Remove the global stop_step in favour of a per-thread
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_assert.h"
24 #include <ctype.h>
25 #include "gdb_string.h"
26 #include "event-top.h"
27 #include "exceptions.h"
28
29 #ifdef TUI
30 #include "tui/tui.h" /* For tui_get_command_dimension. */
31 #endif
32
33 #ifdef __GO32__
34 #include <pc.h>
35 #endif
36
37 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
38 #ifdef reg
39 #undef reg
40 #endif
41
42 #include <signal.h>
43 #include "gdbcmd.h"
44 #include "serial.h"
45 #include "bfd.h"
46 #include "target.h"
47 #include "demangle.h"
48 #include "expression.h"
49 #include "language.h"
50 #include "charset.h"
51 #include "annotate.h"
52 #include "filenames.h"
53 #include "symfile.h"
54 #include "gdb_obstack.h"
55 #include "gdbcore.h"
56 #include "top.h"
57
58 #include "inferior.h" /* for signed_pointer_to_address */
59
60 #include <sys/param.h> /* For MAXPATHLEN */
61
62 #include "gdb_curses.h"
63
64 #include "readline/readline.h"
65
66 #include <sys/time.h>
67 #include <time.h>
68
69 #if !HAVE_DECL_MALLOC
70 extern PTR malloc (); /* OK: PTR */
71 #endif
72 #if !HAVE_DECL_REALLOC
73 extern PTR realloc (); /* OK: PTR */
74 #endif
75 #if !HAVE_DECL_FREE
76 extern void free ();
77 #endif
78
79 /* readline defines this. */
80 #undef savestring
81
82 void (*deprecated_error_begin_hook) (void);
83
84 /* Prototypes for local functions */
85
86 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
87 va_list, int) ATTR_FORMAT (printf, 2, 0);
88
89 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
90
91 static void do_my_cleanups (struct cleanup **, struct cleanup *);
92
93 static void prompt_for_continue (void);
94
95 static void set_screen_size (void);
96 static void set_width (void);
97
98 /* A flag indicating whether to timestamp debugging messages. */
99
100 static int debug_timestamp = 0;
101
102 /* Chain of cleanup actions established with make_cleanup,
103 to be executed if an error happens. */
104
105 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
106 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
107
108 /* Pointer to what is left to do for an execution command after the
109 target stops. Used only in asynchronous mode, by targets that
110 support async execution. The finish and until commands use it. So
111 does the target extended-remote command. */
112 struct continuation *cmd_continuation;
113 struct continuation *intermediate_continuation;
114
115 /* Nonzero if we have job control. */
116
117 int job_control;
118
119 /* Nonzero means a quit has been requested. */
120
121 int quit_flag;
122
123 /* Nonzero means quit immediately if Control-C is typed now, rather
124 than waiting until QUIT is executed. Be careful in setting this;
125 code which executes with immediate_quit set has to be very careful
126 about being able to deal with being interrupted at any time. It is
127 almost always better to use QUIT; the only exception I can think of
128 is being able to quit out of a system call (using EINTR loses if
129 the SIGINT happens between the previous QUIT and the system call).
130 To immediately quit in the case in which a SIGINT happens between
131 the previous QUIT and setting immediate_quit (desirable anytime we
132 expect to block), call QUIT after setting immediate_quit. */
133
134 int immediate_quit;
135
136 /* Nonzero means that encoded C++/ObjC names should be printed out in their
137 C++/ObjC form rather than raw. */
138
139 int demangle = 1;
140 static void
141 show_demangle (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("\
145 Demangling of encoded C++/ObjC names when displaying symbols is %s.\n"),
146 value);
147 }
148
149 /* Nonzero means that encoded C++/ObjC names should be printed out in their
150 C++/ObjC form even in assembler language displays. If this is set, but
151 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
152
153 int asm_demangle = 0;
154 static void
155 show_asm_demangle (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("\
159 Demangling of C++/ObjC names in disassembly listings is %s.\n"),
160 value);
161 }
162
163 /* Nonzero means that strings with character values >0x7F should be printed
164 as octal escapes. Zero means just print the value (e.g. it's an
165 international character, and the terminal or window can cope.) */
166
167 int sevenbit_strings = 0;
168 static void
169 show_sevenbit_strings (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("\
173 Printing of 8-bit characters in strings as \\nnn is %s.\n"),
174 value);
175 }
176
177 /* String to be printed before error messages, if any. */
178
179 char *error_pre_print;
180
181 /* String to be printed before quit messages, if any. */
182
183 char *quit_pre_print;
184
185 /* String to be printed before warning messages, if any. */
186
187 char *warning_pre_print = "\nwarning: ";
188
189 int pagination_enabled = 1;
190 static void
191 show_pagination_enabled (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("State of pagination is %s.\n"), value);
195 }
196
197 \f
198
199 /* Add a new cleanup to the cleanup_chain,
200 and return the previous chain pointer
201 to be passed later to do_cleanups or discard_cleanups.
202 Args are FUNCTION to clean up with, and ARG to pass to it. */
203
204 struct cleanup *
205 make_cleanup (make_cleanup_ftype *function, void *arg)
206 {
207 return make_my_cleanup (&cleanup_chain, function, arg);
208 }
209
210 struct cleanup *
211 make_cleanup_dtor (make_cleanup_ftype *function, void *arg,
212 void (*dtor) (void *))
213 {
214 return make_my_cleanup2 (&cleanup_chain,
215 function, arg, dtor);
216 }
217
218 struct cleanup *
219 make_final_cleanup (make_cleanup_ftype *function, void *arg)
220 {
221 return make_my_cleanup (&final_cleanup_chain, function, arg);
222 }
223
224 static void
225 do_freeargv (void *arg)
226 {
227 freeargv ((char **) arg);
228 }
229
230 struct cleanup *
231 make_cleanup_freeargv (char **arg)
232 {
233 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
234 }
235
236 static void
237 do_bfd_close_cleanup (void *arg)
238 {
239 bfd_close (arg);
240 }
241
242 struct cleanup *
243 make_cleanup_bfd_close (bfd *abfd)
244 {
245 return make_cleanup (do_bfd_close_cleanup, abfd);
246 }
247
248 static void
249 do_close_cleanup (void *arg)
250 {
251 int *fd = arg;
252 close (*fd);
253 xfree (fd);
254 }
255
256 struct cleanup *
257 make_cleanup_close (int fd)
258 {
259 int *saved_fd = xmalloc (sizeof (fd));
260 *saved_fd = fd;
261 return make_cleanup (do_close_cleanup, saved_fd);
262 }
263
264 static void
265 do_ui_file_delete (void *arg)
266 {
267 ui_file_delete (arg);
268 }
269
270 struct cleanup *
271 make_cleanup_ui_file_delete (struct ui_file *arg)
272 {
273 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
274 }
275
276 static void
277 do_free_section_addr_info (void *arg)
278 {
279 free_section_addr_info (arg);
280 }
281
282 struct cleanup *
283 make_cleanup_free_section_addr_info (struct section_addr_info *addrs)
284 {
285 return make_my_cleanup (&cleanup_chain, do_free_section_addr_info, addrs);
286 }
287
288 struct restore_integer_closure
289 {
290 int *variable;
291 int value;
292 };
293
294 static void
295 restore_integer (void *p)
296 {
297 struct restore_integer_closure *closure = p;
298 *(closure->variable) = closure->value;
299 }
300
301 /* Remember the current value of *VARIABLE and make it restored when the cleanup
302 is run. */
303 struct cleanup *
304 make_cleanup_restore_integer (int *variable)
305 {
306 struct restore_integer_closure *c =
307 xmalloc (sizeof (struct restore_integer_closure));
308 c->variable = variable;
309 c->value = *variable;
310
311 return make_my_cleanup2 (&cleanup_chain, restore_integer, (void *)c,
312 xfree);
313 }
314
315 struct cleanup *
316 make_my_cleanup2 (struct cleanup **pmy_chain, make_cleanup_ftype *function,
317 void *arg, void (*free_arg) (void *))
318 {
319 struct cleanup *new
320 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
321 struct cleanup *old_chain = *pmy_chain;
322
323 new->next = *pmy_chain;
324 new->function = function;
325 new->free_arg = free_arg;
326 new->arg = arg;
327 *pmy_chain = new;
328
329 return old_chain;
330 }
331
332 struct cleanup *
333 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
334 void *arg)
335 {
336 return make_my_cleanup2 (pmy_chain, function, arg, NULL);
337 }
338
339 /* Discard cleanups and do the actions they describe
340 until we get back to the point OLD_CHAIN in the cleanup_chain. */
341
342 void
343 do_cleanups (struct cleanup *old_chain)
344 {
345 do_my_cleanups (&cleanup_chain, old_chain);
346 }
347
348 void
349 do_final_cleanups (struct cleanup *old_chain)
350 {
351 do_my_cleanups (&final_cleanup_chain, old_chain);
352 }
353
354 static void
355 do_my_cleanups (struct cleanup **pmy_chain,
356 struct cleanup *old_chain)
357 {
358 struct cleanup *ptr;
359 while ((ptr = *pmy_chain) != old_chain)
360 {
361 *pmy_chain = ptr->next; /* Do this first incase recursion */
362 (*ptr->function) (ptr->arg);
363 if (ptr->free_arg)
364 (*ptr->free_arg) (ptr->arg);
365 xfree (ptr);
366 }
367 }
368
369 /* Discard cleanups, not doing the actions they describe,
370 until we get back to the point OLD_CHAIN in the cleanup_chain. */
371
372 void
373 discard_cleanups (struct cleanup *old_chain)
374 {
375 discard_my_cleanups (&cleanup_chain, old_chain);
376 }
377
378 void
379 discard_final_cleanups (struct cleanup *old_chain)
380 {
381 discard_my_cleanups (&final_cleanup_chain, old_chain);
382 }
383
384 void
385 discard_my_cleanups (struct cleanup **pmy_chain,
386 struct cleanup *old_chain)
387 {
388 struct cleanup *ptr;
389 while ((ptr = *pmy_chain) != old_chain)
390 {
391 *pmy_chain = ptr->next;
392 if (ptr->free_arg)
393 (*ptr->free_arg) (ptr->arg);
394 xfree (ptr);
395 }
396 }
397
398 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
399 struct cleanup *
400 save_cleanups (void)
401 {
402 return save_my_cleanups (&cleanup_chain);
403 }
404
405 struct cleanup *
406 save_final_cleanups (void)
407 {
408 return save_my_cleanups (&final_cleanup_chain);
409 }
410
411 struct cleanup *
412 save_my_cleanups (struct cleanup **pmy_chain)
413 {
414 struct cleanup *old_chain = *pmy_chain;
415
416 *pmy_chain = 0;
417 return old_chain;
418 }
419
420 /* Restore the cleanup chain from a previously saved chain. */
421 void
422 restore_cleanups (struct cleanup *chain)
423 {
424 restore_my_cleanups (&cleanup_chain, chain);
425 }
426
427 void
428 restore_final_cleanups (struct cleanup *chain)
429 {
430 restore_my_cleanups (&final_cleanup_chain, chain);
431 }
432
433 void
434 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
435 {
436 *pmy_chain = chain;
437 }
438
439 /* This function is useful for cleanups.
440 Do
441
442 foo = xmalloc (...);
443 old_chain = make_cleanup (free_current_contents, &foo);
444
445 to arrange to free the object thus allocated. */
446
447 void
448 free_current_contents (void *ptr)
449 {
450 void **location = ptr;
451 if (location == NULL)
452 internal_error (__FILE__, __LINE__,
453 _("free_current_contents: NULL pointer"));
454 if (*location != NULL)
455 {
456 xfree (*location);
457 *location = NULL;
458 }
459 }
460
461 /* Provide a known function that does nothing, to use as a base for
462 for a possibly long chain of cleanups. This is useful where we
463 use the cleanup chain for handling normal cleanups as well as dealing
464 with cleanups that need to be done as a result of a call to error().
