2002-11-15 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / v850-tdep.c
1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2 Copyright 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "value.h"
26 #include "bfd.h"
27 #include "gdb_string.h"
28 #include "gdbcore.h"
29 #include "symfile.h"
30 #include "arch-utils.h"
31 #include "regcache.h"
32 #include "symtab.h"
33
34 struct gdbarch_tdep
35 {
36 /* gdbarch target dependent data here. Currently unused for v850. */
37 };
38
39 /* Extra info which is saved in each frame_info. */
40 struct frame_extra_info
41 {
42 };
43
44 enum {
45 E_R0_REGNUM,
46 E_R1_REGNUM,
47 E_R2_REGNUM, E_SAVE1_START_REGNUM = E_R2_REGNUM, E_SAVE1_END_REGNUM = E_R2_REGNUM,
48 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
49 E_R4_REGNUM,
50 E_R5_REGNUM,
51 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
52 E_R7_REGNUM,
53 E_R8_REGNUM,
54 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
55 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
56 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
57 E_R12_REGNUM,
58 E_R13_REGNUM,
59 E_R14_REGNUM,
60 E_R15_REGNUM,
61 E_R16_REGNUM,
62 E_R17_REGNUM,
63 E_R18_REGNUM,
64 E_R19_REGNUM,
65 E_R20_REGNUM, E_SAVE2_START_REGNUM = E_R20_REGNUM,
66 E_R21_REGNUM,
67 E_R22_REGNUM,
68 E_R23_REGNUM,
69 E_R24_REGNUM,
70 E_R25_REGNUM,
71 E_R26_REGNUM,
72 E_R27_REGNUM,
73 E_R28_REGNUM,
74 E_R29_REGNUM, E_SAVE2_END_REGNUM = E_R29_REGNUM, E_FP_RAW_REGNUM = E_R29_REGNUM,
75 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
76 E_R31_REGNUM, E_SAVE3_START_REGNUM = E_R31_REGNUM, E_SAVE3_END_REGNUM = E_R31_REGNUM, E_RP_REGNUM = E_R31_REGNUM,
77 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
78 E_R33_REGNUM,
79 E_R34_REGNUM,
80 E_R35_REGNUM,
81 E_R36_REGNUM,
82 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
83 E_R38_REGNUM,
84 E_R39_REGNUM,
85 E_R40_REGNUM,
86 E_R41_REGNUM,
87 E_R42_REGNUM,
88 E_R43_REGNUM,
89 E_R44_REGNUM,
90 E_R45_REGNUM,
91 E_R46_REGNUM,
92 E_R47_REGNUM,
93 E_R48_REGNUM,
94 E_R49_REGNUM,
95 E_R50_REGNUM,
96 E_R51_REGNUM,
97 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
98 E_R53_REGNUM,
99 E_R54_REGNUM,
100 E_R55_REGNUM,
101 E_R56_REGNUM,
102 E_R57_REGNUM,
103 E_R58_REGNUM,
104 E_R59_REGNUM,
105 E_R60_REGNUM,
106 E_R61_REGNUM,
107 E_R62_REGNUM,
108 E_R63_REGNUM,
109 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
110 E_R65_REGNUM, E_FP_REGNUM = E_R65_REGNUM,
111 E_NUM_REGS
112 };
113
114 enum
115 {
116 v850_reg_size = 4
117 };
118
119 /* Size of all registers as a whole. */
120 enum
121 {
122 E_ALL_REGS_SIZE = (E_NUM_REGS) * v850_reg_size
123 };
124
125 /* Size of return datatype which fits into all return registers. */
126 enum
127 {
128 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
129 };
130
131 static LONGEST call_dummy_nil[] = {0};
132
133 static char *v850_generic_reg_names[] =
134 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
135 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
136 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
137 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
138 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
139 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
140 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
141 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
142 "pc", "fp"
143 };
144
145 static char *v850e_reg_names[] =
146 {
147 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
149 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
150 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
151 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
152 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
153 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
154 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
155 "pc", "fp"
156 };
157
158 char **v850_register_names = v850_generic_reg_names;
159
160 struct
161 {
162 char **regnames;
163 int mach;
164 }
165 v850_processor_type_table[] =
166 {
167 {
168 v850_generic_reg_names, bfd_mach_v850
169 }
170 ,
171 {
172 v850e_reg_names, bfd_mach_v850e
173 }
174 ,
175 {
176 NULL, 0
177 }
178 };
179
180 /* Info gleaned from scanning a function's prologue. */
181
182 struct pifsr /* Info about one saved reg */
183 {
184 int framereg; /* Frame reg (SP or FP) */
185 int offset; /* Offset from framereg */
186 int cur_frameoffset; /* Current frameoffset */
187 int reg; /* Saved register number */
188 };
189
190 struct prologue_info
191 {
192 int framereg;
193 int frameoffset;
194 int start_function;
195 struct pifsr *pifsrs;
196 };
197
198 static CORE_ADDR v850_scan_prologue (CORE_ADDR pc, struct prologue_info *fs);
199
200 /* Function: v850_register_name
201 Returns the name of the v850/v850e register N. */
202
