
1154 val = read (desc, addr, len);
1155 if (val < 0)
1156 return val;
1157 if (val == 0)
1158 return orglen - len;
1159 len -= val;
1160 addr += val;
1161 }
1162 return orglen;
1163 }
1164 \f
1165 /* Make a copy of the string at PTR with SIZE characters
1166 (and add a null character at the end in the copy).
1167 Uses malloc to get the space. Returns the address of the copy. */
1168
1169 char *
1170 savestring (const char *ptr, size_t size)
1171 {
1172 register char *p = (char *) xmalloc (size + 1);
1173 memcpy (p, ptr, size);
1174 p[size] = 0;
1175 return p;
1176 }
1177
1178 char *
1179 msavestring (void *md, const char *ptr, size_t size)
1180 {
1181 register char *p = (char *) xmmalloc (md, size + 1);
1182 memcpy (p, ptr, size);
1183 p[size] = 0;
1184 return p;
1185 }
1186
1187 char *
1188 mstrsave (void *md, const char *ptr)
1189 {
1190 return (msavestring (md, ptr, strlen (ptr)));
1191 }
1192
1193 void
1194 print_spaces (register int n, register struct ui_file *file)
1195 {
1196 fputs_unfiltered (n_spaces (n), file);
1197 }
1198
1199 /* Print a host address. */
1200
1201 void
1202 gdb_print_host_address (void *addr, struct ui_file *stream)
1203 {
1204
1205 /* We could use the %p conversion specifier to fprintf if we had any
1206 way of knowing whether this host supports it. But the following
1207 should work on the Alpha and on 32 bit machines. */
1208
1209 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1210 }
1211
1212 /* Ask user a y-or-n question and return 1 iff answer is yes.
1213 Takes three args which are given to printf to print the question.
1214 The first, a control string, should end in "? ".
1215 It should not say how to answer, because we do that. */
1216
1217 /* VARARGS */
1218 int
1219 query (char *ctlstr,...)
1220 {
1221 va_list args;
1222 register int answer;
1223 register int ans2;
1224 int retval;
1225
1226 va_start (args, ctlstr);
1227
1228 if (query_hook)
1229 {
1230 return query_hook (ctlstr, args);
1231 }
1232
1233 /* Automatically answer "yes" if input is not from a terminal. */
1234 if (!input_from_terminal_p ())
1235 return 1;
1236 /* OBSOLETE #ifdef MPW */
1237 /* OBSOLETE *//* FIXME Automatically answer "yes" if called from MacGDB. */
1238 /* OBSOLETE if (mac_app) */
1239 /* OBSOLETE return 1; */
1240 /* OBSOLETE #endif *//* MPW */
1241
1242 while (1)
1243 {
1244 wrap_here (""); /* Flush any buffered output */
1245 gdb_flush (gdb_stdout);
1246
1247 if (annotation_level > 1)
1248 printf_filtered ("\n\032\032pre-query\n");
1249
1250 vfprintf_filtered (gdb_stdout, ctlstr, args);
1251 printf_filtered ("(y or n) ");
1252
1253 if (annotation_level > 1)
1254 printf_filtered ("\n\032\032query\n");
1255
1256 /* OBSOLETE #ifdef MPW */
1257 /* OBSOLETE *//* If not in MacGDB, move to a new line so the entered line doesn't */
1258 /* OBSOLETE have a prompt on the front of it. */
1259 /* OBSOLETE if (!mac_app) */
1260 /* OBSOLETE fputs_unfiltered ("\n", gdb_stdout); */
1261 /* OBSOLETE #endif *//* MPW */
1262
1263 wrap_here ("");
1264 gdb_flush (gdb_stdout);
1265
1266 answer = fgetc (stdin);
1267 clearerr (stdin); /* in case of C-d */
1268 if (answer == EOF) /* C-d */
1269 {
1270 retval = 1;
1271 break;
1272 }
1273 /* Eat rest of input line, to EOF or newline */
1274 if (answer != '\n')
1275 do
1276 {
1277 ans2 = fgetc (stdin);
1278 clearerr (stdin);
1279 }
1280 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1281
1282 if (answer >= 'a')
1283 answer -= 040;
1284 if (answer == 'Y')
1285 {
1286 retval = 1;
1287 break;
1288 }
1289 if (answer == 'N')
1290 {
1291 retval = 0;
1292 break;
1293 }
1294 printf_filtered ("Please answer y or n.\n");
1295 }
1296
1297 if (annotation_level > 1)
1298 printf_filtered ("\n\032\032post-query\n");
1299 return retval;
1300 }
1301 \f
1302
1303 /* Parse a C escape sequence. STRING_PTR points to a variable
1304 containing a pointer to the string to parse. That pointer
1305 should point to the character after the \. That pointer
1306 is updated past the characters we use. The value of the
1307 escape sequence is returned.
