c66167b500d6b99a37ea2c45536aceeaebc9235c
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_assert.h"
25 #include <ctype.h>
26 #include "gdb_string.h"
27 #include "event-top.h"
28
29 #ifdef HAVE_CURSES_H
30 #include <curses.h>
31 #endif
32 #ifdef HAVE_TERM_H
33 #include <term.h>
34 #endif
35
36 #ifdef __GO32__
37 #include <pc.h>
38 #endif
39
40 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41 #ifdef reg
42 #undef reg
43 #endif
44
45 #include <signal.h>
46 #include "gdbcmd.h"
47 #include "serial.h"
48 #include "bfd.h"
49 #include "target.h"
50 #include "demangle.h"
51 #include "expression.h"
52 #include "language.h"
53 #include "annotate.h"
54
55 #include "inferior.h" /* for signed_pointer_to_address */
56
57 #include <readline/readline.h>
58
59 #ifndef MALLOC_INCOMPATIBLE
60 #ifdef NEED_DECLARATION_MALLOC
61 extern PTR malloc ();
62 #endif
63 #ifdef NEED_DECLARATION_REALLOC
64 extern PTR realloc ();
65 #endif
66 #ifdef NEED_DECLARATION_FREE
67 extern void free ();
68 #endif
69 #endif
70
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74 /* readline defines this. */
75 #undef savestring
76
77 void (*error_begin_hook) (void);
78
79 /* Holds the last error message issued by gdb */
80
81 static struct ui_file *gdb_lasterr;
82
83 /* Prototypes for local functions */
84
85 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
86 va_list, int);
87
88 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
89
90 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
91 static void malloc_botch (void);
92 #endif
93
94 static void prompt_for_continue (void);
95
96 static void set_width_command (char *, int, struct cmd_list_element *);
97
98 static void set_width (void);
99
100 /* Chain of cleanup actions established with make_cleanup,
101 to be executed if an error happens. */
102
103 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
104 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
105 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
106 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
107 /* cleaned up on each error from within an execution command */
108 static struct cleanup *exec_error_cleanup_chain;
109
110 /* Pointer to what is left to do for an execution command after the
111 target stops. Used only in asynchronous mode, by targets that
112 support async execution. The finish and until commands use it. So
113 does the target extended-remote command. */
114 struct continuation *cmd_continuation;
115 struct continuation *intermediate_continuation;
116
117 /* Nonzero if we have job control. */
118
119 int job_control;
120
121 /* Nonzero means a quit has been requested. */
122
123 int quit_flag;
124
125 /* Nonzero means quit immediately if Control-C is typed now, rather
126 than waiting until QUIT is executed. Be careful in setting this;
127 code which executes with immediate_quit set has to be very careful
128 about being able to deal with being interrupted at any time. It is
129 almost always better to use QUIT; the only exception I can think of
130 is being able to quit out of a system call (using EINTR loses if
131 the SIGINT happens between the previous QUIT and the system call).
132 To immediately quit in the case in which a SIGINT happens between
133 the previous QUIT and setting immediate_quit (desirable anytime we
134 expect to block), call QUIT after setting immediate_quit. */
135
136 int immediate_quit;
137
138 /* Nonzero means that encoded C++ names should be printed out in their
139 C++ form rather than raw. */
140
141 int demangle = 1;
142
143 /* Nonzero means that encoded C++ names should be printed out in their
144 C++ form even in assembler language displays. If this is set, but
145 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
146
147 int asm_demangle = 0;
148
149 /* Nonzero means that strings with character values >0x7F should be printed
150 as octal escapes. Zero means just print the value (e.g. it's an
151 international character, and the terminal or window can cope.) */
152
153 int sevenbit_strings = 0;
154
155 /* String to be printed before error messages, if any. */
156
157 char *error_pre_print;
158
159 /* String to be printed before quit messages, if any. */
160
161 char *quit_pre_print;
162
163 /* String to be printed before warning messages, if any. */
164
165 char *warning_pre_print = "\nwarning: ";
166
167 int pagination_enabled = 1;
168 \f
169
170 /* Add a new cleanup to the cleanup_chain,
171 and return the previous chain pointer
172 to be passed later to do_cleanups or discard_cleanups.
173 Args are FUNCTION to clean up with, and ARG to pass to it. */
174
175 struct cleanup *
176 make_cleanup (make_cleanup_ftype *function, void *arg)
177 {
178 return make_my_cleanup (&cleanup_chain, function, arg);
179 }
180
181 struct cleanup *
182 make_final_cleanup (make_cleanup_ftype *function, void *arg)
183 {
184 return make_my_cleanup (&final_cleanup_chain, function, arg);
185 }
186
187 struct cleanup *
188 make_run_cleanup (make_cleanup_ftype *function, void *arg)
189 {
190 return make_my_cleanup (&run_cleanup_chain, function, arg);
191 }
192
193 struct cleanup *
194 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
195 {
196 return make_my_cleanup (&exec_cleanup_chain, function, arg);
197 }
198
199 struct cleanup *
200 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
201 {
202 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
203 }
204
205 static void
206 do_freeargv (void *arg)
207 {
208 freeargv ((char **) arg);
209 }
210
211 struct cleanup *
212 make_cleanup_freeargv (char **arg)
213 {
214 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
215 }
216
217 static void
218 do_bfd_close_cleanup (void *arg)
219 {
220 bfd_close (arg);
221 }
222
223 struct cleanup *
224 make_cleanup_bfd_close (bfd *abfd)
225 {
226 return make_cleanup (do_bfd_close_cleanup, abfd);
227 }
228
229 static void
230 do_close_cleanup (void *arg)
231 {
232 int *fd = arg;
233 close (*fd);
234 xfree (fd);
235 }
236
237 struct cleanup *
238 make_cleanup_close (int fd)
239 {
240 int *saved_fd = xmalloc (sizeof (fd));
241 *saved_fd = fd;
242 return make_cleanup (do_close_cleanup, saved_fd);
243 }
244
245 static void
246 do_ui_file_delete (void *arg)
247 {
248 ui_file_delete (arg);
249 }
250
251 struct cleanup *
252 make_cleanup_ui_file_delete (struct ui_file *arg)
253 {
254 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
255 }
256
257 struct cleanup *
258 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
259 void *arg)
260 {
261 register struct cleanup *new
262 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
263 register struct cleanup *old_chain = *pmy_chain;
264
265 new->next = *pmy_chain;
266 new->function = function;
267 new->arg = arg;
268 *pmy_chain = new;
269
270 return old_chain;
271 }
272
273 /* Discard cleanups and do the actions they describe
274 until we get back to the point OLD_CHAIN in the cleanup_chain. */
275
276 void
277 do_cleanups (register struct cleanup *old_chain)
278 {
279 do_my_cleanups (&cleanup_chain, old_chain);
280 }
281
282 void
283 do_final_cleanups (register struct cleanup *old_chain)
284 {
285 do_my_cleanups (&final_cleanup_chain, old_chain);
286 }
287
288 void
289 do_run_cleanups (register struct cleanup *old_chain)
290 {
291 do_my_cleanups (&run_cleanup_chain, old_chain);
292 }
293
294 void
295 do_exec_cleanups (register struct cleanup *old_chain)
296 {
297 do_my_cleanups (&exec_cleanup_chain, old_chain);
298 }
299
300 void
301 do_exec_error_cleanups (register struct cleanup *old_chain)
302 {
303 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
304 }
305
306 void
307 do_my_cleanups (register struct cleanup **pmy_chain,
308 register struct cleanup *old_chain)
309 {
310 register struct cleanup *ptr;
311 while ((ptr = *pmy_chain) != old_chain)
312 {
313 *pmy_chain = ptr->next; /* Do this first incase recursion */
314 (*ptr->function) (ptr->arg);
315 xfree (ptr);
316 }
317 }
318
319 /* Discard cleanups, not doing the actions they describe,
320 until we get back to the point OLD_CHAIN in the cleanup_chain. */
321
322 void
323 discard_cleanups (register struct cleanup *old_chain)
324 {
325 discard_my_cleanups (&cleanup_chain, old_chain);
326 }
327
328 void
329 discard_final_cleanups (register struct cleanup *old_chain)
330 {
331 discard_my_cleanups (&final_cleanup_chain, old_chain);
332 }
333
334 void
335 discard_exec_error_cleanups (register struct cleanup *old_chain)
336 {
337 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
338 }
339
340 void
341 discard_my_cleanups (register struct cleanup **pmy_chain,
342 register struct cleanup *old_chain)
343 {
344 register struct cleanup *ptr;
345 while ((ptr = *pmy_chain) != old_chain)
346 {
347 *pmy_chain = ptr->next;
348 xfree (ptr);
349 }
350 }
351
352 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
353 struct cleanup *
354 save_cleanups (void)
355 {
356 return save_my_cleanups (&cleanup_chain);
357 }
358
359 struct cleanup *
360 save_final_cleanups (void)
361 {
362 return save_my_cleanups (&final_cleanup_chain);
363 }
364
365 struct cleanup *
366 save_my_cleanups (struct cleanup **pmy_chain)
367 {
368 struct cleanup *old_chain = *pmy_chain;
369
370 *pmy_chain = 0;
371 return old_chain;
372 }
373
374 /* Restore the cleanup chain from a previously saved chain. */
375 void
376 restore_cleanups (struct cleanup *chain)
377 {
378 restore_my_cleanups (&cleanup_chain, chain);
379 }
380
381 void
382 restore_final_cleanups (struct cleanup *chain)
383 {
384 restore_my_cleanups (&final_cleanup_chain, chain);
385 }
386
387 void
388 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
389 {
390 *pmy_chain = chain;
391 }
392
393 /* This function is useful for cleanups.