203 static const char *
204 v850_register_name (int regnum)
205 {
206 if (regnum < 0 || regnum >= E_NUM_REGS)
207 internal_error (__FILE__, __LINE__,
208 "v850_register_name: illegal register number %d",
209 regnum);
210 else
211 return v850_register_names[regnum];
212
213 }
214
215 /* Function: v850_register_byte
216 Returns the byte position in the register cache for register N. */
217
218 static int
219 v850_register_byte (int regnum)
220 {
221 if (regnum < 0 || regnum >= E_NUM_REGS)
222 internal_error (__FILE__, __LINE__,
223 "v850_register_byte: illegal register number %d",
224 regnum);
225 else
226 return regnum * v850_reg_size;
227 }
228
229 /* Function: v850_register_raw_size
230 Returns the number of bytes occupied by the register on the target. */
231
232 static int
233 v850_register_raw_size (int regnum)
234 {
235 if (regnum < 0 || regnum >= E_NUM_REGS)
236 internal_error (__FILE__, __LINE__,
237 "v850_register_raw_size: illegal register number %d",
238 regnum);
239 /* Only the PC has 4 Byte, all other registers 2 Byte. */
240 else
241 return v850_reg_size;
242 }
243
244 /* Function: v850_register_virtual_size
245 Returns the number of bytes occupied by the register as represented
246 internally by gdb. */
247
248 static int
249 v850_register_virtual_size (int regnum)
250 {
251 return v850_register_raw_size (regnum);
252 }
253
254 /* Function: v850_reg_virtual_type
255 Returns the default type for register N. */
256
257 static struct type *
258 v850_reg_virtual_type (int regnum)
259 {
260 if (regnum < 0 || regnum >= E_NUM_REGS)
261 internal_error (__FILE__, __LINE__,
262 "v850_register_virtual_type: illegal register number %d",
263 regnum);
264 else if (regnum == E_PC_REGNUM)
265 return builtin_type_uint32;
266 else
267 return builtin_type_int32;
268 }
269
270 static int
271 v850_type_is_scalar (struct type *t)
272 {
273 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
274 && TYPE_CODE (t) != TYPE_CODE_UNION
275 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
276 }
277
278 /* Should call_function allocate stack space for a struct return? */
279 static int
280 v850_use_struct_convention (int gcc_p, struct type *type)
281 {
282 /* According to ABI:
283 * return TYPE_LENGTH (type) > 8);
284 */
285
286 /* Current implementation in gcc: */
287
288 int i;
289 struct type *fld_type, *tgt_type;
290
291 /* 1. The value is greater than 8 bytes -> returned by copying */
292 if (TYPE_LENGTH (type) > 8)
293 return 1;
294
295 /* 2. The value is a single basic type -> returned in register */
296 if (v850_type_is_scalar (type))
297 return 0;
298
299 /* The value is a structure or union with a single element
300 * and that element is either a single basic type or an array of
301 * a single basic type whoes size is greater than or equal to 4
302 * -> returned in register */
303 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
304 || TYPE_CODE (type) == TYPE_CODE_UNION)
305 && TYPE_NFIELDS (type) == 1)
306 {
307 fld_type = TYPE_FIELD_TYPE (type, 0);
308 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
309 return 0;
310
311 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
312 {
313 tgt_type = TYPE_TARGET_TYPE (fld_type);
314 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
315 return 0;
316 }
317 }
318
319 /* The value is a structure whose first element is an integer or
320 * a float, and which contains no arrays of more than two elements
321 * -> returned in register */
322 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
323 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
324 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
325 {
326 for (i = 1; i < TYPE_NFIELDS (type); ++i)
327 {
328 fld_type = TYPE_FIELD_TYPE (type, 0);
329 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
330 {
331 tgt_type = TYPE_TARGET_TYPE (fld_type);
332 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
333 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
334 return 1;
335 }
336 }
337 return 0;
338 }
339
340 /* The value is a union which contains at least one field which
341 * would be returned in registers according to these rules
342 * -> returned in register */
343 if (TYPE_CODE (type) == TYPE_CODE_UNION)
344 {
345 for (i = 0; i < TYPE_NFIELDS (type); ++i)
346 {
347 fld_type = TYPE_FIELD_TYPE (type, 0);
348 if (!v850_use_struct_convention (0, fld_type))
349 return 0;
350 }
351 }
352
353 return 1;
354 }
355 \f
356
357
358 /* Structure for mapping bits in register lists to register numbers. */
359 struct reg_list
360 {
361 long mask;
362 int regno;
363 };
364
365 /* Helper function for v850_scan_prologue to handle prepare instruction. */
366
367 static void
368 handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
369 struct prologue_info *pi, struct pifsr **pifsr_ptr)
