* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / v850-tdep.c
1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
3 Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
4 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "trad-frame.h"
25 #include "frame-unwind.h"
26 #include "dwarf2-frame.h"
27 #include "gdbtypes.h"
28 #include "inferior.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "gdbcore.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "dis-asm.h"
35 #include "osabi.h"
36
37 enum
38 {
39 E_R0_REGNUM,
40 E_R1_REGNUM,
41 E_R2_REGNUM,
42 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM,
44 E_R5_REGNUM,
45 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
46 E_R7_REGNUM,
47 E_R8_REGNUM,
48 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
49 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
50 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
51 E_R12_REGNUM,
52 E_R13_REGNUM,
53 E_R14_REGNUM,
54 E_R15_REGNUM,
55 E_R16_REGNUM,
56 E_R17_REGNUM,
57 E_R18_REGNUM,
58 E_R19_REGNUM,
59 E_R20_REGNUM,
60 E_R21_REGNUM,
61 E_R22_REGNUM,
62 E_R23_REGNUM,
63 E_R24_REGNUM,
64 E_R25_REGNUM,
65 E_R26_REGNUM,
66 E_R27_REGNUM,
67 E_R28_REGNUM,
68 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
69 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
70 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
71 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
72 E_R33_REGNUM,
73 E_R34_REGNUM,
74 E_R35_REGNUM,
75 E_R36_REGNUM,
76 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
77 E_R38_REGNUM,
78 E_R39_REGNUM,
79 E_R40_REGNUM,
80 E_R41_REGNUM,
81 E_R42_REGNUM,
82 E_R43_REGNUM,
83 E_R44_REGNUM,
84 E_R45_REGNUM,
85 E_R46_REGNUM,
86 E_R47_REGNUM,
87 E_R48_REGNUM,
88 E_R49_REGNUM,
89 E_R50_REGNUM,
90 E_R51_REGNUM,
91 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
92 E_R53_REGNUM,
93 E_R54_REGNUM,
94 E_R55_REGNUM,
95 E_R56_REGNUM,
96 E_R57_REGNUM,
97 E_R58_REGNUM,
98 E_R59_REGNUM,
99 E_R60_REGNUM,
100 E_R61_REGNUM,
101 E_R62_REGNUM,
102 E_R63_REGNUM,
103 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
104 E_R65_REGNUM,
105 E_NUM_REGS
106 };
107
108 enum
109 {
110 v850_reg_size = 4
111 };
112
113 /* Size of return datatype which fits into all return registers. */
114 enum
115 {
116 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
117 };
118
119 struct v850_frame_cache
120 {
121 /* Base address. */
122 CORE_ADDR base;
123 LONGEST sp_offset;
124 CORE_ADDR pc;
125
126 /* Flag showing that a frame has been created in the prologue code. */
127 int uses_fp;
128
129 /* Saved registers. */
130 struct trad_frame_saved_reg *saved_regs;
131 };
132
133 /* Info gleaned from scanning a function's prologue. */
134 struct pifsr /* Info about one saved register. */
135 {
136 int offset; /* Offset from sp or fp. */
137 int cur_frameoffset; /* Current frameoffset. */
138 int reg; /* Saved register number. */
139 };
140
141 static const char *
142 v850_register_name (struct gdbarch *gdbarch, int regnum)
143 {
144 static const char *v850_reg_names[] =
145 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
146 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
147 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
148 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
149 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
150 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
151 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
152 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
153 "pc", "fp"
154 };
155 if (regnum < 0 || regnum >= E_NUM_REGS)
156 return NULL;
157 return v850_reg_names[regnum];
158 }
159
160 static const char *
161 v850e_register_name (struct gdbarch *gdbarch, int regnum)
162 {
163 static const char *v850e_reg_names[] =
164 {
165 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
166 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
167 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