1308
1309 A negative value means the sequence \ newline was seen,
1310 which is supposed to be equivalent to nothing at all.
1311
1312 If \ is followed by a null character, we return a negative
1313 value and leave the string pointer pointing at the null character.
1314
1315 If \ is followed by 000, we return 0 and leave the string pointer
1316 after the zeros. A value of 0 does not mean end of string. */
1317
1318 int
1319 parse_escape (char **string_ptr)
1320 {
1321 register int c = *(*string_ptr)++;
1322 switch (c)
1323 {
1324 case 'a':
1325 return 007; /* Bell (alert) char */
1326 case 'b':
1327 return '\b';
1328 case 'e': /* Escape character */
1329 return 033;
1330 case 'f':
1331 return '\f';
1332 case 'n':
1333 return '\n';
1334 case 'r':
1335 return '\r';
1336 case 't':
1337 return '\t';
1338 case 'v':
1339 return '\v';
1340 case '\n':
1341 return -2;
1342 case 0:
1343 (*string_ptr)--;
1344 return 0;
1345 case '^':
1346 c = *(*string_ptr)++;
1347 if (c == '\\')
1348 c = parse_escape (string_ptr);
1349 if (c == '?')
1350 return 0177;
1351 return (c & 0200) | (c & 037);
1352
1353 case '0':
1354 case '1':
1355 case '2':
1356 case '3':
1357 case '4':
1358 case '5':
1359 case '6':
1360 case '7':
1361 {
1362 register int i = c - '0';
1363 register int count = 0;
1364 while (++count < 3)
1365 {
1366 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1367 {
1368 i *= 8;
1369 i += c - '0';
1370 }
1371 else
1372 {
1373 (*string_ptr)--;
1374 break;
1375 }
1376 }
1377 return i;
1378 }
1379 default:
1380 return c;
1381 }
1382 }
1383 \f
1384 /* Print the character C on STREAM as part of the contents of a literal
1385 string whose delimiter is QUOTER. Note that this routine should only
1386 be call for printing things which are independent of the language
1387 of the program being debugged. */
1388
1389 static void
1390 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1391 void (*do_fprintf) (struct ui_file *, const char *, ...),
1392 struct ui_file *stream, int quoter)
1393 {
1394
1395 c &= 0xFF; /* Avoid sign bit follies */
1396
1397 if (c < 0x20 || /* Low control chars */
1398 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1399 (sevenbit_strings && c >= 0x80))
1400 { /* high order bit set */
1401 switch (c)
1402 {
1403 case '\n':
1404 do_fputs ("\\n", stream);
1405 break;
1406 case '\b':
1407 do_fputs ("\\b", stream);
1408 break;
1409 case '\t':
1410 do_fputs ("\\t", stream);
1411 break;
1412 case '\f':
1413 do_fputs ("\\f", stream);
1414 break;
1415 case '\r':
1416 do_fputs ("\\r", stream);
1417 break;
1418 case '\033':
1419 do_fputs ("\\e", stream);
1420 break;
1421 case '\007':
1422 do_fputs ("\\a", stream);
1423 break;
1424 default:
1425 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1426 break;
1427 }
1428 }
1429 else
1430 {
1431 if (c == '\\' || c == quoter)
1432 do_fputs ("\\", stream);
1433 do_fprintf (stream, "%c", c);
1434 }
1435 }
1436
1437 /* Print the character C on STREAM as part of the contents of a
1438 literal string whose delimiter is QUOTER. Note that these routines
1439 should only be call for printing things which are independent of
1440 the language of the program being debugged. */
1441
1442 void
1443 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1444 {
1445 while (*str)
1446 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1447 }
1448
1449 void
1450 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1451 {
1452 while (*str)
1453 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1454 }
1455
1456 void
1457 fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
1458 {
1459 int i;
1460 for (i = 0; i < n; i++)
1461 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1462 }
1463
1464 \f
1465
1466 /* Number of lines per page or UINT_MAX if paging is disabled. */
1467 static unsigned int lines_per_page;
1468 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1469 static unsigned int chars_per_line;
1470 /* Current count of lines printed on this page, chars on this line. */
1471 static unsigned int lines_printed, chars_printed;
1472
1473 /* Buffer and start column of buffered text, for doing smarter word-
1474 wrapping. When someone calls wrap_here(), we start buffering output
1475 that comes through fputs_filtered(). If we see a newline, we just
1476 spit it out and forget about the wrap_here(). If we see another
1477 wrap_here(), we spit it out and remember the newer one. If we see
1478 the end of the line, we spit out a newline, the indent, and then
1479 the buffered output. */
1480
1481 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1482 are waiting to be output (they have already been counted in chars_printed).