370 {
371 CORE_ADDR current_pc = *current_pc_ptr;
372 struct pifsr *pifsr = *pifsr_ptr;
373 long next = insn2 & 0xffff;
374 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
375 long offset = (insn & 0x3e) << 1;
376 static struct reg_list reg_table[] =
377 {
378 {0x00800, 20}, /* r20 */
379 {0x00400, 21}, /* r21 */
380 {0x00200, 22}, /* r22 */
381 {0x00100, 23}, /* r23 */
382 {0x08000, 24}, /* r24 */
383 {0x04000, 25}, /* r25 */
384 {0x02000, 26}, /* r26 */
385 {0x01000, 27}, /* r27 */
386 {0x00080, 28}, /* r28 */
387 {0x00040, 29}, /* r29 */
388 {0x10000, 30}, /* ep */
389 {0x00020, 31}, /* lp */
390 {0, 0} /* end of table */
391 };
392 int i;
393
394 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
395 current_pc += 2;
396 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
397 current_pc += 2;
398 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
399 current_pc += 4;
400
401 /* Calculate the total size of the saved registers, and add it
402 it to the immediate value used to adjust SP. */
403 for (i = 0; reg_table[i].mask != 0; i++)
404 if (list12 & reg_table[i].mask)
405 offset += v850_register_raw_size (reg_table[i].regno);
406 pi->frameoffset -= offset;
407
408 /* Calculate the offsets of the registers relative to the value
409 the SP will have after the registers have been pushed and the
410 imm5 value has been subtracted from it. */
411 if (pifsr)
412 {
413 for (i = 0; reg_table[i].mask != 0; i++)
414 {
415 if (list12 & reg_table[i].mask)
416 {
417 int reg = reg_table[i].regno;
418 offset -= v850_register_raw_size (reg);
419 pifsr->reg = reg;
420 pifsr->offset = offset;
421 pifsr->cur_frameoffset = pi->frameoffset;
422 #ifdef DEBUG
423 printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
424 #endif
425 pifsr++;
426 }
427 }
428 }
429 #ifdef DEBUG
430 printf_filtered ("\tfound ctret after regsave func");
431 #endif
432
433 /* Set result parameters. */
434 *current_pc_ptr = current_pc;
435 *pifsr_ptr = pifsr;
436 }
437
438
439 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
440 FIXME: the SR bit of the register list is not supported; must check
441 that the compiler does not ever generate this bit. */
442
443 static void
444 handle_pushm (int insn, int insn2, struct prologue_info *pi,
445 struct pifsr **pifsr_ptr)
446 {
447 struct pifsr *pifsr = *pifsr_ptr;
448 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
449 long offset = 0;
450 static struct reg_list pushml_reg_table[] =
451 {
452 {0x80000, E_PS_REGNUM}, /* PSW */
453 {0x40000, 1}, /* r1 */
454 {0x20000, 2}, /* r2 */
455 {0x10000, 3}, /* r3 */
456 {0x00800, 4}, /* r4 */
457 {0x00400, 5}, /* r5 */
458 {0x00200, 6}, /* r6 */
459 {0x00100, 7}, /* r7 */
460 {0x08000, 8}, /* r8 */
461 {0x04000, 9}, /* r9 */
462 {0x02000, 10}, /* r10 */
463 {0x01000, 11}, /* r11 */
464 {0x00080, 12}, /* r12 */
465 {0x00040, 13}, /* r13 */
466 {0x00020, 14}, /* r14 */
467 {0x00010, 15}, /* r15 */
468 {0, 0} /* end of table */
469 };
470 static struct reg_list pushmh_reg_table[] =
471 {
472 {0x80000, 16}, /* r16 */
473 {0x40000, 17}, /* r17 */
474 {0x20000, 18}, /* r18 */
475 {0x10000, 19}, /* r19 */
476 {0x00800, 20}, /* r20 */
477 {0x00400, 21}, /* r21 */
478 {0x00200, 22}, /* r22 */
479 {0x00100, 23}, /* r23 */
480 {0x08000, 24}, /* r24 */
481 {0x04000, 25}, /* r25 */
482 {0x02000, 26}, /* r26 */
483 {0x01000, 27}, /* r27 */
484 {0x00080, 28}, /* r28 */
485 {0x00040, 29}, /* r29 */
486 {0x00010, 30}, /* r30 */
487 {0x00020, 31}, /* r31 */
488 {0, 0} /* end of table */
489 };
490 struct reg_list *reg_table;
491 int i;
492
493 /* Is this a pushml or a pushmh? */
494 if ((insn2 & 7) == 1)
495 reg_table = pushml_reg_table;
496 else
497 reg_table = pushmh_reg_table;
498
499 /* Calculate the total size of the saved registers, and add it
500 it to the immediate value used to adjust SP. */
501 for (i = 0; reg_table[i].mask != 0; i++)
502 if (list12 & reg_table[i].mask)
503 offset += v850_register_raw_size (reg_table[i].regno);
504 pi->frameoffset -= offset;
505
506 /* Calculate the offsets of the registers relative to the value
507 the SP will have after the registers have been pushed and the
508 imm5 value is subtracted from it. */
509 if (pifsr)
510 {
511 for (i = 0; reg_table[i].mask != 0; i++)
512 {
513 if (list12 & reg_table[i].mask)
514 {
515 int reg = reg_table[i].regno;
516 offset -= v850_register_raw_size (reg);
517 pifsr->reg = reg;
518 pifsr->offset = offset;
519 pifsr->cur_frameoffset = pi->frameoffset;
520 #ifdef DEBUG
521 printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
522 #endif
523 pifsr++;
524 }
525 }
526 }
527 #ifdef DEBUG
528 printf_filtered ("\tfound ctret after regsave func");
529 #endif
530
531 /* Set result parameters. */
532 *pifsr_ptr = pifsr;
533 }