168 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
169 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
170 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
171 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
172 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
173 "pc", "fp"
174 };
175 if (regnum < 0 || regnum >= E_NUM_REGS)
176 return NULL;
177 return v850e_reg_names[regnum];
178 }
179
180 /* Returns the default type for register N. */
181
182 static struct type *
183 v850_register_type (struct gdbarch *gdbarch, int regnum)
184 {
185 if (regnum == E_PC_REGNUM)
186 return builtin_type (gdbarch)->builtin_func_ptr;
187 return builtin_type (gdbarch)->builtin_int32;
188 }
189
190 static int
191 v850_type_is_scalar (struct type *t)
192 {
193 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
194 && TYPE_CODE (t) != TYPE_CODE_UNION
195 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
196 }
197
198 /* Should call_function allocate stack space for a struct return? */
199 static int
200 v850_use_struct_convention (struct type *type)
201 {
202 int i;
203 struct type *fld_type, *tgt_type;
204
205 /* 1. The value is greater than 8 bytes -> returned by copying. */
206 if (TYPE_LENGTH (type) > 8)
207 return 1;
208
209 /* 2. The value is a single basic type -> returned in register. */
210 if (v850_type_is_scalar (type))
211 return 0;
212
213 /* The value is a structure or union with a single element and that
214 element is either a single basic type or an array of a single basic
215 type whose size is greater than or equal to 4 -> returned in register. */
216 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
217 || TYPE_CODE (type) == TYPE_CODE_UNION)
218 && TYPE_NFIELDS (type) == 1)
219 {
220 fld_type = TYPE_FIELD_TYPE (type, 0);
221 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
222 return 0;
223
224 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
225 {
226 tgt_type = TYPE_TARGET_TYPE (fld_type);
227 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
228 return 0;
229 }
230 }
231
232 /* The value is a structure whose first element is an integer or a float,
233 and which contains no arrays of more than two elements -> returned in
234 register. */
235 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
236 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
237 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
238 {
239 for (i = 1; i < TYPE_NFIELDS (type); ++i)
240 {
241 fld_type = TYPE_FIELD_TYPE (type, 0);
242 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
243 {
244 tgt_type = TYPE_TARGET_TYPE (fld_type);
245 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
246 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
247 return 1;
248 }
249 }
250 return 0;
251 }
252
253 /* The value is a union which contains at least one field which would be
254 returned in registers according to these rules -> returned in register. */
255 if (TYPE_CODE (type) == TYPE_CODE_UNION)
256 {
257 for (i = 0; i < TYPE_NFIELDS (type); ++i)
258 {
259 fld_type = TYPE_FIELD_TYPE (type, 0);
260 if (!v850_use_struct_convention (fld_type))
261 return 0;
262 }
263 }
264
265 return 1;
266 }
267
268 /* Structure for mapping bits in register lists to register numbers. */
269 struct reg_list
270 {
271 long mask;
272 int regno;
273 };
274
275 /* Helper function for v850_scan_prologue to handle prepare instruction. */
276
277 static void
278 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
279 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
280 {
281 CORE_ADDR current_pc = *current_pc_ptr;
282 struct pifsr *pifsr = *pifsr_ptr;
283 long next = insn2 & 0xffff;
284 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
285 long offset = (insn & 0x3e) << 1;
286 static struct reg_list reg_table[] =
287 {
288 {0x00800, 20}, /* r20 */
289 {0x00400, 21}, /* r21 */
290 {0x00200, 22}, /* r22 */
291 {0x00100, 23}, /* r23 */