394 Do
395
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
398
399 to arrange to free the object thus allocated. */
400
401 void
402 free_current_contents (void *ptr)
403 {
404 void **location = ptr;
405 if (location == NULL)
406 internal_error (__FILE__, __LINE__,
407 "free_current_contents: NULL pointer");
408 if (*location != NULL)
409 {
410 xfree (*location);
411 *location = NULL;
412 }
413 }
414
415 /* Provide a known function that does nothing, to use as a base for
416 for a possibly long chain of cleanups. This is useful where we
417 use the cleanup chain for handling normal cleanups as well as dealing
418 with cleanups that need to be done as a result of a call to error().
419 In such cases, we may not be certain where the first cleanup is, unless
420 we have a do-nothing one to always use as the base. */
421
422 /* ARGSUSED */
423 void
424 null_cleanup (void *arg)
425 {
426 }
427
428 /* Add a continuation to the continuation list, the global list
429 cmd_continuation. The new continuation will be added at the front.*/
430 void
431 add_continuation (void (*continuation_hook) (struct continuation_arg *),
432 struct continuation_arg *arg_list)
433 {
434 struct continuation *continuation_ptr;
435
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
441 }
442
443 /* Walk down the cmd_continuation list, and execute all the
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
451 void
452 do_all_continuations (void)
453 {
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
470 xfree (saved_continuation);
471 }
472 }
473
474 /* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476 void
477 discard_all_continuations (void)
478 {
479 struct continuation *continuation_ptr;
480
481 while (cmd_continuation)
482 {
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
485 xfree (continuation_ptr);
486 }
487 }
488
489 /* Add a continuation to the continuation list, the global list
490 intermediate_continuation. The new continuation will be added at the front.*/
491 void
492 add_intermediate_continuation (void (*continuation_hook)
493 (struct continuation_arg *),
494 struct continuation_arg *arg_list)
495 {
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503 }
504
505 /* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513 void
514 do_all_intermediate_continuations (void)
515 {
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
532 xfree (saved_continuation);
533 }
534 }
535
536 /* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538 void
539 discard_all_intermediate_continuations (void)
540 {
541 struct continuation *continuation_ptr;
542
543 while (intermediate_continuation)
544 {
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
547 xfree (continuation_ptr);
548 }
549 }
550
551 \f
552
553 /* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562 void
563 warning_begin (void)
564 {
565 target_terminal_ours ();
566 wrap_here (""); /* Force out any buffered output */
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570 }
571
572 /* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
578 void
579 warning (const char *string,...)
580 {
581 va_list args;
582 va_start (args, string);
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
592 }
593
594 /* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601 void
602 error_begin (void)
603 {
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
608 wrap_here (""); /* Force out any buffered output */
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615 }
616
617 /* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
621 NORETURN void
622 verror (const char *string, va_list args)
623 {
624 char *err_string;
625 struct cleanup *err_string_cleanup;
626 /* FIXME: cagney/1999-11-10: All error calls should come here.
627 Unfortunately some code uses the sequence: error_begin(); print
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
638 ui_file_rewind (gdb_lasterr);
639 vfprintf_filtered (gdb_lasterr, string, args);
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
642 err_string_cleanup = make_cleanup (xfree, err_string);
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
646 return_to_top_level (RETURN_ERROR);
647 }
648
649 NORETURN void
650 error (const char *string,...)
651 {
652 va_list args;
653 va_start (args, string);
654 verror (string, args);
655 va_end (args);
656 }
657
658 NORETURN void
659 error_stream (struct ui_file *stream)
660 {
661 long size;
662 char *msg = ui_file_xstrdup (stream, &size);
663 make_cleanup (xfree, msg);
664 error ("%s", msg);
665 }
666
667 /* Get the last error message issued by gdb */
668
669 char *
670 error_last_message (void)
671 {
672 long len;
673 return ui_file_xstrdup (gdb_lasterr, &len);
674 }
675
676 /* This is to be called by main() at the very beginning */
677
678 void
679 error_init (void)
680 {
681 gdb_lasterr = mem_fileopen ();
682 }
683
684 /* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
686
687 NORETURN void
688 internal_verror (const char *file, int line,
689 const char *fmt, va_list ap)
690 {
691 static char msg[] = "Internal GDB error: recursive internal error.\n";
692 static int dejavu = 0;
693 int continue_p;
694 int dump_core_p;
695
696 /* don't allow infinite error recursion. */
697 switch (dejavu)
698 {
699 case 0:
700 dejavu = 1;
701 break;
702 case 1:
703 dejavu = 2;
704 fputs_unfiltered (msg, gdb_stderr);
705 internal_error (__FILE__, __LINE__, "failed internal consistency check");
706 default:
707 dejavu = 3;
708 write (STDERR_FILENO, msg, sizeof (msg));
709 exit (1);
710 }
711
712 /* Try to get the message out */
713 target_terminal_ours ();
714 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
715 vfprintf_unfiltered (gdb_stderr, fmt, ap);
716 fputs_unfiltered ("\n", gdb_stderr);
717
718 /* Default (no case) is to quit GDB. When in batch mode this
719 lessens the likelhood of GDB going into an infinate loop. */
720 continue_p = query ("\
721 An internal GDB error was detected. This may make further\n\
722 debugging unreliable. Continue this debugging session? ");
723
724 /* Default (no case) is to not dump core. Lessen the chance of GDB
725 leaving random core files around. */
726 dump_core_p = query ("\
727 Create a core file containing the current state of GDB? ");
728
729 if (continue_p)
730 {
731 if (dump_core_p)
732 {
733 if (fork () == 0)
734 internal_error (__FILE__, __LINE__, "failed internal consistency check");
735 }
736 }
737 else
738 {
739 if (dump_core_p)
740 internal_error (__FILE__, __LINE__, "failed internal consistency check");
741 else
742 exit (1);
743 }
744
745 dejavu = 0;
746 return_to_top_level (RETURN_ERROR);
747 }
748
749 NORETURN void
750 internal_error (const char *file, int line, const char *string, ...)
751 {
752 va_list ap;
753 va_start (ap, string);
754
755 internal_verror (file, line, string, ap);
756 va_end (ap);
757 }
758
759 /* The strerror() function can return NULL for errno values that are
760 out of range. Provide a "safe" version that always returns a
761 printable string. */
762
763 char *
764 safe_strerror (int errnum)
765 {
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775 }
776
777 /* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781 NORETURN void
782 perror_with_name (char *string)
783 {
784 char *err;
785 char *combined;
786
787 err = safe_strerror (errno);
788 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
789 strcpy (combined, string);
790 strcat (combined, ": ");
791 strcat (combined, err);
792
793 /* I understand setting these is a matter of taste. Still, some people
794 may clear errno but not know about bfd_error. Doing this here is not
795 unreasonable. */
796 bfd_set_error (bfd_error_no_error);
797 errno = 0;
798
799 error ("%s.", combined);
800 }
801
802 /* Print the system error message for ERRCODE, and also mention STRING
803 as the file name for which the error was encountered. */
804
805 void
806 print_sys_errmsg (char *string, int errcode)
807 {
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821 }
822
823 /* Control C eventually causes this to be called, at a convenient time. */
824
825 void
826 quit (void)
827 {
828 struct serial *gdb_stdout_serial = serial_fdopen (1);
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
838 wrap_here ((char *) 0);
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
845 serial_drain_output (gdb_stdout_serial);
846 serial_un_fdopen (gdb_stdout_serial);
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
854 #ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858 #else
859 if (job_control
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
866 "Quit (expect signal SIGINT when the program is resumed)\n");
867 #endif
868 return_to_top_level (RETURN_QUIT);
869 }
870
871 /* Control C comes here */
872 void
873 request_quit (int signo)
874 {
875 quit_flag = 1;
876 /* Restore the signal handler. Harmless with BSD-style signals, needed
877 for System V-style signals. So just always do it, rather than worrying
878 about USG defines and stuff like that. */
879 signal (signo, request_quit);
880
881 #ifdef REQUEST_QUIT
882 REQUEST_QUIT;
883 #else
884 if (immediate_quit)
885 quit ();
886 #endif
887 }
888 \f
889 /* Memory management stuff (malloc friends). */
890
891 #if !defined (USE_MMALLOC)
892
893 /* NOTE: These must use PTR so that their definition matches the
894 declaration found in "mmalloc.h". */
895
896 PTR
897 mmalloc (PTR md, size_t size)
898 {
899 return malloc (size); /* NOTE: GDB's only call to malloc() */
900 }
901
902 PTR
903 mrealloc (PTR md, PTR ptr, size_t size)
904 {
905 if (ptr == 0) /* Guard against old realloc's */
906 return mmalloc (md, size);
907 else
908 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
909 }
910
911 PTR
912 mcalloc (PTR md, size_t number, size_t size)
913 {
914 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
915 }
916
917 void
918 mfree (PTR md, PTR ptr)
919 {
920 free (ptr); /* NOTE: GDB's only call to free() */
921 }
922
923 #endif /* USE_MMALLOC */
924
925 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
926
927 void
928 init_malloc (void *md)
929 {
930 }
931
932 #else /* Have mmalloc and want corruption checking */
933
934 static void
935 malloc_botch (void)
936 {
937 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
938 internal_error (__FILE__, __LINE__, "failed internal consistency check");
939 }
940
941 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
942 by MD, to detect memory corruption. Note that MD may be NULL to specify
943 the default heap that grows via sbrk.
944
945 Note that for freshly created regions, we must call mmcheckf prior to any
946 mallocs in the region. Otherwise, any region which was allocated prior to
947 installing the checking hooks, which is later reallocated or freed, will
948 fail the checks! The mmcheck function only allows initial hooks to be
949 installed before the first mmalloc. However, anytime after we have called
950 mmcheck the first time to install the checking hooks, we can call it again
951 to update the function pointer to the memory corruption handler.