534 \f
535
536
537
538 /* Function: scan_prologue
539 Scan the prologue of the function that contains PC, and record what
540 we find in PI. Returns the pc after the prologue. Note that the
541 addresses saved in frame->saved_regs are just frame relative (negative
542 offsets from the frame pointer). This is because we don't know the
543 actual value of the frame pointer yet. In some circumstances, the
544 frame pointer can't be determined till after we have scanned the
545 prologue. */
546
547 static CORE_ADDR
548 v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi)
549 {
550 CORE_ADDR func_addr, prologue_end, current_pc;
551 struct pifsr *pifsr, *pifsr_tmp;
552 int fp_used;
553 int ep_used;
554 int reg;
555 CORE_ADDR save_pc, save_end;
556 int regsave_func_p;
557 int r12_tmp;
558
559 /* First, figure out the bounds of the prologue so that we can limit the
560 search to something reasonable. */
561
562 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
563 {
564 struct symtab_and_line sal;
565
566 sal = find_pc_line (func_addr, 0);
567
568 if (func_addr == entry_point_address ())
569 pi->start_function = 1;
570 else
571 pi->start_function = 0;
572
573 #if 0
574 if (sal.line == 0)
575 prologue_end = pc;
576 else
577 prologue_end = sal.end;
578 #else
579 prologue_end = pc;
580 #endif
581 }
582 else
583 { /* We're in the boondocks */
584 func_addr = pc - 100;
585 prologue_end = pc;
586 }
587
588 prologue_end = min (prologue_end, pc);
589
590 /* Now, search the prologue looking for instructions that setup fp, save
591 rp, adjust sp and such. We also record the frame offset of any saved
592 registers. */
593
594 pi->frameoffset = 0;
595 pi->framereg = E_SP_REGNUM;
596 fp_used = 0;
597 ep_used = 0;
598 pifsr = pi->pifsrs;
599 regsave_func_p = 0;
600 save_pc = 0;
601 save_end = 0;
602 r12_tmp = 0;
603
604 #ifdef DEBUG
605 printf_filtered ("Current_pc = 0x%.8lx, prologue_end = 0x%.8lx\n",
606 (long) func_addr, (long) prologue_end);
607 #endif
608
609 for (current_pc = func_addr; current_pc < prologue_end;)
610 {
611 int insn;
612 int insn2 = -1; /* dummy value */
613
614 #ifdef DEBUG
615 printf_filtered ("0x%.8lx ", (long) current_pc);
616 TARGET_PRINT_INSN (current_pc, &tm_print_insn_info);
617 #endif
618
619 insn = read_memory_unsigned_integer (current_pc, 2);
620 current_pc += 2;
621 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
622 {
623 insn2 = read_memory_unsigned_integer (current_pc, 2);
624 current_pc += 2;
625 }
626
627 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
628 { /* jarl <func>,10 */
629 long low_disp = insn2 & ~(long) 1;
630 long disp = (((((insn & 0x3f) << 16) + low_disp)
631 & ~(long) 1) ^ 0x00200000) - 0x00200000;
632
633 save_pc = current_pc;
634 save_end = prologue_end;
635 regsave_func_p = 1;
636 current_pc += disp - 4;
637 prologue_end = (current_pc
638 + (2 * 3) /* moves to/from ep */
639 + 4 /* addi <const>,sp,sp */
640 + 2 /* jmp [r10] */
641 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
642 + 20); /* slop area */
643
644 #ifdef DEBUG
645 printf_filtered ("\tfound jarl <func>,r10, disp = %ld, low_disp = %ld, new pc = 0x%.8lx\n",
646 disp, low_disp, (long) current_pc + 2);
647 #endif
648 continue;
649 }
650 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
651 { /* callt <imm6> */
652 long ctbp = read_register (E_CTBP_REGNUM);
653 long adr = ctbp + ((insn & 0x3f) << 1);
654
655 save_pc = current_pc;
656 save_end = prologue_end;
657 regsave_func_p = 1;
658 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff);
659 prologue_end = (current_pc
660 + (2 * 3) /* prepare list2,imm5,sp/imm */
661 + 4 /* ctret */
662 + 20); /* slop area */
663
664 #ifdef DEBUG
665 printf_filtered ("\tfound callt, ctbp = 0x%.8lx, adr = %.8lx, new pc = 0x%.8lx\n",
666 ctbp, adr, (long) current_pc);
667 #endif
668 continue;
669 }
670 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
671 {
672 handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
673 continue;
674 }
675 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
676 { /* ctret after processing register save function */
677 current_pc = save_pc;
678 prologue_end = save_end;
679 regsave_func_p = 0;
680 #ifdef DEBUG
681 printf_filtered ("\tfound ctret after regsave func");
682 #endif
683 continue;
684 }
685 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
686 { /* pushml, pushmh */
687 handle_pushm (insn, insn2, pi, &pifsr);
688 continue;
689 }
690 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
691 { /* jmp after processing register save function */
692 current_pc = save_pc;
693 prologue_end = save_end;
694 regsave_func_p = 0;
695 #ifdef DEBUG
696 printf_filtered ("\tfound jmp after regsave func");
697 #endif
698 continue;
699 }
700 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
