* utils.c (string_to_core_addr): If the executable format
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_assert.h"
24 #include <ctype.h>
25 #include "gdb_string.h"
26 #include "event-top.h"
27 #include "exceptions.h"
28
29 #ifdef TUI
30 #include "tui/tui.h" /* For tui_get_command_dimension. */
31 #endif
32
33 #ifdef __GO32__
34 #include <pc.h>
35 #endif
36
37 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
38 #ifdef reg
39 #undef reg
40 #endif
41
42 #include <signal.h>
43 #include "gdbcmd.h"
44 #include "serial.h"
45 #include "bfd.h"
46 #include "target.h"
47 #include "demangle.h"
48 #include "expression.h"
49 #include "language.h"
50 #include "charset.h"
51 #include "annotate.h"
52 #include "filenames.h"
53 #include "symfile.h"
54 #include "gdb_obstack.h"
55 #include "gdbcore.h"
56 #include "top.h"
57
58 #include "inferior.h" /* for signed_pointer_to_address */
59
60 #include <sys/param.h> /* For MAXPATHLEN */
61
62 #include "gdb_curses.h"
63
64 #include "readline/readline.h"
65
66 #if !HAVE_DECL_MALLOC
67 extern PTR malloc (); /* OK: PTR */
68 #endif
69 #if !HAVE_DECL_REALLOC
70 extern PTR realloc (); /* OK: PTR */
71 #endif
72 #if !HAVE_DECL_FREE
73 extern void free ();
74 #endif
75
76 /* readline defines this. */
77 #undef savestring
78
79 void (*deprecated_error_begin_hook) (void);
80
81 /* Prototypes for local functions */
82
83 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
84 va_list, int) ATTR_FORMAT (printf, 2, 0);
85
86 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
87
88 static void do_my_cleanups (struct cleanup **, struct cleanup *);
89
90 static void prompt_for_continue (void);
91
92 static void set_screen_size (void);
93 static void set_width (void);
94
95 /* Chain of cleanup actions established with make_cleanup,
96 to be executed if an error happens. */
97
98 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
99 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
100 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
101 /* cleaned up on each error from within an execution command */
102 static struct cleanup *exec_error_cleanup_chain;
103
104 /* Pointer to what is left to do for an execution command after the
105 target stops. Used only in asynchronous mode, by targets that
106 support async execution. The finish and until commands use it. So
107 does the target extended-remote command. */
108 struct continuation *cmd_continuation;
109 struct continuation *intermediate_continuation;
110
111 /* Nonzero if we have job control. */
112
113 int job_control;
114
115 /* Nonzero means a quit has been requested. */
116
117 int quit_flag;
118
119 /* Nonzero means quit immediately if Control-C is typed now, rather
120 than waiting until QUIT is executed. Be careful in setting this;
121 code which executes with immediate_quit set has to be very careful
122 about being able to deal with being interrupted at any time. It is
123 almost always better to use QUIT; the only exception I can think of
124 is being able to quit out of a system call (using EINTR loses if
125 the SIGINT happens between the previous QUIT and the system call).
126 To immediately quit in the case in which a SIGINT happens between
127 the previous QUIT and setting immediate_quit (desirable anytime we
128 expect to block), call QUIT after setting immediate_quit. */
129
130 int immediate_quit;
131
132 /* Nonzero means that encoded C++/ObjC names should be printed out in their
133 C++/ObjC form rather than raw. */
134
135 int demangle = 1;
136 static void
137 show_demangle (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("\
141 Demangling of encoded C++/ObjC names when displaying symbols is %s.\n"),
142 value);
143 }
144
145 /* Nonzero means that encoded C++/ObjC names should be printed out in their
146 C++/ObjC form even in assembler language displays. If this is set, but
147 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
148
149 int asm_demangle = 0;
150 static void
151 show_asm_demangle (struct ui_file *file, int from_tty,
152 struct cmd_list_element *c, const char *value)
153 {
154 fprintf_filtered (file, _("\
155 Demangling of C++/ObjC names in disassembly listings is %s.\n"),
156 value);
157 }
158
159 /* Nonzero means that strings with character values >0x7F should be printed
160 as octal escapes. Zero means just print the value (e.g. it's an
161 international character, and the terminal or window can cope.) */
162
163 int sevenbit_strings = 0;
164 static void
165 show_sevenbit_strings (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Printing of 8-bit characters in strings as \\nnn is %s.\n"),
170 value);
171 }
172
173 /* String to be printed before error messages, if any. */
174
175 char *error_pre_print;
176
177 /* String to be printed before quit messages, if any. */
178
179 char *quit_pre_print;
180
181 /* String to be printed before warning messages, if any. */
182
183 char *warning_pre_print = "\nwarning: ";
184
185 int pagination_enabled = 1;
186 static void
187 show_pagination_enabled (struct ui_file *file, int from_tty,
188 struct cmd_list_element *c, const char *value)
189 {
190 fprintf_filtered (file, _("State of pagination is %s.\n"), value);
191 }
192
193 \f
194
195 /* Add a new cleanup to the cleanup_chain,
196 and return the previous chain pointer
197 to be passed later to do_cleanups or discard_cleanups.
198 Args are FUNCTION to clean up with, and ARG to pass to it. */
199
200 struct cleanup *
201 make_cleanup (make_cleanup_ftype *function, void *arg)
202 {
203 return make_my_cleanup (&cleanup_chain, function, arg);
204 }
205
206 struct cleanup *
207 make_final_cleanup (make_cleanup_ftype *function, void *arg)
208 {
209 return make_my_cleanup (&final_cleanup_chain, function, arg);
210 }
211
212 struct cleanup *
213 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
214 {
215 return make_my_cleanup (&exec_cleanup_chain, function, arg);
216 }
217
218 struct cleanup *
219 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
220 {
221 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
222 }
223
224 static void
225 do_freeargv (void *arg)
226 {
227 freeargv ((char **) arg);
228 }
229
230 struct cleanup *
231 make_cleanup_freeargv (char **arg)
232 {
233 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
234 }
235
236 static void
237 do_bfd_close_cleanup (void *arg)
238 {
239 bfd_close (arg);
240 }
241
242 struct cleanup *
243 make_cleanup_bfd_close (bfd *abfd)
244 {
245 return make_cleanup (do_bfd_close_cleanup, abfd);
246 }
247
248 static void
249 do_close_cleanup (void *arg)
250 {
251 int *fd = arg;
252 close (*fd);
253 xfree (fd);
254 }
255
256 struct cleanup *
257 make_cleanup_close (int fd)
258 {
259 int *saved_fd = xmalloc (sizeof (fd));
260 *saved_fd = fd;
261 return make_cleanup (do_close_cleanup, saved_fd);
262 }
263
264 static void
265 do_ui_file_delete (void *arg)
266 {
267 ui_file_delete (arg);
268 }
269
270 struct cleanup *
271 make_cleanup_ui_file_delete (struct ui_file *arg)
272 {
273 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
274 }
275
276 static void
277 do_free_section_addr_info (void *arg)
278 {
279 free_section_addr_info (arg);
280 }
281
282 struct cleanup *
283 make_cleanup_free_section_addr_info (struct section_addr_info *addrs)
284 {
285 return make_my_cleanup (&cleanup_chain, do_free_section_addr_info, addrs);
286 }
287
288
289 struct cleanup *
290 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
291 void *arg)
292 {
293 struct cleanup *new
294 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
295 struct cleanup *old_chain = *pmy_chain;
296
297 new->next = *pmy_chain;
298 new->function = function;
299 new->arg = arg;
300 *pmy_chain = new;
301
302 return old_chain;
303 }
304
305 /* Discard cleanups and do the actions they describe
306 until we get back to the point OLD_CHAIN in the cleanup_chain. */
307
308 void
309 do_cleanups (struct cleanup *old_chain)
310 {
311 do_my_cleanups (&cleanup_chain, old_chain);
312 }
313
314 void
315 do_final_cleanups (struct cleanup *old_chain)
316 {
317 do_my_cleanups (&final_cleanup_chain, old_chain);
318 }
319
320 void
321 do_exec_cleanups (struct cleanup *old_chain)
322 {
323 do_my_cleanups (&exec_cleanup_chain, old_chain);
324 }
325
326 void
327 do_exec_error_cleanups (struct cleanup *old_chain)
328 {
329 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
330 }
331
332 static void
333 do_my_cleanups (struct cleanup **pmy_chain,
334 struct cleanup *old_chain)
335 {
336 struct cleanup *ptr;
337 while ((ptr = *pmy_chain) != old_chain)
338 {
339 *pmy_chain = ptr->next; /* Do this first incase recursion */
340 (*ptr->function) (ptr->arg);
341 xfree (ptr);
342 }
343 }
344
345 /* Discard cleanups, not doing the actions they describe,
346 until we get back to the point OLD_CHAIN in the cleanup_chain. */
347
348 void
349 discard_cleanups (struct cleanup *old_chain)
350 {
351 discard_my_cleanups (&cleanup_chain, old_chain);
352 }
353
354 void
355 discard_final_cleanups (struct cleanup *old_chain)
356 {
357 discard_my_cleanups (&final_cleanup_chain, old_chain);
358 }
359
360 void
361 discard_exec_error_cleanups (struct cleanup *old_chain)
362 {
363 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
364 }
365
366 void
367 discard_my_cleanups (struct cleanup **pmy_chain,
368 struct cleanup *old_chain)
369 {
370 struct cleanup *ptr;
371 while ((ptr = *pmy_chain) != old_chain)
372 {
373 *pmy_chain = ptr->next;
374 xfree (ptr);
375 }
376 }
377
378 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
379 struct cleanup *
380 save_cleanups (void)
381 {
382 return save_my_cleanups (&cleanup_chain);
383 }
384
385 struct cleanup *
386 save_final_cleanups (void)
387 {
388 return save_my_cleanups (&final_cleanup_chain);
389 }
390
391 struct cleanup *
392 save_my_cleanups (struct cleanup **pmy_chain)
393 {
394 struct cleanup *old_chain = *pmy_chain;
395
396 *pmy_chain = 0;
397 return old_chain;
398 }
399
400 /* Restore the cleanup chain from a previously saved chain. */
401 void
402 restore_cleanups (struct cleanup *chain)
403 {
404 restore_my_cleanups (&cleanup_chain, chain);
405 }
406
407 void
408 restore_final_cleanups (struct cleanup *chain)
409 {
410 restore_my_cleanups (&final_cleanup_chain, chain);
411 }
412
413 void
414 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
415 {
416 *pmy_chain = chain;
417 }
418
419 /* This function is useful for cleanups.
420 Do
421
422 foo = xmalloc (...);
423 old_chain = make_cleanup (free_current_contents, &foo);
424
425 to arrange to free the object thus allocated. */
426
427 void
428 free_current_contents (void *ptr)
429 {
430 void **location = ptr;
431 if (location == NULL)
432 internal_error (__FILE__, __LINE__,
433 _("free_current_contents: NULL pointer"));
434 if (*location != NULL)
435 {
436 xfree (*location);
437 *location = NULL;
438 }
439 }
440
441 /* Provide a known function that does nothing, to use as a base for
442 for a possibly long chain of cleanups. This is useful where we
443 use the cleanup chain for handling normal cleanups as well as dealing
444 with cleanups that need to be done as a result of a call to error().