952
953 Returns zero on failure, non-zero on success. */
954
955 #ifndef MMCHECK_FORCE
956 #define MMCHECK_FORCE 0
957 #endif
958
959 void
960 init_malloc (void *md)
961 {
962 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
963 {
964 /* Don't use warning(), which relies on current_target being set
965 to something other than dummy_target, until after
966 initialize_all_files(). */
967
968 fprintf_unfiltered
969 (gdb_stderr, "warning: failed to install memory consistency checks; ");
970 fprintf_unfiltered
971 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
972 }
973
974 mmtrace ();
975 }
976
977 #endif /* Have mmalloc and want corruption checking */
978
979 /* Called when a memory allocation fails, with the number of bytes of
980 memory requested in SIZE. */
981
982 NORETURN void
983 nomem (long size)
984 {
985 if (size > 0)
986 {
987 internal_error (__FILE__, __LINE__,
988 "virtual memory exhausted: can't allocate %ld bytes.", size);
989 }
990 else
991 {
992 internal_error (__FILE__, __LINE__,
993 "virtual memory exhausted.");
994 }
995 }
996
997 /* The xmmalloc() family of memory management routines.
998
999 These are are like the mmalloc() family except that they implement
1000 consistent semantics and guard against typical memory management
1001 problems: if a malloc fails, an internal error is thrown; if
1002 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1003 is returned.
1004
1005 All these routines are implemented using the mmalloc() family. */
1006
1007 void *
1008 xmmalloc (void *md, size_t size)
1009 {
1010 void *val;
1011
1012 if (size == 0)
1013 {
1014 val = NULL;
1015 }
1016 else
1017 {
1018 val = mmalloc (md, size);
1019 if (val == NULL)
1020 nomem (size);
1021 }
1022 return (val);
1023 }
1024
1025 void *
1026 xmrealloc (void *md, void *ptr, size_t size)
1027 {
1028 void *val;
1029
1030 if (size == 0)
1031 {
1032 if (ptr != NULL)
1033 mfree (md, ptr);
1034 val = NULL;
1035 }
1036 else
1037 {
1038 if (ptr != NULL)
1039 {
1040 val = mrealloc (md, ptr, size);
1041 }
1042 else
1043 {
1044 val = mmalloc (md, size);
1045 }
1046 if (val == NULL)
1047 {
1048 nomem (size);
1049 }
1050 }
1051 return (val);
1052 }
1053
1054 void *
1055 xmcalloc (void *md, size_t number, size_t size)
1056 {
1057 void *mem;
1058 if (number == 0 || size == 0)
1059 mem = NULL;
1060 else
1061 {
1062 mem = mcalloc (md, number, size);
1063 if (mem == NULL)
1064 nomem (number * size);
1065 }
1066 return mem;
1067 }
1068
1069 void
1070 xmfree (void *md, void *ptr)
1071 {
1072 if (ptr != NULL)
1073 mfree (md, ptr);
1074 }
1075
1076 /* The xmalloc() (libiberty.h) family of memory management routines.
1077
1078 These are like the ISO-C malloc() family except that they implement
1079 consistent semantics and guard against typical memory management
1080 problems. See xmmalloc() above for further information.
1081
1082 All these routines are wrappers to the xmmalloc() family. */
1083
1084 /* NOTE: These are declared using PTR to ensure consistency with
1085 "libiberty.h". xfree() is GDB local. */
1086
1087 PTR
1088 xmalloc (size_t size)
1089 {
1090 return xmmalloc (NULL, size);
1091 }
1092
1093 PTR
1094 xrealloc (PTR ptr, size_t size)
1095 {
1096 return xmrealloc (NULL, ptr, size);
1097 }
1098
1099 PTR
1100 xcalloc (size_t number, size_t size)
1101 {
1102 return xmcalloc (NULL, number, size);
1103 }
1104
1105 void
1106 xfree (void *ptr)
1107 {
1108 xmfree (NULL, ptr);
1109 }
1110 \f
1111
1112 /* Like asprintf/vasprintf but get an internal_error if the call
1113 fails. */
1114
1115 void
1116 xasprintf (char **ret, const char *format, ...)
1117 {
1118 va_list args;
1119 va_start (args, format);
1120 xvasprintf (ret, format, args);
1121 va_end (args);
1122 }
1123
1124 void
1125 xvasprintf (char **ret, const char *format, va_list ap)
1126 {
1127 int status = vasprintf (ret, format, ap);
1128 /* NULL could be returned due to a memory allocation problem; a
1129 badly format string; or something else. */
1130 if ((*ret) == NULL)
1131 internal_error (__FILE__, __LINE__,
1132 "vasprintf returned NULL buffer (errno %d)",
1133 errno);
1134 /* A negative status with a non-NULL buffer shouldn't never
1135 happen. But to be sure. */
1136 if (status < 0)
1137 internal_error (__FILE__, __LINE__,
1138 "vasprintf call failed (errno %d)",
1139 errno);
1140 }
1141
1142
1143 /* My replacement for the read system call.
1144 Used like `read' but keeps going if `read' returns too soon. */
1145
1146 int
1147 myread (int desc, char *addr, int len)
1148 {
1149 register int val;
1150 int orglen = len;
1151
1152 while (len > 0)
1153 {
1154 val = read (desc, addr, len);
1155 if (val < 0)
1156 return val;
1157 if (val == 0)
1158 return orglen - len;
1159 len -= val;
1160 addr += val;
1161 }
1162 return orglen;
1163 }
1164 \f
1165 /* Make a copy of the string at PTR with SIZE characters
1166 (and add a null character at the end in the copy).
1167 Uses malloc to get the space. Returns the address of the copy. */
1168
1169 char *
1170 savestring (const char *ptr, size_t size)
1171 {
1172 register char *p = (char *) xmalloc (size + 1);
1173 memcpy (p, ptr, size);
1174 p[size] = 0;
1175 return p;
1176 }
1177
1178 char *
1179 msavestring (void *md, const char *ptr, size_t size)
1180 {
1181 register char *p = (char *) xmmalloc (md, size + 1);
1182 memcpy (p, ptr, size);
1183 p[size] = 0;
1184 return p;
1185 }
1186
1187 char *
1188 mstrsave (void *md, const char *ptr)
1189 {
1190 return (msavestring (md, ptr, strlen (ptr)));
1191 }
1192
1193 void
1194 print_spaces (register int n, register struct ui_file *file)
1195 {
1196 fputs_unfiltered (n_spaces (n), file);
1197 }
1198
1199 /* Print a host address. */
1200
1201 void
1202 gdb_print_host_address (void *addr, struct ui_file *stream)
1203 {
1204
1205 /* We could use the %p conversion specifier to fprintf if we had any
1206 way of knowing whether this host supports it. But the following
1207 should work on the Alpha and on 32 bit machines. */
1208
1209 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1210 }
1211
1212 /* Ask user a y-or-n question and return 1 iff answer is yes.
1213 Takes three args which are given to printf to print the question.
1214 The first, a control string, should end in "? ".
1215 It should not say how to answer, because we do that. */
1216
1217 /* VARARGS */
1218 int
1219 query (char *ctlstr,...)
1220 {
1221 va_list args;
1222 register int answer;
1223 register int ans2;
1224 int retval;
1225
1226 va_start (args, ctlstr);
1227
1228 if (query_hook)
1229 {
1230 return query_hook (ctlstr, args);
1231 }
1232
1233 /* Automatically answer "yes" if input is not from a terminal. */
1234 if (!input_from_terminal_p ())
1235 return 1;
1236 /* OBSOLETE #ifdef MPW */
1237 /* OBSOLETE *//* FIXME Automatically answer "yes" if called from MacGDB. */
1238 /* OBSOLETE if (mac_app) */
1239 /* OBSOLETE return 1; */
1240 /* OBSOLETE #endif *//* MPW */
1241
1242 while (1)
1243 {
1244 wrap_here (""); /* Flush any buffered output */
1245 gdb_flush (gdb_stdout);
1246
1247 if (annotation_level > 1)
1248 printf_filtered ("\n\032\032pre-query\n");
1249
1250 vfprintf_filtered (gdb_stdout, ctlstr, args);
1251 printf_filtered ("(y or n) ");
1252
1253 if (annotation_level > 1)
1254 printf_filtered ("\n\032\032query\n");
1255
1256 /* OBSOLETE #ifdef MPW */
1257 /* OBSOLETE *//* If not in MacGDB, move to a new line so the entered line doesn't */
1258 /* OBSOLETE have a prompt on the front of it. */
1259 /* OBSOLETE if (!mac_app) */
1260 /* OBSOLETE fputs_unfiltered ("\n", gdb_stdout); */
1261 /* OBSOLETE #endif *//* MPW */
1262
1263 wrap_here ("");
1264 gdb_flush (gdb_stdout);
1265
1266 answer = fgetc (stdin);
1267 clearerr (stdin); /* in case of C-d */
1268 if (answer == EOF) /* C-d */
1269 {
1270 retval = 1;
1271 break;
1272 }
1273 /* Eat rest of input line, to EOF or newline */
1274 if (answer != '\n')
1275 do
1276 {
1277 ans2 = fgetc (stdin);
1278 clearerr (stdin);
1279 }
1280 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1281
1282 if (answer >= 'a')
1283 answer -= 040;
1284 if (answer == 'Y')
1285 {
1286 retval = 1;
1287 break;
1288 }
1289 if (answer == 'N')
1290 {
1291 retval = 0;
1292 break;
1293 }
1294 printf_filtered ("Please answer y or n.\n");
1295 }
1296
1297 if (annotation_level > 1)
1298 printf_filtered ("\n\032\032post-query\n");
1299 return retval;
1300 }
1301 \f
1302
1303 /* Parse a C escape sequence. STRING_PTR points to a variable
1304 containing a pointer to the string to parse. That pointer
1305 should point to the character after the \. That pointer
1306 is updated past the characters we use. The value of the
1307 escape sequence is returned.