701 || (insn & 0xffe0) == 0x0060 /* jmp */
702 || (insn & 0x0780) == 0x0580) /* branch */
703 {
704 #ifdef DEBUG
705 printf_filtered ("\n");
706 #endif
707 break; /* Ran into end of prologue */
708 }
709
710 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
711 pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10;
712 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM)) /* addi <imm>,sp,sp */
713 pi->frameoffset += insn2;
714 else if (insn == ((E_FP_RAW_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,fp */
715 {
716 fp_used = 1;
717 pi->framereg = E_FP_RAW_REGNUM;
718 }
719
720 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM)) /* movhi hi(const),r0,r12 */
721 r12_tmp = insn2 << 16;
722 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM)) /* movea lo(const),r12,r12 */
723 r12_tmp += insn2;
724 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp) /* add r12,sp */
725 pi->frameoffset = r12_tmp;
726 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,ep */
727 ep_used = 1;
728 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM)) /* mov r1,ep */
729 ep_used = 0;
730 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM) /* st.w <reg>,<offset>[sp] */
731 || (fp_used
732 && (insn & 0x07ff) == (0x0760 | E_FP_RAW_REGNUM))) /* st.w <reg>,<offset>[fp] */
733 && pifsr
734 && (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM)
735 || (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM)
736 || (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM)))
737 {
738 pifsr->reg = reg;
739 pifsr->offset = insn2 & ~1;
740 pifsr->cur_frameoffset = pi->frameoffset;
741 #ifdef DEBUG
742 printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
743 #endif
744 pifsr++;
745 }
746
747 else if (ep_used /* sst.w <reg>,<offset>[ep] */
748 && ((insn & 0x0781) == 0x0501)
749 && pifsr
750 && (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM)
751 || (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM)
752 || (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM)))
753 {
754 pifsr->reg = reg;
755 pifsr->offset = (insn & 0x007e) << 1;
756 pifsr->cur_frameoffset = pi->frameoffset;
757 #ifdef DEBUG
758 printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
759 #endif
760 pifsr++;
761 }
762
763 #ifdef DEBUG
764 printf_filtered ("\n");
765 #endif
766 }
767
768 if (pifsr)
769 pifsr->framereg = 0; /* Tie off last entry */
770
771 /* Fix up any offsets to the final offset. If a frame pointer was created, use it
772 instead of the stack pointer. */
773 for (pifsr_tmp = pi->pifsrs; pifsr_tmp && pifsr_tmp != pifsr; pifsr_tmp++)
774 {
775 pifsr_tmp->offset -= pi->frameoffset - pifsr_tmp->cur_frameoffset;
776 pifsr_tmp->framereg = pi->framereg;
777
778 #ifdef DEBUG
779 printf_filtered ("Saved register r%d, offset = %d, framereg = r%d\n",
780 pifsr_tmp->reg, pifsr_tmp->offset, pifsr_tmp->framereg);
781 #endif
782 }
783
784 #ifdef DEBUG
785 printf_filtered ("Framereg = r%d, frameoffset = %d\n", pi->framereg, pi->frameoffset);
786 #endif
787
788 return current_pc;
789 }
790
791 /* Function: find_callers_reg
792 Find REGNUM on the stack. Otherwise, it's in an active register.
793 One thing we might want to do here is to check REGNUM against the
794 clobber mask, and somehow flag it as invalid if it isn't saved on
795 the stack somewhere. This would provide a graceful failure mode
796 when trying to get the value of caller-saves registers for an inner
797 frame. */
798
799 CORE_ADDR
800 v850_find_callers_reg (struct frame_info *fi, int regnum)
801 {
802 for (; fi; fi = fi->next)
803 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
804 return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
805 else if (fi->saved_regs[regnum] != 0)
806 return read_memory_unsigned_integer (fi->saved_regs[regnum],
807 v850_register_raw_size (regnum));
808
809 return read_register (regnum);
810 }
811
812 /* Function: frame_chain
813 Figure out the frame prior to FI. Unfortunately, this involves
814 scanning the prologue of the caller, which will also be done
815 shortly by v850_init_extra_frame_info. For the dummy frame, we
816 just return the stack pointer that was in use at the time the
817 function call was made. */
818
819 CORE_ADDR
820 v850_frame_chain (struct frame_info *fi)
821 {
822 struct prologue_info pi;
823 CORE_ADDR callers_pc, fp;
824
825 /* First, find out who called us */
826 callers_pc = FRAME_SAVED_PC (fi);
827 /* If caller is a call-dummy, then our FP bears no relation to his FP! */
828 fp = v850_find_callers_reg (fi, E_FP_RAW_REGNUM);
829 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
830 return fp; /* caller is call-dummy: return oldest value of FP */
831
832 /* Caller is NOT a call-dummy, so everything else should just work.