465 In such cases, we may not be certain where the first cleanup is, unless
466 we have a do-nothing one to always use as the base. */
467
468 void
469 null_cleanup (void *arg)
470 {
471 }
472
473 /* Continuations are implemented as cleanups internally. Inherit from
474 cleanups. */
475 struct continuation
476 {
477 struct cleanup base;
478 };
479
480 /* Add a continuation to the continuation list, the global list
481 cmd_continuation. The new continuation will be added at the
482 front. */
483 void
484 add_continuation (void (*continuation_hook) (void *), void *args,
485 void (*continuation_free_args) (void *))
486 {
487 struct cleanup *as_cleanup = &cmd_continuation->base;
488 make_cleanup_ftype *continuation_hook_fn = continuation_hook;
489
490 make_my_cleanup2 (&as_cleanup,
491 continuation_hook_fn,
492 args,
493 continuation_free_args);
494
495 cmd_continuation = (struct continuation *) as_cleanup;
496 }
497
498 /* Walk down the cmd_continuation list, and execute all the
499 continuations. There is a problem though. In some cases new
500 continuations may be added while we are in the middle of this
501 loop. If this happens they will be added in the front, and done
502 before we have a chance of exhausting those that were already
503 there. We need to then save the beginning of the list in a pointer
504 and do the continuations from there on, instead of using the
505 global beginning of list as our iteration pointer. */
506 void
507 do_all_continuations (void)
508 {
509 struct cleanup *continuation_ptr;
510
511 /* Copy the list header into another pointer, and set the global
512 list header to null, so that the global list can change as a side
513 effect of invoking the continuations and the processing of the
514 preexisting continuations will not be affected. */
515
516 continuation_ptr = &cmd_continuation->base;
517 cmd_continuation = NULL;
518
519 /* Work now on the list we have set aside. */
520 do_my_cleanups (&continuation_ptr, NULL);
521 }
522
523 /* Walk down the cmd_continuation list, and get rid of all the
524 continuations. */
525 void
526 discard_all_continuations (void)
527 {
528 struct cleanup *continuation_ptr = &cmd_continuation->base;
529 discard_my_cleanups (&continuation_ptr, NULL);
530 cmd_continuation = NULL;
531 }
532
533 /* Add a continuation to the continuation list, the global list
534 intermediate_continuation. The new continuation will be added at
535 the front. */
536 void
537 add_intermediate_continuation (void (*continuation_hook)
538 (void *), void *args,
539 void (*continuation_free_args) (void *))
540 {
541 struct cleanup *as_cleanup = &intermediate_continuation->base;
542 make_cleanup_ftype *continuation_hook_fn = continuation_hook;
543
544 make_my_cleanup2 (&as_cleanup,
545 continuation_hook_fn,
546 args,
547 continuation_free_args);
548
549 intermediate_continuation = (struct continuation *) as_cleanup;
550 }
551
552 /* Walk down the cmd_continuation list, and execute all the
553 continuations. There is a problem though. In some cases new
554 continuations may be added while we are in the middle of this
555 loop. If this happens they will be added in the front, and done
556 before we have a chance of exhausting those that were already
557 there. We need to then save the beginning of the list in a pointer
558 and do the continuations from there on, instead of using the
559 global beginning of list as our iteration pointer.*/
560 void
561 do_all_intermediate_continuations (void)
562 {
563 struct cleanup *continuation_ptr;
564
565 /* Copy the list header into another pointer, and set the global
566 list header to null, so that the global list can change as a side
567 effect of invoking the continuations and the processing of the
568 preexisting continuations will not be affected. */
569
570 continuation_ptr = &intermediate_continuation->base;
571 intermediate_continuation = NULL;
572
573 /* Work now on the list we have set aside. */
574 do_my_cleanups (&continuation_ptr, NULL);
575 }
576
577 /* Walk down the cmd_continuation list, and get rid of all the
578 continuations. */
579 void
580 discard_all_intermediate_continuations (void)
581 {
582 struct cleanup *continuation_ptr = &intermediate_continuation->base;
583 discard_my_cleanups (&continuation_ptr, NULL);
584 continuation_ptr = NULL;
585 }
586 \f
587
588
589 /* Print a warning message. The first argument STRING is the warning
590 message, used as an fprintf format string, the second is the
591 va_list of arguments for that string. A warning is unfiltered (not
592 paginated) so that the user does not need to page through each
593 screen full of warnings when there are lots of them. */
594
595 void
596 vwarning (const char *string, va_list args)
597 {
598 if (deprecated_warning_hook)
599 (*deprecated_warning_hook) (string, args);
600 else
601 {
602 target_terminal_ours ();
603 wrap_here (""); /* Force out any buffered output */
604 gdb_flush (gdb_stdout);
605 if (warning_pre_print)
606 fputs_unfiltered (warning_pre_print, gdb_stderr);
607 vfprintf_unfiltered (gdb_stderr, string, args);
608 fprintf_unfiltered (gdb_stderr, "\n");
609 va_end (args);
610 }
611 }
612
613 /* Print a warning message.
614 The first argument STRING is the warning message, used as a fprintf string,
615 and the remaining args are passed as arguments to it.
616 The primary difference between warnings and errors is that a warning
617 does not force the return to command level. */
618
619 void
620 warning (const char *string, ...)
621 {
622 va_list args;
623 va_start (args, string);
624 vwarning (string, args);
625 va_end (args);
626 }
627
628 /* Print an error message and return to command level.
629 The first argument STRING is the error message, used as a fprintf string,
630 and the remaining args are passed as arguments to it. */
631
632 NORETURN void
633 verror (const char *string, va_list args)
634 {
635 throw_verror (GENERIC_ERROR, string, args);
636 }
637
638 NORETURN void
639 error (const char *string, ...)
640 {
641 va_list args;
642 va_start (args, string);
643 throw_verror (GENERIC_ERROR, string, args);
644 va_end (args);
645 }
646
647 /* Print an error message and quit.
648 The first argument STRING is the error message, used as a fprintf string,
649 and the remaining args are passed as arguments to it. */
650
651 NORETURN void
652 vfatal (const char *string, va_list args)
653 {
654 throw_vfatal (string, args);
655 }
656
657 NORETURN void
658 fatal (const char *string, ...)
659 {
660 va_list args;
661 va_start (args, string);
662 throw_vfatal (string, args);
663 va_end (args);
664 }
665
666 NORETURN void
667 error_stream (struct ui_file *stream)
668 {
669 long len;
670 char *message = ui_file_xstrdup (stream, &len);
671 make_cleanup (xfree, message);
672 error (("%s"), message);
673 }
674
675 /* Print a message reporting an internal error/warning. Ask the user
676 if they want to continue, dump core, or just exit. Return
677 something to indicate a quit. */
678
679 struct internal_problem
680 {
681 const char *name;
682 /* FIXME: cagney/2002-08-15: There should be ``maint set/show''
683 commands available for controlling these variables. */
684 enum auto_boolean should_quit;
685 enum auto_boolean should_dump_core;
686 };
687
688 /* Report a problem, internal to GDB, to the user. Once the problem
689 has been reported, and assuming GDB didn't quit, the caller can
690 either allow execution to resume or throw an error. */
691
692 static void ATTR_FORMAT (printf, 4, 0)
693 internal_vproblem (struct internal_problem *problem,
694 const char *file, int line, const char *fmt, va_list ap)
695 {
696 static int dejavu;
697 int quit_p;
698 int dump_core_p;
699 char *reason;
700
701 /* Don't allow infinite error/warning recursion. */
702 {
703 static char msg[] = "Recursive internal problem.\n";
704 switch (dejavu)
705 {
706 case 0:
707 dejavu = 1;
708 break;
709 case 1:
710 dejavu = 2;
711 fputs_unfiltered (msg, gdb_stderr);
712 abort (); /* NOTE: GDB has only three calls to abort(). */
713 default:
714 dejavu = 3;
715 write (STDERR_FILENO, msg, sizeof (msg));
716 exit (1);
717 }
718 }
719
720 /* Try to get the message out and at the start of a new line. */
721 target_terminal_ours ();
722 begin_line ();
723
724 /* Create a string containing the full error/warning message. Need
725 to call query with this full string, as otherwize the reason
726 (error/warning) and question become separated. Format using a
727 style similar to a compiler error message. Include extra detail
728 so that the user knows that they are living on the edge. */
729 {
730 char *msg;
731 msg = xstrvprintf (fmt, ap);
732 reason = xstrprintf ("\
733 %s:%d: %s: %s\n\
734 A problem internal to GDB has been detected,\n\
735 further debugging may prove unreliable.", file, line, problem->name, msg);
736 xfree (msg);
737 make_cleanup (xfree, reason);
738 }
739
740 switch (problem->should_quit)
741 {
742 case AUTO_BOOLEAN_AUTO:
743 /* Default (yes/batch case) is to quit GDB. When in batch mode
744 this lessens the likelhood of GDB going into an infinate
745 loop. */
746 quit_p = query (_("%s\nQuit this debugging session? "), reason);
747 break;
748 case AUTO_BOOLEAN_TRUE:
749 quit_p = 1;
750 break;
751 case AUTO_BOOLEAN_FALSE:
752 quit_p = 0;
753 break;
754 default:
755 internal_error (__FILE__, __LINE__, _("bad switch"));
756 }
757
758 switch (problem->should_dump_core)
759 {
760 case AUTO_BOOLEAN_AUTO:
761 /* Default (yes/batch case) is to dump core. This leaves a GDB
762 `dropping' so that it is easier to see that something went
763 wrong in GDB. */
764 dump_core_p = query (_("%s\nCreate a core file of GDB? "), reason);
765 break;
766 break;
767 case AUTO_BOOLEAN_TRUE:
768 dump_core_p = 1;
769 break;
770 case AUTO_BOOLEAN_FALSE:
771 dump_core_p = 0;
772 break;
773 default:
774 internal_error (__FILE__, __LINE__, _("bad switch"));
775 }
776
777 if (quit_p)
778 {
779 if (dump_core_p)
780 abort (); /* NOTE: GDB has only three calls to abort(). */
781 else
782 exit (1);
783 }
784 else
785 {
786 if (dump_core_p)
787 {
788 #ifdef HAVE_WORKING_FORK
789 if (fork () == 0)
790 abort (); /* NOTE: GDB has only three calls to abort(). */
791 #endif
792 }
793 }
794
795 dejavu = 0;
796 }
797
798 static struct internal_problem internal_error_problem = {
799 "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
800 };
801
802 NORETURN void
803 internal_verror (const char *file, int line, const char *fmt, va_list ap)
804 {
805 internal_vproblem (&internal_error_problem, file, line, fmt, ap);
806 deprecated_throw_reason (RETURN_ERROR);
807 }
808
809 NORETURN void
810 internal_error (const char *file, int line, const char *string, ...)
811 {
812 va_list ap;
813 va_start (ap, string);
814 internal_verror (file, line, string, ap);
815 va_end (ap);
816 }
817
818 static struct internal_problem internal_warning_problem = {
819 "internal-warning", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
820 };
821
822 void
823 internal_vwarning (const char *file, int line, const char *fmt, va_list ap)
824 {
825 internal_vproblem (&internal_warning_problem, file, line, fmt, ap);
826 }
827
828 void
829 internal_warning (const char *file, int line, const char *string, ...)
830 {
831 va_list ap;
832 va_start (ap, string);
833 internal_vwarning (file, line, string, ap);
834 va_end (ap);
835 }
836
837 /* Print the system error message for errno, and also mention STRING
838 as the file name for which the error was encountered.