1308
1309 A negative value means the sequence \ newline was seen,
1310 which is supposed to be equivalent to nothing at all.
1311
1312 If \ is followed by a null character, we return a negative
1313 value and leave the string pointer pointing at the null character.
1314
1315 If \ is followed by 000, we return 0 and leave the string pointer
1316 after the zeros. A value of 0 does not mean end of string. */
1317
1318 int
1319 parse_escape (char **string_ptr)
1320 {
1321 register int c = *(*string_ptr)++;
1322 switch (c)
1323 {
1324 case 'a':
1325 return 007; /* Bell (alert) char */
1326 case 'b':
1327 return '\b';
1328 case 'e': /* Escape character */
1329 return 033;
1330 case 'f':
1331 return '\f';
1332 case 'n':
1333 return '\n';
1334 case 'r':
1335 return '\r';
1336 case 't':
1337 return '\t';
1338 case 'v':
1339 return '\v';
1340 case '\n':
1341 return -2;
1342 case 0:
1343 (*string_ptr)--;
1344 return 0;
1345 case '^':
1346 c = *(*string_ptr)++;
1347 if (c == '\\')
1348 c = parse_escape (string_ptr);
1349 if (c == '?')
1350 return 0177;
1351 return (c & 0200) | (c & 037);
1352
1353 case '0':
1354 case '1':
1355 case '2':
1356 case '3':
1357 case '4':
1358 case '5':
1359 case '6':
1360 case '7':
1361 {
1362 register int i = c - '0';
1363 register int count = 0;
1364 while (++count < 3)
1365 {
1366 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1367 {
1368 i *= 8;
1369 i += c - '0';
1370 }
1371 else
1372 {
1373 (*string_ptr)--;
1374 break;
1375 }
1376 }
1377 return i;
1378 }
1379 default:
1380 return c;
1381 }
1382 }
1383 \f
1384 /* Print the character C on STREAM as part of the contents of a literal
1385 string whose delimiter is QUOTER. Note that this routine should only
1386 be call for printing things which are independent of the language
1387 of the program being debugged. */
1388
1389 static void
1390 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1391 void (*do_fprintf) (struct ui_file *, const char *, ...),
1392 struct ui_file *stream, int quoter)
1393 {
1394
1395 c &= 0xFF; /* Avoid sign bit follies */
1396
1397 if (c < 0x20 || /* Low control chars */
1398 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1399 (sevenbit_strings && c >= 0x80))
1400 { /* high order bit set */
1401 switch (c)
1402 {
1403 case '\n':
1404 do_fputs ("\\n", stream);
1405 break;
1406 case '\b':
1407 do_fputs ("\\b", stream);
1408 break;
1409 case '\t':
1410 do_fputs ("\\t", stream);
1411 break;
1412 case '\f':
1413 do_fputs ("\\f", stream);
1414 break;
1415 case '\r':
1416 do_fputs ("\\r", stream);
1417 break;
1418 case '\033':
1419 do_fputs ("\\e", stream);
1420 break;
1421 case '\007':
1422 do_fputs ("\\a", stream);
1423 break;
1424 default:
1425 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1426 break;
1427 }
1428 }
1429 else
1430 {
1431 if (c == '\\' || c == quoter)
1432 do_fputs ("\\", stream);
1433 do_fprintf (stream, "%c", c);
1434 }
1435 }
1436
1437 /* Print the character C on STREAM as part of the contents of a
1438 literal string whose delimiter is QUOTER. Note that these routines
1439 should only be call for printing things which are independent of
1440 the language of the program being debugged. */
1441
1442 void
1443 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1444 {
1445 while (*str)
1446 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1447 }
1448
1449 void
1450 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1451 {
1452 while (*str)
1453 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1454 }
1455
1456 void
1457 fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
1458 {
1459 int i;
1460 for (i = 0; i < n; i++)
1461 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1462 }
1463
1464 \f
1465
1466 /* Number of lines per page or UINT_MAX if paging is disabled. */
1467 static unsigned int lines_per_page;
1468 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1469 static unsigned int chars_per_line;
1470 /* Current count of lines printed on this page, chars on this line. */
1471 static unsigned int lines_printed, chars_printed;
1472
1473 /* Buffer and start column of buffered text, for doing smarter word-
1474 wrapping. When someone calls wrap_here(), we start buffering output
1475 that comes through fputs_filtered(). If we see a newline, we just
1476 spit it out and forget about the wrap_here(). If we see another
1477 wrap_here(), we spit it out and remember the newer one. If we see
1478 the end of the line, we spit out a newline, the indent, and then
1479 the buffered output. */
1480
1481 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1482 are waiting to be output (they have already been counted in chars_printed).
1483 When wrap_buffer[0] is null, the buffer is empty. */
1484 static char *wrap_buffer;
1485
1486 /* Pointer in wrap_buffer to the next character to fill. */
1487 static char *wrap_pointer;
1488
1489 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1490 is non-zero. */
1491 static char *wrap_indent;
1492
1493 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1494 is not in effect. */
1495 static int wrap_column;
1496 \f
1497
1498 /* Inialize the lines and chars per page */
1499 void
1500 init_page_info (void)
1501 {
1502 #if defined(TUI)
1503 if (tui_version && m_winPtrNotNull (cmdWin))
1504 {
1505 lines_per_page = cmdWin->generic.height;
1506 chars_per_line = cmdWin->generic.width;
1507 }
1508 else
1509 #endif
1510 {
1511 /* These defaults will be used if we are unable to get the correct
1512 values from termcap. */
1513 #if defined(__GO32__)
1514 lines_per_page = ScreenRows ();
1515 chars_per_line = ScreenCols ();
1516 #else
1517 lines_per_page = 24;
1518 chars_per_line = 80;
1519
1520 #if !defined (_WIN32)
1521 /* No termcap under MPW, although might be cool to do something
1522 by looking at worksheet or console window sizes. */
1523 /* Initialize the screen height and width from termcap. */
1524 {
1525 char *termtype = getenv ("TERM");
1526
1527 /* Positive means success, nonpositive means failure. */
1528 int status;
1529
1530 /* 2048 is large enough for all known terminals, according to the
1531 GNU termcap manual. */
1532 char term_buffer[2048];
1533
1534 if (termtype)
1535 {
1536 status = tgetent (term_buffer, termtype);
1537 if (status > 0)
1538 {
1539 int val;
1540 int running_in_emacs = getenv ("EMACS") != NULL;
1541
1542 val = tgetnum ("li");
1543 if (val >= 0 && !running_in_emacs)
1544 lines_per_page = val;
1545 else
1546 /* The number of lines per page is not mentioned
1547 in the terminal description. This probably means
1548 that paging is not useful (e.g. emacs shell window),
1549 so disable paging. */
1550 lines_per_page = UINT_MAX;
1551
1552 val = tgetnum ("co");
1553 if (val >= 0)
1554 chars_per_line = val;
1555 }
1556 }
1557 }
1558 #endif /* MPW */
1559
1560 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1561
1562 /* If there is a better way to determine the window size, use it. */
1563 SIGWINCH_HANDLER (SIGWINCH);
1564 #endif
1565 #endif
1566 /* If the output is not a terminal, don't paginate it. */
1567 if (!ui_file_isatty (gdb_stdout))
1568 lines_per_page = UINT_MAX;
1569 } /* the command_line_version */
1570 set_width ();
1571 }
1572
1573 static void
1574 set_width (void)
1575 {
1576 if (chars_per_line == 0)
1577 init_page_info ();
1578
1579 if (!wrap_buffer)
1580 {
1581 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1582 wrap_buffer[0] = '\0';
1583 }
1584 else
1585 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1586 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1587 }
1588
1589 /* ARGSUSED */
1590 static void
1591 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1592 {
1593 set_width ();
1594 }
1595
1596 /* Wait, so the user can read what's on the screen. Prompt the user
1597 to continue by pressing RETURN. */
1598
1599 static void
1600 prompt_for_continue (void)
1601 {
1602 char *ignore;
1603 char cont_prompt[120];
1604
1605 if (annotation_level > 1)
1606 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1607
1608 strcpy (cont_prompt,
1609 "---Type <return> to continue, or q <return> to quit---");
1610 if (annotation_level > 1)
1611 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1612
1613 /* We must do this *before* we call gdb_readline, else it will eventually
1614 call us -- thinking that we're trying to print beyond the end of the
1615 screen. */
1616 reinitialize_more_filter ();
1617
1618 immediate_quit++;
1619 /* On a real operating system, the user can quit with SIGINT.
1620 But not on GO32.
1621
1622 'q' is provided on all systems so users don't have to change habits
1623 from system to system, and because telling them what to do in
1624 the prompt is more user-friendly than expecting them to think of
1625 SIGINT. */
1626 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1627 whereas control-C to gdb_readline will cause the user to get dumped
1628 out to DOS. */
1629 ignore = readline (cont_prompt);
1630
1631 if (annotation_level > 1)
1632 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1633
1634 if (ignore)
1635 {
1636 char *p = ignore;
1637 while (*p == ' ' || *p == '\t')
1638 ++p;
1639 if (p[0] == 'q')
1640 {
1641 if (!event_loop_p)
1642 request_quit (SIGINT);
1643 else
1644 async_request_quit (0);
1645 }
1646 xfree (ignore);
1647 }
1648 immediate_quit--;
1649
1650 /* Now we have to do this again, so that GDB will know that it doesn't
1651 need to save the ---Type <return>--- line at the top of the screen. */
1652 reinitialize_more_filter ();
1653
1654 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1655 }
1656
1657 /* Reinitialize filter; ie. tell it to reset to original values. */
1658
1659 void
1660 reinitialize_more_filter (void)
1661 {
1662 lines_printed = 0;
1663 chars_printed = 0;
1664 }
1665
1666 /* Indicate that if the next sequence of characters overflows the line,
1667 a newline should be inserted here rather than when it hits the end.