292 {0x08000, 24}, /* r24 */
293 {0x04000, 25}, /* r25 */
294 {0x02000, 26}, /* r26 */
295 {0x01000, 27}, /* r27 */
296 {0x00080, 28}, /* r28 */
297 {0x00040, 29}, /* r29 */
298 {0x10000, 30}, /* ep */
299 {0x00020, 31}, /* lp */
300 {0, 0} /* end of table */
301 };
302 int i;
303
304 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
305 current_pc += 2;
306 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
307 current_pc += 2;
308 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
309 current_pc += 4;
310
311 /* Calculate the total size of the saved registers, and add it to the
312 immediate value used to adjust SP. */
313 for (i = 0; reg_table[i].mask != 0; i++)
314 if (list12 & reg_table[i].mask)
315 offset += v850_reg_size;
316 pi->sp_offset -= offset;
317
318 /* Calculate the offsets of the registers relative to the value the SP
319 will have after the registers have been pushed and the imm5 value has
320 been subtracted from it. */
321 if (pifsr)
322 {
323 for (i = 0; reg_table[i].mask != 0; i++)
324 {
325 if (list12 & reg_table[i].mask)
326 {
327 int reg = reg_table[i].regno;
328 offset -= v850_reg_size;
329 pifsr->reg = reg;
330 pifsr->offset = offset;
331 pifsr->cur_frameoffset = pi->sp_offset;
332 pifsr++;
333 }
334 }
335 }
336
337 /* Set result parameters. */
338 *current_pc_ptr = current_pc;
339 *pifsr_ptr = pifsr;
340 }
341
342
343 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
344 The SR bit of the register list is not supported. gcc does not generate
345 this bit. */
346
347 static void
348 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
349 struct pifsr **pifsr_ptr)
350 {
351 struct pifsr *pifsr = *pifsr_ptr;
352 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
353 long offset = 0;
354 static struct reg_list pushml_reg_table[] =
355 {
356 {0x80000, E_PS_REGNUM}, /* PSW */
357 {0x40000, 1}, /* r1 */
358 {0x20000, 2}, /* r2 */
359 {0x10000, 3}, /* r3 */
360 {0x00800, 4}, /* r4 */
361 {0x00400, 5}, /* r5 */
362 {0x00200, 6}, /* r6 */
363 {0x00100, 7}, /* r7 */
364 {0x08000, 8}, /* r8 */
365 {0x04000, 9}, /* r9 */
366 {0x02000, 10}, /* r10 */
367 {0x01000, 11}, /* r11 */
368 {0x00080, 12}, /* r12 */
369 {0x00040, 13}, /* r13 */
370 {0x00020, 14}, /* r14 */
371 {0x00010, 15}, /* r15 */
372 {0, 0} /* end of table */
373 };
374 static struct reg_list pushmh_reg_table[] =
375 {
376 {0x80000, 16}, /* r16 */
377 {0x40000, 17}, /* r17 */
378 {0x20000, 18}, /* r18 */
379 {0x10000, 19}, /* r19 */
380 {0x00800, 20}, /* r20 */
381 {0x00400, 21}, /* r21 */
382 {0x00200, 22}, /* r22 */
383 {0x00100, 23}, /* r23 */
384 {0x08000, 24}, /* r24 */
385 {0x04000, 25}, /* r25 */
386 {0x02000, 26}, /* r26 */
387 {0x01000, 27}, /* r27 */
388 {0x00080, 28}, /* r28 */
389 {0x00040, 29}, /* r29 */
390 {0x00010, 30}, /* r30 */
391 {0x00020, 31}, /* r31 */
392 {0, 0} /* end of table */
393 };
394 struct reg_list *reg_table;
395 int i;
396
397 /* Is this a pushml or a pushmh? */
398 if ((insn2 & 7) == 1)
399 reg_table = pushml_reg_table;
400 else
401 reg_table = pushmh_reg_table;
402
403 /* Calculate the total size of the saved registers, and add it it to the
404 immediate value used to adjust SP. */
405 for (i = 0; reg_table[i].mask != 0; i++)
406 if (list12 & reg_table[i].mask)
407 offset += v850_reg_size;
408 pi->sp_offset -= offset;
409
410 /* Calculate the offsets of the registers relative to the value the SP
411 will have after the registers have been pushed and the imm5 value is
412 subtracted from it. */
413 if (pifsr)
414 {
415 for (i = 0; reg_table[i].mask != 0; i++)
416 {
417 if (list12 & reg_table[i].mask)
418 {
419 int reg = reg_table[i].regno;
420 offset -= v850_reg_size;
421 pifsr->reg = reg;
422 pifsr->offset = offset;
423 pifsr->cur_frameoffset = pi->sp_offset;
424 pifsr++;
425 }
426 }
427 }
428
429 /* Set result parameters. */
430 *pifsr_ptr = pifsr;
431 }
432
433 /* Helper function to evaluate if register is one of the "save" registers.