839 Then return to command level. */
840
841 NORETURN void
842 perror_with_name (const char *string)
843 {
844 char *err;
845 char *combined;
846
847 err = safe_strerror (errno);
848 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
849 strcpy (combined, string);
850 strcat (combined, ": ");
851 strcat (combined, err);
852
853 /* I understand setting these is a matter of taste. Still, some people
854 may clear errno but not know about bfd_error. Doing this here is not
855 unreasonable. */
856 bfd_set_error (bfd_error_no_error);
857 errno = 0;
858
859 error (_("%s."), combined);
860 }
861
862 /* Print the system error message for ERRCODE, and also mention STRING
863 as the file name for which the error was encountered. */
864
865 void
866 print_sys_errmsg (const char *string, int errcode)
867 {
868 char *err;
869 char *combined;
870
871 err = safe_strerror (errcode);
872 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
873 strcpy (combined, string);
874 strcat (combined, ": ");
875 strcat (combined, err);
876
877 /* We want anything which was printed on stdout to come out first, before
878 this message. */
879 gdb_flush (gdb_stdout);
880 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
881 }
882
883 /* Control C eventually causes this to be called, at a convenient time. */
884
885 void
886 quit (void)
887 {
888 #ifdef __MSDOS__
889 /* No steenking SIGINT will ever be coming our way when the
890 program is resumed. Don't lie. */
891 fatal ("Quit");
892 #else
893 if (job_control
894 /* If there is no terminal switching for this target, then we can't
895 possibly get screwed by the lack of job control. */
896 || current_target.to_terminal_ours == NULL)
897 fatal ("Quit");
898 else
899 fatal ("Quit (expect signal SIGINT when the program is resumed)");
900 #endif
901 }
902
903 \f
904 /* Called when a memory allocation fails, with the number of bytes of
905 memory requested in SIZE. */
906
907 NORETURN void
908 nomem (long size)
909 {
910 if (size > 0)
911 {
912 internal_error (__FILE__, __LINE__,
913 _("virtual memory exhausted: can't allocate %ld bytes."),
914 size);
915 }
916 else
917 {
918 internal_error (__FILE__, __LINE__, _("virtual memory exhausted."));
919 }
920 }
921
922 /* The xmalloc() (libiberty.h) family of memory management routines.
923
924 These are like the ISO-C malloc() family except that they implement
925 consistent semantics and guard against typical memory management
926 problems. */
927
928 /* NOTE: These are declared using PTR to ensure consistency with
929 "libiberty.h". xfree() is GDB local. */
930
931 PTR /* OK: PTR */
932 xmalloc (size_t size)
933 {
934 void *val;
935
936 /* See libiberty/xmalloc.c. This function need's to match that's
937 semantics. It never returns NULL. */
938 if (size == 0)
939 size = 1;
940
941 val = malloc (size); /* OK: malloc */
942 if (val == NULL)
943 nomem (size);
944
945 return (val);
946 }
947
948 void *
949 xzalloc (size_t size)
950 {
951 return xcalloc (1, size);
952 }
953
954 PTR /* OK: PTR */
955 xrealloc (PTR ptr, size_t size) /* OK: PTR */
956 {
957 void *val;
958
959 /* See libiberty/xmalloc.c. This function need's to match that's
960 semantics. It never returns NULL. */
961 if (size == 0)
962 size = 1;
963
964 if (ptr != NULL)
965 val = realloc (ptr, size); /* OK: realloc */
966 else
967 val = malloc (size); /* OK: malloc */
968 if (val == NULL)
969 nomem (size);
970
971 return (val);
972 }
973
974 PTR /* OK: PTR */
975 xcalloc (size_t number, size_t size)
976 {
977 void *mem;
978
979 /* See libiberty/xmalloc.c. This function need's to match that's
980 semantics. It never returns NULL. */
981 if (number == 0 || size == 0)
982 {
983 number = 1;
984 size = 1;
985 }
986
987 mem = calloc (number, size); /* OK: xcalloc */
988 if (mem == NULL)
989 nomem (number * size);
990
991 return mem;
992 }
993
994 void
995 xfree (void *ptr)
996 {
997 if (ptr != NULL)
998 free (ptr); /* OK: free */
999 }
1000 \f
1001
1002 /* Like asprintf/vasprintf but get an internal_error if the call
1003 fails. */
1004
1005 char *
1006 xstrprintf (const char *format, ...)
1007 {
1008 char *ret;
1009 va_list args;
1010 va_start (args, format);
1011 ret = xstrvprintf (format, args);
1012 va_end (args);
1013 return ret;
1014 }
1015
1016 void
1017 xasprintf (char **ret, const char *format, ...)
1018 {
1019 va_list args;
1020 va_start (args, format);
1021 (*ret) = xstrvprintf (format, args);
1022 va_end (args);
1023 }
1024
1025 void
1026 xvasprintf (char **ret, const char *format, va_list ap)
1027 {
1028 (*ret) = xstrvprintf (format, ap);
1029 }
1030
1031 char *
1032 xstrvprintf (const char *format, va_list ap)
1033 {
1034 char *ret = NULL;
1035 int status = vasprintf (&ret, format, ap);
1036 /* NULL is returned when there was a memory allocation problem, or
1037 any other error (for instance, a bad format string). A negative
1038 status (the printed length) with a non-NULL buffer should never
1039 happen, but just to be sure. */
1040 if (ret == NULL || status < 0)
1041 internal_error (__FILE__, __LINE__, _("vasprintf call failed"));
1042 return ret;
1043 }
1044
1045 int
1046 xsnprintf (char *str, size_t size, const char *format, ...)
1047 {
1048 va_list args;
1049 int ret;
1050
1051 va_start (args, format);
1052 ret = vsnprintf (str, size, format, args);
1053 gdb_assert (ret < size);
1054 va_end (args);
1055
1056 return ret;
1057 }
1058
1059 /* My replacement for the read system call.
1060 Used like `read' but keeps going if `read' returns too soon. */
1061
1062 int
1063 myread (int desc, char *addr, int len)
1064 {
1065 int val;
1066 int orglen = len;
1067
1068 while (len > 0)
1069 {
1070 val = read (desc, addr, len);
1071 if (val < 0)
1072 return val;
1073 if (val == 0)
1074 return orglen - len;
1075 len -= val;
1076 addr += val;
1077 }
1078 return orglen;
1079 }
1080 \f
1081 /* Make a copy of the string at PTR with SIZE characters
1082 (and add a null character at the end in the copy).
1083 Uses malloc to get the space. Returns the address of the copy. */
1084
1085 char *
1086 savestring (const char *ptr, size_t size)
1087 {
1088 char *p = (char *) xmalloc (size + 1);
1089 memcpy (p, ptr, size);
1090 p[size] = 0;
1091 return p;
1092 }
1093
1094 void
1095 print_spaces (int n, struct ui_file *file)
1096 {
1097 fputs_unfiltered (n_spaces (n), file);
1098 }
1099
1100 /* Print a host address. */
1101
1102 void
1103 gdb_print_host_address (const void *addr, struct ui_file *stream)
1104 {
1105
1106 /* We could use the %p conversion specifier to fprintf if we had any
1107 way of knowing whether this host supports it. But the following
1108 should work on the Alpha and on 32 bit machines. */
1109
1110 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1111 }
1112 \f
1113
1114 /* This function supports the query, nquery, and yquery functions.
1115 Ask user a y-or-n question and return 0 if answer is no, 1 if
1116 answer is yes, or default the answer to the specified default
1117 (for yquery or nquery). DEFCHAR may be 'y' or 'n' to provide a
1118 default answer, or '\0' for no default.
1119 CTLSTR is the control string and should end in "? ". It should
1120 not say how to answer, because we do that.
1121 ARGS are the arguments passed along with the CTLSTR argument to
1122 printf. */
1123
1124 static int ATTR_FORMAT (printf, 1, 0)
1125 defaulted_query (const char *ctlstr, const char defchar, va_list args)
1126 {
1127 int answer;
1128 int ans2;
1129 int retval;
1130 int def_value;
1131 char def_answer, not_def_answer;
1132 char *y_string, *n_string, *question;
1133
1134 /* Set up according to which answer is the default. */
1135 if (defchar == '\0')
1136 {
1137 def_value = 1;
1138 def_answer = 'Y';
1139 not_def_answer = 'N';
1140 y_string = "y";
1141 n_string = "n";
1142 }
1143 else if (defchar == 'y')
1144 {
1145 def_value = 1;
1146 def_answer = 'Y';
1147 not_def_answer = 'N';
1148 y_string = "[y]";
1149 n_string = "n";
1150 }
1151 else
1152 {
1153 def_value = 0;
1154 def_answer = 'N';
1155 not_def_answer = 'Y';
1156 y_string = "y";
1157 n_string = "[n]";
1158 }
1159
1160 /* Automatically answer the default value if the user did not want
1161 prompts. */
1162 if (! caution)
1163 return def_value;
1164
1165 /* If input isn't coming from the user directly, just say what
1166 question we're asking, and then answer "yes" automatically. This
1167 way, important error messages don't get lost when talking to GDB
1168 over a pipe. */
1169 if (! input_from_terminal_p ())
1170 {
1171 wrap_here ("");
1172 vfprintf_filtered (gdb_stdout, ctlstr, args);
1173
1174 printf_filtered (_("(%s or %s) [answered %c; input not from terminal]\n"),
1175 y_string, n_string, def_answer);
1176 gdb_flush (gdb_stdout);
1177
1178 return def_value;
1179 }
1180
1181 /* Automatically answer the default value if input is not from the user
1182 directly, or if the user did not want prompts. */
1183 if (!input_from_terminal_p () || !caution)
1184 return def_value;
1185
1186 if (deprecated_query_hook)
1187 {
1188 return deprecated_query_hook (ctlstr, args);
1189 }
1190
1191 /* Format the question outside of the loop, to avoid reusing args. */
1192 question = xstrvprintf (ctlstr, args);
1193
1194 while (1)
1195 {
1196 wrap_here (""); /* Flush any buffered output */
1197 gdb_flush (gdb_stdout);
1198
1199 if (annotation_level > 1)
1200 printf_filtered (("\n\032\032pre-query\n"));
1201
1202 fputs_filtered (question, gdb_stdout);
1203 printf_filtered (_("(%s or %s) "), y_string, n_string);
1204
1205 if (annotation_level > 1)
1206 printf_filtered (("\n\032\032query\n"));
1207
1208 wrap_here ("");
1209 gdb_flush (gdb_stdout);
1210
1211 answer = fgetc (stdin);
1212 clearerr (stdin); /* in case of C-d */
1213 if (answer == EOF) /* C-d */
1214 {
1215 printf_filtered ("EOF [assumed %c]\n", def_answer);
1216 retval = def_value;
1217 break;
1218 }
1219 /* Eat rest of input line, to EOF or newline */
1220 if (answer != '\n')
1221 do
1222 {
1223 ans2 = fgetc (stdin);
1224 clearerr (stdin);
1225 }
1226 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1227
1228 if (answer >= 'a')
1229 answer -= 040;
1230 /* Check answer. For the non-default, the user must specify
1231 the non-default explicitly. */
1232 if (answer == not_def_answer)
1233 {
1234 retval = !def_value;
1235 break;
1236 }
1237 /* Otherwise, if a default was specified, the user may either
1238 specify the required input or have it default by entering
1239 nothing. */
1240 if (answer == def_answer
1241 || (defchar != '\0' &&
1242 (answer == '\n' || answer == '\r' || answer == EOF)))
1243 {
1244 retval = def_value;
1245 break;
1246 }
1247 /* Invalid entries are not defaulted and require another selection. */
1248 printf_filtered (_("Please answer %s or %s.\n"),
1249 y_string, n_string);
1250 }
1251
1252 xfree (question);
1253 if (annotation_level > 1)
1254 printf_filtered (("\n\032\032post-query\n"));
1255 return retval;
1256 }
1257 \f
1258
1259 /* Ask user a y-or-n question and return 0 if answer is no, 1 if
1260 answer is yes, or 0 if answer is defaulted.
1261 Takes three args which are given to printf to print the question.
1262 The first, a control string, should end in "? ".
1263 It should not say how to answer, because we do that. */
1264
1265 int
1266 nquery (const char *ctlstr, ...)
1267 {
1268 va_list args;
1269
1270 va_start (args, ctlstr);
1271 return defaulted_query (ctlstr, 'n', args);
1272 va_end (args);
1273 }
1274
1275 /* Ask user a y-or-n question and return 0 if answer is no, 1 if
1276 answer is yes, or 1 if answer is defaulted.
1277 Takes three args which are given to printf to print the question.
1278 The first, a control string, should end in "? ".
1279 It should not say how to answer, because we do that. */
1280
1281 int
1282 yquery (const char *ctlstr, ...)
1283 {
1284 va_list args;
1285
1286 va_start (args, ctlstr);
1287 return defaulted_query (ctlstr, 'y', args);
1288 va_end (args);
1289 }
1290
1291 /* Ask user a y-or-n question and return 1 iff answer is yes.