445 In such cases, we may not be certain where the first cleanup is, unless
446 we have a do-nothing one to always use as the base. */
447
448 void
449 null_cleanup (void *arg)
450 {
451 }
452
453 /* Add a continuation to the continuation list, the global list
454 cmd_continuation. The new continuation will be added at the front.*/
455 void
456 add_continuation (void (*continuation_hook) (struct continuation_arg *),
457 struct continuation_arg *arg_list)
458 {
459 struct continuation *continuation_ptr;
460
461 continuation_ptr =
462 (struct continuation *) xmalloc (sizeof (struct continuation));
463 continuation_ptr->continuation_hook = continuation_hook;
464 continuation_ptr->arg_list = arg_list;
465 continuation_ptr->next = cmd_continuation;
466 cmd_continuation = continuation_ptr;
467 }
468
469 /* Walk down the cmd_continuation list, and execute all the
470 continuations. There is a problem though. In some cases new
471 continuations may be added while we are in the middle of this
472 loop. If this happens they will be added in the front, and done
473 before we have a chance of exhausting those that were already
474 there. We need to then save the beginning of the list in a pointer
475 and do the continuations from there on, instead of using the
476 global beginning of list as our iteration pointer. */
477 void
478 do_all_continuations (void)
479 {
480 struct continuation *continuation_ptr;
481 struct continuation *saved_continuation;
482
483 /* Copy the list header into another pointer, and set the global
484 list header to null, so that the global list can change as a side
485 effect of invoking the continuations and the processing of
486 the preexisting continuations will not be affected. */
487 continuation_ptr = cmd_continuation;
488 cmd_continuation = NULL;
489
490 /* Work now on the list we have set aside. */
491 while (continuation_ptr)
492 {
493 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
494 saved_continuation = continuation_ptr;
495 continuation_ptr = continuation_ptr->next;
496 xfree (saved_continuation);
497 }
498 }
499
500 /* Walk down the cmd_continuation list, and get rid of all the
501 continuations. */
502 void
503 discard_all_continuations (void)
504 {
505 struct continuation *continuation_ptr;
506
507 while (cmd_continuation)
508 {
509 continuation_ptr = cmd_continuation;
510 cmd_continuation = continuation_ptr->next;
511 xfree (continuation_ptr);
512 }
513 }
514
515 /* Add a continuation to the continuation list, the global list
516 intermediate_continuation. The new continuation will be added at
517 the front. */
518 void
519 add_intermediate_continuation (void (*continuation_hook)
520 (struct continuation_arg *),
521 struct continuation_arg *arg_list)
522 {
523 struct continuation *continuation_ptr;
524
525 continuation_ptr =
526 (struct continuation *) xmalloc (sizeof (struct continuation));
527 continuation_ptr->continuation_hook = continuation_hook;
528 continuation_ptr->arg_list = arg_list;
529 continuation_ptr->next = intermediate_continuation;
530 intermediate_continuation = continuation_ptr;
531 }
532
533 /* Walk down the cmd_continuation list, and execute all the
534 continuations. There is a problem though. In some cases new
535 continuations may be added while we are in the middle of this
536 loop. If this happens they will be added in the front, and done
537 before we have a chance of exhausting those that were already
538 there. We need to then save the beginning of the list in a pointer
539 and do the continuations from there on, instead of using the
540 global beginning of list as our iteration pointer.*/
541 void
542 do_all_intermediate_continuations (void)
543 {
544 struct continuation *continuation_ptr;
545 struct continuation *saved_continuation;
546
547 /* Copy the list header into another pointer, and set the global
548 list header to null, so that the global list can change as a side
549 effect of invoking the continuations and the processing of
550 the preexisting continuations will not be affected. */
551 continuation_ptr = intermediate_continuation;
552 intermediate_continuation = NULL;
553
554 /* Work now on the list we have set aside. */
555 while (continuation_ptr)
556 {
557 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
558 saved_continuation = continuation_ptr;
559 continuation_ptr = continuation_ptr->next;
560 xfree (saved_continuation);
561 }
562 }
563
564 /* Walk down the cmd_continuation list, and get rid of all the
565 continuations. */
566 void
567 discard_all_intermediate_continuations (void)
568 {
569 struct continuation *continuation_ptr;
570
571 while (intermediate_continuation)
572 {
573 continuation_ptr = intermediate_continuation;
574 intermediate_continuation = continuation_ptr->next;
575 xfree (continuation_ptr);
576 }
577 }
578 \f
579
580
581 /* Print a warning message. The first argument STRING is the warning
582 message, used as an fprintf format string, the second is the
583 va_list of arguments for that string. A warning is unfiltered (not
584 paginated) so that the user does not need to page through each
585 screen full of warnings when there are lots of them. */
586
587 void
588 vwarning (const char *string, va_list args)
589 {
590 if (deprecated_warning_hook)
591 (*deprecated_warning_hook) (string, args);
592 else
593 {
594 target_terminal_ours ();
595 wrap_here (""); /* Force out any buffered output */
596 gdb_flush (gdb_stdout);
597 if (warning_pre_print)
598 fputs_unfiltered (warning_pre_print, gdb_stderr);
599 vfprintf_unfiltered (gdb_stderr, string, args);
600 fprintf_unfiltered (gdb_stderr, "\n");
601 va_end (args);
602 }
603 }
604
605 /* Print a warning message.
606 The first argument STRING is the warning message, used as a fprintf string,
607 and the remaining args are passed as arguments to it.
608 The primary difference between warnings and errors is that a warning
609 does not force the return to command level. */
610
611 void
612 warning (const char *string, ...)
613 {
614 va_list args;
615 va_start (args, string);
616 vwarning (string, args);
617 va_end (args);
618 }
619
620 /* Print an error message and return to command level.
621 The first argument STRING is the error message, used as a fprintf string,
622 and the remaining args are passed as arguments to it. */
623
624 NORETURN void
625 verror (const char *string, va_list args)
626 {
627 throw_verror (GENERIC_ERROR, string, args);
628 }
629
630 NORETURN void
631 error (const char *string, ...)
632 {
633 va_list args;
634 va_start (args, string);
635 throw_verror (GENERIC_ERROR, string, args);
636 va_end (args);
637 }
638
639 /* Print an error message and quit.
640 The first argument STRING is the error message, used as a fprintf string,
641 and the remaining args are passed as arguments to it. */
642
643 NORETURN void
644 vfatal (const char *string, va_list args)
645 {
646 throw_vfatal (string, args);
647 }
648
649 NORETURN void
650 fatal (const char *string, ...)
651 {
652 va_list args;
653 va_start (args, string);
654 throw_vfatal (string, args);
655 va_end (args);
656 }
657
658 NORETURN void
659 error_stream (struct ui_file *stream)
660 {
661 long len;
662 char *message = ui_file_xstrdup (stream, &len);
663 make_cleanup (xfree, message);
664 error (("%s"), message);
665 }
666
667 /* Print a message reporting an internal error/warning. Ask the user
668 if they want to continue, dump core, or just exit. Return
669 something to indicate a quit. */
670
671 struct internal_problem
672 {
673 const char *name;
674 /* FIXME: cagney/2002-08-15: There should be ``maint set/show''
675 commands available for controlling these variables. */
676 enum auto_boolean should_quit;
677 enum auto_boolean should_dump_core;
678 };
679
680 /* Report a problem, internal to GDB, to the user. Once the problem
681 has been reported, and assuming GDB didn't quit, the caller can
682 either allow execution to resume or throw an error. */
683
684 static void ATTR_FORMAT (printf, 4, 0)
685 internal_vproblem (struct internal_problem *problem,
686 const char *file, int line, const char *fmt, va_list ap)
687 {
688 static int dejavu;
689 int quit_p;
690 int dump_core_p;
691 char *reason;
692
693 /* Don't allow infinite error/warning recursion. */
694 {
695 static char msg[] = "Recursive internal problem.\n";
696 switch (dejavu)
697 {
698 case 0:
699 dejavu = 1;
700 break;
701 case 1:
702 dejavu = 2;
703 fputs_unfiltered (msg, gdb_stderr);
704 abort (); /* NOTE: GDB has only three calls to abort(). */
705 default:
706 dejavu = 3;
707 write (STDERR_FILENO, msg, sizeof (msg));
708 exit (1);
709 }
710 }
711
712 /* Try to get the message out and at the start of a new line. */
713 target_terminal_ours ();
714 begin_line ();
715
716 /* Create a string containing the full error/warning message. Need
717 to call query with this full string, as otherwize the reason
718 (error/warning) and question become separated. Format using a
719 style similar to a compiler error message. Include extra detail
720 so that the user knows that they are living on the edge. */
721 {
722 char *msg;
723 msg = xstrvprintf (fmt, ap);
724 reason = xstrprintf ("\
725 %s:%d: %s: %s\n\
726 A problem internal to GDB has been detected,\n\
727 further debugging may prove unreliable.", file, line, problem->name, msg);
728 xfree (msg);
729 make_cleanup (xfree, reason);
730 }
731
732 switch (problem->should_quit)
733 {
734 case AUTO_BOOLEAN_AUTO:
735 /* Default (yes/batch case) is to quit GDB. When in batch mode
736 this lessens the likelhood of GDB going into an infinate
737 loop. */
738 quit_p = query (_("%s\nQuit this debugging session? "), reason);
739 break;
740 case AUTO_BOOLEAN_TRUE:
741 quit_p = 1;
742 break;
743 case AUTO_BOOLEAN_FALSE:
744 quit_p = 0;
745 break;
746 default:
747 internal_error (__FILE__, __LINE__, _("bad switch"));
748 }
749
750 switch (problem->should_dump_core)
751 {
752 case AUTO_BOOLEAN_AUTO:
753 /* Default (yes/batch case) is to dump core. This leaves a GDB
754 `dropping' so that it is easier to see that something went
755 wrong in GDB. */
756 dump_core_p = query (_("%s\nCreate a core file of GDB? "), reason);
757 break;
758 break;
759 case AUTO_BOOLEAN_TRUE:
760 dump_core_p = 1;
761 break;
762 case AUTO_BOOLEAN_FALSE:
763 dump_core_p = 0;
764 break;
765 default:
766 internal_error (__FILE__, __LINE__, _("bad switch"));
767 }
768
769 if (quit_p)
770 {
771 if (dump_core_p)
772 abort (); /* NOTE: GDB has only three calls to abort(). */
773 else
774 exit (1);
775 }
776 else
777 {
778 if (dump_core_p)
779 {
780 #ifdef HAVE_WORKING_FORK
781 if (fork () == 0)
782 abort (); /* NOTE: GDB has only three calls to abort(). */
783 #endif
784 }
785 }
786
787 dejavu = 0;
788 }
789
790 static struct internal_problem internal_error_problem = {
791 "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
792 };
793
794 NORETURN void
795 internal_verror (const char *file, int line, const char *fmt, va_list ap)
796 {
797 internal_vproblem (&internal_error_problem, file, line, fmt, ap);
798 deprecated_throw_reason (RETURN_ERROR);
799 }
800
801 NORETURN void
802 internal_error (const char *file, int line, const char *string, ...)
803 {
804 va_list ap;
805 va_start (ap, string);
806 internal_verror (file, line, string, ap);
807 va_end (ap);
808 }
809
810 static struct internal_problem internal_warning_problem = {
811 "internal-warning", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
812 };
813
814 void
815 internal_vwarning (const char *file, int line, const char *fmt, va_list ap)
816 {
817 internal_vproblem (&internal_warning_problem, file, line, fmt, ap);
818 }
819
820 void
821 internal_warning (const char *file, int line, const char *string, ...)
822 {
823 va_list ap;
824 va_start (ap, string);
825 internal_vwarning (file, line, string, ap);
826 va_end (ap);
827 }
828
829 /* Print the system error message for errno, and also mention STRING
830 as the file name for which the error was encountered.