1668 If INDENT is non-null, it is a string to be printed to indent the
1669 wrapped part on the next line. INDENT must remain accessible until
1670 the next call to wrap_here() or until a newline is printed through
1671 fputs_filtered().
1672
1673 If the line is already overfull, we immediately print a newline and
1674 the indentation, and disable further wrapping.
1675
1676 If we don't know the width of lines, but we know the page height,
1677 we must not wrap words, but should still keep track of newlines
1678 that were explicitly printed.
1679
1680 INDENT should not contain tabs, as that will mess up the char count
1681 on the next line. FIXME.
1682
1683 This routine is guaranteed to force out any output which has been
1684 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1685 used to force out output from the wrap_buffer. */
1686
1687 void
1688 wrap_here (char *indent)
1689 {
1690 /* This should have been allocated, but be paranoid anyway. */
1691 if (!wrap_buffer)
1692 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1693
1694 if (wrap_buffer[0])
1695 {
1696 *wrap_pointer = '\0';
1697 fputs_unfiltered (wrap_buffer, gdb_stdout);
1698 }
1699 wrap_pointer = wrap_buffer;
1700 wrap_buffer[0] = '\0';
1701 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1702 {
1703 wrap_column = 0;
1704 }
1705 else if (chars_printed >= chars_per_line)
1706 {
1707 puts_filtered ("\n");
1708 if (indent != NULL)
1709 puts_filtered (indent);
1710 wrap_column = 0;
1711 }
1712 else
1713 {
1714 wrap_column = chars_printed;
1715 if (indent == NULL)
1716 wrap_indent = "";
1717 else
1718 wrap_indent = indent;
1719 }
1720 }
1721
1722 /* Ensure that whatever gets printed next, using the filtered output
1723 commands, starts at the beginning of the line. I.E. if there is
1724 any pending output for the current line, flush it and start a new
1725 line. Otherwise do nothing. */
1726
1727 void
1728 begin_line (void)
1729 {
1730 if (chars_printed > 0)
1731 {
1732 puts_filtered ("\n");
1733 }
1734 }
1735
1736
1737 /* Like fputs but if FILTER is true, pause after every screenful.
1738
1739 Regardless of FILTER can wrap at points other than the final
1740 character of a line.
1741
1742 Unlike fputs, fputs_maybe_filtered does not return a value.
1743 It is OK for LINEBUFFER to be NULL, in which case just don't print
1744 anything.
1745
1746 Note that a longjmp to top level may occur in this routine (only if
1747 FILTER is true) (since prompt_for_continue may do so) so this
1748 routine should not be called when cleanups are not in place. */
1749
1750 static void
1751 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1752 int filter)
1753 {
1754 const char *lineptr;
1755
1756 if (linebuffer == 0)
1757 return;
1758
1759 /* Don't do any filtering if it is disabled. */
1760 if ((stream != gdb_stdout) || !pagination_enabled
1761 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1762 {
1763 fputs_unfiltered (linebuffer, stream);
1764 return;
1765 }
1766
1767 /* Go through and output each character. Show line extension
1768 when this is necessary; prompt user for new page when this is
1769 necessary. */
1770
1771 lineptr = linebuffer;
1772 while (*lineptr)
1773 {
1774 /* Possible new page. */
1775 if (filter &&
1776 (lines_printed >= lines_per_page - 1))
1777 prompt_for_continue ();
1778
1779 while (*lineptr && *lineptr != '\n')
1780 {
1781 /* Print a single line. */
1782 if (*lineptr == '\t')
1783 {
1784 if (wrap_column)
1785 *wrap_pointer++ = '\t';
1786 else
1787 fputc_unfiltered ('\t', stream);
1788 /* Shifting right by 3 produces the number of tab stops
1789 we have already passed, and then adding one and
1790 shifting left 3 advances to the next tab stop. */
1791 chars_printed = ((chars_printed >> 3) + 1) << 3;
1792 lineptr++;
1793 }
1794 else
1795 {
1796 if (wrap_column)
1797 *wrap_pointer++ = *lineptr;
1798 else
1799 fputc_unfiltered (*lineptr, stream);
1800 chars_printed++;
1801 lineptr++;
1802 }
1803
1804 if (chars_printed >= chars_per_line)
1805 {
1806 unsigned int save_chars = chars_printed;
1807
1808 chars_printed = 0;
1809 lines_printed++;
1810 /* If we aren't actually wrapping, don't output newline --
1811 if chars_per_line is right, we probably just overflowed
1812 anyway; if it's wrong, let us keep going. */
1813 if (wrap_column)
1814 fputc_unfiltered ('\n', stream);
1815
1816 /* Possible new page. */
1817 if (lines_printed >= lines_per_page - 1)
1818 prompt_for_continue ();
1819
1820 /* Now output indentation and wrapped string */
1821 if (wrap_column)
1822 {
1823 fputs_unfiltered (wrap_indent, stream);
1824 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1825 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1826 /* FIXME, this strlen is what prevents wrap_indent from
1827 containing tabs. However, if we recurse to print it
1828 and count its chars, we risk trouble if wrap_indent is
1829 longer than (the user settable) chars_per_line.
1830 Note also that this can set chars_printed > chars_per_line
1831 if we are printing a long string. */
1832 chars_printed = strlen (wrap_indent)
1833 + (save_chars - wrap_column);
1834 wrap_pointer = wrap_buffer; /* Reset buffer */
1835 wrap_buffer[0] = '\0';
1836 wrap_column = 0; /* And disable fancy wrap */
1837 }
1838 }
1839 }
1840
1841 if (*lineptr == '\n')
1842 {
1843 chars_printed = 0;
1844 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1845 lines_printed++;
1846 fputc_unfiltered ('\n', stream);
1847 lineptr++;
1848 }
1849 }
1850 }
1851
1852 void
1853 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1854 {
1855 fputs_maybe_filtered (linebuffer, stream, 1);
1856 }
1857
1858 int
1859 putchar_unfiltered (int c)
1860 {
1861 char buf = c;
1862 ui_file_write (gdb_stdout, &buf, 1);
1863 return c;
1864 }
1865
1866 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1867 May return nonlocally. */
1868
1869 int
1870 putchar_filtered (int c)
1871 {
1872 return fputc_filtered (c, gdb_stdout);
1873 }
1874
1875 int
1876 fputc_unfiltered (int c, struct ui_file *stream)
1877 {
1878 char buf = c;
1879 ui_file_write (stream, &buf, 1);
1880 return c;
1881 }
1882
1883 int
1884 fputc_filtered (int c, struct ui_file *stream)
1885 {
1886 char buf[2];
1887
1888 buf[0] = c;
1889 buf[1] = 0;
1890 fputs_filtered (buf, stream);
1891 return c;
1892 }
1893
1894 /* puts_debug is like fputs_unfiltered, except it prints special
1895 characters in printable fashion. */
1896
1897 void
1898 puts_debug (char *prefix, char *string, char *suffix)
1899 {
1900 int ch;
1901
1902 /* Print prefix and suffix after each line. */
1903 static int new_line = 1;
1904 static int return_p = 0;
1905 static char *prev_prefix = "";
1906 static char *prev_suffix = "";
1907
1908 if (*string == '\n')
1909 return_p = 0;
1910
1911 /* If the prefix is changing, print the previous suffix, a new line,
1912 and the new prefix. */
1913 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1914 {
1915 fputs_unfiltered (prev_suffix, gdb_stdlog);
1916 fputs_unfiltered ("\n", gdb_stdlog);
1917 fputs_unfiltered (prefix, gdb_stdlog);
1918 }
1919
1920 /* Print prefix if we printed a newline during the previous call. */
1921 if (new_line)
1922 {
1923 new_line = 0;
1924 fputs_unfiltered (prefix, gdb_stdlog);
1925 }
1926
1927 prev_prefix = prefix;
1928 prev_suffix = suffix;
1929
1930 /* Output characters in a printable format. */
1931 while ((ch = *string++) != '\0')
1932 {
1933 switch (ch)
1934 {
1935 default:
1936 if (isprint (ch))
1937 fputc_unfiltered (ch, gdb_stdlog);
1938
1939 else
1940 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1941 break;
1942
1943 case '\\':
1944 fputs_unfiltered ("\\\\", gdb_stdlog);
1945 break;
1946 case '\b':
1947 fputs_unfiltered ("\\b", gdb_stdlog);
1948 break;
1949 case '\f':
1950 fputs_unfiltered ("\\f", gdb_stdlog);
1951 break;
1952 case '\n':
1953 new_line = 1;
1954 fputs_unfiltered ("\\n", gdb_stdlog);
1955 break;
1956 case '\r':
1957 fputs_unfiltered ("\\r", gdb_stdlog);
1958 break;
1959 case '\t':
1960 fputs_unfiltered ("\\t", gdb_stdlog);
1961 break;
1962 case '\v':
1963 fputs_unfiltered ("\\v", gdb_stdlog);
1964 break;
1965 }
1966
1967 return_p = ch == '\r';
1968 }
1969
1970 /* Print suffix if we printed a newline. */
1971 if (new_line)
1972 {
1973 fputs_unfiltered (suffix, gdb_stdlog);
1974 fputs_unfiltered ("\n", gdb_stdlog);
1975 }
1976 }
1977
1978
1979 /* Print a variable number of ARGS using format FORMAT. If this
1980 information is going to put the amount written (since the last call
1981 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1982 call prompt_for_continue to get the users permision to continue.