1292 Takes three args which are given to printf to print the question.
1293 The first, a control string, should end in "? ".
1294 It should not say how to answer, because we do that. */
1295
1296 int
1297 query (const char *ctlstr, ...)
1298 {
1299 va_list args;
1300
1301 va_start (args, ctlstr);
1302 return defaulted_query (ctlstr, '\0', args);
1303 va_end (args);
1304 }
1305
1306 /* Print an error message saying that we couldn't make sense of a
1307 \^mumble sequence in a string or character constant. START and END
1308 indicate a substring of some larger string that contains the
1309 erroneous backslash sequence, missing the initial backslash. */
1310 static NORETURN int
1311 no_control_char_error (const char *start, const char *end)
1312 {
1313 int len = end - start;
1314 char *copy = alloca (end - start + 1);
1315
1316 memcpy (copy, start, len);
1317 copy[len] = '\0';
1318
1319 error (_("There is no control character `\\%s' in the `%s' character set."),
1320 copy, target_charset ());
1321 }
1322
1323 /* Parse a C escape sequence. STRING_PTR points to a variable
1324 containing a pointer to the string to parse. That pointer
1325 should point to the character after the \. That pointer
1326 is updated past the characters we use. The value of the
1327 escape sequence is returned.
1328
1329 A negative value means the sequence \ newline was seen,
1330 which is supposed to be equivalent to nothing at all.
1331
1332 If \ is followed by a null character, we return a negative
1333 value and leave the string pointer pointing at the null character.
1334
1335 If \ is followed by 000, we return 0 and leave the string pointer
1336 after the zeros. A value of 0 does not mean end of string. */
1337
1338 int
1339 parse_escape (char **string_ptr)
1340 {
1341 int target_char;
1342 int c = *(*string_ptr)++;
1343 if (c_parse_backslash (c, &target_char))
1344 return target_char;
1345 else
1346 switch (c)
1347 {
1348 case '\n':
1349 return -2;
1350 case 0:
1351 (*string_ptr)--;
1352 return 0;
1353 case '^':
1354 {
1355 /* Remember where this escape sequence started, for reporting
1356 errors. */
1357 char *sequence_start_pos = *string_ptr - 1;
1358
1359 c = *(*string_ptr)++;
1360
1361 if (c == '?')
1362 {
1363 /* XXXCHARSET: What is `delete' in the host character set? */
1364 c = 0177;
1365
1366 if (!host_char_to_target (c, &target_char))
1367 error (_("There is no character corresponding to `Delete' "
1368 "in the target character set `%s'."), host_charset ());
1369
1370 return target_char;
1371 }
1372 else if (c == '\\')
1373 target_char = parse_escape (string_ptr);
1374 else
1375 {
1376 if (!host_char_to_target (c, &target_char))
1377 no_control_char_error (sequence_start_pos, *string_ptr);
1378 }
1379
1380 /* Now target_char is something like `c', and we want to find
1381 its control-character equivalent. */
1382 if (!target_char_to_control_char (target_char, &target_char))
1383 no_control_char_error (sequence_start_pos, *string_ptr);
1384
1385 return target_char;
1386 }
1387
1388 /* XXXCHARSET: we need to use isdigit and value-of-digit
1389 methods of the host character set here. */
1390
1391 case '0':
1392 case '1':
1393 case '2':
1394 case '3':
1395 case '4':
1396 case '5':
1397 case '6':
1398 case '7':
1399 {
1400 int i = c - '0';
1401 int count = 0;
1402 while (++count < 3)
1403 {
1404 c = (**string_ptr);
1405 if (c >= '0' && c <= '7')
1406 {
1407 (*string_ptr)++;
1408 i *= 8;
1409 i += c - '0';
1410 }
1411 else
1412 {
1413 break;
1414 }
1415 }
1416 return i;
1417 }
1418 default:
1419 if (!host_char_to_target (c, &target_char))
1420 error
1421 ("The escape sequence `\%c' is equivalent to plain `%c', which"
1422 " has no equivalent\n" "in the `%s' character set.", c, c,
1423 target_charset ());
1424 return target_char;
1425 }
1426 }
1427 \f
1428 /* Print the character C on STREAM as part of the contents of a literal
1429 string whose delimiter is QUOTER. Note that this routine should only
1430 be call for printing things which are independent of the language
1431 of the program being debugged. */
1432
1433 static void
1434 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1435 void (*do_fprintf) (struct ui_file *, const char *, ...)
1436 ATTRIBUTE_FPTR_PRINTF_2, struct ui_file *stream, int quoter)
1437 {
1438
1439 c &= 0xFF; /* Avoid sign bit follies */
1440
1441 if (c < 0x20 || /* Low control chars */
1442 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1443 (sevenbit_strings && c >= 0x80))
1444 { /* high order bit set */
1445 switch (c)
1446 {
1447 case '\n':
1448 do_fputs ("\\n", stream);
1449 break;
1450 case '\b':
1451 do_fputs ("\\b", stream);
1452 break;
1453 case '\t':
1454 do_fputs ("\\t", stream);
1455 break;
1456 case '\f':
1457 do_fputs ("\\f", stream);
1458 break;
1459 case '\r':
1460 do_fputs ("\\r", stream);
1461 break;
1462 case '\033':
1463 do_fputs ("\\e", stream);
1464 break;
1465 case '\007':
1466 do_fputs ("\\a", stream);
1467 break;
1468 default:
1469 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1470 break;
1471 }
1472 }
1473 else
1474 {
1475 if (c == '\\' || c == quoter)
1476 do_fputs ("\\", stream);
1477 do_fprintf (stream, "%c", c);
1478 }
1479 }
1480
1481 /* Print the character C on STREAM as part of the contents of a
1482 literal string whose delimiter is QUOTER. Note that these routines
1483 should only be call for printing things which are independent of
1484 the language of the program being debugged. */
1485
1486 void
1487 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1488 {
1489 while (*str)
1490 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1491 }
1492
1493 void
1494 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1495 {
1496 while (*str)
1497 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1498 }
1499
1500 void
1501 fputstrn_filtered (const char *str, int n, int quoter,
1502 struct ui_file *stream)
1503 {
1504 int i;
1505 for (i = 0; i < n; i++)
1506 printchar (str[i], fputs_filtered, fprintf_filtered, stream, quoter);
1507 }
1508
1509 void
1510 fputstrn_unfiltered (const char *str, int n, int quoter,
1511 struct ui_file *stream)
1512 {
1513 int i;
1514 for (i = 0; i < n; i++)
1515 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1516 }
1517 \f
1518
1519 /* Number of lines per page or UINT_MAX if paging is disabled. */
1520 static unsigned int lines_per_page;
1521 static void
1522 show_lines_per_page (struct ui_file *file, int from_tty,
1523 struct cmd_list_element *c, const char *value)
1524 {
1525 fprintf_filtered (file, _("\
1526 Number of lines gdb thinks are in a page is %s.\n"),
1527 value);
1528 }
1529
1530 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1531 static unsigned int chars_per_line;
1532 static void
1533 show_chars_per_line (struct ui_file *file, int from_tty,
1534 struct cmd_list_element *c, const char *value)
1535 {
1536 fprintf_filtered (file, _("\
1537 Number of characters gdb thinks are in a line is %s.\n"),
1538 value);
1539 }
1540
1541 /* Current count of lines printed on this page, chars on this line. */
1542 static unsigned int lines_printed, chars_printed;
1543
1544 /* Buffer and start column of buffered text, for doing smarter word-
1545 wrapping. When someone calls wrap_here(), we start buffering output
1546 that comes through fputs_filtered(). If we see a newline, we just
1547 spit it out and forget about the wrap_here(). If we see another
1548 wrap_here(), we spit it out and remember the newer one. If we see
1549 the end of the line, we spit out a newline, the indent, and then
1550 the buffered output. */
1551
1552 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1553 are waiting to be output (they have already been counted in chars_printed).
1554 When wrap_buffer[0] is null, the buffer is empty. */
1555 static char *wrap_buffer;
1556
1557 /* Pointer in wrap_buffer to the next character to fill. */
1558 static char *wrap_pointer;
1559
1560 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1561 is non-zero. */
1562 static char *wrap_indent;
1563
1564 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1565 is not in effect. */
1566 static int wrap_column;
1567 \f
1568
1569 /* Inialize the number of lines per page and chars per line. */
1570
1571 void
1572 init_page_info (void)
1573 {
1574 #if defined(TUI)
1575 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
1576 #endif
1577 {
1578 int rows, cols;
1579
1580 #if defined(__GO32__)
1581 rows = ScreenRows ();
1582 cols = ScreenCols ();
1583 lines_per_page = rows;
1584 chars_per_line = cols;
1585 #else
1586 /* Make sure Readline has initialized its terminal settings. */
1587 rl_reset_terminal (NULL);
1588
1589 /* Get the screen size from Readline. */
1590 rl_get_screen_size (&rows, &cols);
1591 lines_per_page = rows;
1592 chars_per_line = cols;
1593
1594 /* Readline should have fetched the termcap entry for us. */
1595 if (tgetnum ("li") < 0 || getenv ("EMACS"))
1596 {
1597 /* The number of lines per page is not mentioned in the
1598 terminal description. This probably means that paging is
1599 not useful (e.g. emacs shell window), so disable paging. */
1600 lines_per_page = UINT_MAX;
1601 }
1602
1603 /* FIXME: Get rid of this junk. */
1604 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1605 SIGWINCH_HANDLER (SIGWINCH);
1606 #endif
1607
1608 /* If the output is not a terminal, don't paginate it. */
1609 if (!ui_file_isatty (gdb_stdout))
1610 lines_per_page = UINT_MAX;
1611 #endif
1612 }
1613
1614 set_screen_size ();
1615 set_width ();
1616 }
1617
1618 /* Set the screen size based on LINES_PER_PAGE and CHARS_PER_LINE. */
1619
1620 static void
1621 set_screen_size (void)
1622 {
1623 int rows = lines_per_page;
1624 int cols = chars_per_line;
1625
1626 if (rows <= 0)
1627 rows = INT_MAX;
1628
1629 if (cols <= 0)
1630 cols = INT_MAX;
1631
1632 /* Update Readline's idea of the terminal size. */
1633 rl_set_screen_size (rows, cols);
1634 }
1635
1636 /* Reinitialize WRAP_BUFFER according to the current value of
1637 CHARS_PER_LINE. */
1638
1639 static void
1640 set_width (void)
1641 {
1642 if (chars_per_line == 0)
1643 init_page_info ();
1644
1645 if (!wrap_buffer)
1646 {
1647 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1648 wrap_buffer[0] = '\0';
1649 }
1650 else
1651 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1652 wrap_pointer = wrap_buffer; /* Start it at the beginning. */
1653 }
1654
1655 static void
1656 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1657 {
1658 set_screen_size ();
1659 set_width ();
1660 }
1661
1662 static void
1663 set_height_command (char *args, int from_tty, struct cmd_list_element *c)
1664 {
1665 set_screen_size ();
1666 }
1667
1668 /* Wait, so the user can read what's on the screen. Prompt the user
1669 to continue by pressing RETURN. */
1670
1671 static void
1672 prompt_for_continue (void)
1673 {
1674 char *ignore;
1675 char cont_prompt[120];
1676
1677 if (annotation_level > 1)
1678 printf_unfiltered (("\n\032\032pre-prompt-for-continue\n"));
1679
1680 strcpy (cont_prompt,
1681 "---Type <return> to continue, or q <return> to quit---");
1682 if (annotation_level > 1)
1683 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1684
1685 /* We must do this *before* we call gdb_readline, else it will eventually
1686 call us -- thinking that we're trying to print beyond the end of the
1687 screen. */
1688 reinitialize_more_filter ();
1689
1690 immediate_quit++;
1691 /* On a real operating system, the user can quit with SIGINT.