831 Then return to command level. */
832
833 NORETURN void
834 perror_with_name (const char *string)
835 {
836 char *err;
837 char *combined;
838
839 err = safe_strerror (errno);
840 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
841 strcpy (combined, string);
842 strcat (combined, ": ");
843 strcat (combined, err);
844
845 /* I understand setting these is a matter of taste. Still, some people
846 may clear errno but not know about bfd_error. Doing this here is not
847 unreasonable. */
848 bfd_set_error (bfd_error_no_error);
849 errno = 0;
850
851 error (_("%s."), combined);
852 }
853
854 /* Print the system error message for ERRCODE, and also mention STRING
855 as the file name for which the error was encountered. */
856
857 void
858 print_sys_errmsg (const char *string, int errcode)
859 {
860 char *err;
861 char *combined;
862
863 err = safe_strerror (errcode);
864 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
865 strcpy (combined, string);
866 strcat (combined, ": ");
867 strcat (combined, err);
868
869 /* We want anything which was printed on stdout to come out first, before
870 this message. */
871 gdb_flush (gdb_stdout);
872 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
873 }
874
875 /* Control C eventually causes this to be called, at a convenient time. */
876
877 void
878 quit (void)
879 {
880 #ifdef __MSDOS__
881 /* No steenking SIGINT will ever be coming our way when the
882 program is resumed. Don't lie. */
883 fatal ("Quit");
884 #else
885 if (job_control
886 /* If there is no terminal switching for this target, then we can't
887 possibly get screwed by the lack of job control. */
888 || current_target.to_terminal_ours == NULL)
889 fatal ("Quit");
890 else
891 fatal ("Quit (expect signal SIGINT when the program is resumed)");
892 #endif
893 }
894
895 \f
896 /* Called when a memory allocation fails, with the number of bytes of
897 memory requested in SIZE. */
898
899 NORETURN void
900 nomem (long size)
901 {
902 if (size > 0)
903 {
904 internal_error (__FILE__, __LINE__,
905 _("virtual memory exhausted: can't allocate %ld bytes."),
906 size);
907 }
908 else
909 {
910 internal_error (__FILE__, __LINE__, _("virtual memory exhausted."));
911 }
912 }
913
914 /* The xmalloc() (libiberty.h) family of memory management routines.
915
916 These are like the ISO-C malloc() family except that they implement
917 consistent semantics and guard against typical memory management
918 problems. */
919
920 /* NOTE: These are declared using PTR to ensure consistency with
921 "libiberty.h". xfree() is GDB local. */
922
923 PTR /* OK: PTR */
924 xmalloc (size_t size)
925 {
926 void *val;
927
928 /* See libiberty/xmalloc.c. This function need's to match that's
929 semantics. It never returns NULL. */
930 if (size == 0)
931 size = 1;
932
933 val = malloc (size); /* OK: malloc */
934 if (val == NULL)
935 nomem (size);
936
937 return (val);
938 }
939
940 void *
941 xzalloc (size_t size)
942 {
943 return xcalloc (1, size);
944 }
945
946 PTR /* OK: PTR */
947 xrealloc (PTR ptr, size_t size) /* OK: PTR */
948 {
949 void *val;
950
951 /* See libiberty/xmalloc.c. This function need's to match that's
952 semantics. It never returns NULL. */
953 if (size == 0)
954 size = 1;
955
956 if (ptr != NULL)
957 val = realloc (ptr, size); /* OK: realloc */
958 else
959 val = malloc (size); /* OK: malloc */
960 if (val == NULL)
961 nomem (size);
962
963 return (val);
964 }
965
966 PTR /* OK: PTR */
967 xcalloc (size_t number, size_t size)
968 {
969 void *mem;
970
971 /* See libiberty/xmalloc.c. This function need's to match that's
972 semantics. It never returns NULL. */
973 if (number == 0 || size == 0)
974 {
975 number = 1;
976 size = 1;
977 }
978
979 mem = calloc (number, size); /* OK: xcalloc */
980 if (mem == NULL)
981 nomem (number * size);
982
983 return mem;
984 }
985
986 void
987 xfree (void *ptr)
988 {
989 if (ptr != NULL)
990 free (ptr); /* OK: free */
991 }
992 \f
993
994 /* Like asprintf/vasprintf but get an internal_error if the call
995 fails. */
996
997 char *
998 xstrprintf (const char *format, ...)
999 {
1000 char *ret;
1001 va_list args;
1002 va_start (args, format);
1003 ret = xstrvprintf (format, args);
1004 va_end (args);
1005 return ret;
1006 }
1007
1008 void
1009 xasprintf (char **ret, const char *format, ...)
1010 {
1011 va_list args;
1012 va_start (args, format);
1013 (*ret) = xstrvprintf (format, args);
1014 va_end (args);
1015 }
1016
1017 void
1018 xvasprintf (char **ret, const char *format, va_list ap)
1019 {
1020 (*ret) = xstrvprintf (format, ap);
1021 }
1022
1023 char *
1024 xstrvprintf (const char *format, va_list ap)
1025 {
1026 char *ret = NULL;
1027 int status = vasprintf (&ret, format, ap);
1028 /* NULL is returned when there was a memory allocation problem, or
1029 any other error (for instance, a bad format string). A negative
1030 status (the printed length) with a non-NULL buffer should never
1031 happen, but just to be sure. */
1032 if (ret == NULL || status < 0)
1033 internal_error (__FILE__, __LINE__, _("vasprintf call failed"));
1034 return ret;
1035 }
1036
1037 int
1038 xsnprintf (char *str, size_t size, const char *format, ...)
1039 {
1040 va_list args;
1041 int ret;
1042
1043 va_start (args, format);
1044 ret = vsnprintf (str, size, format, args);
1045 gdb_assert (ret < size);
1046 va_end (args);
1047
1048 return ret;
1049 }
1050
1051 /* My replacement for the read system call.
1052 Used like `read' but keeps going if `read' returns too soon. */
1053
1054 int
1055 myread (int desc, char *addr, int len)
1056 {
1057 int val;
1058 int orglen = len;
1059
1060 while (len > 0)
1061 {
1062 val = read (desc, addr, len);
1063 if (val < 0)
1064 return val;
1065 if (val == 0)
1066 return orglen - len;
1067 len -= val;
1068 addr += val;
1069 }
1070 return orglen;
1071 }
1072 \f
1073 /* Make a copy of the string at PTR with SIZE characters
1074 (and add a null character at the end in the copy).
1075 Uses malloc to get the space. Returns the address of the copy. */
1076
1077 char *
1078 savestring (const char *ptr, size_t size)
1079 {
1080 char *p = (char *) xmalloc (size + 1);
1081 memcpy (p, ptr, size);
1082 p[size] = 0;
1083 return p;
1084 }
1085
1086 void
1087 print_spaces (int n, struct ui_file *file)
1088 {
1089 fputs_unfiltered (n_spaces (n), file);
1090 }
1091
1092 /* Print a host address. */
1093
1094 void
1095 gdb_print_host_address (const void *addr, struct ui_file *stream)
1096 {
1097
1098 /* We could use the %p conversion specifier to fprintf if we had any
1099 way of knowing whether this host supports it. But the following
1100 should work on the Alpha and on 32 bit machines. */
1101
1102 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1103 }
1104 \f
1105
1106 /* This function supports the query, nquery, and yquery functions.
1107 Ask user a y-or-n question and return 0 if answer is no, 1 if
1108 answer is yes, or default the answer to the specified default
1109 (for yquery or nquery). DEFCHAR may be 'y' or 'n' to provide a
1110 default answer, or '\0' for no default.
1111 CTLSTR is the control string and should end in "? ". It should
1112 not say how to answer, because we do that.
1113 ARGS are the arguments passed along with the CTLSTR argument to
1114 printf. */
1115
1116 static int ATTR_FORMAT (printf, 1, 0)
1117 defaulted_query (const char *ctlstr, const char defchar, va_list args)
1118 {
1119 int answer;
1120 int ans2;
1121 int retval;
1122 int def_value;
1123 char def_answer, not_def_answer;
1124 char *y_string, *n_string, *question;
1125
1126 /* Set up according to which answer is the default. */
1127 if (defchar == '\0')
1128 {
1129 def_value = 1;
1130 def_answer = 'Y';
1131 not_def_answer = 'N';
1132 y_string = "y";
1133 n_string = "n";
1134 }
1135 else if (defchar == 'y')
1136 {
1137 def_value = 1;
1138 def_answer = 'Y';
1139 not_def_answer = 'N';
1140 y_string = "[y]";
1141 n_string = "n";
1142 }
1143 else
1144 {
1145 def_value = 0;
1146 def_answer = 'N';
1147 not_def_answer = 'Y';
1148 y_string = "y";
1149 n_string = "[n]";
1150 }
1151
1152 /* Automatically answer the default value if the user did not want
1153 prompts. */
1154 if (! caution)
1155 return def_value;
1156
1157 /* If input isn't coming from the user directly, just say what
1158 question we're asking, and then answer "yes" automatically. This
1159 way, important error messages don't get lost when talking to GDB
1160 over a pipe. */
1161 if (! input_from_terminal_p ())
1162 {
1163 wrap_here ("");
1164 vfprintf_filtered (gdb_stdout, ctlstr, args);
1165
1166 printf_filtered (_("(%s or %s) [answered %c; input not from terminal]\n"),
1167 y_string, n_string, def_answer);
1168 gdb_flush (gdb_stdout);
1169
1170 return def_value;
1171 }
1172
1173 /* Automatically answer the default value if input is not from the user
1174 directly, or if the user did not want prompts. */
1175 if (!input_from_terminal_p () || !caution)
1176 return def_value;
1177
1178 if (deprecated_query_hook)
1179 {
1180 return deprecated_query_hook (ctlstr, args);
1181 }
1182
1183 /* Format the question outside of the loop, to avoid reusing args. */
1184 question = xstrvprintf (ctlstr, args);
1185
1186 while (1)
1187 {
1188 wrap_here (""); /* Flush any buffered output */
1189 gdb_flush (gdb_stdout);
1190
1191 if (annotation_level > 1)
1192 printf_filtered (("\n\032\032pre-query\n"));
1193
1194 fputs_filtered (question, gdb_stdout);
1195 printf_filtered (_("(%s or %s) "), y_string, n_string);
1196
1197 if (annotation_level > 1)
1198 printf_filtered (("\n\032\032query\n"));
1199
1200 wrap_here ("");
1201 gdb_flush (gdb_stdout);
1202
1203 answer = fgetc (stdin);
1204 clearerr (stdin); /* in case of C-d */
1205 if (answer == EOF) /* C-d */
1206 {
1207 printf_filtered ("EOF [assumed %c]\n", def_answer);
1208 retval = def_value;
1209 break;
1210 }
1211 /* Eat rest of input line, to EOF or newline */
1212 if (answer != '\n')
1213 do
1214 {
1215 ans2 = fgetc (stdin);
1216 clearerr (stdin);
1217 }
1218 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1219
1220 if (answer >= 'a')
1221 answer -= 040;
1222 /* Check answer. For the non-default, the user must specify
1223 the non-default explicitly. */
1224 if (answer == not_def_answer)
1225 {
1226 retval = !def_value;
1227 break;
1228 }
1229 /* Otherwise, if a default was specified, the user may either
1230 specify the required input or have it default by entering
1231 nothing. */
1232 if (answer == def_answer
1233 || (defchar != '\0' &&
1234 (answer == '\n' || answer == '\r' || answer == EOF)))
1235 {
1236 retval = def_value;
1237 break;
1238 }
1239 /* Invalid entries are not defaulted and require another selection. */
1240 printf_filtered (_("Please answer %s or %s.\n"),
1241 y_string, n_string);
1242 }
1243
1244 xfree (question);
1245 if (annotation_level > 1)
1246 printf_filtered (("\n\032\032post-query\n"));
1247 return retval;
1248 }
1249 \f
1250
1251 /* Ask user a y-or-n question and return 0 if answer is no, 1 if
1252 answer is yes, or 0 if answer is defaulted.
1253 Takes three args which are given to printf to print the question.
1254 The first, a control string, should end in "? ".
1255 It should not say how to answer, because we do that. */
1256
1257 int
1258 nquery (const char *ctlstr, ...)
1259 {
1260 va_list args;
1261
1262 va_start (args, ctlstr);
1263 return defaulted_query (ctlstr, 'n', args);
1264 va_end (args);
1265 }
1266
1267 /* Ask user a y-or-n question and return 0 if answer is no, 1 if
1268 answer is yes, or 1 if answer is defaulted.
1269 Takes three args which are given to printf to print the question.
1270 The first, a control string, should end in "? ".
1271 It should not say how to answer, because we do that. */
1272
1273 int
1274 yquery (const char *ctlstr, ...)