1483 When wrap_buffer[0] is null, the buffer is empty. */
1484 static char *wrap_buffer;
1485
1486 /* Pointer in wrap_buffer to the next character to fill. */
1487 static char *wrap_pointer;
1488
1489 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1490 is non-zero. */
1491 static char *wrap_indent;
1492
1493 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1494 is not in effect. */
1495 static int wrap_column;
1496 \f
1497
1498 /* Inialize the lines and chars per page */
1499 void
1500 init_page_info (void)
1501 {
1502 #if defined(TUI)
1503 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
1504 #endif
1505 {
1506 /* These defaults will be used if we are unable to get the correct
1507 values from termcap. */
1508 #if defined(__GO32__)
1509 lines_per_page = ScreenRows ();
1510 chars_per_line = ScreenCols ();
1511 #else
1512 lines_per_page = 24;
1513 chars_per_line = 80;
1514
1515 #if !defined (_WIN32)
1516 /* No termcap under MPW, although might be cool to do something
1517 by looking at worksheet or console window sizes. */
1518 /* Initialize the screen height and width from termcap. */
1519 {
1520 char *termtype = getenv ("TERM");
1521
1522 /* Positive means success, nonpositive means failure. */
1523 int status;
1524
1525 /* 2048 is large enough for all known terminals, according to the
1526 GNU termcap manual. */
1527 char term_buffer[2048];
1528
1529 if (termtype)
1530 {
1531 status = tgetent (term_buffer, termtype);
1532 if (status > 0)
1533 {
1534 int val;
1535 int running_in_emacs = getenv ("EMACS") != NULL;
1536
1537 val = tgetnum ("li");
1538 if (val >= 0 && !running_in_emacs)
1539 lines_per_page = val;
1540 else
1541 /* The number of lines per page is not mentioned
1542 in the terminal description. This probably means
1543 that paging is not useful (e.g. emacs shell window),
1544 so disable paging. */
1545 lines_per_page = UINT_MAX;
1546
1547 val = tgetnum ("co");
1548 if (val >= 0)
1549 chars_per_line = val;
1550 }
1551 }
1552 }
1553 #endif /* MPW */
1554
1555 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1556
1557 /* If there is a better way to determine the window size, use it. */
1558 SIGWINCH_HANDLER (SIGWINCH);
1559 #endif
1560 #endif
1561 /* If the output is not a terminal, don't paginate it. */
1562 if (!ui_file_isatty (gdb_stdout))
1563 lines_per_page = UINT_MAX;
1564 } /* the command_line_version */
1565 set_width ();
1566 }
1567
1568 static void
1569 set_width (void)
1570 {
1571 if (chars_per_line == 0)
1572 init_page_info ();
1573
1574 if (!wrap_buffer)
1575 {
1576 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1577 wrap_buffer[0] = '\0';
1578 }
1579 else
1580 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1581 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1582 }
1583
1584 /* ARGSUSED */
1585 static void
1586 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1587 {
1588 set_width ();
1589 }
1590
1591 /* Wait, so the user can read what's on the screen. Prompt the user
1592 to continue by pressing RETURN. */
1593
1594 static void
1595 prompt_for_continue (void)
1596 {
1597 char *ignore;
1598 char cont_prompt[120];
1599
1600 if (annotation_level > 1)
1601 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1602
1603 strcpy (cont_prompt,
1604 "---Type <return> to continue, or q <return> to quit---");
1605 if (annotation_level > 1)
1606 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1607
1608 /* We must do this *before* we call gdb_readline, else it will eventually
1609 call us -- thinking that we're trying to print beyond the end of the
1610 screen. */
1611 reinitialize_more_filter ();
1612
1613 immediate_quit++;
1614 /* On a real operating system, the user can quit with SIGINT.
1615 But not on GO32.
1616
1617 'q' is provided on all systems so users don't have to change habits
1618 from system to system, and because telling them what to do in
1619 the prompt is more user-friendly than expecting them to think of
1620 SIGINT. */
1621 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1622 whereas control-C to gdb_readline will cause the user to get dumped
1623 out to DOS. */
1624 ignore = readline (cont_prompt);
1625
1626 if (annotation_level > 1)
1627 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1628
1629 if (ignore)
1630 {
1631 char *p = ignore;
1632 while (*p == ' ' || *p == '\t')
1633 ++p;
1634 if (p[0] == 'q')
1635 {
1636 if (!event_loop_p)
1637 request_quit (SIGINT);
1638 else
1639 async_request_quit (0);
1640 }
1641 xfree (ignore);
1642 }
1643 immediate_quit--;
1644
1645 /* Now we have to do this again, so that GDB will know that it doesn't
1646 need to save the ---Type <return>--- line at the top of the screen. */
1647 reinitialize_more_filter ();
1648
1649 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1650 }
1651
1652 /* Reinitialize filter; ie. tell it to reset to original values. */
1653
1654 void
1655 reinitialize_more_filter (void)
1656 {
1657 lines_printed = 0;
1658 chars_printed = 0;
1659 }
1660
1661 /* Indicate that if the next sequence of characters overflows the line,
1662 a newline should be inserted here rather than when it hits the end.