1692 But not on GO32.
1693
1694 'q' is provided on all systems so users don't have to change habits
1695 from system to system, and because telling them what to do in
1696 the prompt is more user-friendly than expecting them to think of
1697 SIGINT. */
1698 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1699 whereas control-C to gdb_readline will cause the user to get dumped
1700 out to DOS. */
1701 ignore = gdb_readline_wrapper (cont_prompt);
1702
1703 if (annotation_level > 1)
1704 printf_unfiltered (("\n\032\032post-prompt-for-continue\n"));
1705
1706 if (ignore)
1707 {
1708 char *p = ignore;
1709 while (*p == ' ' || *p == '\t')
1710 ++p;
1711 if (p[0] == 'q')
1712 async_request_quit (0);
1713 xfree (ignore);
1714 }
1715 immediate_quit--;
1716
1717 /* Now we have to do this again, so that GDB will know that it doesn't
1718 need to save the ---Type <return>--- line at the top of the screen. */
1719 reinitialize_more_filter ();
1720
1721 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1722 }
1723
1724 /* Reinitialize filter; ie. tell it to reset to original values. */
1725
1726 void
1727 reinitialize_more_filter (void)
1728 {
1729 lines_printed = 0;
1730 chars_printed = 0;
1731 }
1732
1733 /* Indicate that if the next sequence of characters overflows the line,
1734 a newline should be inserted here rather than when it hits the end.
1735 If INDENT is non-null, it is a string to be printed to indent the
1736 wrapped part on the next line. INDENT must remain accessible until
1737 the next call to wrap_here() or until a newline is printed through
1738 fputs_filtered().
1739
1740 If the line is already overfull, we immediately print a newline and
1741 the indentation, and disable further wrapping.
1742
1743 If we don't know the width of lines, but we know the page height,
1744 we must not wrap words, but should still keep track of newlines
1745 that were explicitly printed.
1746
1747 INDENT should not contain tabs, as that will mess up the char count
1748 on the next line. FIXME.
1749
1750 This routine is guaranteed to force out any output which has been
1751 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1752 used to force out output from the wrap_buffer. */
1753
1754 void
1755 wrap_here (char *indent)
1756 {
1757 /* This should have been allocated, but be paranoid anyway. */
1758 if (!wrap_buffer)
1759 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1760
1761 if (wrap_buffer[0])
1762 {
1763 *wrap_pointer = '\0';
1764 fputs_unfiltered (wrap_buffer, gdb_stdout);
1765 }
1766 wrap_pointer = wrap_buffer;
1767 wrap_buffer[0] = '\0';
1768 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1769 {
1770 wrap_column = 0;
1771 }
1772 else if (chars_printed >= chars_per_line)
1773 {
1774 puts_filtered ("\n");
1775 if (indent != NULL)
1776 puts_filtered (indent);
1777 wrap_column = 0;
1778 }
1779 else
1780 {
1781 wrap_column = chars_printed;
1782 if (indent == NULL)
1783 wrap_indent = "";
1784 else
1785 wrap_indent = indent;
1786 }
1787 }
1788
1789 /* Print input string to gdb_stdout, filtered, with wrap,
1790 arranging strings in columns of n chars. String can be
1791 right or left justified in the column. Never prints
1792 trailing spaces. String should never be longer than
1793 width. FIXME: this could be useful for the EXAMINE
1794 command, which currently doesn't tabulate very well */
1795
1796 void
1797 puts_filtered_tabular (char *string, int width, int right)
1798 {
1799 int spaces = 0;
1800 int stringlen;
1801 char *spacebuf;
1802
1803 gdb_assert (chars_per_line > 0);
1804 if (chars_per_line == UINT_MAX)
1805 {
1806 fputs_filtered (string, gdb_stdout);
1807 fputs_filtered ("\n", gdb_stdout);
1808 return;
1809 }
1810
1811 if (((chars_printed - 1) / width + 2) * width >= chars_per_line)
1812 fputs_filtered ("\n", gdb_stdout);
1813
1814 if (width >= chars_per_line)
1815 width = chars_per_line - 1;
1816
1817 stringlen = strlen (string);
1818
1819 if (chars_printed > 0)
1820 spaces = width - (chars_printed - 1) % width - 1;
1821 if (right)
1822 spaces += width - stringlen;
1823
1824 spacebuf = alloca (spaces + 1);
1825 spacebuf[spaces] = '\0';
1826 while (spaces--)
1827 spacebuf[spaces] = ' ';
1828
1829 fputs_filtered (spacebuf, gdb_stdout);
1830 fputs_filtered (string, gdb_stdout);
1831 }
1832
1833
1834 /* Ensure that whatever gets printed next, using the filtered output
1835 commands, starts at the beginning of the line. I.E. if there is
1836 any pending output for the current line, flush it and start a new
1837 line. Otherwise do nothing. */
1838
1839 void
1840 begin_line (void)
1841 {
1842 if (chars_printed > 0)
1843 {
1844 puts_filtered ("\n");
1845 }
1846 }
1847
1848
1849 /* Like fputs but if FILTER is true, pause after every screenful.
1850
1851 Regardless of FILTER can wrap at points other than the final
1852 character of a line.
1853
1854 Unlike fputs, fputs_maybe_filtered does not return a value.
1855 It is OK for LINEBUFFER to be NULL, in which case just don't print
1856 anything.
1857
1858 Note that a longjmp to top level may occur in this routine (only if
1859 FILTER is true) (since prompt_for_continue may do so) so this
1860 routine should not be called when cleanups are not in place. */
1861
1862 static void
1863 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1864 int filter)
1865 {
1866 const char *lineptr;
1867
1868 if (linebuffer == 0)
1869 return;
1870
1871 /* Don't do any filtering if it is disabled. */
1872 if ((stream != gdb_stdout) || !pagination_enabled
1873 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1874 {
1875 fputs_unfiltered (linebuffer, stream);
1876 return;
1877 }
1878
1879 /* Go through and output each character. Show line extension
1880 when this is necessary; prompt user for new page when this is
1881 necessary. */
1882
1883 lineptr = linebuffer;
1884 while (*lineptr)
1885 {
1886 /* Possible new page. */
1887 if (filter && (lines_printed >= lines_per_page - 1))
1888 prompt_for_continue ();
1889
1890 while (*lineptr && *lineptr != '\n')
1891 {
1892 /* Print a single line. */
1893 if (*lineptr == '\t')
1894 {
1895 if (wrap_column)
1896 *wrap_pointer++ = '\t';
1897 else
1898 fputc_unfiltered ('\t', stream);
1899 /* Shifting right by 3 produces the number of tab stops
1900 we have already passed, and then adding one and
1901 shifting left 3 advances to the next tab stop. */
1902 chars_printed = ((chars_printed >> 3) + 1) << 3;
1903 lineptr++;
1904 }
1905 else
1906 {
1907 if (wrap_column)
1908 *wrap_pointer++ = *lineptr;
1909 else
1910 fputc_unfiltered (*lineptr, stream);
1911 chars_printed++;
1912 lineptr++;
1913 }
1914
1915 if (chars_printed >= chars_per_line)
1916 {
1917 unsigned int save_chars = chars_printed;
1918
1919 chars_printed = 0;
1920 lines_printed++;
1921 /* If we aren't actually wrapping, don't output newline --
1922 if chars_per_line is right, we probably just overflowed
1923 anyway; if it's wrong, let us keep going. */
1924 if (wrap_column)
1925 fputc_unfiltered ('\n', stream);
1926
1927 /* Possible new page. */
1928 if (lines_printed >= lines_per_page - 1)
1929 prompt_for_continue ();
1930
1931 /* Now output indentation and wrapped string */
1932 if (wrap_column)
1933 {
1934 fputs_unfiltered (wrap_indent, stream);
1935 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1936 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1937 /* FIXME, this strlen is what prevents wrap_indent from
1938 containing tabs. However, if we recurse to print it
1939 and count its chars, we risk trouble if wrap_indent is
1940 longer than (the user settable) chars_per_line.
1941 Note also that this can set chars_printed > chars_per_line
1942 if we are printing a long string. */
1943 chars_printed = strlen (wrap_indent)
1944 + (save_chars - wrap_column);
1945 wrap_pointer = wrap_buffer; /* Reset buffer */
1946 wrap_buffer[0] = '\0';
1947 wrap_column = 0; /* And disable fancy wrap */
1948 }
1949 }
1950 }
1951
1952 if (*lineptr == '\n')
1953 {
1954 chars_printed = 0;
1955 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1956 lines_printed++;
1957 fputc_unfiltered ('\n', stream);
1958 lineptr++;
1959 }
1960 }
1961 }
1962
1963 void
1964 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1965 {
1966 fputs_maybe_filtered (linebuffer, stream, 1);
1967 }
1968
1969 int
1970 putchar_unfiltered (int c)
1971 {
1972 char buf = c;
1973 ui_file_write (gdb_stdout, &buf, 1);
1974 return c;
1975 }
1976
1977 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1978 May return nonlocally. */
1979
1980 int
1981 putchar_filtered (int c)
1982 {
1983 return fputc_filtered (c, gdb_stdout);
1984 }
1985
1986 int
1987 fputc_unfiltered (int c, struct ui_file *stream)
1988 {
1989 char buf = c;
1990 ui_file_write (stream, &buf, 1);
1991 return c;
1992 }
1993
1994 int
1995 fputc_filtered (int c, struct ui_file *stream)
1996 {
1997 char buf[2];
1998
1999 buf[0] = c;
2000 buf[1] = 0;
2001 fputs_filtered (buf, stream);
2002 return c;
2003 }
2004
2005 /* puts_debug is like fputs_unfiltered, except it prints special
2006 characters in printable fashion. */
2007
2008 void
2009 puts_debug (char *prefix, char *string, char *suffix)
2010 {
2011 int ch;
2012
2013 /* Print prefix and suffix after each line. */
2014 static int new_line = 1;
2015 static int return_p = 0;
2016 static char *prev_prefix = "";
2017 static char *prev_suffix = "";
2018
2019 if (*string == '\n')
2020 return_p = 0;
2021
2022 /* If the prefix is changing, print the previous suffix, a new line,
2023 and the new prefix. */
2024 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
2025 {
2026 fputs_unfiltered (prev_suffix, gdb_stdlog);
2027 fputs_unfiltered ("\n", gdb_stdlog);
2028 fputs_unfiltered (prefix, gdb_stdlog);
2029 }
2030
2031 /* Print prefix if we printed a newline during the previous call. */
2032 if (new_line)
2033 {
2034 new_line = 0;
2035 fputs_unfiltered (prefix, gdb_stdlog);
2036 }
2037
2038 prev_prefix = prefix;
2039 prev_suffix = suffix;
2040
2041 /* Output characters in a printable format. */
2042 while ((ch = *string++) != '\0')
2043 {
2044 switch (ch)
2045 {
2046 default:
2047 if (isprint (ch))
2048 fputc_unfiltered (ch, gdb_stdlog);
2049
2050 else
2051 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
2052 break;
2053
2054 case '\\':
2055 fputs_unfiltered ("\\\\", gdb_stdlog);
2056 break;
2057 case '\b':
2058 fputs_unfiltered ("\\b", gdb_stdlog);
2059 break;
2060 case '\f':
2061 fputs_unfiltered ("\\f", gdb_stdlog);
2062 break;
2063 case '\n':
2064 new_line = 1;
2065 fputs_unfiltered ("\\n", gdb_stdlog);
2066 break;
2067 case '\r':
2068 fputs_unfiltered ("\\r", gdb_stdlog);
2069 break;
2070 case '\t':
2071 fputs_unfiltered ("\\t", gdb_stdlog);
2072 break;
2073 case '\v':
2074 fputs_unfiltered ("\\v", gdb_stdlog);
2075 break;
2076 }
2077
2078 return_p = ch == '\r';
2079 }
2080
2081 /* Print suffix if we printed a newline. */
2082 if (new_line)
2083 {
2084 fputs_unfiltered (suffix, gdb_stdlog);
2085 fputs_unfiltered ("\n", gdb_stdlog);
2086 }
2087 }
2088
2089
2090 /* Print a variable number of ARGS using format FORMAT. If this
2091 information is going to put the amount written (since the last call
2092 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2093 call prompt_for_continue to get the users permision to continue.
2094
2095 Unlike fprintf, this function does not return a value.
2096
2097 We implement three variants, vfprintf (takes a vararg list and stream),
2098 fprintf (takes a stream to write on), and printf (the usual).