1983
1984 Unlike fprintf, this function does not return a value.
1985
1986 We implement three variants, vfprintf (takes a vararg list and stream),
1987 fprintf (takes a stream to write on), and printf (the usual).
1988
1989 Note also that a longjmp to top level may occur in this routine
1990 (since prompt_for_continue may do so) so this routine should not be
1991 called when cleanups are not in place. */
1992
1993 static void
1994 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
1995 va_list args, int filter)
1996 {
1997 char *linebuffer;
1998 struct cleanup *old_cleanups;
1999
2000 xvasprintf (&linebuffer, format, args);
2001 old_cleanups = make_cleanup (xfree, linebuffer);
2002 fputs_maybe_filtered (linebuffer, stream, filter);
2003 do_cleanups (old_cleanups);
2004 }
2005
2006
2007 void
2008 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2009 {
2010 vfprintf_maybe_filtered (stream, format, args, 1);
2011 }
2012
2013 void
2014 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2015 {
2016 char *linebuffer;
2017 struct cleanup *old_cleanups;
2018
2019 xvasprintf (&linebuffer, format, args);
2020 old_cleanups = make_cleanup (xfree, linebuffer);
2021 fputs_unfiltered (linebuffer, stream);
2022 do_cleanups (old_cleanups);
2023 }
2024
2025 void
2026 vprintf_filtered (const char *format, va_list args)
2027 {
2028 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2029 }
2030
2031 void
2032 vprintf_unfiltered (const char *format, va_list args)
2033 {
2034 vfprintf_unfiltered (gdb_stdout, format, args);
2035 }
2036
2037 void
2038 fprintf_filtered (struct ui_file * stream, const char *format,...)
2039 {
2040 va_list args;
2041 va_start (args, format);
2042 vfprintf_filtered (stream, format, args);
2043 va_end (args);
2044 }
2045
2046 void
2047 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2048 {
2049 va_list args;
2050 va_start (args, format);
2051 vfprintf_unfiltered (stream, format, args);
2052 va_end (args);
2053 }
2054
2055 /* Like fprintf_filtered, but prints its result indented.
2056 Called as fprintfi_filtered (spaces, stream, format, ...); */
2057
2058 void
2059 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2060 {
2061 va_list args;
2062 va_start (args, format);
2063 print_spaces_filtered (spaces, stream);
2064
2065 vfprintf_filtered (stream, format, args);
2066 va_end (args);
2067 }
2068
2069
2070 void
2071 printf_filtered (const char *format,...)
2072 {
2073 va_list args;
2074 va_start (args, format);
2075 vfprintf_filtered (gdb_stdout, format, args);
2076 va_end (args);
2077 }
2078
2079
2080 void
2081 printf_unfiltered (const char *format,...)
2082 {
2083 va_list args;
2084 va_start (args, format);
2085 vfprintf_unfiltered (gdb_stdout, format, args);
2086 va_end (args);
2087 }
2088
2089 /* Like printf_filtered, but prints it's result indented.
2090 Called as printfi_filtered (spaces, format, ...); */
2091
2092 void
2093 printfi_filtered (int spaces, const char *format,...)
2094 {
2095 va_list args;
2096 va_start (args, format);
2097 print_spaces_filtered (spaces, gdb_stdout);
2098 vfprintf_filtered (gdb_stdout, format, args);
2099 va_end (args);
2100 }
2101
2102 /* Easy -- but watch out!
2103
2104 This routine is *not* a replacement for puts()! puts() appends a newline.
2105 This one doesn't, and had better not! */
2106
2107 void
2108 puts_filtered (const char *string)
2109 {
2110 fputs_filtered (string, gdb_stdout);
2111 }
2112
2113 void
2114 puts_unfiltered (const char *string)
2115 {
2116 fputs_unfiltered (string, gdb_stdout);
2117 }
2118
2119 /* Return a pointer to N spaces and a null. The pointer is good
2120 until the next call to here. */
2121 char *
2122 n_spaces (int n)
2123 {
2124 char *t;
2125 static char *spaces = 0;
2126 static int max_spaces = -1;
2127
2128 if (n > max_spaces)
2129 {
2130 if (spaces)
2131 xfree (spaces);
2132 spaces = (char *) xmalloc (n + 1);
2133 for (t = spaces + n; t != spaces;)
2134 *--t = ' ';
2135 spaces[n] = '\0';
2136 max_spaces = n;
2137 }
2138
2139 return spaces + max_spaces - n;
2140 }
2141
2142 /* Print N spaces. */
2143 void
2144 print_spaces_filtered (int n, struct ui_file *stream)
2145 {
2146 fputs_filtered (n_spaces (n), stream);
2147 }
2148 \f
2149 /* C++ demangler stuff. */
2150
2151 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2152 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2153 If the name is not mangled, or the language for the name is unknown, or
2154 demangling is off, the name is printed in its "raw" form. */
2155
2156 void
2157 fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2158 int arg_mode)
2159 {
2160 char *demangled;
2161
2162 if (name != NULL)
2163 {
2164 /* If user wants to see raw output, no problem. */
2165 if (!demangle)
2166 {
2167 fputs_filtered (name, stream);
2168 }
2169 else
2170 {
2171 switch (lang)
2172 {
2173 case language_cplus:
2174 demangled = cplus_demangle (name, arg_mode);
2175 break;
2176 case language_java:
2177 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2178 break;
2179 case language_chill:
2180 demangled = chill_demangle (name);
2181 break;
2182 default:
2183 demangled = NULL;
2184 break;
2185 }
2186 fputs_filtered (demangled ? demangled : name, stream);
2187 if (demangled != NULL)
2188 {
2189 xfree (demangled);
2190 }
2191 }
2192 }
2193 }
2194
2195 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2196 differences in whitespace. Returns 0 if they match, non-zero if they
2197 don't (slightly different than strcmp()'s range of return values).
2198
2199 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2200 This "feature" is useful when searching for matching C++ function names
2201 (such as if the user types 'break FOO', where FOO is a mangled C++
2202 function). */
2203
2204 int
2205 strcmp_iw (const char *string1, const char *string2)
2206 {
2207 while ((*string1 != '\0') && (*string2 != '\0'))
2208 {
2209 while (isspace (*string1))
2210 {
2211 string1++;
2212 }
2213 while (isspace (*string2))
2214 {
2215 string2++;
2216 }
2217 if (*string1 != *string2)
2218 {
2219 break;
2220 }
2221 if (*string1 != '\0')
2222 {
2223 string1++;
2224 string2++;
2225 }
2226 }
2227 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2228 }
2229 \f
2230
2231 /*
2232 ** subset_compare()
2233 ** Answer whether string_to_compare is a full or partial match to
2234 ** template_string. The partial match must be in sequence starting
2235 ** at index 0.
2236 */
2237 int
2238 subset_compare (char *string_to_compare, char *template_string)
2239 {
2240 int match;
2241 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2242 strlen (string_to_compare) <= strlen (template_string))
2243 match = (strncmp (template_string,
2244 string_to_compare,
2245 strlen (string_to_compare)) == 0);
2246 else
2247 match = 0;
2248 return match;
2249 }
2250
2251
2252 static void pagination_on_command (char *arg, int from_tty);
2253 static void
2254 pagination_on_command (char *arg, int from_tty)
2255 {
2256 pagination_enabled = 1;
2257 }
2258
2259 static void pagination_on_command (char *arg, int from_tty);
2260 static void
2261 pagination_off_command (char *arg, int from_tty)
2262 {
2263 pagination_enabled = 0;
2264 }
2265 \f
2266
2267 void
2268 initialize_utils (void)
2269 {
2270 struct cmd_list_element *c;
2271
2272 c = add_set_cmd ("width", class_support, var_uinteger,
2273 (char *) &chars_per_line,
2274 "Set number of characters gdb thinks are in a line.",
2275 &setlist);
2276 add_show_from_set (c, &showlist);
2277 c->function.sfunc = set_width_command;
2278
2279 add_show_from_set
2280 (add_set_cmd ("height", class_support,
2281 var_uinteger, (char *) &lines_per_page,
2282 "Set number of lines gdb thinks are in a page.", &setlist),
2283 &showlist);
2284
2285 init_page_info ();
2286
2287 /* If the output is not a terminal, don't paginate it. */
2288 if (!ui_file_isatty (gdb_stdout))
2289 lines_per_page = UINT_MAX;
2290
2291 set_width_command ((char *) NULL, 0, c);
2292
2293 add_show_from_set
2294 (add_set_cmd ("demangle", class_support, var_boolean,
2295 (char *) &demangle,
2296 "Set demangling of encoded C++ names when displaying symbols.",
2297 &setprintlist),
2298 &showprintlist);
2299
2300 add_show_from_set
2301 (add_set_cmd ("pagination", class_support,
2302 var_boolean, (char *) &pagination_enabled,
2303 "Set state of pagination.", &setlist),
2304 &showlist);
2305
2306 if (xdb_commands)
2307 {
2308 add_com ("am", class_support, pagination_on_command,
2309 "Enable pagination");
2310 add_com ("sm", class_support, pagination_off_command,
2311 "Disable pagination");
2312 }
2313
2314 add_show_from_set
2315 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2316 (char *) &sevenbit_strings,
2317 "Set printing of 8-bit characters in strings as \\nnn.",
2318 &setprintlist),
2319 &showprintlist);
2320
2321 add_show_from_set
2322 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2323 (char *) &asm_demangle,
2324 "Set demangling of C++ names in disassembly listings.",
2325 &setprintlist),
2326 &showprintlist);
2327 }
2328
2329 /* Machine specific function to handle SIGWINCH signal. */
2330
2331 #ifdef SIGWINCH_HANDLER_BODY
2332 SIGWINCH_HANDLER_BODY
2333 #endif
2334 \f
2335 /* Support for converting target fp numbers into host DOUBLEST format. */
2336
2337 /* XXX - This code should really be in libiberty/floatformat.c, however
2338 configuration issues with libiberty made this very difficult to do in the
2339 available time. */
2340
2341 #include "floatformat.h"
2342 #include <math.h> /* ldexp */
2343
2344 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2345 going to bother with trying to muck around with whether it is defined in
2346 a system header, what we do if not, etc. */
2347 #define FLOATFORMAT_CHAR_BIT 8
2348
2349 static unsigned long get_field (unsigned char *,
2350 enum floatformat_byteorders,
2351 unsigned int, unsigned int, unsigned int);
2352
2353 /* Extract a field which starts at START and is LEN bytes long. DATA and
2354 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2355 static unsigned long
2356 get_field (unsigned char *data, enum floatformat_byteorders order,
2357 unsigned int total_len, unsigned int start, unsigned int len)
2358 {
2359 unsigned long result;
2360 unsigned int cur_byte;
2361 int cur_bitshift;
2362
2363 /* Start at the least significant part of the field. */
2364 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2365 {
2366 /* We start counting from the other end (i.e, from the high bytes
2367 rather than the low bytes). As such, we need to be concerned
2368 with what happens if bit 0 doesn't start on a byte boundary.