1275 {
1276 va_list args;
1277
1278 va_start (args, ctlstr);
1279 return defaulted_query (ctlstr, 'y', args);
1280 va_end (args);
1281 }
1282
1283 /* Ask user a y-or-n question and return 1 iff answer is yes.
1284 Takes three args which are given to printf to print the question.
1285 The first, a control string, should end in "? ".
1286 It should not say how to answer, because we do that. */
1287
1288 int
1289 query (const char *ctlstr, ...)
1290 {
1291 va_list args;
1292
1293 va_start (args, ctlstr);
1294 return defaulted_query (ctlstr, '\0', args);
1295 va_end (args);
1296 }
1297
1298 /* Print an error message saying that we couldn't make sense of a
1299 \^mumble sequence in a string or character constant. START and END
1300 indicate a substring of some larger string that contains the
1301 erroneous backslash sequence, missing the initial backslash. */
1302 static NORETURN int
1303 no_control_char_error (const char *start, const char *end)
1304 {
1305 int len = end - start;
1306 char *copy = alloca (end - start + 1);
1307
1308 memcpy (copy, start, len);
1309 copy[len] = '\0';
1310
1311 error (_("There is no control character `\\%s' in the `%s' character set."),
1312 copy, target_charset ());
1313 }
1314
1315 /* Parse a C escape sequence. STRING_PTR points to a variable
1316 containing a pointer to the string to parse. That pointer
1317 should point to the character after the \. That pointer
1318 is updated past the characters we use. The value of the
1319 escape sequence is returned.
1320
1321 A negative value means the sequence \ newline was seen,
1322 which is supposed to be equivalent to nothing at all.
1323
1324 If \ is followed by a null character, we return a negative
1325 value and leave the string pointer pointing at the null character.
1326
1327 If \ is followed by 000, we return 0 and leave the string pointer
1328 after the zeros. A value of 0 does not mean end of string. */
1329
1330 int
1331 parse_escape (char **string_ptr)
1332 {
1333 int target_char;
1334 int c = *(*string_ptr)++;
1335 if (c_parse_backslash (c, &target_char))
1336 return target_char;
1337 else
1338 switch (c)
1339 {
1340 case '\n':
1341 return -2;
1342 case 0:
1343 (*string_ptr)--;
1344 return 0;
1345 case '^':
1346 {
1347 /* Remember where this escape sequence started, for reporting
1348 errors. */
1349 char *sequence_start_pos = *string_ptr - 1;
1350
1351 c = *(*string_ptr)++;
1352
1353 if (c == '?')
1354 {
1355 /* XXXCHARSET: What is `delete' in the host character set? */
1356 c = 0177;
1357
1358 if (!host_char_to_target (c, &target_char))
1359 error (_("There is no character corresponding to `Delete' "
1360 "in the target character set `%s'."), host_charset ());
1361
1362 return target_char;
1363 }
1364 else if (c == '\\')
1365 target_char = parse_escape (string_ptr);
1366 else
1367 {
1368 if (!host_char_to_target (c, &target_char))
1369 no_control_char_error (sequence_start_pos, *string_ptr);
1370 }
1371
1372 /* Now target_char is something like `c', and we want to find
1373 its control-character equivalent. */
1374 if (!target_char_to_control_char (target_char, &target_char))
1375 no_control_char_error (sequence_start_pos, *string_ptr);
1376
1377 return target_char;
1378 }
1379
1380 /* XXXCHARSET: we need to use isdigit and value-of-digit
1381 methods of the host character set here. */
1382
1383 case '0':
1384 case '1':
1385 case '2':
1386 case '3':
1387 case '4':
1388 case '5':
1389 case '6':
1390 case '7':
1391 {
1392 int i = c - '0';
1393 int count = 0;
1394 while (++count < 3)
1395 {
1396 c = (**string_ptr);
1397 if (c >= '0' && c <= '7')
1398 {
1399 (*string_ptr)++;
1400 i *= 8;
1401 i += c - '0';
1402 }
1403 else
1404 {
1405 break;
1406 }
1407 }
1408 return i;
1409 }
1410 default:
1411 if (!host_char_to_target (c, &target_char))
1412 error
1413 ("The escape sequence `\%c' is equivalent to plain `%c', which"
1414 " has no equivalent\n" "in the `%s' character set.", c, c,
1415 target_charset ());
1416 return target_char;
1417 }
1418 }
1419 \f
1420 /* Print the character C on STREAM as part of the contents of a literal
1421 string whose delimiter is QUOTER. Note that this routine should only
1422 be call for printing things which are independent of the language
1423 of the program being debugged. */
1424
1425 static void
1426 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1427 void (*do_fprintf) (struct ui_file *, const char *, ...)
1428 ATTRIBUTE_FPTR_PRINTF_2, struct ui_file *stream, int quoter)
1429 {
1430
1431 c &= 0xFF; /* Avoid sign bit follies */
1432
1433 if (c < 0x20 || /* Low control chars */
1434 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1435 (sevenbit_strings && c >= 0x80))
1436 { /* high order bit set */
1437 switch (c)
1438 {
1439 case '\n':
1440 do_fputs ("\\n", stream);
1441 break;
1442 case '\b':
1443 do_fputs ("\\b", stream);
1444 break;
1445 case '\t':
1446 do_fputs ("\\t", stream);
1447 break;
1448 case '\f':
1449 do_fputs ("\\f", stream);
1450 break;
1451 case '\r':
1452 do_fputs ("\\r", stream);
1453 break;
1454 case '\033':
1455 do_fputs ("\\e", stream);
1456 break;
1457 case '\007':
1458 do_fputs ("\\a", stream);
1459 break;
1460 default:
1461 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1462 break;
1463 }
1464 }
1465 else
1466 {
1467 if (c == '\\' || c == quoter)
1468 do_fputs ("\\", stream);
1469 do_fprintf (stream, "%c", c);
1470 }
1471 }
1472
1473 /* Print the character C on STREAM as part of the contents of a
1474 literal string whose delimiter is QUOTER. Note that these routines
1475 should only be call for printing things which are independent of
1476 the language of the program being debugged. */
1477
1478 void
1479 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1480 {
1481 while (*str)
1482 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1483 }
1484
1485 void
1486 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1487 {
1488 while (*str)
1489 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1490 }
1491
1492 void
1493 fputstrn_filtered (const char *str, int n, int quoter,
1494 struct ui_file *stream)
1495 {
1496 int i;
1497 for (i = 0; i < n; i++)
1498 printchar (str[i], fputs_filtered, fprintf_filtered, stream, quoter);
1499 }
1500
1501 void
1502 fputstrn_unfiltered (const char *str, int n, int quoter,
1503 struct ui_file *stream)
1504 {
1505 int i;
1506 for (i = 0; i < n; i++)
1507 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1508 }
1509 \f
1510
1511 /* Number of lines per page or UINT_MAX if paging is disabled. */
1512 static unsigned int lines_per_page;
1513 static void
1514 show_lines_per_page (struct ui_file *file, int from_tty,
1515 struct cmd_list_element *c, const char *value)
1516 {
1517 fprintf_filtered (file, _("\
1518 Number of lines gdb thinks are in a page is %s.\n"),
1519 value);
1520 }
1521
1522 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1523 static unsigned int chars_per_line;
1524 static void
1525 show_chars_per_line (struct ui_file *file, int from_tty,
1526 struct cmd_list_element *c, const char *value)
1527 {
1528 fprintf_filtered (file, _("\
1529 Number of characters gdb thinks are in a line is %s.\n"),
1530 value);
1531 }
1532
1533 /* Current count of lines printed on this page, chars on this line. */
1534 static unsigned int lines_printed, chars_printed;
1535
1536 /* Buffer and start column of buffered text, for doing smarter word-
1537 wrapping. When someone calls wrap_here(), we start buffering output
1538 that comes through fputs_filtered(). If we see a newline, we just
1539 spit it out and forget about the wrap_here(). If we see another
1540 wrap_here(), we spit it out and remember the newer one. If we see
1541 the end of the line, we spit out a newline, the indent, and then
1542 the buffered output. */
1543
1544 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1545 are waiting to be output (they have already been counted in chars_printed).
1546 When wrap_buffer[0] is null, the buffer is empty. */
1547 static char *wrap_buffer;
1548
1549 /* Pointer in wrap_buffer to the next character to fill. */
1550 static char *wrap_pointer;
1551
1552 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1553 is non-zero. */
1554 static char *wrap_indent;
1555
1556 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1557 is not in effect. */
1558 static int wrap_column;
1559 \f
1560
1561 /* Inialize the number of lines per page and chars per line. */
1562
1563 void
1564 init_page_info (void)
1565 {
1566 #if defined(TUI)
1567 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
1568 #endif
1569 {
1570 int rows, cols;
1571
1572 #if defined(__GO32__)
1573 rows = ScreenRows ();
1574 cols = ScreenCols ();
1575 lines_per_page = rows;
1576 chars_per_line = cols;
1577 #else
1578 /* Make sure Readline has initialized its terminal settings. */
1579 rl_reset_terminal (NULL);
1580
1581 /* Get the screen size from Readline. */
1582 rl_get_screen_size (&rows, &cols);
1583 lines_per_page = rows;
1584 chars_per_line = cols;
1585
1586 /* Readline should have fetched the termcap entry for us. */
1587 if (tgetnum ("li") < 0 || getenv ("EMACS"))
1588 {
1589 /* The number of lines per page is not mentioned in the
1590 terminal description. This probably means that paging is
1591 not useful (e.g. emacs shell window), so disable paging. */
1592 lines_per_page = UINT_MAX;
1593 }
1594
1595 /* FIXME: Get rid of this junk. */
1596 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1597 SIGWINCH_HANDLER (SIGWINCH);
1598 #endif
1599
1600 /* If the output is not a terminal, don't paginate it. */
1601 if (!ui_file_isatty (gdb_stdout))
1602 lines_per_page = UINT_MAX;
1603 #endif
1604 }
1605
1606 set_screen_size ();
1607 set_width ();
1608 }
1609
1610 /* Set the screen size based on LINES_PER_PAGE and CHARS_PER_LINE. */
1611
1612 static void
1613 set_screen_size (void)
1614 {
1615 int rows = lines_per_page;
1616 int cols = chars_per_line;
1617
1618 if (rows <= 0)
1619 rows = INT_MAX;
1620
1621 if (cols <= 0)
1622 cols = INT_MAX;
1623
1624 /* Update Readline's idea of the terminal size. */
1625 rl_set_screen_size (rows, cols);
1626 }
1627
1628 /* Reinitialize WRAP_BUFFER according to the current value of
1629 CHARS_PER_LINE. */
1630
1631 static void
1632 set_width (void)
1633 {
1634 if (chars_per_line == 0)
1635 init_page_info ();
1636
1637 if (!wrap_buffer)
1638 {
1639 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1640 wrap_buffer[0] = '\0';
1641 }
1642 else
1643 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1644 wrap_pointer = wrap_buffer; /* Start it at the beginning. */
1645 }
1646
1647 static void
1648 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1649 {
1650 set_screen_size ();
1651 set_width ();
1652 }
1653
1654 static void
1655 set_height_command (char *args, int from_tty, struct cmd_list_element *c)
1656 {
1657 set_screen_size ();
1658 }
1659
1660 /* Wait, so the user can read what's on the screen. Prompt the user
1661 to continue by pressing RETURN. */
1662
1663 static void
1664 prompt_for_continue (void)
1665 {
1666 char *ignore;
1667 char cont_prompt[120];
1668
1669 if (annotation_level > 1)
1670 printf_unfiltered (("\n\032\032pre-prompt-for-continue\n"));
1671
1672 strcpy (cont_prompt,
1673 "---Type <return> to continue, or q <return> to quit---");
1674 if (annotation_level > 1)
1675 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1676
1677 /* We must do this *before* we call gdb_readline, else it will eventually
1678 call us -- thinking that we're trying to print beyond the end of the
1679 screen. */
1680 reinitialize_more_filter ();
1681
1682 immediate_quit++;
1683 /* On a real operating system, the user can quit with SIGINT.