434 This allows to simplify conditionals in v850_analyze_prologue a lot. */
435
436 static int
437 v850_is_save_register (int reg)
438 {
439 /* The caller-save registers are R2, R20 - R29 and R31. All other
440 registers are either special purpose (PC, SP), argument registers,
441 or just considered free for use in the caller. */
442 return reg == E_R2_REGNUM
443 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
444 || reg == E_R31_REGNUM;
445 }
446
447 /* Scan the prologue of the function that contains PC, and record what
448 we find in PI. Returns the pc after the prologue. Note that the
449 addresses saved in frame->saved_regs are just frame relative (negative
450 offsets from the frame pointer). This is because we don't know the
451 actual value of the frame pointer yet. In some circumstances, the
452 frame pointer can't be determined till after we have scanned the
453 prologue. */
454
455 static CORE_ADDR
456 v850_analyze_prologue (struct gdbarch *gdbarch,
457 CORE_ADDR func_addr, CORE_ADDR pc,
458 struct v850_frame_cache *pi, ULONGEST ctbp)
459 {
460 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
461 CORE_ADDR prologue_end, current_pc;
462 struct pifsr pifsrs[E_NUM_REGS + 1];
463 struct pifsr *pifsr, *pifsr_tmp;
464 int fp_used;
465 int ep_used;
466 int reg;
467 CORE_ADDR save_pc, save_end;
468 int regsave_func_p;
469 int r12_tmp;
470
471 memset (&pifsrs, 0, sizeof pifsrs);
472 pifsr = &pifsrs[0];
473
474 prologue_end = pc;
475
476 /* Now, search the prologue looking for instructions that setup fp, save
477 rp, adjust sp and such. We also record the frame offset of any saved
478 registers. */
479
480 pi->sp_offset = 0;
481 pi->uses_fp = 0;
482 ep_used = 0;
483 regsave_func_p = 0;
484 save_pc = 0;
485 save_end = 0;
486 r12_tmp = 0;
487
488 for (current_pc = func_addr; current_pc < prologue_end;)
489 {
490 int insn;
491 int insn2 = -1; /* dummy value */
492
493 insn = read_memory_integer (current_pc, 2, byte_order);
494 current_pc += 2;
495 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
496 {
497 insn2 = read_memory_integer (current_pc, 2, byte_order);
498 current_pc += 2;
499 }
500
501 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
502 { /* jarl <func>,10 */
503 long low_disp = insn2 & ~(long) 1;
504 long disp = (((((insn & 0x3f) << 16) + low_disp)
505 & ~(long) 1) ^ 0x00200000) - 0x00200000;
506
507 save_pc = current_pc;
508 save_end = prologue_end;
509 regsave_func_p = 1;
510 current_pc += disp - 4;
511 prologue_end = (current_pc
512 + (2 * 3) /* moves to/from ep */
513 + 4 /* addi <const>,sp,sp */
514 + 2 /* jmp [r10] */
515 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
516 + 20); /* slop area */
517 }
518 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
519 { /* callt <imm6> */
520 long adr = ctbp + ((insn & 0x3f) << 1);
521
522 save_pc = current_pc;
523 save_end = prologue_end;
524 regsave_func_p = 1;
525 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
526 & 0xffff);
527 prologue_end = (current_pc
528 + (2 * 3) /* prepare list2,imm5,sp/imm */
529 + 4 /* ctret */
530 + 20); /* slop area */
531 continue;
532 }
533 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
534 {
535 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
536 continue;
537 }
538 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
539 { /* ctret after processing register save. */
540 current_pc = save_pc;
541 prologue_end = save_end;
542 regsave_func_p = 0;
543 continue;
544 }
545 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
546 { /* pushml, pushmh */
547 v850_handle_pushm (insn, insn2, pi, &pifsr);
548 continue;
549 }
550 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
551 { /* jmp after processing register save. */
552 current_pc = save_pc;
553 prologue_end = save_end;
554 regsave_func_p = 0;
555 continue;
556 }
557 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
558 || (insn & 0xffe0) == 0x0060 /* jmp */
559 || (insn & 0x0780) == 0x0580) /* branch */
560 {
561 break; /* Ran into end of prologue */
562 }
563
564 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
565 /* add <imm>,sp */
566 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
567 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
568 /* addi <imm>,sp,sp */