2099
2100 Note also that a longjmp to top level may occur in this routine
2101 (since prompt_for_continue may do so) so this routine should not be
2102 called when cleanups are not in place. */
2103
2104 static void
2105 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2106 va_list args, int filter)
2107 {
2108 char *linebuffer;
2109 struct cleanup *old_cleanups;
2110
2111 linebuffer = xstrvprintf (format, args);
2112 old_cleanups = make_cleanup (xfree, linebuffer);
2113 fputs_maybe_filtered (linebuffer, stream, filter);
2114 do_cleanups (old_cleanups);
2115 }
2116
2117
2118 void
2119 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2120 {
2121 vfprintf_maybe_filtered (stream, format, args, 1);
2122 }
2123
2124 void
2125 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2126 {
2127 char *linebuffer;
2128 struct cleanup *old_cleanups;
2129
2130 linebuffer = xstrvprintf (format, args);
2131 old_cleanups = make_cleanup (xfree, linebuffer);
2132 if (debug_timestamp && stream == gdb_stdlog)
2133 {
2134 struct timeval tm;
2135 char *timestamp;
2136
2137 gettimeofday (&tm, NULL);
2138 timestamp = xstrprintf ("%ld:%ld ", (long) tm.tv_sec, (long) tm.tv_usec);
2139 make_cleanup (xfree, timestamp);
2140 fputs_unfiltered (timestamp, stream);
2141 }
2142 fputs_unfiltered (linebuffer, stream);
2143 do_cleanups (old_cleanups);
2144 }
2145
2146 void
2147 vprintf_filtered (const char *format, va_list args)
2148 {
2149 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2150 }
2151
2152 void
2153 vprintf_unfiltered (const char *format, va_list args)
2154 {
2155 vfprintf_unfiltered (gdb_stdout, format, args);
2156 }
2157
2158 void
2159 fprintf_filtered (struct ui_file *stream, const char *format, ...)
2160 {
2161 va_list args;
2162 va_start (args, format);
2163 vfprintf_filtered (stream, format, args);
2164 va_end (args);
2165 }
2166
2167 void
2168 fprintf_unfiltered (struct ui_file *stream, const char *format, ...)
2169 {
2170 va_list args;
2171 va_start (args, format);
2172 vfprintf_unfiltered (stream, format, args);
2173 va_end (args);
2174 }
2175
2176 /* Like fprintf_filtered, but prints its result indented.
2177 Called as fprintfi_filtered (spaces, stream, format, ...); */
2178
2179 void
2180 fprintfi_filtered (int spaces, struct ui_file *stream, const char *format,
2181 ...)
2182 {
2183 va_list args;
2184 va_start (args, format);
2185 print_spaces_filtered (spaces, stream);
2186
2187 vfprintf_filtered (stream, format, args);
2188 va_end (args);
2189 }
2190
2191
2192 void
2193 printf_filtered (const char *format, ...)
2194 {
2195 va_list args;
2196 va_start (args, format);
2197 vfprintf_filtered (gdb_stdout, format, args);
2198 va_end (args);
2199 }
2200
2201
2202 void
2203 printf_unfiltered (const char *format, ...)
2204 {
2205 va_list args;
2206 va_start (args, format);
2207 vfprintf_unfiltered (gdb_stdout, format, args);
2208 va_end (args);
2209 }
2210
2211 /* Like printf_filtered, but prints it's result indented.
2212 Called as printfi_filtered (spaces, format, ...); */
2213
2214 void
2215 printfi_filtered (int spaces, const char *format, ...)
2216 {
2217 va_list args;
2218 va_start (args, format);
2219 print_spaces_filtered (spaces, gdb_stdout);
2220 vfprintf_filtered (gdb_stdout, format, args);
2221 va_end (args);
2222 }
2223
2224 /* Easy -- but watch out!
2225
2226 This routine is *not* a replacement for puts()! puts() appends a newline.
2227 This one doesn't, and had better not! */
2228
2229 void
2230 puts_filtered (const char *string)
2231 {
2232 fputs_filtered (string, gdb_stdout);
2233 }
2234
2235 void
2236 puts_unfiltered (const char *string)
2237 {
2238 fputs_unfiltered (string, gdb_stdout);
2239 }
2240
2241 /* Return a pointer to N spaces and a null. The pointer is good
2242 until the next call to here. */
2243 char *
2244 n_spaces (int n)
2245 {
2246 char *t;
2247 static char *spaces = 0;
2248 static int max_spaces = -1;
2249
2250 if (n > max_spaces)
2251 {
2252 if (spaces)
2253 xfree (spaces);
2254 spaces = (char *) xmalloc (n + 1);
2255 for (t = spaces + n; t != spaces;)
2256 *--t = ' ';
2257 spaces[n] = '\0';
2258 max_spaces = n;
2259 }
2260
2261 return spaces + max_spaces - n;
2262 }
2263
2264 /* Print N spaces. */
2265 void
2266 print_spaces_filtered (int n, struct ui_file *stream)
2267 {
2268 fputs_filtered (n_spaces (n), stream);
2269 }
2270 \f
2271 /* C++/ObjC demangler stuff. */
2272
2273 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2274 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2275 If the name is not mangled, or the language for the name is unknown, or
2276 demangling is off, the name is printed in its "raw" form. */
2277
2278 void
2279 fprintf_symbol_filtered (struct ui_file *stream, char *name,
2280 enum language lang, int arg_mode)
2281 {
2282 char *demangled;
2283
2284 if (name != NULL)
2285 {
2286 /* If user wants to see raw output, no problem. */
2287 if (!demangle)
2288 {
2289 fputs_filtered (name, stream);
2290 }
2291 else
2292 {
2293 demangled = language_demangle (language_def (lang), name, arg_mode);
2294 fputs_filtered (demangled ? demangled : name, stream);
2295 if (demangled != NULL)
2296 {
2297 xfree (demangled);
2298 }
2299 }
2300 }
2301 }
2302
2303 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2304 differences in whitespace. Returns 0 if they match, non-zero if they
2305 don't (slightly different than strcmp()'s range of return values).
2306
2307 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2308 This "feature" is useful when searching for matching C++ function names
2309 (such as if the user types 'break FOO', where FOO is a mangled C++
2310 function). */
2311
2312 int
2313 strcmp_iw (const char *string1, const char *string2)
2314 {
2315 while ((*string1 != '\0') && (*string2 != '\0'))
2316 {
2317 while (isspace (*string1))
2318 {
2319 string1++;
2320 }
2321 while (isspace (*string2))
2322 {
2323 string2++;
2324 }
2325 if (*string1 != *string2)
2326 {
2327 break;
2328 }
2329 if (*string1 != '\0')
2330 {
2331 string1++;
2332 string2++;
2333 }
2334 }
2335 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2336 }
2337
2338 /* This is like strcmp except that it ignores whitespace and treats
2339 '(' as the first non-NULL character in terms of ordering. Like
2340 strcmp (and unlike strcmp_iw), it returns negative if STRING1 <
2341 STRING2, 0 if STRING2 = STRING2, and positive if STRING1 > STRING2
2342 according to that ordering.
2343
2344 If a list is sorted according to this function and if you want to
2345 find names in the list that match some fixed NAME according to
2346 strcmp_iw(LIST_ELT, NAME), then the place to start looking is right
2347 where this function would put NAME.
2348
2349 Here are some examples of why using strcmp to sort is a bad idea:
2350
2351 Whitespace example:
2352
2353 Say your partial symtab contains: "foo<char *>", "goo". Then, if
2354 we try to do a search for "foo<char*>", strcmp will locate this
2355 after "foo<char *>" and before "goo". Then lookup_partial_symbol
2356 will start looking at strings beginning with "goo", and will never
2357 see the correct match of "foo<char *>".
2358
2359 Parenthesis example:
2360
2361 In practice, this is less like to be an issue, but I'll give it a
2362 shot. Let's assume that '$' is a legitimate character to occur in
2363 symbols. (Which may well even be the case on some systems.) Then
2364 say that the partial symbol table contains "foo$" and "foo(int)".
2365 strcmp will put them in this order, since '$' < '('. Now, if the
2366 user searches for "foo", then strcmp will sort "foo" before "foo$".
2367 Then lookup_partial_symbol will notice that strcmp_iw("foo$",
2368 "foo") is false, so it won't proceed to the actual match of
2369 "foo(int)" with "foo". */
2370
2371 int
2372 strcmp_iw_ordered (const char *string1, const char *string2)
2373 {
2374 while ((*string1 != '\0') && (*string2 != '\0'))
2375 {
2376 while (isspace (*string1))
2377 {
2378 string1++;
2379 }
2380 while (isspace (*string2))
2381 {
2382 string2++;
2383 }
2384 if (*string1 != *string2)
2385 {
2386 break;
2387 }
2388 if (*string1 != '\0')
2389 {
2390 string1++;
2391 string2++;
2392 }
2393 }
2394
2395 switch (*string1)
2396 {
2397 /* Characters are non-equal unless they're both '\0'; we want to
2398 make sure we get the comparison right according to our
2399 comparison in the cases where one of them is '\0' or '('. */
2400 case '\0':
2401 if (*string2 == '\0')
2402 return 0;
2403 else
2404 return -1;
2405 case '(':
2406 if (*string2 == '\0')
2407 return 1;
2408 else
2409 return -1;
2410 default:
2411 if (*string2 == '(')
2412 return 1;
2413 else
2414 return *string1 - *string2;
2415 }
2416 }
2417
2418 /* A simple comparison function with opposite semantics to strcmp. */
2419
2420 int
2421 streq (const char *lhs, const char *rhs)
2422 {
2423 return !strcmp (lhs, rhs);
2424 }
2425 \f
2426
2427 /*
2428 ** subset_compare()
2429 ** Answer whether string_to_compare is a full or partial match to
2430 ** template_string. The partial match must be in sequence starting
2431 ** at index 0.