833 Even if THIS frame is a call-dummy! */
834 pi.pifsrs = NULL;
835
836 v850_scan_prologue (callers_pc, &pi);
837
838 if (pi.start_function)
839 return 0; /* Don't chain beyond the start function */
840
841 if (pi.framereg == E_FP_RAW_REGNUM)
842 return v850_find_callers_reg (fi, pi.framereg);
843
844 return fi->frame - pi.frameoffset;
845 }
846
847 /* Function: skip_prologue
848 Return the address of the first code past the prologue of the function. */
849
850 CORE_ADDR
851 v850_skip_prologue (CORE_ADDR pc)
852 {
853 CORE_ADDR func_addr, func_end;
854
855 /* See what the symbol table says */
856
857 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
858 {
859 struct symtab_and_line sal;
860
861 sal = find_pc_line (func_addr, 0);
862
863 if (sal.line != 0 && sal.end < func_end)
864 return sal.end;
865 else
866 /* Either there's no line info, or the line after the prologue is after
867 the end of the function. In this case, there probably isn't a
868 prologue. */
869 return pc;
870 }
871
872 /* We can't find the start of this function, so there's nothing we can do. */
873 return pc;
874 }
875
876 /* Function: pop_frame
877 This routine gets called when either the user uses the `return'
878 command, or the call dummy breakpoint gets hit. */
879
880 void
881 v850_pop_frame (void)
882 {
883 struct frame_info *frame = get_current_frame ();
884 int regnum;
885
886 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
887 generic_pop_dummy_frame ();
888 else
889 {
890 write_register (E_PC_REGNUM, FRAME_SAVED_PC (frame));
891
892 for (regnum = 0; regnum < E_NUM_REGS; regnum++)
893 if (frame->saved_regs[regnum] != 0)
894 write_register (regnum,
895 read_memory_unsigned_integer (frame->saved_regs[regnum],
896 v850_register_raw_size (regnum)));
897
898 write_register (E_SP_REGNUM, FRAME_FP (frame));
899 }
900
901 flush_cached_frames ();
902 }
903
904 /* Function: push_arguments
905 Setup arguments and RP for a call to the target. First four args
906 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
907 are passed by reference. 64 bit quantities (doubles and long
908 longs) may be split between the regs and the stack. When calling a
909 function that returns a struct, a pointer to the struct is passed
910 in as a secret first argument (always in R6).
911
912 Stack space for the args has NOT been allocated: that job is up to us.
913 */
914
915 CORE_ADDR
916 v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
917 int struct_return, CORE_ADDR struct_addr)
918 {
919 int argreg;
920 int argnum;
921 int len = 0;
922 int stack_offset;
923
924 /* First, just for safety, make sure stack is aligned */
925 sp &= ~3;
926
927 /* The offset onto the stack at which we will start copying parameters
928 (after the registers are used up) begins at 16 rather than at zero.
929 I don't really know why, that's just the way it seems to work. */
930 stack_offset = 16;
931
932 /* Now make space on the stack for the args. */
933 for (argnum = 0; argnum < nargs; argnum++)
934 len += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
935 sp -= len + stack_offset; /* possibly over-allocating, but it works... */
936 /* (you might think we could allocate 16 bytes */
937 /* less, but the ABI seems to use it all! ) */
938
939 argreg = E_ARG0_REGNUM;
940 /* the struct_return pointer occupies the first parameter-passing reg */
941 if (struct_return)
942 argreg++;
943
944 /* Now load as many as possible of the first arguments into
945 registers, and push the rest onto the stack. There are 16 bytes
946 in four registers available. Loop thru args from first to last. */
947 for (argnum = 0; argnum < nargs; argnum++)
948 {
949 int len;
950 char *val;
951 char valbuf[v850_register_raw_size (E_ARG0_REGNUM)];
952
953 if (!v850_type_is_scalar (VALUE_TYPE (*args))
954 && TYPE_LENGTH (VALUE_TYPE (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
955 {
956 store_address (valbuf, 4, VALUE_ADDRESS (*args));
957 len = 4;
958 val = valbuf;
959 }
960 else
961 {
962 len = TYPE_LENGTH (VALUE_TYPE (*args));
963 val = (char *) VALUE_CONTENTS (*args);
964 }
965
966 while (len > 0)
967 if (argreg <= E_ARGLAST_REGNUM)
968 {
969 CORE_ADDR regval;
970
971 regval = extract_address (val, v850_register_raw_size (argreg));
972 write_register (argreg, regval);
973
974 len -= v850_register_raw_size (argreg);
975 val += v850_register_raw_size (argreg);
976 argreg++;
977 }
978 else
979 {
980 write_memory (sp + stack_offset, val, 4);
981
982 len -= 4;
983 val += 4;
984 stack_offset += 4;
985 }
986 args++;
987 }
988 return sp;
989 }
990
991 /* Function: push_return_address (pc)
992 Set up the return address for the inferior function call.
993 Needed for targets where we don't actually execute a JSR/BSR instruction */
994
995 CORE_ADDR
996 v850_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
997 {
998 write_register (E_RP_REGNUM, CALL_DUMMY_ADDRESS ());
999 return sp;
1000 }
1001
1002 /* Function: frame_saved_pc
1003 Find the caller of this frame. We do this by seeing if E_RP_REGNUM
1004 is saved in the stack anywhere, otherwise we get it from the
1005 registers. If the inner frame is a dummy frame, return its PC
1006 instead of RP, because that's where "caller" of the dummy-frame
1007 will be found. */
1008
1009 CORE_ADDR
1010 v850_frame_saved_pc (struct frame_info *fi)
1011 {
1012 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1013 return deprecated_read_register_dummy (fi->pc, fi->frame, E_PC_REGNUM);
1014 else
1015 return v850_find_callers_reg (fi, E_RP_REGNUM);