1684 But not on GO32.
1685
1686 'q' is provided on all systems so users don't have to change habits
1687 from system to system, and because telling them what to do in
1688 the prompt is more user-friendly than expecting them to think of
1689 SIGINT. */
1690 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1691 whereas control-C to gdb_readline will cause the user to get dumped
1692 out to DOS. */
1693 ignore = gdb_readline_wrapper (cont_prompt);
1694
1695 if (annotation_level > 1)
1696 printf_unfiltered (("\n\032\032post-prompt-for-continue\n"));
1697
1698 if (ignore)
1699 {
1700 char *p = ignore;
1701 while (*p == ' ' || *p == '\t')
1702 ++p;
1703 if (p[0] == 'q')
1704 async_request_quit (0);
1705 xfree (ignore);
1706 }
1707 immediate_quit--;
1708
1709 /* Now we have to do this again, so that GDB will know that it doesn't
1710 need to save the ---Type <return>--- line at the top of the screen. */
1711 reinitialize_more_filter ();
1712
1713 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1714 }
1715
1716 /* Reinitialize filter; ie. tell it to reset to original values. */
1717
1718 void
1719 reinitialize_more_filter (void)
1720 {
1721 lines_printed = 0;
1722 chars_printed = 0;
1723 }
1724
1725 /* Indicate that if the next sequence of characters overflows the line,
1726 a newline should be inserted here rather than when it hits the end.
1727 If INDENT is non-null, it is a string to be printed to indent the
1728 wrapped part on the next line. INDENT must remain accessible until
1729 the next call to wrap_here() or until a newline is printed through
1730 fputs_filtered().
1731
1732 If the line is already overfull, we immediately print a newline and
1733 the indentation, and disable further wrapping.
1734
1735 If we don't know the width of lines, but we know the page height,
1736 we must not wrap words, but should still keep track of newlines
1737 that were explicitly printed.
1738
1739 INDENT should not contain tabs, as that will mess up the char count
1740 on the next line. FIXME.
1741
1742 This routine is guaranteed to force out any output which has been
1743 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1744 used to force out output from the wrap_buffer. */
1745
1746 void
1747 wrap_here (char *indent)
1748 {
1749 /* This should have been allocated, but be paranoid anyway. */
1750 if (!wrap_buffer)
1751 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1752
1753 if (wrap_buffer[0])
1754 {
1755 *wrap_pointer = '\0';
1756 fputs_unfiltered (wrap_buffer, gdb_stdout);
1757 }
1758 wrap_pointer = wrap_buffer;
1759 wrap_buffer[0] = '\0';
1760 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1761 {
1762 wrap_column = 0;
1763 }
1764 else if (chars_printed >= chars_per_line)
1765 {
1766 puts_filtered ("\n");
1767 if (indent != NULL)
1768 puts_filtered (indent);
1769 wrap_column = 0;
1770 }
1771 else
1772 {
1773 wrap_column = chars_printed;
1774 if (indent == NULL)
1775 wrap_indent = "";
1776 else
1777 wrap_indent = indent;
1778 }
1779 }
1780
1781 /* Print input string to gdb_stdout, filtered, with wrap,
1782 arranging strings in columns of n chars. String can be
1783 right or left justified in the column. Never prints
1784 trailing spaces. String should never be longer than
1785 width. FIXME: this could be useful for the EXAMINE
1786 command, which currently doesn't tabulate very well */
1787
1788 void
1789 puts_filtered_tabular (char *string, int width, int right)
1790 {
1791 int spaces = 0;
1792 int stringlen;
1793 char *spacebuf;
1794
1795 gdb_assert (chars_per_line > 0);
1796 if (chars_per_line == UINT_MAX)
1797 {
1798 fputs_filtered (string, gdb_stdout);
1799 fputs_filtered ("\n", gdb_stdout);
1800 return;
1801 }
1802
1803 if (((chars_printed - 1) / width + 2) * width >= chars_per_line)
1804 fputs_filtered ("\n", gdb_stdout);
1805
1806 if (width >= chars_per_line)
1807 width = chars_per_line - 1;
1808
1809 stringlen = strlen (string);
1810
1811 if (chars_printed > 0)
1812 spaces = width - (chars_printed - 1) % width - 1;
1813 if (right)
1814 spaces += width - stringlen;
1815
1816 spacebuf = alloca (spaces + 1);
1817 spacebuf[spaces] = '\0';
1818 while (spaces--)
1819 spacebuf[spaces] = ' ';
1820
1821 fputs_filtered (spacebuf, gdb_stdout);
1822 fputs_filtered (string, gdb_stdout);
1823 }
1824
1825
1826 /* Ensure that whatever gets printed next, using the filtered output
1827 commands, starts at the beginning of the line. I.E. if there is
1828 any pending output for the current line, flush it and start a new
1829 line. Otherwise do nothing. */
1830
1831 void
1832 begin_line (void)
1833 {
1834 if (chars_printed > 0)
1835 {
1836 puts_filtered ("\n");
1837 }
1838 }
1839
1840
1841 /* Like fputs but if FILTER is true, pause after every screenful.
1842
1843 Regardless of FILTER can wrap at points other than the final
1844 character of a line.
1845
1846 Unlike fputs, fputs_maybe_filtered does not return a value.
1847 It is OK for LINEBUFFER to be NULL, in which case just don't print
1848 anything.
1849
1850 Note that a longjmp to top level may occur in this routine (only if
1851 FILTER is true) (since prompt_for_continue may do so) so this
1852 routine should not be called when cleanups are not in place. */
1853
1854 static void
1855 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1856 int filter)
1857 {
1858 const char *lineptr;
1859
1860 if (linebuffer == 0)
1861 return;
1862
1863 /* Don't do any filtering if it is disabled. */
1864 if ((stream != gdb_stdout) || !pagination_enabled
1865 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1866 {
1867 fputs_unfiltered (linebuffer, stream);
1868 return;
1869 }
1870
1871 /* Go through and output each character. Show line extension
1872 when this is necessary; prompt user for new page when this is
1873 necessary. */
1874
1875 lineptr = linebuffer;
1876 while (*lineptr)
1877 {
1878 /* Possible new page. */
1879 if (filter && (lines_printed >= lines_per_page - 1))
1880 prompt_for_continue ();
1881
1882 while (*lineptr && *lineptr != '\n')
1883 {
1884 /* Print a single line. */
1885 if (*lineptr == '\t')
1886 {
1887 if (wrap_column)
1888 *wrap_pointer++ = '\t';
1889 else
1890 fputc_unfiltered ('\t', stream);
1891 /* Shifting right by 3 produces the number of tab stops
1892 we have already passed, and then adding one and
1893 shifting left 3 advances to the next tab stop. */
1894 chars_printed = ((chars_printed >> 3) + 1) << 3;
1895 lineptr++;
1896 }
1897 else
1898 {
1899 if (wrap_column)
1900 *wrap_pointer++ = *lineptr;
1901 else
1902 fputc_unfiltered (*lineptr, stream);
1903 chars_printed++;
1904 lineptr++;
1905 }
1906
1907 if (chars_printed >= chars_per_line)
1908 {
1909 unsigned int save_chars = chars_printed;
1910
1911 chars_printed = 0;
1912 lines_printed++;
1913 /* If we aren't actually wrapping, don't output newline --
1914 if chars_per_line is right, we probably just overflowed
1915 anyway; if it's wrong, let us keep going. */
1916 if (wrap_column)
1917 fputc_unfiltered ('\n', stream);
1918
1919 /* Possible new page. */
1920 if (lines_printed >= lines_per_page - 1)
1921 prompt_for_continue ();
1922
1923 /* Now output indentation and wrapped string */
1924 if (wrap_column)
1925 {
1926 fputs_unfiltered (wrap_indent, stream);
1927 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1928 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1929 /* FIXME, this strlen is what prevents wrap_indent from
1930 containing tabs. However, if we recurse to print it
1931 and count its chars, we risk trouble if wrap_indent is
1932 longer than (the user settable) chars_per_line.
1933 Note also that this can set chars_printed > chars_per_line
1934 if we are printing a long string. */
1935 chars_printed = strlen (wrap_indent)
1936 + (save_chars - wrap_column);
1937 wrap_pointer = wrap_buffer; /* Reset buffer */
1938 wrap_buffer[0] = '\0';
1939 wrap_column = 0; /* And disable fancy wrap */
1940 }
1941 }
1942 }
1943
1944 if (*lineptr == '\n')
1945 {
1946 chars_printed = 0;
1947 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1948 lines_printed++;
1949 fputc_unfiltered ('\n', stream);
1950 lineptr++;
1951 }
1952 }
1953 }
1954
1955 void
1956 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1957 {
1958 fputs_maybe_filtered (linebuffer, stream, 1);
1959 }
1960
1961 int
1962 putchar_unfiltered (int c)
1963 {
1964 char buf = c;
1965 ui_file_write (gdb_stdout, &buf, 1);
1966 return c;
1967 }
1968
1969 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1970 May return nonlocally. */
1971
1972 int
1973 putchar_filtered (int c)
1974 {
1975 return fputc_filtered (c, gdb_stdout);
1976 }
1977
1978 int
1979 fputc_unfiltered (int c, struct ui_file *stream)
1980 {
1981 char buf = c;
1982 ui_file_write (stream, &buf, 1);
1983 return c;
1984 }
1985
1986 int
1987 fputc_filtered (int c, struct ui_file *stream)
1988 {
1989 char buf[2];
1990
1991 buf[0] = c;
1992 buf[1] = 0;
1993 fputs_filtered (buf, stream);
1994 return c;
1995 }
1996
1997 /* puts_debug is like fputs_unfiltered, except it prints special
1998 characters in printable fashion. */
1999
2000 void
2001 puts_debug (char *prefix, char *string, char *suffix)
2002 {
2003 int ch;
2004
2005 /* Print prefix and suffix after each line. */
2006 static int new_line = 1;
2007 static int return_p = 0;
2008 static char *prev_prefix = "";
2009 static char *prev_suffix = "";
2010
2011 if (*string == '\n')
2012 return_p = 0;
2013
2014 /* If the prefix is changing, print the previous suffix, a new line,
2015 and the new prefix. */
2016 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
2017 {
2018 fputs_unfiltered (prev_suffix, gdb_stdlog);
2019 fputs_unfiltered ("\n", gdb_stdlog);
2020 fputs_unfiltered (prefix, gdb_stdlog);
2021 }
2022
2023 /* Print prefix if we printed a newline during the previous call. */
2024 if (new_line)
2025 {
2026 new_line = 0;
2027 fputs_unfiltered (prefix, gdb_stdlog);
2028 }
2029
2030 prev_prefix = prefix;
2031 prev_suffix = suffix;
2032
2033 /* Output characters in a printable format. */
2034 while ((ch = *string++) != '\0')
2035 {
2036 switch (ch)
2037 {
2038 default:
2039 if (isprint (ch))
2040 fputc_unfiltered (ch, gdb_stdlog);
2041
2042 else
2043 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
2044 break;
2045
2046 case '\\':
2047 fputs_unfiltered ("\\\\", gdb_stdlog);
2048 break;
2049 case '\b':
2050 fputs_unfiltered ("\\b", gdb_stdlog);
2051 break;
2052 case '\f':
2053 fputs_unfiltered ("\\f", gdb_stdlog);
2054 break;
2055 case '\n':
2056 new_line = 1;
2057 fputs_unfiltered ("\\n", gdb_stdlog);
2058 break;
2059 case '\r':
2060 fputs_unfiltered ("\\r", gdb_stdlog);
2061 break;
2062 case '\t':
2063 fputs_unfiltered ("\\t", gdb_stdlog);
2064 break;
2065 case '\v':
2066 fputs_unfiltered ("\\v", gdb_stdlog);
2067 break;
2068 }
2069
2070 return_p = ch == '\r';
2071 }
2072
2073 /* Print suffix if we printed a newline. */
2074 if (new_line)
2075 {
2076 fputs_unfiltered (suffix, gdb_stdlog);
2077 fputs_unfiltered ("\n", gdb_stdlog);
2078 }
2079 }
2080
2081
2082 /* Print a variable number of ARGS using format FORMAT. If this
2083 information is going to put the amount written (since the last call
2084 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2085 call prompt_for_continue to get the users permision to continue.