569 pi->sp_offset += insn2;
570 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
571 /* mov sp,fp */
572 pi->uses_fp = 1;
573 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
574 /* movhi hi(const),r0,r12 */
575 r12_tmp = insn2 << 16;
576 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
577 /* movea lo(const),r12,r12 */
578 r12_tmp += insn2;
579 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
580 /* add r12,sp */
581 pi->sp_offset += r12_tmp;
582 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
583 /* mov sp,ep */
584 ep_used = 1;
585 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
586 /* mov r1,ep */
587 ep_used = 0;
588 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
589 || (pi->uses_fp
590 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
591 && pifsr
592 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
593 {
594 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
595 pifsr->reg = reg;
596 pifsr->offset = insn2 & ~1;
597 pifsr->cur_frameoffset = pi->sp_offset;
598 pifsr++;
599 }
600 else if (ep_used
601 && ((insn & 0x0781) == 0x0501)
602 && pifsr
603 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
604 {
605 /* sst.w <reg>,<offset>[ep] */
606 pifsr->reg = reg;
607 pifsr->offset = (insn & 0x007e) << 1;
608 pifsr->cur_frameoffset = pi->sp_offset;
609 pifsr++;
610 }
611 }
612
613 /* Fix up any offsets to the final offset. If a frame pointer was created,
614 use it instead of the stack pointer. */
615 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
616 {
617 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
618 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
619 }
620
621 return current_pc;
622 }
623
624 /* Return the address of the first code past the prologue of the function. */
625
626 static CORE_ADDR
627 v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
628 {
629 CORE_ADDR func_addr, func_end;
630
631 /* See what the symbol table says */
632
633 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
634 {
635 struct symtab_and_line sal;
636
637 sal = find_pc_line (func_addr, 0);
638 if (sal.line != 0 && sal.end < func_end)
639 return sal.end;
640
641 /* Either there's no line info, or the line after the prologue is after
642 the end of the function. In this case, there probably isn't a
643 prologue. */
644 return pc;
645 }
646
647 /* We can't find the start of this function, so there's nothing we can do. */
648 return pc;
649 }
650
651 static CORE_ADDR
652 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
653 {
654 return sp & ~3;
655 }
656
657 /* Setup arguments and LP for a call to the target. First four args
658 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
659 are passed by reference. 64 bit quantities (doubles and long longs)
660 may be split between the regs and the stack. When calling a function
661 that returns a struct, a pointer to the struct is passed in as a secret
662 first argument (always in R6).
663
664 Stack space for the args has NOT been allocated: that job is up to us. */
665
666 static CORE_ADDR
667 v850_push_dummy_call (struct gdbarch *gdbarch,
668 struct value *function,
669 struct regcache *regcache,
670 CORE_ADDR bp_addr,
671 int nargs,
672 struct value **args,
673 CORE_ADDR sp,
674 int struct_return,
675 CORE_ADDR struct_addr)
676 {
677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
678 int argreg;
679 int argnum;
680 int len = 0;
681 int stack_offset;
682
683 /* The offset onto the stack at which we will start copying parameters
684 (after the registers are used up) begins at 16 rather than at zero.
685 That's how the ABI is defined, though there's no indication that these
686 16 bytes are used for anything, not even for saving incoming
687 argument registers. */
688 stack_offset = 16;
689
690 /* Now make space on the stack for the args. */
691 for (argnum = 0; argnum < nargs; argnum++)
692 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
693 sp -= len + stack_offset;
694
695 argreg = E_ARG0_REGNUM;
696 /* The struct_return pointer occupies the first parameter register. */
697 if (struct_return)
698 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
699
700 /* Now load as many as possible of the first arguments into
701 registers, and push the rest onto the stack. There are 16 bytes