1016 }
1017
1018
1019 /* Function: fix_call_dummy
1020 Pokes the callee function's address into the CALL_DUMMY assembly stub.
1021 Assumes that the CALL_DUMMY looks like this:
1022 jarl <offset24>, r31
1023 trap
1024 */
1025
1026 void
1027 v850_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
1028 struct value **args, struct type *type, int gcc_p)
1029 {
1030 long offset24;
1031
1032 offset24 = (long) fun - (long) entry_point_address ();
1033 offset24 &= 0x3fffff;
1034 offset24 |= 0xff800000; /* jarl <offset24>, r31 */
1035
1036 store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
1037 store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
1038 }
1039
1040 static CORE_ADDR
1041 v850_saved_pc_after_call (struct frame_info *ignore)
1042 {
1043 return read_register (E_RP_REGNUM);
1044 }
1045
1046 static void
1047 v850_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1048 {
1049 CORE_ADDR return_buffer;
1050
1051 if (!v850_use_struct_convention (0, type))
1052 {
1053 /* Scalar return values of <= 8 bytes are returned in
1054 E_V0_REGNUM to E_V1_REGNUM. */
1055 memcpy (valbuf,
1056 &regbuf[REGISTER_BYTE (E_V0_REGNUM)],
1057 TYPE_LENGTH (type));
1058 }
1059 else
1060 {
1061 /* Aggregates and return values > 8 bytes are returned in memory,
1062 pointed to by R6. */
1063 return_buffer =
1064 extract_address (regbuf + REGISTER_BYTE (E_V0_REGNUM),
1065 REGISTER_RAW_SIZE (E_V0_REGNUM));
1066
1067 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
1068 }
1069 }
1070
1071 const static unsigned char *
1072 v850_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1073 {
1074 static unsigned char breakpoint[] = { 0x85, 0x05 };
1075 *lenptr = sizeof (breakpoint);
1076 return breakpoint;
1077 }
1078
1079 static CORE_ADDR
1080 v850_extract_struct_value_address (char *regbuf)
1081 {
1082 return extract_address (regbuf + v850_register_byte (E_V0_REGNUM),
1083 v850_register_raw_size (E_V0_REGNUM));
1084 }
1085
1086 static void
1087 v850_store_return_value (struct type *type, char *valbuf)
1088 {
1089 CORE_ADDR return_buffer;
1090
1091 if (!v850_use_struct_convention (0, type))
1092 deprecated_write_register_bytes (REGISTER_BYTE (E_V0_REGNUM), valbuf,
1093 TYPE_LENGTH (type));
1094 else
1095 {
1096 return_buffer = read_register (E_V0_REGNUM);
1097 write_memory (return_buffer, valbuf, TYPE_LENGTH (type));
1098 }
1099 }
1100
1101 static void
1102 v850_frame_init_saved_regs (struct frame_info *fi)
1103 {
1104 struct prologue_info pi;
1105 struct pifsr pifsrs[E_NUM_REGS + 1], *pifsr;
1106 CORE_ADDR func_addr, func_end;
1107
1108 if (!fi->saved_regs)
1109 {
1110 frame_saved_regs_zalloc (fi);
1111
1112 /* The call dummy doesn't save any registers on the stack, so we
1113 can return now. */
1114 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1115 return;
1116
1117 /* Find the beginning of this function, so we can analyze its
1118 prologue. */
1119 if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end))
1120 {
1121 pi.pifsrs = pifsrs;
1122
1123 v850_scan_prologue (fi->pc, &pi);
1124
1125 if (!fi->next && pi.framereg == E_SP_REGNUM)
1126 fi->frame = read_register (pi.framereg) - pi.frameoffset;
1127
1128 for (pifsr = pifsrs; pifsr->framereg; pifsr++)
1129 {
1130 fi->saved_regs[pifsr->reg] = pifsr->offset + fi->frame;
1131
1132 if (pifsr->framereg == E_SP_REGNUM)
1133 fi->saved_regs[pifsr->reg] += pi.frameoffset;
1134 }
1135 }
1136 /* Else we're out of luck (can't debug completely stripped code).
1137 FIXME. */
1138 }
1139 }
1140
1141 /* Function: init_extra_frame_info
1142 Setup the frame's frame pointer, pc, and frame addresses for saved
1143 registers. Most of the work is done in scan_prologue().
1144
1145 Note that when we are called for the last frame (currently active frame),
1146 that fi->pc and fi->frame will already be setup. However, fi->frame will
1147 be valid only if this routine uses FP. For previous frames, fi-frame will
1148 always be correct (since that is derived from v850_frame_chain ()).