1663 If INDENT is non-null, it is a string to be printed to indent the
1664 wrapped part on the next line. INDENT must remain accessible until
1665 the next call to wrap_here() or until a newline is printed through
1666 fputs_filtered().
1667
1668 If the line is already overfull, we immediately print a newline and
1669 the indentation, and disable further wrapping.
1670
1671 If we don't know the width of lines, but we know the page height,
1672 we must not wrap words, but should still keep track of newlines
1673 that were explicitly printed.
1674
1675 INDENT should not contain tabs, as that will mess up the char count
1676 on the next line. FIXME.
1677
1678 This routine is guaranteed to force out any output which has been
1679 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1680 used to force out output from the wrap_buffer. */
1681
1682 void
1683 wrap_here (char *indent)
1684 {
1685 /* This should have been allocated, but be paranoid anyway. */
1686 if (!wrap_buffer)
1687 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1688
1689 if (wrap_buffer[0])
1690 {
1691 *wrap_pointer = '\0';
1692 fputs_unfiltered (wrap_buffer, gdb_stdout);
1693 }
1694 wrap_pointer = wrap_buffer;
1695 wrap_buffer[0] = '\0';
1696 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1697 {
1698 wrap_column = 0;
1699 }
1700 else if (chars_printed >= chars_per_line)
1701 {
1702 puts_filtered ("\n");
1703 if (indent != NULL)
1704 puts_filtered (indent);
1705 wrap_column = 0;
1706 }
1707 else
1708 {
1709 wrap_column = chars_printed;
1710 if (indent == NULL)
1711 wrap_indent = "";
1712 else
1713 wrap_indent = indent;
1714 }
1715 }
1716
1717 /* Ensure that whatever gets printed next, using the filtered output
1718 commands, starts at the beginning of the line. I.E. if there is
1719 any pending output for the current line, flush it and start a new
1720 line. Otherwise do nothing. */
1721
1722 void
1723 begin_line (void)
1724 {
1725 if (chars_printed > 0)
1726 {
1727 puts_filtered ("\n");
1728 }
1729 }
1730
1731
1732 /* Like fputs but if FILTER is true, pause after every screenful.
1733
1734 Regardless of FILTER can wrap at points other than the final
1735 character of a line.
1736
1737 Unlike fputs, fputs_maybe_filtered does not return a value.
1738 It is OK for LINEBUFFER to be NULL, in which case just don't print
1739 anything.
1740
1741 Note that a longjmp to top level may occur in this routine (only if
1742 FILTER is true) (since prompt_for_continue may do so) so this
1743 routine should not be called when cleanups are not in place. */
1744
1745 static void
1746 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1747 int filter)
1748 {
1749 const char *lineptr;
1750
1751 if (linebuffer == 0)
1752 return;
1753
1754 /* Don't do any filtering if it is disabled. */
1755 if ((stream != gdb_stdout) || !pagination_enabled
1756 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1757 {
1758 fputs_unfiltered (linebuffer, stream);
1759 return;
1760 }
1761
1762 /* Go through and output each character. Show line extension
1763 when this is necessary; prompt user for new page when this is
1764 necessary. */
1765
1766 lineptr = linebuffer;
1767 while (*lineptr)
1768 {
1769 /* Possible new page. */
1770 if (filter &&
1771 (lines_printed >= lines_per_page - 1))
1772 prompt_for_continue ();
1773
1774 while (*lineptr && *lineptr != '\n')
1775 {
1776 /* Print a single line. */
1777 if (*lineptr == '\t')
1778 {
1779 if (wrap_column)
1780 *wrap_pointer++ = '\t';
1781 else
1782 fputc_unfiltered ('\t', stream);
1783 /* Shifting right by 3 produces the number of tab stops
1784 we have already passed, and then adding one and
1785 shifting left 3 advances to the next tab stop. */
1786 chars_printed = ((chars_printed >> 3) + 1) << 3;
1787 lineptr++;
1788 }
1789 else
1790 {
1791 if (wrap_column)
1792 *wrap_pointer++ = *lineptr;
1793 else
1794 fputc_unfiltered (*lineptr, stream);
1795 chars_printed++;
1796 lineptr++;
1797 }
1798
1799 if (chars_printed >= chars_per_line)
1800 {
1801 unsigned int save_chars = chars_printed;
1802
1803 chars_printed = 0;
1804 lines_printed++;
1805 /* If we aren't actually wrapping, don't output newline --
1806 if chars_per_line is right, we probably just overflowed
1807 anyway; if it's wrong, let us keep going. */
1808 if (wrap_column)
1809 fputc_unfiltered ('\n', stream);
1810
1811 /* Possible new page. */
1812 if (lines_printed >= lines_per_page - 1)
1813 prompt_for_continue ();
1814
1815 /* Now output indentation and wrapped string */
1816 if (wrap_column)
1817 {
1818 fputs_unfiltered (wrap_indent, stream);
1819 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1820 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1821 /* FIXME, this strlen is what prevents wrap_indent from
1822 containing tabs. However, if we recurse to print it
1823 and count its chars, we risk trouble if wrap_indent is
1824 longer than (the user settable) chars_per_line.