2369 I.e, we need to properly handle the case where total_len is
2370 not evenly divisible by 8. So we compute ``excess'' which
2371 represents the number of bits from the end of our starting
2372 byte needed to get to bit 0. */
2373 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2374 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2375 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2376 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2377 - FLOATFORMAT_CHAR_BIT;
2378 }
2379 else
2380 {
2381 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2382 cur_bitshift =
2383 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2384 }
2385 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2386 result = *(data + cur_byte) >> (-cur_bitshift);
2387 else
2388 result = 0;
2389 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2390 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2391 ++cur_byte;
2392 else
2393 --cur_byte;
2394
2395 /* Move towards the most significant part of the field. */
2396 while (cur_bitshift < len)
2397 {
2398 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2399 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2400 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2401 ++cur_byte;
2402 else
2403 --cur_byte;
2404 }
2405 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2406 /* Mask out bits which are not part of the field */
2407 result &= ((1UL << len) - 1);
2408 return result;
2409 }
2410
2411 /* Convert from FMT to a DOUBLEST.
2412 FROM is the address of the extended float.
2413 Store the DOUBLEST in *TO. */
2414
2415 void
2416 floatformat_to_doublest (const struct floatformat *fmt, char *from,
2417 DOUBLEST *to)
2418 {
2419 unsigned char *ufrom = (unsigned char *) from;
2420 DOUBLEST dto;
2421 long exponent;
2422 unsigned long mant;
2423 unsigned int mant_bits, mant_off;
2424 int mant_bits_left;
2425 int special_exponent; /* It's a NaN, denorm or zero */
2426
2427 /* If the mantissa bits are not contiguous from one end of the
2428 mantissa to the other, we need to make a private copy of the
2429 source bytes that is in the right order since the unpacking
2430 algorithm assumes that the bits are contiguous.
2431
2432 Swap the bytes individually rather than accessing them through
2433 "long *" since we have no guarantee that they start on a long
2434 alignment, and also sizeof(long) for the host could be different
2435 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2436 for the target is 4. */
2437
2438 if (fmt->byteorder == floatformat_littlebyte_bigword)
2439 {
2440 static unsigned char *newfrom;
2441 unsigned char *swapin, *swapout;
2442 int longswaps;
2443
2444 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2445 longswaps >>= 3;
2446
2447 if (newfrom == NULL)
2448 {
2449 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2450 }
2451 swapout = newfrom;
2452 swapin = ufrom;
2453 ufrom = newfrom;
2454 while (longswaps-- > 0)
2455 {
2456 /* This is ugly, but efficient */
2457 *swapout++ = swapin[4];
2458 *swapout++ = swapin[5];
2459 *swapout++ = swapin[6];
2460 *swapout++ = swapin[7];
2461 *swapout++ = swapin[0];
2462 *swapout++ = swapin[1];
2463 *swapout++ = swapin[2];
2464 *swapout++ = swapin[3];
2465 swapin += 8;
2466 }
2467 }
2468
2469 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2470 fmt->exp_start, fmt->exp_len);
2471 /* Note that if exponent indicates a NaN, we can't really do anything useful
2472 (not knowing if the host has NaN's, or how to build one). So it will
2473 end up as an infinity or something close; that is OK. */
2474
2475 mant_bits_left = fmt->man_len;
2476 mant_off = fmt->man_start;
2477 dto = 0.0;
2478
2479 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2480
2481 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2482 we don't check for zero as the exponent doesn't matter. */
2483 if (!special_exponent)
2484 exponent -= fmt->exp_bias;
2485 else if (exponent == 0)
2486 exponent = 1 - fmt->exp_bias;
2487
2488 /* Build the result algebraically. Might go infinite, underflow, etc;
2489 who cares. */
2490
2491 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2492 increment the exponent by one to account for the integer bit. */
2493
2494 if (!special_exponent)
2495 {
2496 if (fmt->intbit == floatformat_intbit_no)
2497 dto = ldexp (1.0, exponent);
2498 else
2499 exponent++;
2500 }
2501
2502 while (mant_bits_left > 0)
2503 {
2504 mant_bits = min (mant_bits_left, 32);
2505
2506 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2507 mant_off, mant_bits);
2508
2509 dto += ldexp ((double) mant, exponent - mant_bits);
2510 exponent -= mant_bits;
2511 mant_off += mant_bits;
2512 mant_bits_left -= mant_bits;
2513 }
2514
2515 /* Negate it if negative. */
2516 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2517 dto = -dto;
2518 *to = dto;
2519 }
2520 \f
2521 static void put_field (unsigned char *, enum floatformat_byteorders,
2522 unsigned int,
2523 unsigned int, unsigned int, unsigned long);
2524
2525 /* Set a field which starts at START and is LEN bytes long. DATA and
2526 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2527 static void
2528 put_field (unsigned char *data, enum floatformat_byteorders order,
2529 unsigned int total_len, unsigned int start, unsigned int len,
2530 unsigned long stuff_to_put)
2531 {
2532 unsigned int cur_byte;
2533 int cur_bitshift;
2534
2535 /* Start at the least significant part of the field. */
2536 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2537 {
2538 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2539 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2540 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2541 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2542 - FLOATFORMAT_CHAR_BIT;
2543 }
2544 else
2545 {
2546 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2547 cur_bitshift =
2548 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2549 }
2550 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2551 {
2552 *(data + cur_byte) &=
2553 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2554 << (-cur_bitshift));
2555 *(data + cur_byte) |=
2556 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2557 }
2558 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2559 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2560 ++cur_byte;
2561 else
2562 --cur_byte;
2563
2564 /* Move towards the most significant part of the field. */
2565 while (cur_bitshift < len)
2566 {
2567 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2568 {
2569 /* This is the last byte. */
2570 *(data + cur_byte) &=
2571 ~((1 << (len - cur_bitshift)) - 1);
2572 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2573 }
2574 else
2575 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2576 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2577 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2578 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2579 ++cur_byte;
2580 else
2581 --cur_byte;
2582 }
2583 }
2584
2585 #ifdef HAVE_LONG_DOUBLE
2586 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2587 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2588 frexp, but operates on the long double data type. */
2589
2590 static long double ldfrexp (long double value, int *eptr);
2591
2592 static long double
2593 ldfrexp (long double value, int *eptr)
2594 {
2595 long double tmp;
2596 int exp;
2597
2598 /* Unfortunately, there are no portable functions for extracting the exponent
2599 of a long double, so we have to do it iteratively by multiplying or dividing
2600 by two until the fraction is between 0.5 and 1.0. */
2601
2602 if (value < 0.0l)
2603 value = -value;
2604
2605 tmp = 1.0l;
2606 exp = 0;
2607
2608 if (value >= tmp) /* Value >= 1.0 */
2609 while (value >= tmp)
2610 {
2611 tmp *= 2.0l;
2612 exp++;
2613 }
2614 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2615 {
2616 while (value < tmp)
2617 {
2618 tmp /= 2.0l;
2619 exp--;
2620 }
2621 tmp *= 2.0l;
2622 exp++;
2623 }
2624
2625 *eptr = exp;
2626 return value / tmp;
2627 }
2628 #endif /* HAVE_LONG_DOUBLE */
2629
2630
2631 /* The converse: convert the DOUBLEST *FROM to an extended float
2632 and store where TO points. Neither FROM nor TO have any alignment
2633 restrictions. */
2634
2635 void
2636 floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from,
2637 char *to)
2638 {
2639 DOUBLEST dfrom;
2640 int exponent;
2641 DOUBLEST mant;
2642 unsigned int mant_bits, mant_off;
2643 int mant_bits_left;
2644 unsigned char *uto = (unsigned char *) to;
2645
2646 memcpy (&dfrom, from, sizeof (dfrom));
2647 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2648 / FLOATFORMAT_CHAR_BIT);
2649 if (dfrom == 0)
2650 return; /* Result is zero */
2651 if (dfrom != dfrom) /* Result is NaN */
2652 {
2653 /* From is NaN */
2654 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2655 fmt->exp_len, fmt->exp_nan);
2656 /* Be sure it's not infinity, but NaN value is irrel */
2657 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2658 32, 1);
2659 return;
2660 }
2661
2662 /* If negative, set the sign bit. */
2663 if (dfrom < 0)
2664 {
2665 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2666 dfrom = -dfrom;
2667 }
2668
2669 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2670 {
2671 /* Infinity exponent is same as NaN's. */
2672 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2673 fmt->exp_len, fmt->exp_nan);
2674 /* Infinity mantissa is all zeroes. */
2675 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2676 fmt->man_len, 0);
2677 return;
2678 }
2679
2680 #ifdef HAVE_LONG_DOUBLE
2681 mant = ldfrexp (dfrom, &exponent);
2682 #else
2683 mant = frexp (dfrom, &exponent);
2684 #endif
2685
2686 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2687 exponent + fmt->exp_bias - 1);
2688
2689 mant_bits_left = fmt->man_len;
2690 mant_off = fmt->man_start;
2691 while (mant_bits_left > 0)
2692 {
2693 unsigned long mant_long;
2694 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2695
2696 mant *= 4294967296.0;
2697 mant_long = ((unsigned long) mant) & 0xffffffffL;
2698 mant -= mant_long;
2699
2700 /* If the integer bit is implicit, then we need to discard it.