702 in four registers available. Loop thru args from first to last. */
703 for (argnum = 0; argnum < nargs; argnum++)
704 {
705 int len;
706 gdb_byte *val;
707 gdb_byte valbuf[v850_reg_size];
708
709 if (!v850_type_is_scalar (value_type (*args))
710 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
711 {
712 store_unsigned_integer (valbuf, 4, byte_order,
713 value_address (*args));
714 len = 4;
715 val = valbuf;
716 }
717 else
718 {
719 len = TYPE_LENGTH (value_type (*args));
720 val = (gdb_byte *) value_contents (*args);
721 }
722
723 while (len > 0)
724 if (argreg <= E_ARGLAST_REGNUM)
725 {
726 CORE_ADDR regval;
727
728 regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
729 regcache_cooked_write_unsigned (regcache, argreg, regval);
730
731 len -= v850_reg_size;
732 val += v850_reg_size;
733 argreg++;
734 }
735 else
736 {
737 write_memory (sp + stack_offset, val, 4);
738
739 len -= 4;
740 val += 4;
741 stack_offset += 4;
742 }
743 args++;
744 }
745
746 /* Store return address. */
747 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
748
749 /* Update stack pointer. */
750 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
751
752 return sp;
753 }
754
755 static void
756 v850_extract_return_value (struct type *type, struct regcache *regcache,
757 gdb_byte *valbuf)
758 {
759 struct gdbarch *gdbarch = get_regcache_arch (regcache);
760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
761 int len = TYPE_LENGTH (type);
762
763 if (len <= v850_reg_size)
764 {
765 ULONGEST val;
766
767 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
768 store_unsigned_integer (valbuf, len, byte_order, val);
769 }
770 else if (len <= 2 * v850_reg_size)
771 {
772 int i, regnum = E_V0_REGNUM;
773 gdb_byte buf[v850_reg_size];
774 for (i = 0; len > 0; i += 4, len -= 4)
775 {
776 regcache_raw_read (regcache, regnum++, buf);
777 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
778 }
779 }
780 }
781
782 static void
783 v850_store_return_value (struct type *type, struct regcache *regcache,
784 const gdb_byte *valbuf)
785 {
786 struct gdbarch *gdbarch = get_regcache_arch (regcache);
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 int len = TYPE_LENGTH (type);
789
790 if (len <= v850_reg_size)
791 regcache_cooked_write_unsigned
792 (regcache, E_V0_REGNUM,
793 extract_unsigned_integer (valbuf, len, byte_order));
794 else if (len <= 2 * v850_reg_size)
795 {
796 int i, regnum = E_V0_REGNUM;
797 for (i = 0; i < len; i += 4)
798 regcache_raw_write (regcache, regnum++, valbuf + i);
799 }
800 }
801
802 static enum return_value_convention
803 v850_return_value (struct gdbarch *gdbarch, struct type *func_type,
804 struct type *type, struct regcache *regcache,
805 gdb_byte *readbuf, const gdb_byte *writebuf)
806 {
807 if (v850_use_struct_convention (type))
808 return RETURN_VALUE_STRUCT_CONVENTION;
809 if (writebuf)
810 v850_store_return_value (type, regcache, writebuf);
811 else if (readbuf)
812 v850_extract_return_value (type, regcache, readbuf);
813 return RETURN_VALUE_REGISTER_CONVENTION;
814 }
815
816 const static unsigned char *
817 v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
818 {
819 static unsigned char breakpoint[] = { 0x85, 0x05 };
820 *lenptr = sizeof (breakpoint);
821 return breakpoint;
822 }
823
824 static struct v850_frame_cache *
825 v850_alloc_frame_cache (struct frame_info *this_frame)
826 {
827 struct v850_frame_cache *cache;
828 int i;
829
830 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
831 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
832
833 /* Base address. */
834 cache->base = 0;
835 cache->sp_offset = 0;
836 cache->pc = 0;
837
838 /* Frameless until proven otherwise. */
839 cache->uses_fp = 0;
840
841 return cache;
842 }
843
844 static struct v850_frame_cache *
845 v850_frame_cache (struct frame_info *this_frame, void **this_cache)
846 {
847 struct gdbarch *gdbarch = get_frame_arch (this_frame);
848 struct v850_frame_cache *cache;
849 CORE_ADDR current_pc;
850 int i;
851
852 if (*this_cache)
853 return *this_cache;
854
855 cache = v850_alloc_frame_cache (this_frame);
856 *this_cache = cache;
857
858 /* In principle, for normal frames, fp holds the frame pointer,
859 which holds the base address for the current stack frame.