1149
1150 We can be called with the PC in the call dummy under two circumstances.
1151 First, during normal backtracing, second, while figuring out the frame
1152 pointer just prior to calling the target function (see run_stack_dummy). */
1153
1154 static void
1155 v850_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1156 {
1157 struct prologue_info pi;
1158
1159 if (fi->next)
1160 fi->pc = FRAME_SAVED_PC (fi->next);
1161
1162 v850_frame_init_saved_regs (fi);
1163 }
1164
1165 static void
1166 v850_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1167 {
1168 write_register (E_ARG0_REGNUM, addr);
1169 }
1170
1171 static CORE_ADDR
1172 v850_target_read_fp (void)
1173 {
1174 return read_register (E_FP_RAW_REGNUM);
1175 }
1176
1177 static struct gdbarch *
1178 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1179 {
1180 static LONGEST call_dummy_words[1] = { 0 };
1181 struct gdbarch_tdep *tdep = NULL;
1182 struct gdbarch *gdbarch;
1183 int i;
1184
1185 /* find a candidate among the list of pre-declared architectures. */
1186 arches = gdbarch_list_lookup_by_info (arches, &info);
1187 if (arches != NULL)
1188 return (arches->gdbarch);
1189
1190 #if 0
1191 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1192 #endif
1193
1194 /* Change the register names based on the current machine type. */
1195 if (info.bfd_arch_info->arch != bfd_arch_v850)
1196 return 0;
1197
1198 gdbarch = gdbarch_alloc (&info, 0);
1199
1200 for (i = 0; v850_processor_type_table[i].regnames != NULL; i++)
1201 {
1202 if (v850_processor_type_table[i].mach == info.bfd_arch_info->mach)
1203 {
1204 v850_register_names = v850_processor_type_table[i].regnames;
1205 tm_print_insn_info.mach = info.bfd_arch_info->mach;
1206 break;
1207 }
1208 }
1209
1210 /*
1211 * Basic register fields and methods.
1212 */
1213 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1214 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1215 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1216 set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
1217 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1218 set_gdbarch_register_name (gdbarch, v850_register_name);
1219 set_gdbarch_register_size (gdbarch, v850_reg_size);
1220 set_gdbarch_register_bytes (gdbarch, E_ALL_REGS_SIZE);
1221 set_gdbarch_register_byte (gdbarch, v850_register_byte);
1222 set_gdbarch_register_raw_size (gdbarch, v850_register_raw_size);
1223 set_gdbarch_max_register_raw_size (gdbarch, v850_reg_size);
1224 set_gdbarch_register_virtual_size (gdbarch, v850_register_raw_size);
1225 set_gdbarch_max_register_virtual_size (gdbarch, v850_reg_size);
1226 set_gdbarch_register_virtual_type (gdbarch, v850_reg_virtual_type);
1227
1228 set_gdbarch_read_fp (gdbarch, v850_target_read_fp);
1229
1230 /*
1231 * Frame Info
1232 */
1233 set_gdbarch_init_extra_frame_info (gdbarch, v850_init_extra_frame_info);
1234 set_gdbarch_frame_init_saved_regs (gdbarch, v850_frame_init_saved_regs);
1235 set_gdbarch_frame_chain (gdbarch, v850_frame_chain);
1236 set_gdbarch_saved_pc_after_call (gdbarch, v850_saved_pc_after_call);
1237 set_gdbarch_frame_saved_pc (gdbarch, v850_frame_saved_pc);
1238 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1239 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1240 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1241 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1242
1243 /*
1244 * Miscelany
1245 */
1246 /* Stack grows up. */
1247 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1248 /* PC stops zero byte after a trap instruction
1249 (which means: exactly on trap instruction). */
1250 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1251 /* This value is almost never non-zero... */
1252 set_gdbarch_function_start_offset (gdbarch, 0);
1253 /* This value is almost never non-zero... */
1254 set_gdbarch_frame_args_skip (gdbarch, 0);
1255 /* OK to default this value to 'unknown'. */
1256 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1257 /* W/o prototype, coerce float args to double. */
1258 set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double);
1259
1260 /*
1261 * Call Dummies
1262 *
1263 * These values and methods are used when gdb calls a target function. */
1264 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1265 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1266 set_gdbarch_push_return_address (gdbarch, v850_push_return_address);
1267 set_gdbarch_deprecated_extract_return_value (gdbarch, v850_extract_return_value);
1268 set_gdbarch_push_arguments (gdbarch, v850_push_arguments);
1269 set_gdbarch_pop_frame (gdbarch, v850_pop_frame);
1270 set_gdbarch_store_struct_return (gdbarch, v850_store_struct_return);
1271 set_gdbarch_deprecated_store_return_value (gdbarch, v850_store_return_value);
1272 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, v850_extract_struct_value_address);
1273 set_gdbarch_use_struct_convention (gdbarch, v850_use_struct_convention);
1274 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1275 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1276 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1277 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1278 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1279 set_gdbarch_call_dummy_length (gdbarch, 0);
1280 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1281 set_gdbarch_call_dummy_p (gdbarch, 1);
1282 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
1283 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1284 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1285 /* set_gdbarch_call_dummy_stack_adjust */
1286 set_gdbarch_fix_call_dummy (gdbarch, v850_fix_call_dummy);
1287 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1288
1289 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1290 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1291 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1292 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1293
1294 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1295
1296 return gdbarch;
1297 }
1298
1299 void
1300 _initialize_v850_tdep (void)
1301 {
1302 tm_print_insn = print_insn_v850;
1303 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1304 }
This page took 0.086052 seconds and 5 git commands to generate.