1825 Note also that this can set chars_printed > chars_per_line
1826 if we are printing a long string. */
1827 chars_printed = strlen (wrap_indent)
1828 + (save_chars - wrap_column);
1829 wrap_pointer = wrap_buffer; /* Reset buffer */
1830 wrap_buffer[0] = '\0';
1831 wrap_column = 0; /* And disable fancy wrap */
1832 }
1833 }
1834 }
1835
1836 if (*lineptr == '\n')
1837 {
1838 chars_printed = 0;
1839 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1840 lines_printed++;
1841 fputc_unfiltered ('\n', stream);
1842 lineptr++;
1843 }
1844 }
1845 }
1846
1847 void
1848 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1849 {
1850 fputs_maybe_filtered (linebuffer, stream, 1);
1851 }
1852
1853 int
1854 putchar_unfiltered (int c)
1855 {
1856 char buf = c;
1857 ui_file_write (gdb_stdout, &buf, 1);
1858 return c;
1859 }
1860
1861 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1862 May return nonlocally. */
1863
1864 int
1865 putchar_filtered (int c)
1866 {
1867 return fputc_filtered (c, gdb_stdout);
1868 }
1869
1870 int
1871 fputc_unfiltered (int c, struct ui_file *stream)
1872 {
1873 char buf = c;
1874 ui_file_write (stream, &buf, 1);
1875 return c;
1876 }
1877
1878 int
1879 fputc_filtered (int c, struct ui_file *stream)
1880 {
1881 char buf[2];
1882
1883 buf[0] = c;
1884 buf[1] = 0;
1885 fputs_filtered (buf, stream);
1886 return c;
1887 }
1888
1889 /* puts_debug is like fputs_unfiltered, except it prints special
1890 characters in printable fashion. */
1891
1892 void
1893 puts_debug (char *prefix, char *string, char *suffix)
1894 {
1895 int ch;
1896
1897 /* Print prefix and suffix after each line. */
1898 static int new_line = 1;
1899 static int return_p = 0;
1900 static char *prev_prefix = "";
1901 static char *prev_suffix = "";
1902
1903 if (*string == '\n')
1904 return_p = 0;
1905
1906 /* If the prefix is changing, print the previous suffix, a new line,
1907 and the new prefix. */
1908 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1909 {
1910 fputs_unfiltered (prev_suffix, gdb_stdlog);
1911 fputs_unfiltered ("\n", gdb_stdlog);
1912 fputs_unfiltered (prefix, gdb_stdlog);
1913 }
1914
1915 /* Print prefix if we printed a newline during the previous call. */
1916 if (new_line)
1917 {
1918 new_line = 0;
1919 fputs_unfiltered (prefix, gdb_stdlog);
1920 }
1921
1922 prev_prefix = prefix;
1923 prev_suffix = suffix;
1924
1925 /* Output characters in a printable format. */
1926 while ((ch = *string++) != '\0')
1927 {
1928 switch (ch)
1929 {
1930 default:
1931 if (isprint (ch))
1932 fputc_unfiltered (ch, gdb_stdlog);
1933
1934 else
1935 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1936 break;
1937
1938 case '\\':
1939 fputs_unfiltered ("\\\\", gdb_stdlog);
1940 break;
1941 case '\b':
1942 fputs_unfiltered ("\\b", gdb_stdlog);
1943 break;
1944 case '\f':
1945 fputs_unfiltered ("\\f", gdb_stdlog);
1946 break;
1947 case '\n':
1948 new_line = 1;
1949 fputs_unfiltered ("\\n", gdb_stdlog);
1950 break;
1951 case '\r':
1952 fputs_unfiltered ("\\r", gdb_stdlog);
1953 break;
1954 case '\t':
1955 fputs_unfiltered ("\\t", gdb_stdlog);
1956 break;
1957 case '\v':
1958 fputs_unfiltered ("\\v", gdb_stdlog);
1959 break;
1960 }
1961
1962 return_p = ch == '\r';
1963 }
1964
1965 /* Print suffix if we printed a newline. */
1966 if (new_line)
1967 {
1968 fputs_unfiltered (suffix, gdb_stdlog);
1969 fputs_unfiltered ("\n", gdb_stdlog);
1970 }
1971 }
1972
1973
1974 /* Print a variable number of ARGS using format FORMAT. If this
1975 information is going to put the amount written (since the last call
1976 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1977 call prompt_for_continue to get the users permision to continue.