2432 */
2433 int
2434 subset_compare (char *string_to_compare, char *template_string)
2435 {
2436 int match;
2437 if (template_string != (char *) NULL && string_to_compare != (char *) NULL
2438 && strlen (string_to_compare) <= strlen (template_string))
2439 match =
2440 (strncmp
2441 (template_string, string_to_compare, strlen (string_to_compare)) == 0);
2442 else
2443 match = 0;
2444 return match;
2445 }
2446
2447 static void
2448 pagination_on_command (char *arg, int from_tty)
2449 {
2450 pagination_enabled = 1;
2451 }
2452
2453 static void
2454 pagination_off_command (char *arg, int from_tty)
2455 {
2456 pagination_enabled = 0;
2457 }
2458
2459 static void
2460 show_debug_timestamp (struct ui_file *file, int from_tty,
2461 struct cmd_list_element *c, const char *value)
2462 {
2463 fprintf_filtered (file, _("Timestamping debugging messages is %s.\n"), value);
2464 }
2465 \f
2466
2467 void
2468 initialize_utils (void)
2469 {
2470 struct cmd_list_element *c;
2471
2472 add_setshow_uinteger_cmd ("width", class_support, &chars_per_line, _("\
2473 Set number of characters gdb thinks are in a line."), _("\
2474 Show number of characters gdb thinks are in a line."), NULL,
2475 set_width_command,
2476 show_chars_per_line,
2477 &setlist, &showlist);
2478
2479 add_setshow_uinteger_cmd ("height", class_support, &lines_per_page, _("\
2480 Set number of lines gdb thinks are in a page."), _("\
2481 Show number of lines gdb thinks are in a page."), NULL,
2482 set_height_command,
2483 show_lines_per_page,
2484 &setlist, &showlist);
2485
2486 init_page_info ();
2487
2488 add_setshow_boolean_cmd ("demangle", class_support, &demangle, _("\
2489 Set demangling of encoded C++/ObjC names when displaying symbols."), _("\
2490 Show demangling of encoded C++/ObjC names when displaying symbols."), NULL,
2491 NULL,
2492 show_demangle,
2493 &setprintlist, &showprintlist);
2494
2495 add_setshow_boolean_cmd ("pagination", class_support,
2496 &pagination_enabled, _("\
2497 Set state of pagination."), _("\
2498 Show state of pagination."), NULL,
2499 NULL,
2500 show_pagination_enabled,
2501 &setlist, &showlist);
2502
2503 if (xdb_commands)
2504 {
2505 add_com ("am", class_support, pagination_on_command,
2506 _("Enable pagination"));
2507 add_com ("sm", class_support, pagination_off_command,
2508 _("Disable pagination"));
2509 }
2510
2511 add_setshow_boolean_cmd ("sevenbit-strings", class_support,
2512 &sevenbit_strings, _("\
2513 Set printing of 8-bit characters in strings as \\nnn."), _("\
2514 Show printing of 8-bit characters in strings as \\nnn."), NULL,
2515 NULL,
2516 show_sevenbit_strings,
2517 &setprintlist, &showprintlist);
2518
2519 add_setshow_boolean_cmd ("asm-demangle", class_support, &asm_demangle, _("\
2520 Set demangling of C++/ObjC names in disassembly listings."), _("\
2521 Show demangling of C++/ObjC names in disassembly listings."), NULL,
2522 NULL,
2523 show_asm_demangle,
2524 &setprintlist, &showprintlist);
2525
2526 add_setshow_boolean_cmd ("timestamp", class_maintenance,
2527 &debug_timestamp, _("\
2528 Set timestamping of debugging messages."), _("\
2529 Show timestamping of debugging messages."), _("\
2530 When set, debugging messages will be marked with seconds and microseconds."),
2531 NULL,
2532 show_debug_timestamp,
2533 &setdebuglist, &showdebuglist);
2534 }
2535
2536 /* Machine specific function to handle SIGWINCH signal. */
2537
2538 #ifdef SIGWINCH_HANDLER_BODY
2539 SIGWINCH_HANDLER_BODY
2540 #endif
2541 /* print routines to handle variable size regs, etc. */
2542 /* temporary storage using circular buffer */
2543 #define NUMCELLS 16
2544 #define CELLSIZE 50
2545 static char *
2546 get_cell (void)
2547 {
2548 static char buf[NUMCELLS][CELLSIZE];
2549 static int cell = 0;
2550 if (++cell >= NUMCELLS)
2551 cell = 0;
2552 return buf[cell];
2553 }
2554
2555 int
2556 strlen_paddr (void)
2557 {
2558 return (gdbarch_addr_bit (current_gdbarch) / 8 * 2);
2559 }
2560
2561 char *
2562 paddr (CORE_ADDR addr)
2563 {
2564 return phex (addr, gdbarch_addr_bit (current_gdbarch) / 8);
2565 }
2566
2567 char *
2568 paddr_nz (CORE_ADDR addr)
2569 {
2570 return phex_nz (addr, gdbarch_addr_bit (current_gdbarch) / 8);
2571 }
2572
2573 const char *
2574 paddress (CORE_ADDR addr)
2575 {
2576 /* Truncate address to the size of a target address, avoiding shifts
2577 larger or equal than the width of a CORE_ADDR. The local
2578 variable ADDR_BIT stops the compiler reporting a shift overflow
2579 when it won't occur. */
2580 /* NOTE: This assumes that the significant address information is
2581 kept in the least significant bits of ADDR - the upper bits were
2582 either zero or sign extended. Should gdbarch_address_to_pointer or
2583 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
2584
2585 int addr_bit = gdbarch_addr_bit (current_gdbarch);
2586
2587 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2588 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
2589 return hex_string (addr);
2590 }
2591
2592 static char *
2593 decimal2str (char *sign, ULONGEST addr, int width)
2594 {
2595 /* Steal code from valprint.c:print_decimal(). Should this worry
2596 about the real size of addr as the above does? */
2597 unsigned long temp[3];
2598 char *str = get_cell ();
2599
2600 int i = 0;
2601 do
2602 {
2603 temp[i] = addr % (1000 * 1000 * 1000);
2604 addr /= (1000 * 1000 * 1000);
2605 i++;
2606 width -= 9;
2607 }
2608 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2609
2610 width += 9;
2611 if (width < 0)
2612 width = 0;
2613
2614 switch (i)
2615 {
2616 case 1:
2617 xsnprintf (str, CELLSIZE, "%s%0*lu", sign, width, temp[0]);
2618 break;
2619 case 2:
2620 xsnprintf (str, CELLSIZE, "%s%0*lu%09lu", sign, width,
2621 temp[1], temp[0]);
2622 break;
2623 case 3:
2624 xsnprintf (str, CELLSIZE, "%s%0*lu%09lu%09lu", sign, width,
2625 temp[2], temp[1], temp[0]);
2626 break;
2627 default:
2628 internal_error (__FILE__, __LINE__,
2629 _("failed internal consistency check"));
2630 }
2631
2632 return str;
2633 }
2634
2635 static char *
2636 octal2str (ULONGEST addr, int width)
2637 {
2638 unsigned long temp[3];
2639 char *str = get_cell ();
2640
2641 int i = 0;
2642 do
2643 {
2644 temp[i] = addr % (0100000 * 0100000);
2645 addr /= (0100000 * 0100000);
2646 i++;
2647 width -= 10;
2648 }
2649 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2650
2651 width += 10;
2652 if (width < 0)
2653 width = 0;
2654
2655 switch (i)
2656 {
2657 case 1:
2658 if (temp[0] == 0)
2659 xsnprintf (str, CELLSIZE, "%*o", width, 0);
2660 else
2661 xsnprintf (str, CELLSIZE, "0%0*lo", width, temp[0]);
2662 break;
2663 case 2:
2664 xsnprintf (str, CELLSIZE, "0%0*lo%010lo", width, temp[1], temp[0]);
2665 break;
2666 case 3:
2667 xsnprintf (str, CELLSIZE, "0%0*lo%010lo%010lo", width,
2668 temp[2], temp[1], temp[0]);
2669 break;
2670 default:
2671 internal_error (__FILE__, __LINE__,
2672 _("failed internal consistency check"));
2673 }
2674
2675 return str;
2676 }
2677
2678 char *
2679 pulongest (ULONGEST u)
2680 {
2681 return decimal2str ("", u, 0);
2682 }
2683
2684 char *
2685 plongest (LONGEST l)
2686 {
2687 if (l < 0)
2688 return decimal2str ("-", -l, 0);
2689 else
2690 return decimal2str ("", l, 0);
2691 }
2692
2693 /* Eliminate warning from compiler on 32-bit systems. */
2694 static int thirty_two = 32;
2695
2696 char *
2697 phex (ULONGEST l, int sizeof_l)
2698 {
2699 char *str;
2700
2701 switch (sizeof_l)
2702 {
2703 case 8:
2704 str = get_cell ();
2705 xsnprintf (str, CELLSIZE, "%08lx%08lx",
2706 (unsigned long) (l >> thirty_two),
2707 (unsigned long) (l & 0xffffffff));
2708 break;
2709 case 4:
2710 str = get_cell ();
2711 xsnprintf (str, CELLSIZE, "%08lx", (unsigned long) l);
2712 break;
2713 case 2:
2714 str = get_cell ();
2715 xsnprintf (str, CELLSIZE, "%04x", (unsigned short) (l & 0xffff));
2716 break;
2717 default:
2718 str = phex (l, sizeof (l));
2719 break;
2720 }
2721
2722 return str;
2723 }
2724
2725 char *
2726 phex_nz (ULONGEST l, int sizeof_l)
2727 {
2728 char *str;
2729
2730 switch (sizeof_l)
2731 {
2732 case 8:
2733 {
2734 unsigned long high = (unsigned long) (l >> thirty_two);
2735 str = get_cell ();
2736 if (high == 0)
2737 xsnprintf (str, CELLSIZE, "%lx",
2738 (unsigned long) (l & 0xffffffff));
2739 else
2740 xsnprintf (str, CELLSIZE, "%lx%08lx", high,
2741 (unsigned long) (l & 0xffffffff));
2742 break;
2743 }
2744 case 4:
2745 str = get_cell ();
2746 xsnprintf (str, CELLSIZE, "%lx", (unsigned long) l);
2747 break;
2748 case 2:
2749 str = get_cell ();
2750 xsnprintf (str, CELLSIZE, "%x", (unsigned short) (l & 0xffff));
2751 break;
2752 default:
2753 str = phex_nz (l, sizeof (l));
2754 break;
2755 }
2756
2757 return str;
2758 }
2759
2760 /* Converts a LONGEST to a C-format hexadecimal literal and stores it
2761 in a static string. Returns a pointer to this string. */
2762 char *
2763 hex_string (LONGEST num)
2764 {
2765 char *result = get_cell ();
2766 xsnprintf (result, CELLSIZE, "0x%s", phex_nz (num, sizeof (num)));
2767 return result;
2768 }
2769
2770 /* Converts a LONGEST number to a C-format hexadecimal literal and
2771 stores it in a static string. Returns a pointer to this string
2772 that is valid until the next call. The number is padded on the
2773 left with 0s to at least WIDTH characters. */
2774 char *
2775 hex_string_custom (LONGEST num, int width)
2776 {
2777 char *result = get_cell ();
2778 char *result_end = result + CELLSIZE - 1;
2779 const char *hex = phex_nz (num, sizeof (num));
2780 int hex_len = strlen (hex);
2781
2782 if (hex_len > width)
2783 width = hex_len;
2784 if (width + 2 >= CELLSIZE)
2785 internal_error (__FILE__, __LINE__,
2786 _("hex_string_custom: insufficient space to store result"));
2787
2788 strcpy (result_end - width - 2, "0x");
2789 memset (result_end - width, '0', width);
2790 strcpy (result_end - hex_len, hex);
2791 return result_end - width - 2;
2792 }
2793
2794 /* Convert VAL to a numeral in the given radix. For
2795 * radix 10, IS_SIGNED may be true, indicating a signed quantity;
2796 * otherwise VAL is interpreted as unsigned. If WIDTH is supplied,
2797 * it is the minimum width (0-padded if needed). USE_C_FORMAT means
2798 * to use C format in all cases. If it is false, then 'x'
2799 * and 'o' formats do not include a prefix (0x or leading 0). */
2800
2801 char *
2802 int_string (LONGEST val, int radix, int is_signed, int width,
2803 int use_c_format)
2804 {
2805 switch (radix)
2806 {
2807 case 16:
2808 {
2809 char *result;
2810 if (width == 0)
2811 result = hex_string (val);
2812 else
2813 result = hex_string_custom (val, width);
2814 if (! use_c_format)
2815 result += 2;
2816 return result;
2817 }
2818 case 10:
2819 {
2820 if (is_signed && val < 0)
2821 return decimal2str ("-", -val, width);
2822 else
2823 return decimal2str ("", val, width);
2824 }
2825 case 8:
2826 {
2827 char *result = octal2str (val, width);
2828 if (use_c_format || val == 0)
2829 return result;
2830 else
2831 return result + 1;
2832 }
2833 default:
2834 internal_error (__FILE__, __LINE__,
2835 _("failed internal consistency check"));
2836 }
2837 }
2838
2839 /* Convert a CORE_ADDR into a string. */
2840 const char *
2841 core_addr_to_string (const CORE_ADDR addr)
2842 {
2843 char *str = get_cell ();
2844 strcpy (str, "0x");
2845 strcat (str, phex (addr, sizeof (addr)));
2846 return str;
2847 }
2848
2849 const char *
2850 core_addr_to_string_nz (const CORE_ADDR addr)
2851 {
2852 char *str = get_cell ();
2853 strcpy (str, "0x");
2854 strcat (str, phex_nz (addr, sizeof (addr)));
2855 return str;
2856 }
2857
2858 /* Convert a string back into a CORE_ADDR. */
2859 CORE_ADDR
2860 string_to_core_addr (const char *my_string)
2861 {
2862 int addr_bit = gdbarch_addr_bit (current_gdbarch);
2863 CORE_ADDR addr = 0;
2864
2865 if (my_string[0] == '0' && tolower (my_string[1]) == 'x')
2866 {
2867 /* Assume that it is in hex. */
2868 int i;
2869 for (i = 2; my_string[i] != '\0'; i++)
2870 {
2871 if (isdigit (my_string[i]))
2872 addr = (my_string[i] - '0') + (addr * 16);
2873 else if (isxdigit (my_string[i]))
2874 addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16);
2875 else
2876 error (_("invalid hex \"%s\""), my_string);
2877 }
2878
2879 /* Not very modular, but if the executable format expects
2880 addresses to be sign-extended, then do so if the address was
2881 specified with only 32 significant bits. Really this should
2882 be determined by the target architecture, not by the object
2883 file. */
2884 if (i - 2 == addr_bit / 4
2885 && exec_bfd
2886 && bfd_get_sign_extend_vma (exec_bfd))
2887 addr = (addr ^ ((CORE_ADDR) 1 << (addr_bit - 1)))