2086
2087 Unlike fprintf, this function does not return a value.
2088
2089 We implement three variants, vfprintf (takes a vararg list and stream),
2090 fprintf (takes a stream to write on), and printf (the usual).
2091
2092 Note also that a longjmp to top level may occur in this routine
2093 (since prompt_for_continue may do so) so this routine should not be
2094 called when cleanups are not in place. */
2095
2096 static void
2097 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2098 va_list args, int filter)
2099 {
2100 char *linebuffer;
2101 struct cleanup *old_cleanups;
2102
2103 linebuffer = xstrvprintf (format, args);
2104 old_cleanups = make_cleanup (xfree, linebuffer);
2105 fputs_maybe_filtered (linebuffer, stream, filter);
2106 do_cleanups (old_cleanups);
2107 }
2108
2109
2110 void
2111 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2112 {
2113 vfprintf_maybe_filtered (stream, format, args, 1);
2114 }
2115
2116 void
2117 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2118 {
2119 char *linebuffer;
2120 struct cleanup *old_cleanups;
2121
2122 linebuffer = xstrvprintf (format, args);
2123 old_cleanups = make_cleanup (xfree, linebuffer);
2124 fputs_unfiltered (linebuffer, stream);
2125 do_cleanups (old_cleanups);
2126 }
2127
2128 void
2129 vprintf_filtered (const char *format, va_list args)
2130 {
2131 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2132 }
2133
2134 void
2135 vprintf_unfiltered (const char *format, va_list args)
2136 {
2137 vfprintf_unfiltered (gdb_stdout, format, args);
2138 }
2139
2140 void
2141 fprintf_filtered (struct ui_file *stream, const char *format, ...)
2142 {
2143 va_list args;
2144 va_start (args, format);
2145 vfprintf_filtered (stream, format, args);
2146 va_end (args);
2147 }
2148
2149 void
2150 fprintf_unfiltered (struct ui_file *stream, const char *format, ...)
2151 {
2152 va_list args;
2153 va_start (args, format);
2154 vfprintf_unfiltered (stream, format, args);
2155 va_end (args);
2156 }
2157
2158 /* Like fprintf_filtered, but prints its result indented.
2159 Called as fprintfi_filtered (spaces, stream, format, ...); */
2160
2161 void
2162 fprintfi_filtered (int spaces, struct ui_file *stream, const char *format,
2163 ...)
2164 {
2165 va_list args;
2166 va_start (args, format);
2167 print_spaces_filtered (spaces, stream);
2168
2169 vfprintf_filtered (stream, format, args);
2170 va_end (args);
2171 }
2172
2173
2174 void
2175 printf_filtered (const char *format, ...)
2176 {
2177 va_list args;
2178 va_start (args, format);
2179 vfprintf_filtered (gdb_stdout, format, args);
2180 va_end (args);
2181 }
2182
2183
2184 void
2185 printf_unfiltered (const char *format, ...)
2186 {
2187 va_list args;
2188 va_start (args, format);
2189 vfprintf_unfiltered (gdb_stdout, format, args);
2190 va_end (args);
2191 }
2192
2193 /* Like printf_filtered, but prints it's result indented.
2194 Called as printfi_filtered (spaces, format, ...); */
2195
2196 void
2197 printfi_filtered (int spaces, const char *format, ...)
2198 {
2199 va_list args;
2200 va_start (args, format);
2201 print_spaces_filtered (spaces, gdb_stdout);
2202 vfprintf_filtered (gdb_stdout, format, args);
2203 va_end (args);
2204 }
2205
2206 /* Easy -- but watch out!
2207
2208 This routine is *not* a replacement for puts()! puts() appends a newline.
2209 This one doesn't, and had better not! */
2210
2211 void
2212 puts_filtered (const char *string)
2213 {
2214 fputs_filtered (string, gdb_stdout);
2215 }
2216
2217 void
2218 puts_unfiltered (const char *string)
2219 {
2220 fputs_unfiltered (string, gdb_stdout);
2221 }
2222
2223 /* Return a pointer to N spaces and a null. The pointer is good
2224 until the next call to here. */
2225 char *
2226 n_spaces (int n)
2227 {
2228 char *t;
2229 static char *spaces = 0;
2230 static int max_spaces = -1;
2231
2232 if (n > max_spaces)
2233 {
2234 if (spaces)
2235 xfree (spaces);
2236 spaces = (char *) xmalloc (n + 1);
2237 for (t = spaces + n; t != spaces;)
2238 *--t = ' ';
2239 spaces[n] = '\0';
2240 max_spaces = n;
2241 }
2242
2243 return spaces + max_spaces - n;
2244 }
2245
2246 /* Print N spaces. */
2247 void
2248 print_spaces_filtered (int n, struct ui_file *stream)
2249 {
2250 fputs_filtered (n_spaces (n), stream);
2251 }
2252 \f
2253 /* C++/ObjC demangler stuff. */
2254
2255 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2256 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2257 If the name is not mangled, or the language for the name is unknown, or
2258 demangling is off, the name is printed in its "raw" form. */
2259
2260 void
2261 fprintf_symbol_filtered (struct ui_file *stream, char *name,
2262 enum language lang, int arg_mode)
2263 {
2264 char *demangled;
2265
2266 if (name != NULL)
2267 {
2268 /* If user wants to see raw output, no problem. */
2269 if (!demangle)
2270 {
2271 fputs_filtered (name, stream);
2272 }
2273 else
2274 {
2275 demangled = language_demangle (language_def (lang), name, arg_mode);
2276 fputs_filtered (demangled ? demangled : name, stream);
2277 if (demangled != NULL)
2278 {
2279 xfree (demangled);
2280 }
2281 }
2282 }
2283 }
2284
2285 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2286 differences in whitespace. Returns 0 if they match, non-zero if they
2287 don't (slightly different than strcmp()'s range of return values).
2288
2289 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2290 This "feature" is useful when searching for matching C++ function names
2291 (such as if the user types 'break FOO', where FOO is a mangled C++
2292 function). */
2293
2294 int
2295 strcmp_iw (const char *string1, const char *string2)
2296 {
2297 while ((*string1 != '\0') && (*string2 != '\0'))
2298 {
2299 while (isspace (*string1))
2300 {
2301 string1++;
2302 }
2303 while (isspace (*string2))
2304 {
2305 string2++;
2306 }
2307 if (*string1 != *string2)
2308 {
2309 break;
2310 }
2311 if (*string1 != '\0')
2312 {
2313 string1++;
2314 string2++;
2315 }
2316 }
2317 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2318 }
2319
2320 /* This is like strcmp except that it ignores whitespace and treats
2321 '(' as the first non-NULL character in terms of ordering. Like
2322 strcmp (and unlike strcmp_iw), it returns negative if STRING1 <
2323 STRING2, 0 if STRING2 = STRING2, and positive if STRING1 > STRING2
2324 according to that ordering.
2325
2326 If a list is sorted according to this function and if you want to
2327 find names in the list that match some fixed NAME according to
2328 strcmp_iw(LIST_ELT, NAME), then the place to start looking is right
2329 where this function would put NAME.
2330
2331 Here are some examples of why using strcmp to sort is a bad idea:
2332
2333 Whitespace example:
2334
2335 Say your partial symtab contains: "foo<char *>", "goo". Then, if
2336 we try to do a search for "foo<char*>", strcmp will locate this
2337 after "foo<char *>" and before "goo". Then lookup_partial_symbol
2338 will start looking at strings beginning with "goo", and will never
2339 see the correct match of "foo<char *>".
2340
2341 Parenthesis example:
2342
2343 In practice, this is less like to be an issue, but I'll give it a
2344 shot. Let's assume that '$' is a legitimate character to occur in
2345 symbols. (Which may well even be the case on some systems.) Then
2346 say that the partial symbol table contains "foo$" and "foo(int)".
2347 strcmp will put them in this order, since '$' < '('. Now, if the
2348 user searches for "foo", then strcmp will sort "foo" before "foo$".
2349 Then lookup_partial_symbol will notice that strcmp_iw("foo$",
2350 "foo") is false, so it won't proceed to the actual match of
2351 "foo(int)" with "foo". */
2352
2353 int
2354 strcmp_iw_ordered (const char *string1, const char *string2)
2355 {
2356 while ((*string1 != '\0') && (*string2 != '\0'))
2357 {
2358 while (isspace (*string1))
2359 {
2360 string1++;
2361 }
2362 while (isspace (*string2))
2363 {
2364 string2++;
2365 }
2366 if (*string1 != *string2)
2367 {
2368 break;
2369 }
2370 if (*string1 != '\0')
2371 {
2372 string1++;
2373 string2++;
2374 }
2375 }
2376
2377 switch (*string1)
2378 {
2379 /* Characters are non-equal unless they're both '\0'; we want to
2380 make sure we get the comparison right according to our
2381 comparison in the cases where one of them is '\0' or '('. */
2382 case '\0':
2383 if (*string2 == '\0')
2384 return 0;
2385 else
2386 return -1;
2387 case '(':
2388 if (*string2 == '\0')
2389 return 1;
2390 else
2391 return -1;
2392 default:
2393 if (*string2 == '(')
2394 return 1;
2395 else
2396 return *string1 - *string2;
2397 }
2398 }
2399
2400 /* A simple comparison function with opposite semantics to strcmp. */
2401
2402 int
2403 streq (const char *lhs, const char *rhs)
2404 {
2405 return !strcmp (lhs, rhs);
2406 }
2407 \f
2408
2409 /*
2410 ** subset_compare()
2411 ** Answer whether string_to_compare is a full or partial match to
2412 ** template_string. The partial match must be in sequence starting
2413 ** at index 0.