1978
1979 Unlike fprintf, this function does not return a value.
1980
1981 We implement three variants, vfprintf (takes a vararg list and stream),
1982 fprintf (takes a stream to write on), and printf (the usual).
1983
1984 Note also that a longjmp to top level may occur in this routine
1985 (since prompt_for_continue may do so) so this routine should not be
1986 called when cleanups are not in place. */
1987
1988 static void
1989 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
1990 va_list args, int filter)
1991 {
1992 char *linebuffer;
1993 struct cleanup *old_cleanups;
1994
1995 xvasprintf (&linebuffer, format, args);
1996 old_cleanups = make_cleanup (xfree, linebuffer);
1997 fputs_maybe_filtered (linebuffer, stream, filter);
1998 do_cleanups (old_cleanups);
1999 }
2000
2001
2002 void
2003 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2004 {
2005 vfprintf_maybe_filtered (stream, format, args, 1);
2006 }
2007
2008 void
2009 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2010 {
2011 char *linebuffer;
2012 struct cleanup *old_cleanups;
2013
2014 xvasprintf (&linebuffer, format, args);
2015 old_cleanups = make_cleanup (xfree, linebuffer);
2016 fputs_unfiltered (linebuffer, stream);
2017 do_cleanups (old_cleanups);
2018 }
2019
2020 void
2021 vprintf_filtered (const char *format, va_list args)
2022 {
2023 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2024 }
2025
2026 void
2027 vprintf_unfiltered (const char *format, va_list args)
2028 {
2029 vfprintf_unfiltered (gdb_stdout, format, args);
2030 }
2031
2032 void
2033 fprintf_filtered (struct ui_file * stream, const char *format,...)
2034 {
2035 va_list args;
2036 va_start (args, format);
2037 vfprintf_filtered (stream, format, args);
2038 va_end (args);
2039 }
2040
2041 void
2042 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2043 {
2044 va_list args;
2045 va_start (args, format);
2046 vfprintf_unfiltered (stream, format, args);
2047 va_end (args);
2048 }
2049
2050 /* Like fprintf_filtered, but prints its result indented.
2051 Called as fprintfi_filtered (spaces, stream, format, ...); */
2052
2053 void
2054 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2055 {
2056 va_list args;
2057 va_start (args, format);
2058 print_spaces_filtered (spaces, stream);
2059
2060 vfprintf_filtered (stream, format, args);
2061 va_end (args);
2062 }
2063
2064
2065 void
2066 printf_filtered (const char *format,...)
2067 {
2068 va_list args;
2069 va_start (args, format);
2070 vfprintf_filtered (gdb_stdout, format, args);
2071 va_end (args);
2072 }
2073
2074
2075 void
2076 printf_unfiltered (const char *format,...)
2077 {
2078 va_list args;
2079 va_start (args, format);
2080 vfprintf_unfiltered (gdb_stdout, format, args);
2081 va_end (args);
2082 }
2083
2084 /* Like printf_filtered, but prints it's result indented.
2085 Called as printfi_filtered (spaces, format, ...); */
2086
2087 void
2088 printfi_filtered (int spaces, const char *format,...)
2089 {
2090 va_list args;
2091 va_start (args, format);
2092 print_spaces_filtered (spaces, gdb_stdout);
2093 vfprintf_filtered (gdb_stdout, format, args);
2094 va_end (args);
2095 }
2096
2097 /* Easy -- but watch out!
2098
2099 This routine is *not* a replacement for puts()! puts() appends a newline.
2100 This one doesn't, and had better not! */
2101
2102 void
2103 puts_filtered (const char *string)
2104 {
2105 fputs_filtered (string, gdb_stdout);
2106 }
2107
2108 void
2109 puts_unfiltered (const char *string)
2110 {
2111 fputs_unfiltered (string, gdb_stdout);
2112 }
2113
2114 /* Return a pointer to N spaces and a null. The pointer is good
2115 until the next call to here. */
2116 char *
2117 n_spaces (int n)
2118 {
2119 char *t;
2120 static char *spaces = 0;
2121 static int max_spaces = -1;
2122
2123 if (n > max_spaces)
2124 {
2125 if (spaces)
2126 xfree (spaces);
2127 spaces = (char *) xmalloc (n + 1);
2128 for (t = spaces + n; t != spaces;)
2129 *--t = ' ';
2130 spaces[n] = '\0';
2131 max_spaces = n;
2132 }
2133
2134 return spaces + max_spaces - n;
2135 }
2136
2137 /* Print N spaces. */
2138 void
2139 print_spaces_filtered (int n, struct ui_file *stream)
2140 {
2141 fputs_filtered (n_spaces (n), stream);
2142 }
2143 \f
2144 /* C++ demangler stuff. */
2145
2146 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2147 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2148 If the name is not mangled, or the language for the name is unknown, or
2149 demangling is off, the name is printed in its "raw" form. */
2150
2151 void
2152 fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2153 int arg_mode)
2154 {
2155 char *demangled;
2156
2157 if (name != NULL)
2158 {
2159 /* If user wants to see raw output, no problem. */
2160 if (!demangle)
2161 {
2162 fputs_filtered (name, stream);
2163 }
2164 else
2165 {
2166 switch (lang)
2167 {
2168 case language_cplus:
2169 demangled = cplus_demangle (name, arg_mode);
2170 break;
2171 case language_java:
2172 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2173 break;
2174 case language_chill:
2175 demangled = chill_demangle (name);
2176 break;
2177 default:
2178 demangled = NULL;
2179 break;
2180 }
2181 fputs_filtered (demangled ? demangled : name, stream);
2182 if (demangled != NULL)
2183 {
2184 xfree (demangled);
2185 }
2186 }
2187 }
2188 }
2189
2190 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2191 differences in whitespace. Returns 0 if they match, non-zero if they
2192 don't (slightly different than strcmp()'s range of return values).