860 However, for functions that don't need it, the frame pointer is
861 optional. For these "frameless" functions the frame pointer is
862 actually the frame pointer of the calling frame. */
863 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
864 if (cache->base == 0)
865 return cache;
866
867 cache->pc = get_frame_func (this_frame);
868 current_pc = get_frame_pc (this_frame);
869 if (cache->pc != 0)
870 {
871 ULONGEST ctbp;
872 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
873 v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
874 }
875
876 if (!cache->uses_fp)
877 {
878 /* We didn't find a valid frame, which means that CACHE->base
879 currently holds the frame pointer for our calling frame. If
880 we're at the start of a function, or somewhere half-way its
881 prologue, the function's frame probably hasn't been fully
882 setup yet. Try to reconstruct the base address for the stack
883 frame by looking at the stack pointer. For truly "frameless"
884 functions this might work too. */
885 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
886 }
887
888 /* Now that we have the base address for the stack frame we can
889 calculate the value of sp in the calling frame. */
890 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
891 cache->base - cache->sp_offset);
892
893 /* Adjust all the saved registers such that they contain addresses
894 instead of offsets. */
895 for (i = 0; i < E_NUM_REGS; i++)
896 if (trad_frame_addr_p (cache->saved_regs, i))
897 cache->saved_regs[i].addr += cache->base;
898
899 /* The call instruction moves the caller's PC in the callee's LP.
900 Since this is an unwind, do the reverse. Copy the location of LP
901 into PC (the address / regnum) so that a request for PC will be
902 converted into a request for the LP. */
903
904 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
905
906 return cache;
907 }
908
909
910 static struct value *
911 v850_frame_prev_register (struct frame_info *this_frame,
912 void **this_cache, int regnum)
913 {
914 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
915
916 gdb_assert (regnum >= 0);
917
918 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
919 }
920
921 static void
922 v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
923 struct frame_id *this_id)
924 {
925 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
926
927 /* This marks the outermost frame. */
928 if (cache->base == 0)
929 return;
930
931 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
932 }
933
934 static const struct frame_unwind v850_frame_unwind = {
935 NORMAL_FRAME,
936 v850_frame_this_id,
937 v850_frame_prev_register,
938 NULL,
939 default_frame_sniffer
940 };
941
942 static CORE_ADDR
943 v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
944 {
945 return frame_unwind_register_unsigned (next_frame,
946 gdbarch_sp_regnum (gdbarch));
947 }
948
949 static CORE_ADDR
950 v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
951 {
952 return frame_unwind_register_unsigned (next_frame,
953 gdbarch_pc_regnum (gdbarch));
954 }
955
956 static struct frame_id
957 v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
958 {
959 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
960 gdbarch_sp_regnum (gdbarch));
961 return frame_id_build (sp, get_frame_pc (this_frame));
962 }
963
964 static CORE_ADDR
965 v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
966 {
967 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
968
969 return cache->base;
970 }
971
972 static const struct frame_base v850_frame_base = {
973 &v850_frame_unwind,
974 v850_frame_base_address,
975 v850_frame_base_address,
976 v850_frame_base_address
977 };
978
979 static struct gdbarch *
980 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
981 {
982 struct gdbarch *gdbarch;
983
984 /* Change the register names based on the current machine type. */
985 if (info.bfd_arch_info->arch != bfd_arch_v850)
986 return NULL;
987
988 gdbarch = gdbarch_alloc (&info, NULL);
989
990 switch (info.bfd_arch_info->mach)
991 {
992 case bfd_mach_v850:
993 set_gdbarch_register_name (gdbarch, v850_register_name);
994 break;
995 case bfd_mach_v850e:
996 case bfd_mach_v850e1:
997 set_gdbarch_register_name (gdbarch, v850e_register_name);
998 break;
999 }
1000
1001 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1002 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1003 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1004 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1005 set_gdbarch_fp0_regnum (gdbarch, -1);
1006
1007 set_gdbarch_register_type (gdbarch, v850_register_type);
1008
1009 set_gdbarch_char_signed (gdbarch, 0);
1010 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1011 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1012 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1013 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1014
1015 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1016 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1017 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1018
1019 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1020 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1021
1022 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1023 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1024
1025 set_gdbarch_return_value (gdbarch, v850_return_value);
1026 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1027 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1028
1029 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1030
1031 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1032 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1033 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
1034 set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
1035 frame_base_set_default (gdbarch, &v850_frame_base);
1036
1037 /* Hook in ABI-specific overrides, if they have been registered. */
1038 gdbarch_init_osabi (info, gdbarch);
1039
1040 dwarf2_append_unwinders (gdbarch);
1041 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
1042
1043 return gdbarch;
1044 }
1045
1046 extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1047
1048 void
1049 _initialize_v850_tdep (void)
1050 {
1051 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1052 }
This page took 0.055671 seconds and 5 git commands to generate.