2414 */
2415 int
2416 subset_compare (char *string_to_compare, char *template_string)
2417 {
2418 int match;
2419 if (template_string != (char *) NULL && string_to_compare != (char *) NULL
2420 && strlen (string_to_compare) <= strlen (template_string))
2421 match =
2422 (strncmp
2423 (template_string, string_to_compare, strlen (string_to_compare)) == 0);
2424 else
2425 match = 0;
2426 return match;
2427 }
2428
2429 static void
2430 pagination_on_command (char *arg, int from_tty)
2431 {
2432 pagination_enabled = 1;
2433 }
2434
2435 static void
2436 pagination_off_command (char *arg, int from_tty)
2437 {
2438 pagination_enabled = 0;
2439 }
2440 \f
2441
2442 void
2443 initialize_utils (void)
2444 {
2445 struct cmd_list_element *c;
2446
2447 add_setshow_uinteger_cmd ("width", class_support, &chars_per_line, _("\
2448 Set number of characters gdb thinks are in a line."), _("\
2449 Show number of characters gdb thinks are in a line."), NULL,
2450 set_width_command,
2451 show_chars_per_line,
2452 &setlist, &showlist);
2453
2454 add_setshow_uinteger_cmd ("height", class_support, &lines_per_page, _("\
2455 Set number of lines gdb thinks are in a page."), _("\
2456 Show number of lines gdb thinks are in a page."), NULL,
2457 set_height_command,
2458 show_lines_per_page,
2459 &setlist, &showlist);
2460
2461 init_page_info ();
2462
2463 add_setshow_boolean_cmd ("demangle", class_support, &demangle, _("\
2464 Set demangling of encoded C++/ObjC names when displaying symbols."), _("\
2465 Show demangling of encoded C++/ObjC names when displaying symbols."), NULL,
2466 NULL,
2467 show_demangle,
2468 &setprintlist, &showprintlist);
2469
2470 add_setshow_boolean_cmd ("pagination", class_support,
2471 &pagination_enabled, _("\
2472 Set state of pagination."), _("\
2473 Show state of pagination."), NULL,
2474 NULL,
2475 show_pagination_enabled,
2476 &setlist, &showlist);
2477
2478 if (xdb_commands)
2479 {
2480 add_com ("am", class_support, pagination_on_command,
2481 _("Enable pagination"));
2482 add_com ("sm", class_support, pagination_off_command,
2483 _("Disable pagination"));
2484 }
2485
2486 add_setshow_boolean_cmd ("sevenbit-strings", class_support,
2487 &sevenbit_strings, _("\
2488 Set printing of 8-bit characters in strings as \\nnn."), _("\
2489 Show printing of 8-bit characters in strings as \\nnn."), NULL,
2490 NULL,
2491 show_sevenbit_strings,
2492 &setprintlist, &showprintlist);
2493
2494 add_setshow_boolean_cmd ("asm-demangle", class_support, &asm_demangle, _("\
2495 Set demangling of C++/ObjC names in disassembly listings."), _("\
2496 Show demangling of C++/ObjC names in disassembly listings."), NULL,
2497 NULL,
2498 show_asm_demangle,
2499 &setprintlist, &showprintlist);
2500 }
2501
2502 /* Machine specific function to handle SIGWINCH signal. */
2503
2504 #ifdef SIGWINCH_HANDLER_BODY
2505 SIGWINCH_HANDLER_BODY
2506 #endif
2507 /* print routines to handle variable size regs, etc. */
2508 /* temporary storage using circular buffer */
2509 #define NUMCELLS 16
2510 #define CELLSIZE 50
2511 static char *
2512 get_cell (void)
2513 {
2514 static char buf[NUMCELLS][CELLSIZE];
2515 static int cell = 0;
2516 if (++cell >= NUMCELLS)
2517 cell = 0;
2518 return buf[cell];
2519 }
2520
2521 int
2522 strlen_paddr (void)
2523 {
2524 return (gdbarch_addr_bit (current_gdbarch) / 8 * 2);
2525 }
2526
2527 char *
2528 paddr (CORE_ADDR addr)
2529 {
2530 return phex (addr, gdbarch_addr_bit (current_gdbarch) / 8);
2531 }
2532
2533 char *
2534 paddr_nz (CORE_ADDR addr)
2535 {
2536 return phex_nz (addr, gdbarch_addr_bit (current_gdbarch) / 8);
2537 }
2538
2539 const char *
2540 paddress (CORE_ADDR addr)
2541 {
2542 /* Truncate address to the size of a target address, avoiding shifts
2543 larger or equal than the width of a CORE_ADDR. The local
2544 variable ADDR_BIT stops the compiler reporting a shift overflow
2545 when it won't occur. */
2546 /* NOTE: This assumes that the significant address information is
2547 kept in the least significant bits of ADDR - the upper bits were
2548 either zero or sign extended. Should gdbarch_address_to_pointer or
2549 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
2550
2551 int addr_bit = gdbarch_addr_bit (current_gdbarch);
2552
2553 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2554 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
2555 return hex_string (addr);
2556 }
2557
2558 static char *
2559 decimal2str (char *sign, ULONGEST addr, int width)
2560 {
2561 /* Steal code from valprint.c:print_decimal(). Should this worry
2562 about the real size of addr as the above does? */
2563 unsigned long temp[3];
2564 char *str = get_cell ();
2565
2566 int i = 0;
2567 do
2568 {
2569 temp[i] = addr % (1000 * 1000 * 1000);
2570 addr /= (1000 * 1000 * 1000);
2571 i++;
2572 width -= 9;
2573 }
2574 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2575
2576 width += 9;
2577 if (width < 0)
2578 width = 0;
2579
2580 switch (i)
2581 {
2582 case 1:
2583 xsnprintf (str, CELLSIZE, "%s%0*lu", sign, width, temp[0]);
2584 break;
2585 case 2:
2586 xsnprintf (str, CELLSIZE, "%s%0*lu%09lu", sign, width,
2587 temp[1], temp[0]);
2588 break;
2589 case 3:
2590 xsnprintf (str, CELLSIZE, "%s%0*lu%09lu%09lu", sign, width,
2591 temp[2], temp[1], temp[0]);
2592 break;
2593 default:
2594 internal_error (__FILE__, __LINE__,
2595 _("failed internal consistency check"));
2596 }
2597
2598 return str;
2599 }
2600
2601 static char *
2602 octal2str (ULONGEST addr, int width)
2603 {
2604 unsigned long temp[3];
2605 char *str = get_cell ();
2606
2607 int i = 0;
2608 do
2609 {
2610 temp[i] = addr % (0100000 * 0100000);
2611 addr /= (0100000 * 0100000);
2612 i++;
2613 width -= 10;
2614 }
2615 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2616
2617 width += 10;
2618 if (width < 0)
2619 width = 0;
2620
2621 switch (i)
2622 {
2623 case 1:
2624 if (temp[0] == 0)
2625 xsnprintf (str, CELLSIZE, "%*o", width, 0);
2626 else
2627 xsnprintf (str, CELLSIZE, "0%0*lo", width, temp[0]);
2628 break;
2629 case 2:
2630 xsnprintf (str, CELLSIZE, "0%0*lo%010lo", width, temp[1], temp[0]);
2631 break;
2632 case 3:
2633 xsnprintf (str, CELLSIZE, "0%0*lo%010lo%010lo", width,
2634 temp[2], temp[1], temp[0]);
2635 break;
2636 default:
2637 internal_error (__FILE__, __LINE__,
2638 _("failed internal consistency check"));
2639 }
2640
2641 return str;
2642 }
2643
2644 char *
2645 paddr_u (CORE_ADDR addr)
2646 {
2647 return decimal2str ("", addr, 0);
2648 }
2649
2650 char *
2651 paddr_d (LONGEST addr)
2652 {
2653 if (addr < 0)
2654 return decimal2str ("-", -addr, 0);
2655 else
2656 return decimal2str ("", addr, 0);
2657 }
2658
2659 /* Eliminate warning from compiler on 32-bit systems. */
2660 static int thirty_two = 32;
2661
2662 char *
2663 phex (ULONGEST l, int sizeof_l)
2664 {
2665 char *str;
2666
2667 switch (sizeof_l)
2668 {
2669 case 8:
2670 str = get_cell ();
2671 xsnprintf (str, CELLSIZE, "%08lx%08lx",
2672 (unsigned long) (l >> thirty_two),
2673 (unsigned long) (l & 0xffffffff));
2674 break;
2675 case 4:
2676 str = get_cell ();
2677 xsnprintf (str, CELLSIZE, "%08lx", (unsigned long) l);
2678 break;
2679 case 2:
2680 str = get_cell ();
2681 xsnprintf (str, CELLSIZE, "%04x", (unsigned short) (l & 0xffff));
2682 break;
2683 default:
2684 str = phex (l, sizeof (l));
2685 break;
2686 }
2687
2688 return str;
2689 }
2690
2691 char *
2692 phex_nz (ULONGEST l, int sizeof_l)
2693 {
2694 char *str;
2695
2696 switch (sizeof_l)
2697 {
2698 case 8:
2699 {
2700 unsigned long high = (unsigned long) (l >> thirty_two);
2701 str = get_cell ();
2702 if (high == 0)
2703 xsnprintf (str, CELLSIZE, "%lx",
2704 (unsigned long) (l & 0xffffffff));
2705 else
2706 xsnprintf (str, CELLSIZE, "%lx%08lx", high,
2707 (unsigned long) (l & 0xffffffff));
2708 break;
2709 }
2710 case 4:
2711 str = get_cell ();
2712 xsnprintf (str, CELLSIZE, "%lx", (unsigned long) l);
2713 break;
2714 case 2:
2715 str = get_cell ();
2716 xsnprintf (str, CELLSIZE, "%x", (unsigned short) (l & 0xffff));
2717 break;
2718 default:
2719 str = phex_nz (l, sizeof (l));
2720 break;
2721 }
2722
2723 return str;
2724 }
2725
2726 /* Converts a LONGEST to a C-format hexadecimal literal and stores it
2727 in a static string. Returns a pointer to this string. */
2728 char *
2729 hex_string (LONGEST num)
2730 {
2731 char *result = get_cell ();
2732 xsnprintf (result, CELLSIZE, "0x%s", phex_nz (num, sizeof (num)));
2733 return result;
2734 }
2735
2736 /* Converts a LONGEST number to a C-format hexadecimal literal and
2737 stores it in a static string. Returns a pointer to this string
2738 that is valid until the next call. The number is padded on the
2739 left with 0s to at least WIDTH characters. */
2740 char *
2741 hex_string_custom (LONGEST num, int width)
2742 {
2743 char *result = get_cell ();
2744 char *result_end = result + CELLSIZE - 1;
2745 const char *hex = phex_nz (num, sizeof (num));
2746 int hex_len = strlen (hex);
2747
2748 if (hex_len > width)
2749 width = hex_len;
2750 if (width + 2 >= CELLSIZE)
2751 internal_error (__FILE__, __LINE__,
2752 _("hex_string_custom: insufficient space to store result"));
2753
2754 strcpy (result_end - width - 2, "0x");
2755 memset (result_end - width, '0', width);
2756 strcpy (result_end - hex_len, hex);
2757 return result_end - width - 2;
2758 }
2759
2760 /* Convert VAL to a numeral in the given radix. For
2761 * radix 10, IS_SIGNED may be true, indicating a signed quantity;
2762 * otherwise VAL is interpreted as unsigned. If WIDTH is supplied,
2763 * it is the minimum width (0-padded if needed). USE_C_FORMAT means
2764 * to use C format in all cases. If it is false, then 'x'
2765 * and 'o' formats do not include a prefix (0x or leading 0). */
2766
2767 char *
2768 int_string (LONGEST val, int radix, int is_signed, int width,
2769 int use_c_format)
2770 {
2771 switch (radix)
2772 {
2773 case 16:
2774 {
2775 char *result;
2776 if (width == 0)
2777 result = hex_string (val);
2778 else
2779 result = hex_string_custom (val, width);
2780 if (! use_c_format)
2781 result += 2;
2782 return result;
2783 }
2784 case 10:
2785 {
2786 if (is_signed && val < 0)
2787 return decimal2str ("-", -val, width);
2788 else
2789 return decimal2str ("", val, width);
2790 }
2791 case 8:
2792 {
2793 char *result = octal2str (val, width);
2794 if (use_c_format || val == 0)
2795 return result;
2796 else
2797 return result + 1;
2798 }
2799 default:
2800 internal_error (__FILE__, __LINE__,
2801 _("failed internal consistency check"));
2802 }
2803 }
2804
2805 /* Convert a CORE_ADDR into a string. */
2806 const char *
2807 core_addr_to_string (const CORE_ADDR addr)
2808 {
2809 char *str = get_cell ();
2810 strcpy (str, "0x");
2811 strcat (str, phex (addr, sizeof (addr)));
2812 return str;
2813 }
2814
2815 const char *
2816 core_addr_to_string_nz (const CORE_ADDR addr)
2817 {
2818 char *str = get_cell ();
2819 strcpy (str, "0x");
2820 strcat (str, phex_nz (addr, sizeof (addr)));
2821 return str;
2822 }
2823
2824 /* Convert a string back into a CORE_ADDR. */
2825 CORE_ADDR
2826 string_to_core_addr (const char *my_string)
2827 {
2828 int addr_bit = gdbarch_addr_bit (current_gdbarch);
2829 CORE_ADDR addr = 0;
2830
2831 if (my_string[0] == '0' && tolower (my_string[1]) == 'x')
2832 {
2833 /* Assume that it is in hex. */
2834 int i;
2835 for (i = 2; my_string[i] != '\0'; i++)
2836 {
2837 if (isdigit (my_string[i]))
2838 addr = (my_string[i] - '0') + (addr * 16);
2839 else if (isxdigit (my_string[i]))
2840 addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16);
2841 else
2842 error (_("invalid hex \"%s\""), my_string);
2843 }
2844
2845 /* Not very modular, but if the executable format expects
2846 addresses to be sign-extended, then do so if the address was
2847 specified with only 32 significant bits. Really this should
2848 be determined by the target architecture, not by the object
2849 file. */
2850 if (i - 2 == addr_bit / 4
2851 && exec_bfd
2852 && bfd_get_sign_extend_vma (exec_bfd))
2853 addr = (addr ^ ((CORE_ADDR) 1 << (addr_bit - 1)))
2854 - ((CORE_ADDR) 1 << (addr_bit - 1));
2855 }
2856 else
2857 {
2858 /* Assume that it is in decimal. */
2859 int i;
2860 for (i = 0; my_string[i] != '\0'; i++)
2861 {