2701 If we are discarding a zero, we should be (but are not) creating
2702 a denormalized number which means adjusting the exponent
2703 (I think). */
2704 if (mant_bits_left == fmt->man_len
2705 && fmt->intbit == floatformat_intbit_no)
2706 {
2707 mant_long <<= 1;
2708 mant_long &= 0xffffffffL;
2709 mant_bits -= 1;
2710 }
2711
2712 if (mant_bits < 32)
2713 {
2714 /* The bits we want are in the most significant MANT_BITS bits of
2715 mant_long. Move them to the least significant. */
2716 mant_long >>= 32 - mant_bits;
2717 }
2718
2719 put_field (uto, fmt->byteorder, fmt->totalsize,
2720 mant_off, mant_bits, mant_long);
2721 mant_off += mant_bits;
2722 mant_bits_left -= mant_bits;
2723 }
2724 if (fmt->byteorder == floatformat_littlebyte_bigword)
2725 {
2726 int count;
2727 unsigned char *swaplow = uto;
2728 unsigned char *swaphigh = uto + 4;
2729 unsigned char tmp;
2730
2731 for (count = 0; count < 4; count++)
2732 {
2733 tmp = *swaplow;
2734 *swaplow++ = *swaphigh;
2735 *swaphigh++ = tmp;
2736 }
2737 }
2738 }
2739
2740 /* Check if VAL (which is assumed to be a floating point number whose
2741 format is described by FMT) is negative. */
2742
2743 int
2744 floatformat_is_negative (const struct floatformat *fmt, char *val)
2745 {
2746 unsigned char *uval = (unsigned char *) val;
2747
2748 return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1);
2749 }
2750
2751 /* Check if VAL is "not a number" (NaN) for FMT. */
2752
2753 int
2754 floatformat_is_nan (const struct floatformat *fmt, char *val)
2755 {
2756 unsigned char *uval = (unsigned char *) val;
2757 long exponent;
2758 unsigned long mant;
2759 unsigned int mant_bits, mant_off;
2760 int mant_bits_left;
2761
2762 if (! fmt->exp_nan)
2763 return 0;
2764
2765 exponent = get_field (uval, fmt->byteorder, fmt->totalsize,
2766 fmt->exp_start, fmt->exp_len);
2767
2768 if (exponent != fmt->exp_nan)
2769 return 0;
2770
2771 mant_bits_left = fmt->man_len;
2772 mant_off = fmt->man_start;
2773
2774 while (mant_bits_left > 0)
2775 {
2776 mant_bits = min (mant_bits_left, 32);
2777
2778 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2779 mant_off, mant_bits);
2780
2781 /* If there is an explicit integer bit, mask it off. */
2782 if (mant_off == fmt->man_start
2783 && fmt->intbit == floatformat_intbit_yes)
2784 mant &= ~(1 << (mant_bits - 1));
2785
2786 if (mant)
2787 return 1;
2788
2789 mant_off += mant_bits;
2790 mant_bits_left -= mant_bits;
2791 }
2792
2793 return 0;
2794 }
2795
2796 /* Convert the mantissa of VAL (which is assumed to be a floating
2797 point number whose format is described by FMT) into a hexadecimal
2798 and store it in a static string. Return a pointer to that string. */
2799
2800 char *
2801 floatformat_mantissa (const struct floatformat *fmt, char *val)
2802 {
2803 unsigned char *uval = (unsigned char *) val;
2804 unsigned long mant;
2805 unsigned int mant_bits, mant_off;
2806 int mant_bits_left;
2807 static char res[50];
2808 char buf[9];
2809
2810 /* Make sure we have enough room to store the mantissa. */
2811 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
2812
2813 mant_off = fmt->man_start;
2814 mant_bits_left = fmt->man_len;
2815 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
2816
2817 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2818 mant_off, mant_bits);
2819
2820 sprintf (res, "%lx", mant);
2821
2822 mant_off += mant_bits;
2823 mant_bits_left -= mant_bits;
2824
2825 while (mant_bits_left > 0)
2826 {
2827 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2828 mant_off, 32);
2829
2830 sprintf (buf, "%08lx", mant);
2831 strcat (res, buf);
2832
2833 mant_off += 32;
2834 mant_bits_left -= 32;
2835 }
2836
2837 return res;
2838 }
2839
2840 /* print routines to handle variable size regs, etc. */
2841
2842 /* temporary storage using circular buffer */
2843 #define NUMCELLS 16
2844 #define CELLSIZE 32
2845 static char *
2846 get_cell (void)
2847 {
2848 static char buf[NUMCELLS][CELLSIZE];
2849 static int cell = 0;
2850 if (++cell >= NUMCELLS)
2851 cell = 0;
2852 return buf[cell];
2853 }
2854
2855 int
2856 strlen_paddr (void)
2857 {
2858 return (TARGET_ADDR_BIT / 8 * 2);
2859 }
2860
2861 char *
2862 paddr (CORE_ADDR addr)
2863 {
2864 return phex (addr, TARGET_ADDR_BIT / 8);
2865 }
2866
2867 char *
2868 paddr_nz (CORE_ADDR addr)
2869 {
2870 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2871 }
2872
2873 static void
2874 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2875 {
2876 /* steal code from valprint.c:print_decimal(). Should this worry
2877 about the real size of addr as the above does? */
2878 unsigned long temp[3];
2879 int i = 0;
2880 do
2881 {
2882 temp[i] = addr % (1000 * 1000 * 1000);
2883 addr /= (1000 * 1000 * 1000);
2884 i++;
2885 }
2886 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2887 switch (i)
2888 {
2889 case 1:
2890 sprintf (paddr_str, "%s%lu",
2891 sign, temp[0]);
2892 break;
2893 case 2:
2894 sprintf (paddr_str, "%s%lu%09lu",
2895 sign, temp[1], temp[0]);
2896 break;
2897 case 3:
2898 sprintf (paddr_str, "%s%lu%09lu%09lu",
2899 sign, temp[2], temp[1], temp[0]);
2900 break;
2901 default:
2902 internal_error (__FILE__, __LINE__, "failed internal consistency check");
2903 }
2904 }
2905
2906 char *
2907 paddr_u (CORE_ADDR addr)
2908 {
2909 char *paddr_str = get_cell ();
2910 decimal2str (paddr_str, "", addr);
2911 return paddr_str;
2912 }
2913
2914 char *
2915 paddr_d (LONGEST addr)
2916 {
2917 char *paddr_str = get_cell ();
2918 if (addr < 0)
2919 decimal2str (paddr_str, "-", -addr);
2920 else
2921 decimal2str (paddr_str, "", addr);
2922 return paddr_str;
2923 }
2924
2925 /* eliminate warning from compiler on 32-bit systems */
2926 static int thirty_two = 32;
2927
2928 char *
2929 phex (ULONGEST l, int sizeof_l)
2930 {
2931 char *str = get_cell ();
2932 switch (sizeof_l)
2933 {
2934 case 8:
2935 sprintf (str, "%08lx%08lx",
2936 (unsigned long) (l >> thirty_two),
2937 (unsigned long) (l & 0xffffffff));
2938 break;
2939 case 4:
2940 sprintf (str, "%08lx", (unsigned long) l);
2941 break;
2942 case 2:
2943 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2944 break;
2945 default:
2946 phex (l, sizeof (l));
2947 break;
2948 }
2949 return str;
2950 }
2951
2952 char *
2953 phex_nz (ULONGEST l, int sizeof_l)
2954 {
2955 char *str = get_cell ();
2956 switch (sizeof_l)
2957 {
2958 case 8:
2959 {
2960 unsigned long high = (unsigned long) (l >> thirty_two);
2961 if (high == 0)
2962 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2963 else
2964 sprintf (str, "%lx%08lx",
2965 high, (unsigned long) (l & 0xffffffff));
2966 break;
2967 }
2968 case 4:
2969 sprintf (str, "%lx", (unsigned long) l);
2970 break;
2971 case 2:
2972 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2973 break;
2974 default:
2975 phex_nz (l, sizeof (l));
2976 break;
2977 }
2978 return str;
2979 }
2980
2981
2982 /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2983 using the target's conversion routines. */
2984 CORE_ADDR
2985 host_pointer_to_address (void *ptr)
2986 {
2987 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
2988 internal_error (__FILE__, __LINE__,
2989 "core_addr_to_void_ptr: bad cast");
2990 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2991 }
2992
2993 void *
2994 address_to_host_pointer (CORE_ADDR addr)
2995 {
2996 void *ptr;
2997 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
2998 internal_error (__FILE__, __LINE__,
2999 "core_addr_to_void_ptr: bad cast");
3000 ADDRESS_TO_POINTER (builtin_type_void_data_ptr, &ptr, addr);
3001 return ptr;
3002 }
This page took 0.109464 seconds and 4 git commands to generate.