2193
2194 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2195 This "feature" is useful when searching for matching C++ function names
2196 (such as if the user types 'break FOO', where FOO is a mangled C++
2197 function). */
2198
2199 int
2200 strcmp_iw (const char *string1, const char *string2)
2201 {
2202 while ((*string1 != '\0') && (*string2 != '\0'))
2203 {
2204 while (isspace (*string1))
2205 {
2206 string1++;
2207 }
2208 while (isspace (*string2))
2209 {
2210 string2++;
2211 }
2212 if (*string1 != *string2)
2213 {
2214 break;
2215 }
2216 if (*string1 != '\0')
2217 {
2218 string1++;
2219 string2++;
2220 }
2221 }
2222 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2223 }
2224 \f
2225
2226 /*
2227 ** subset_compare()
2228 ** Answer whether string_to_compare is a full or partial match to
2229 ** template_string. The partial match must be in sequence starting
2230 ** at index 0.
2231 */
2232 int
2233 subset_compare (char *string_to_compare, char *template_string)
2234 {
2235 int match;
2236 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2237 strlen (string_to_compare) <= strlen (template_string))
2238 match = (strncmp (template_string,
2239 string_to_compare,
2240 strlen (string_to_compare)) == 0);
2241 else
2242 match = 0;
2243 return match;
2244 }
2245
2246
2247 static void pagination_on_command (char *arg, int from_tty);
2248 static void
2249 pagination_on_command (char *arg, int from_tty)
2250 {
2251 pagination_enabled = 1;
2252 }
2253
2254 static void pagination_on_command (char *arg, int from_tty);
2255 static void
2256 pagination_off_command (char *arg, int from_tty)
2257 {
2258 pagination_enabled = 0;
2259 }
2260 \f
2261
2262 void
2263 initialize_utils (void)
2264 {
2265 struct cmd_list_element *c;
2266
2267 c = add_set_cmd ("width", class_support, var_uinteger,
2268 (char *) &chars_per_line,
2269 "Set number of characters gdb thinks are in a line.",
2270 &setlist);
2271 add_show_from_set (c, &showlist);
2272 c->function.sfunc = set_width_command;
2273
2274 add_show_from_set
2275 (add_set_cmd ("height", class_support,
2276 var_uinteger, (char *) &lines_per_page,
2277 "Set number of lines gdb thinks are in a page.", &setlist),
2278 &showlist);
2279
2280 init_page_info ();
2281
2282 /* If the output is not a terminal, don't paginate it. */
2283 if (!ui_file_isatty (gdb_stdout))
2284 lines_per_page = UINT_MAX;
2285
2286 set_width_command ((char *) NULL, 0, c);
2287
2288 add_show_from_set
2289 (add_set_cmd ("demangle", class_support, var_boolean,
2290 (char *) &demangle,
2291 "Set demangling of encoded C++ names when displaying symbols.",
2292 &setprintlist),
2293 &showprintlist);
2294
2295 add_show_from_set
2296 (add_set_cmd ("pagination", class_support,
2297 var_boolean, (char *) &pagination_enabled,
2298 "Set state of pagination.", &setlist),
2299 &showlist);
2300
2301 if (xdb_commands)
2302 {
2303 add_com ("am", class_support, pagination_on_command,
2304 "Enable pagination");
2305 add_com ("sm", class_support, pagination_off_command,
2306 "Disable pagination");
2307 }
2308
2309 add_show_from_set
2310 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2311 (char *) &sevenbit_strings,
2312 "Set printing of 8-bit characters in strings as \\nnn.",
2313 &setprintlist),
2314 &showprintlist);
2315
2316 add_show_from_set
2317 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2318 (char *) &asm_demangle,
2319 "Set demangling of C++ names in disassembly listings.",
2320 &setprintlist),
2321 &showprintlist);
2322 }
2323
2324 /* Machine specific function to handle SIGWINCH signal. */
2325
2326 #ifdef SIGWINCH_HANDLER_BODY
2327 SIGWINCH_HANDLER_BODY
2328 #endif
2329
2330 /* print routines to handle variable size regs, etc. */
2331
2332 /* temporary storage using circular buffer */