2862 if (isdigit (my_string[i]))
2863 addr = (my_string[i] - '0') + (addr * 10);
2864 else
2865 error (_("invalid decimal \"%s\""), my_string);
2866 }
2867 }
2868
2869 return addr;
2870 }
2871
2872 char *
2873 gdb_realpath (const char *filename)
2874 {
2875 /* Method 1: The system has a compile time upper bound on a filename
2876 path. Use that and realpath() to canonicalize the name. This is
2877 the most common case. Note that, if there isn't a compile time
2878 upper bound, you want to avoid realpath() at all costs. */
2879 #if defined(HAVE_REALPATH)
2880 {
2881 # if defined (PATH_MAX)
2882 char buf[PATH_MAX];
2883 # define USE_REALPATH
2884 # elif defined (MAXPATHLEN)
2885 char buf[MAXPATHLEN];
2886 # define USE_REALPATH
2887 # endif
2888 # if defined (USE_REALPATH)
2889 const char *rp = realpath (filename, buf);
2890 if (rp == NULL)
2891 rp = filename;
2892 return xstrdup (rp);
2893 # endif
2894 }
2895 #endif /* HAVE_REALPATH */
2896
2897 /* Method 2: The host system (i.e., GNU) has the function
2898 canonicalize_file_name() which malloc's a chunk of memory and
2899 returns that, use that. */
2900 #if defined(HAVE_CANONICALIZE_FILE_NAME)
2901 {
2902 char *rp = canonicalize_file_name (filename);
2903 if (rp == NULL)
2904 return xstrdup (filename);
2905 else
2906 return rp;
2907 }
2908 #endif
2909
2910 /* FIXME: cagney/2002-11-13:
2911
2912 Method 2a: Use realpath() with a NULL buffer. Some systems, due
2913 to the problems described in in method 3, have modified their
2914 realpath() implementation so that it will allocate a buffer when
2915 NULL is passed in. Before this can be used, though, some sort of
2916 configure time test would need to be added. Otherwize the code
2917 will likely core dump. */
2918
2919 /* Method 3: Now we're getting desperate! The system doesn't have a
2920 compile time buffer size and no alternative function. Query the
2921 OS, using pathconf(), for the buffer limit. Care is needed
2922 though, some systems do not limit PATH_MAX (return -1 for
2923 pathconf()) making it impossible to pass a correctly sized buffer
2924 to realpath() (it could always overflow). On those systems, we
2925 skip this. */
2926 #if defined (HAVE_REALPATH) && defined (HAVE_UNISTD_H) && defined(HAVE_ALLOCA)
2927 {
2928 /* Find out the max path size. */
2929 long path_max = pathconf ("/", _PC_PATH_MAX);
2930 if (path_max > 0)
2931 {
2932 /* PATH_MAX is bounded. */
2933 char *buf = alloca (path_max);
2934 char *rp = realpath (filename, buf);
2935 return xstrdup (rp ? rp : filename);
2936 }
2937 }
2938 #endif
2939
2940 /* This system is a lost cause, just dup the buffer. */
2941 return xstrdup (filename);
2942 }
2943
2944 /* Return a copy of FILENAME, with its directory prefix canonicalized
2945 by gdb_realpath. */
2946
2947 char *
2948 xfullpath (const char *filename)
2949 {
2950 const char *base_name = lbasename (filename);
2951 char *dir_name;
2952 char *real_path;
2953 char *result;
2954
2955 /* Extract the basename of filename, and return immediately
2956 a copy of filename if it does not contain any directory prefix. */
2957 if (base_name == filename)
2958 return xstrdup (filename);
2959
2960 dir_name = alloca ((size_t) (base_name - filename + 2));
2961 /* Allocate enough space to store the dir_name + plus one extra
2962 character sometimes needed under Windows (see below), and
2963 then the closing \000 character */
2964 strncpy (dir_name, filename, base_name - filename);
2965 dir_name[base_name - filename] = '\000';
2966
2967 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
2968 /* We need to be careful when filename is of the form 'd:foo', which
2969 is equivalent of d:./foo, which is totally different from d:/foo. */
2970 if (strlen (dir_name) == 2 && isalpha (dir_name[0]) && dir_name[1] == ':')
2971 {
2972 dir_name[2] = '.';
2973 dir_name[3] = '\000';
2974 }
2975 #endif
2976
2977 /* Canonicalize the directory prefix, and build the resulting
2978 filename. If the dirname realpath already contains an ending
2979 directory separator, avoid doubling it. */
2980 real_path = gdb_realpath (dir_name);
2981 if (IS_DIR_SEPARATOR (real_path[strlen (real_path) - 1]))
2982 result = concat (real_path, base_name, (char *)NULL);
2983 else
2984 result = concat (real_path, SLASH_STRING, base_name, (char *)NULL);
2985
2986 xfree (real_path);
2987 return result;
2988 }
2989
2990
2991 /* This is the 32-bit CRC function used by the GNU separate debug
2992 facility. An executable may contain a section named
2993 .gnu_debuglink, which holds the name of a separate executable file
2994 containing its debug info, and a checksum of that file's contents,
2995 computed using this function. */
2996 unsigned long
2997 gnu_debuglink_crc32 (unsigned long crc, unsigned char *buf, size_t len)
2998 {
2999 static const unsigned long crc32_table[256] = {
3000 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
3001 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
3002 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
3003 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
3004 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
3005 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
3006 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
3007 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
3008 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
3009 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
3010 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
3011 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
3012 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
3013 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
3014 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
3015 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
3016 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
3017 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
3018 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
3019 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
3020 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
3021 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
3022 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
3023 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
3024 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
3025 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
3026 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
3027 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
3028 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
3029 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
3030 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
3031 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
3032 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
3033 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
3034 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
3035 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
3036 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
3037 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
3038 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
3039 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
3040 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
3041 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
3042 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
3043 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
3044 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
3045 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
3046 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
3047 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
3048 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
3049 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
3050 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
3051 0x2d02ef8d
3052 };
3053 unsigned char *end;
3054
3055 crc = ~crc & 0xffffffff;
3056 for (end = buf + len; buf < end; ++buf)
3057 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
3058 return ~crc & 0xffffffff;;
3059 }
3060
3061 ULONGEST
3062 align_up (ULONGEST v, int n)
3063 {
3064 /* Check that N is really a power of two. */
3065 gdb_assert (n && (n & (n-1)) == 0);
3066 return (v + n - 1) & -n;
3067 }
3068
3069 ULONGEST
3070 align_down (ULONGEST v, int n)
3071 {
3072 /* Check that N is really a power of two. */
3073 gdb_assert (n && (n & (n-1)) == 0);
3074 return (v & -n);
3075 }
3076
3077 /* Allocation function for the libiberty hash table which uses an
3078 obstack. The obstack is passed as DATA. */
3079
3080 void *
3081 hashtab_obstack_allocate (void *data, size_t size, size_t count)
3082 {
3083 unsigned int total = size * count;
3084 void *ptr = obstack_alloc ((struct obstack *) data, total);
3085 memset (ptr, 0, total);
3086 return ptr;
3087 }
3088
3089 /* Trivial deallocation function for the libiberty splay tree and hash
3090 table - don't deallocate anything. Rely on later deletion of the
3091 obstack. DATA will be the obstack, although it is not needed
3092 here. */
3093
3094 void
3095 dummy_obstack_deallocate (void *object, void *data)
3096 {
3097 return;
3098 }
3099
3100 /* The bit offset of the highest byte in a ULONGEST, for overflow
3101 checking. */
3102
3103 #define HIGH_BYTE_POSN ((sizeof (ULONGEST) - 1) * HOST_CHAR_BIT)
3104
3105 /* True (non-zero) iff DIGIT is a valid digit in radix BASE,
3106 where 2 <= BASE <= 36. */
3107
3108 static int
3109 is_digit_in_base (unsigned char digit, int base)
3110 {
3111 if (!isalnum (digit))
3112 return 0;
3113 if (base <= 10)
3114 return (isdigit (digit) && digit < base + '0');
3115 else
3116 return (isdigit (digit) || tolower (digit) < base - 10 + 'a');
3117 }
3118
3119 static int
3120 digit_to_int (unsigned char c)
3121 {
3122 if (isdigit (c))
3123 return c - '0';
3124 else
3125 return tolower (c) - 'a' + 10;
3126 }
3127
3128 /* As for strtoul, but for ULONGEST results. */
3129
3130 ULONGEST
3131 strtoulst (const char *num, const char **trailer, int base)
3132 {
3133 unsigned int high_part;
3134 ULONGEST result;
3135 int minus = 0;
3136 int i = 0;
3137
3138 /* Skip leading whitespace. */
3139 while (isspace (num[i]))
3140 i++;
3141
3142 /* Handle prefixes. */
3143 if (num[i] == '+')
3144 i++;
3145 else if (num[i] == '-')
3146 {
3147 minus = 1;
3148 i++;
3149 }
3150
3151 if (base == 0 || base == 16)
3152 {
3153 if (num[i] == '0' && (num[i + 1] == 'x' || num[i + 1] == 'X'))
3154 {
3155 i += 2;
3156 if (base == 0)
3157 base = 16;
3158 }
3159 }
3160
3161 if (base == 0 && num[i] == '0')
3162 base = 8;
3163
3164 if (base == 0)
3165 base = 10;
3166
3167 if (base < 2 || base > 36)
3168 {
3169 errno = EINVAL;
3170 return 0;
3171 }
3172
3173 result = high_part = 0;
3174 for (; is_digit_in_base (num[i], base); i += 1)
3175 {
3176 result = result * base + digit_to_int (num[i]);
3177 high_part = high_part * base + (unsigned int) (result >> HIGH_BYTE_POSN);
3178 result &= ((ULONGEST) 1 << HIGH_BYTE_POSN) - 1;
3179 if (high_part > 0xff)
3180 {
3181 errno = ERANGE;
3182 result = ~ (ULONGEST) 0;
3183 high_part = 0;
3184 minus = 0;
3185 break;
3186 }
3187 }
3188
3189 if (trailer != NULL)
3190 *trailer = &num[i];
3191
3192 result = result + ((ULONGEST) high_part << HIGH_BYTE_POSN);
3193 if (minus)
3194 return -result;
3195 else
3196 return result;
3197 }
3198
3199 /* Simple, portable version of dirname that does not modify its
3200 argument. */
3201
3202 char *
3203 ldirname (const char *filename)
3204 {
3205 const char *base = lbasename (filename);
3206 char *dirname;
3207
3208 while (base > filename && IS_DIR_SEPARATOR (base[-1]))
3209 --base;
3210
3211 if (base == filename)
3212 return NULL;
3213
3214 dirname = xmalloc (base - filename + 2);
3215 memcpy (dirname, filename, base - filename);
3216
3217 /* On DOS based file systems, convert "d:foo" to "d:.", so that we
3218 create "d:./bar" later instead of the (different) "d:/bar". */
3219 if (base - filename == 2 && IS_ABSOLUTE_PATH (base)
3220 && !IS_DIR_SEPARATOR (filename[0]))
3221 dirname[base++ - filename] = '.';
3222
3223 dirname[base - filename] = '\0';
3224 return dirname;
3225 }
This page took 0.096276 seconds and 5 git commands to generate.