2888 - ((CORE_ADDR) 1 << (addr_bit - 1));
2889 }
2890 else
2891 {
2892 /* Assume that it is in decimal. */
2893 int i;
2894 for (i = 0; my_string[i] != '\0'; i++)
2895 {
2896 if (isdigit (my_string[i]))
2897 addr = (my_string[i] - '0') + (addr * 10);
2898 else
2899 error (_("invalid decimal \"%s\""), my_string);
2900 }
2901 }
2902
2903 return addr;
2904 }
2905
2906 const char *
2907 host_address_to_string (const void *addr)
2908 {
2909 char *str = get_cell ();
2910 sprintf (str, "0x%lx", (unsigned long) addr);
2911 return str;
2912 }
2913
2914 char *
2915 gdb_realpath (const char *filename)
2916 {
2917 /* Method 1: The system has a compile time upper bound on a filename
2918 path. Use that and realpath() to canonicalize the name. This is
2919 the most common case. Note that, if there isn't a compile time
2920 upper bound, you want to avoid realpath() at all costs. */
2921 #if defined(HAVE_REALPATH)
2922 {
2923 # if defined (PATH_MAX)
2924 char buf[PATH_MAX];
2925 # define USE_REALPATH
2926 # elif defined (MAXPATHLEN)
2927 char buf[MAXPATHLEN];
2928 # define USE_REALPATH
2929 # endif
2930 # if defined (USE_REALPATH)
2931 const char *rp = realpath (filename, buf);
2932 if (rp == NULL)
2933 rp = filename;
2934 return xstrdup (rp);
2935 # endif
2936 }
2937 #endif /* HAVE_REALPATH */
2938
2939 /* Method 2: The host system (i.e., GNU) has the function
2940 canonicalize_file_name() which malloc's a chunk of memory and
2941 returns that, use that. */
2942 #if defined(HAVE_CANONICALIZE_FILE_NAME)
2943 {
2944 char *rp = canonicalize_file_name (filename);
2945 if (rp == NULL)
2946 return xstrdup (filename);
2947 else
2948 return rp;
2949 }
2950 #endif
2951
2952 /* FIXME: cagney/2002-11-13:
2953
2954 Method 2a: Use realpath() with a NULL buffer. Some systems, due
2955 to the problems described in in method 3, have modified their
2956 realpath() implementation so that it will allocate a buffer when
2957 NULL is passed in. Before this can be used, though, some sort of
2958 configure time test would need to be added. Otherwize the code
2959 will likely core dump. */
2960
2961 /* Method 3: Now we're getting desperate! The system doesn't have a
2962 compile time buffer size and no alternative function. Query the
2963 OS, using pathconf(), for the buffer limit. Care is needed
2964 though, some systems do not limit PATH_MAX (return -1 for
2965 pathconf()) making it impossible to pass a correctly sized buffer
2966 to realpath() (it could always overflow). On those systems, we
2967 skip this. */
2968 #if defined (HAVE_REALPATH) && defined (HAVE_UNISTD_H) && defined(HAVE_ALLOCA)
2969 {
2970 /* Find out the max path size. */
2971 long path_max = pathconf ("/", _PC_PATH_MAX);
2972 if (path_max > 0)
2973 {
2974 /* PATH_MAX is bounded. */
2975 char *buf = alloca (path_max);
2976 char *rp = realpath (filename, buf);
2977 return xstrdup (rp ? rp : filename);
2978 }
2979 }
2980 #endif
2981
2982 /* This system is a lost cause, just dup the buffer. */
2983 return xstrdup (filename);
2984 }
2985
2986 /* Return a copy of FILENAME, with its directory prefix canonicalized
2987 by gdb_realpath. */
2988
2989 char *
2990 xfullpath (const char *filename)
2991 {
2992 const char *base_name = lbasename (filename);
2993 char *dir_name;
2994 char *real_path;
2995 char *result;
2996
2997 /* Extract the basename of filename, and return immediately
2998 a copy of filename if it does not contain any directory prefix. */
2999 if (base_name == filename)
3000 return xstrdup (filename);
3001
3002 dir_name = alloca ((size_t) (base_name - filename + 2));
3003 /* Allocate enough space to store the dir_name + plus one extra
3004 character sometimes needed under Windows (see below), and
3005 then the closing \000 character */
3006 strncpy (dir_name, filename, base_name - filename);
3007 dir_name[base_name - filename] = '\000';
3008
3009 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
3010 /* We need to be careful when filename is of the form 'd:foo', which
3011 is equivalent of d:./foo, which is totally different from d:/foo. */
3012 if (strlen (dir_name) == 2 && isalpha (dir_name[0]) && dir_name[1] == ':')
3013 {
3014 dir_name[2] = '.';
3015 dir_name[3] = '\000';
3016 }
3017 #endif
3018
3019 /* Canonicalize the directory prefix, and build the resulting
3020 filename. If the dirname realpath already contains an ending
3021 directory separator, avoid doubling it. */
3022 real_path = gdb_realpath (dir_name);
3023 if (IS_DIR_SEPARATOR (real_path[strlen (real_path) - 1]))
3024 result = concat (real_path, base_name, (char *)NULL);
3025 else
3026 result = concat (real_path, SLASH_STRING, base_name, (char *)NULL);
3027
3028 xfree (real_path);
3029 return result;
3030 }
3031
3032
3033 /* This is the 32-bit CRC function used by the GNU separate debug
3034 facility. An executable may contain a section named
3035 .gnu_debuglink, which holds the name of a separate executable file
3036 containing its debug info, and a checksum of that file's contents,
3037 computed using this function. */
3038 unsigned long
3039 gnu_debuglink_crc32 (unsigned long crc, unsigned char *buf, size_t len)
3040 {
3041 static const unsigned long crc32_table[256] = {
3042 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
3043 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
3044 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
3045 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
3046 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
3047 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
3048 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
3049 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
3050 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
3051 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
3052 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
3053 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
3054 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
3055 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
3056 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
3057 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
3058 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
3059 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
3060 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
3061 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
3062 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
3063 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
3064 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
3065 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
3066 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
3067 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
3068 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
3069 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
3070 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
3071 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
3072 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
3073 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
3074 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
3075 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
3076 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
3077 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
3078 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
3079 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
3080 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
3081 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
3082 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
3083 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
3084 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
3085 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
3086 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
3087 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
3088 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
3089 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
3090 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
3091 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
3092 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
3093 0x2d02ef8d
3094 };
3095 unsigned char *end;
3096
3097 crc = ~crc & 0xffffffff;
3098 for (end = buf + len; buf < end; ++buf)
3099 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
3100 return ~crc & 0xffffffff;;
3101 }
3102
3103 ULONGEST
3104 align_up (ULONGEST v, int n)
3105 {
3106 /* Check that N is really a power of two. */
3107 gdb_assert (n && (n & (n-1)) == 0);
3108 return (v + n - 1) & -n;
3109 }
3110
3111 ULONGEST
3112 align_down (ULONGEST v, int n)
3113 {
3114 /* Check that N is really a power of two. */
3115 gdb_assert (n && (n & (n-1)) == 0);
3116 return (v & -n);
3117 }
3118
3119 /* Allocation function for the libiberty hash table which uses an
3120 obstack. The obstack is passed as DATA. */
3121
3122 void *
3123 hashtab_obstack_allocate (void *data, size_t size, size_t count)
3124 {
3125 unsigned int total = size * count;
3126 void *ptr = obstack_alloc ((struct obstack *) data, total);
3127 memset (ptr, 0, total);
3128 return ptr;
3129 }
3130
3131 /* Trivial deallocation function for the libiberty splay tree and hash
3132 table - don't deallocate anything. Rely on later deletion of the
3133 obstack. DATA will be the obstack, although it is not needed
3134 here. */
3135
3136 void
3137 dummy_obstack_deallocate (void *object, void *data)
3138 {
3139 return;
3140 }
3141
3142 /* The bit offset of the highest byte in a ULONGEST, for overflow
3143 checking. */
3144
3145 #define HIGH_BYTE_POSN ((sizeof (ULONGEST) - 1) * HOST_CHAR_BIT)
3146
3147 /* True (non-zero) iff DIGIT is a valid digit in radix BASE,
3148 where 2 <= BASE <= 36. */
3149
3150 static int
3151 is_digit_in_base (unsigned char digit, int base)
3152 {
3153 if (!isalnum (digit))
3154 return 0;
3155 if (base <= 10)
3156 return (isdigit (digit) && digit < base + '0');
3157 else
3158 return (isdigit (digit) || tolower (digit) < base - 10 + 'a');
3159 }
3160
3161 static int
3162 digit_to_int (unsigned char c)
3163 {
3164 if (isdigit (c))
3165 return c - '0';
3166 else
3167 return tolower (c) - 'a' + 10;
3168 }
3169
3170 /* As for strtoul, but for ULONGEST results. */
3171
3172 ULONGEST
3173 strtoulst (const char *num, const char **trailer, int base)
3174 {
3175 unsigned int high_part;
3176 ULONGEST result;
3177 int minus = 0;
3178 int i = 0;
3179
3180 /* Skip leading whitespace. */
3181 while (isspace (num[i]))
3182 i++;
3183
3184 /* Handle prefixes. */
3185 if (num[i] == '+')
3186 i++;
3187 else if (num[i] == '-')
3188 {
3189 minus = 1;
3190 i++;
3191 }
3192
3193 if (base == 0 || base == 16)
3194 {
3195 if (num[i] == '0' && (num[i + 1] == 'x' || num[i + 1] == 'X'))
3196 {
3197 i += 2;
3198 if (base == 0)
3199 base = 16;
3200 }
3201 }
3202
3203 if (base == 0 && num[i] == '0')
3204 base = 8;
3205
3206 if (base == 0)
3207 base = 10;
3208
3209 if (base < 2 || base > 36)
3210 {
3211 errno = EINVAL;
3212 return 0;
3213 }
3214
3215 result = high_part = 0;
3216 for (; is_digit_in_base (num[i], base); i += 1)
3217 {
3218 result = result * base + digit_to_int (num[i]);
3219 high_part = high_part * base + (unsigned int) (result >> HIGH_BYTE_POSN);
3220 result &= ((ULONGEST) 1 << HIGH_BYTE_POSN) - 1;
3221 if (high_part > 0xff)
3222 {
3223 errno = ERANGE;
3224 result = ~ (ULONGEST) 0;
3225 high_part = 0;
3226 minus = 0;
3227 break;
3228 }
3229 }
3230
3231 if (trailer != NULL)
3232 *trailer = &num[i];
3233
3234 result = result + ((ULONGEST) high_part << HIGH_BYTE_POSN);
3235 if (minus)
3236 return -result;
3237 else
3238 return result;
3239 }
3240
3241 /* Simple, portable version of dirname that does not modify its
3242 argument. */
3243
3244 char *
3245 ldirname (const char *filename)
3246 {
3247 const char *base = lbasename (filename);
3248 char *dirname;
3249
3250 while (base > filename && IS_DIR_SEPARATOR (base[-1]))
3251 --base;
3252
3253 if (base == filename)
3254 return NULL;
3255
3256 dirname = xmalloc (base - filename + 2);
3257 memcpy (dirname, filename, base - filename);
3258
3259 /* On DOS based file systems, convert "d:foo" to "d:.", so that we
3260 create "d:./bar" later instead of the (different) "d:/bar". */
3261 if (base - filename == 2 && IS_ABSOLUTE_PATH (base)
3262 && !IS_DIR_SEPARATOR (filename[0]))
3263 dirname[base++ - filename] = '.';
3264
3265 dirname[base - filename] = '\0';
3266 return dirname;
3267 }
This page took 0.141556 seconds and 5 git commands to generate.