2333 #define NUMCELLS 16
2334 #define CELLSIZE 32
2335 static char *
2336 get_cell (void)
2337 {
2338 static char buf[NUMCELLS][CELLSIZE];
2339 static int cell = 0;
2340 if (++cell >= NUMCELLS)
2341 cell = 0;
2342 return buf[cell];
2343 }
2344
2345 int
2346 strlen_paddr (void)
2347 {
2348 return (TARGET_ADDR_BIT / 8 * 2);
2349 }
2350
2351 char *
2352 paddr (CORE_ADDR addr)
2353 {
2354 return phex (addr, TARGET_ADDR_BIT / 8);
2355 }
2356
2357 char *
2358 paddr_nz (CORE_ADDR addr)
2359 {
2360 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2361 }
2362
2363 static void
2364 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2365 {
2366 /* steal code from valprint.c:print_decimal(). Should this worry
2367 about the real size of addr as the above does? */
2368 unsigned long temp[3];
2369 int i = 0;
2370 do
2371 {
2372 temp[i] = addr % (1000 * 1000 * 1000);
2373 addr /= (1000 * 1000 * 1000);
2374 i++;
2375 }
2376 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2377 switch (i)
2378 {
2379 case 1:
2380 sprintf (paddr_str, "%s%lu",
2381 sign, temp[0]);
2382 break;
2383 case 2:
2384 sprintf (paddr_str, "%s%lu%09lu",
2385 sign, temp[1], temp[0]);
2386 break;
2387 case 3:
2388 sprintf (paddr_str, "%s%lu%09lu%09lu",
2389 sign, temp[2], temp[1], temp[0]);
2390 break;
2391 default:
2392 internal_error (__FILE__, __LINE__, "failed internal consistency check");
2393 }
2394 }
2395
2396 char *
2397 paddr_u (CORE_ADDR addr)
2398 {
2399 char *paddr_str = get_cell ();
2400 decimal2str (paddr_str, "", addr);
2401 return paddr_str;
2402 }
2403
2404 char *
2405 paddr_d (LONGEST addr)
2406 {
2407 char *paddr_str = get_cell ();
2408 if (addr < 0)
2409 decimal2str (paddr_str, "-", -addr);
2410 else
2411 decimal2str (paddr_str, "", addr);
2412 return paddr_str;
2413 }
2414
2415 /* eliminate warning from compiler on 32-bit systems */
2416 static int thirty_two = 32;
2417
2418 char *
2419 phex (ULONGEST l, int sizeof_l)
2420 {
2421 char *str = get_cell ();
2422 switch (sizeof_l)
2423 {
2424 case 8:
2425 sprintf (str, "%08lx%08lx",
2426 (unsigned long) (l >> thirty_two),
2427 (unsigned long) (l & 0xffffffff));
2428 break;
2429 case 4:
2430 sprintf (str, "%08lx", (unsigned long) l);
2431 break;
2432 case 2:
2433 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2434 break;
2435 default:
2436 phex (l, sizeof (l));
2437 break;
2438 }
2439 return str;
2440 }
2441
2442 char *
2443 phex_nz (ULONGEST l, int sizeof_l)
2444 {
2445 char *str = get_cell ();
2446 switch (sizeof_l)
2447 {
2448 case 8:
2449 {
2450 unsigned long high = (unsigned long) (l >> thirty_two);
2451 if (high == 0)
2452 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2453 else
2454 sprintf (str, "%lx%08lx",
2455 high, (unsigned long) (l & 0xffffffff));
2456 break;
2457 }
2458 case 4:
2459 sprintf (str, "%lx", (unsigned long) l);
2460 break;
2461 case 2:
2462 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2463 break;
2464 default:
2465 phex_nz (l, sizeof (l));
2466 break;
2467 }
2468 return str;
2469 }
2470
2471
2472 /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2473 using the target's conversion routines. */
2474 CORE_ADDR
2475 host_pointer_to_address (void *ptr)
2476 {
2477 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
2478 internal_error (__FILE__, __LINE__,
2479 "core_addr_to_void_ptr: bad cast");
2480 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2481 }
2482
2483 void *
2484 address_to_host_pointer (CORE_ADDR addr)
2485 {
2486 void *ptr;
2487 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
2488 internal_error (__FILE__, __LINE__,
2489 "core_addr_to_void_ptr: bad cast");
2490 ADDRESS_TO_POINTER (builtin_type_void_data_ptr, &ptr, addr);
2491 return ptr;
2492 }
This page took 0.118316 seconds and 4 git commands to generate.