2002-08-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "value.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "language.h"
30 #include "gdb_string.h"
31 #include "doublest.h"
32 #include <math.h>
33
34 /* Define whether or not the C operator '/' truncates towards zero for
35 differently signed operands (truncation direction is undefined in C). */
36
37 #ifndef TRUNCATION_TOWARDS_ZERO
38 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
39 #endif
40
41 static struct value *value_subscripted_rvalue (struct value *, struct value *, int);
42
43 void _initialize_valarith (void);
44 \f
45
46 /* Given a pointer, return the size of its target.
47 If the pointer type is void *, then return 1.
48 If the target type is incomplete, then error out.
49 This isn't a general purpose function, but just a
50 helper for value_sub & value_add.
51 */
52
53 static LONGEST
54 find_size_for_pointer_math (struct type *ptr_type)
55 {
56 LONGEST sz = -1;
57 struct type *ptr_target;
58
59 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
60
61 sz = TYPE_LENGTH (ptr_target);
62 if (sz == 0)
63 {
64 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
65 sz = 1;
66 else
67 {
68 char *name;
69
70 name = TYPE_NAME (ptr_target);
71 if (name == NULL)
72 name = TYPE_TAG_NAME (ptr_target);
73 if (name == NULL)
74 error ("Cannot perform pointer math on incomplete types, "
75 "try casting to a known type, or void *.");
76 else
77 error ("Cannot perform pointer math on incomplete type \"%s\", "
78 "try casting to a known type, or void *.", name);
79 }
80 }
81 return sz;
82 }
83
84 struct value *
85 value_add (struct value *arg1, struct value *arg2)
86 {
87 struct value *valint;
88 struct value *valptr;
89 LONGEST sz;
90 struct type *type1, *type2, *valptrtype;
91
92 COERCE_NUMBER (arg1);
93 COERCE_NUMBER (arg2);
94 type1 = check_typedef (VALUE_TYPE (arg1));
95 type2 = check_typedef (VALUE_TYPE (arg2));
96
97 if ((TYPE_CODE (type1) == TYPE_CODE_PTR
98 || TYPE_CODE (type2) == TYPE_CODE_PTR)
99 &&
100 (TYPE_CODE (type1) == TYPE_CODE_INT
101 || TYPE_CODE (type2) == TYPE_CODE_INT))
102 /* Exactly one argument is a pointer, and one is an integer. */
103 {
104 struct value *retval;
105
106 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
107 {
108 valptr = arg1;
109 valint = arg2;
110 valptrtype = type1;
111 }
112 else
113 {
114 valptr = arg2;
115 valint = arg1;
116 valptrtype = type2;
117 }
118
119 sz = find_size_for_pointer_math (valptrtype);
120
121 retval = value_from_pointer (valptrtype,
122 value_as_address (valptr)
123 + (sz * value_as_long (valint)));
124 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (valptr);
125 return retval;
126 }
127
128 return value_binop (arg1, arg2, BINOP_ADD);
129 }
130
131 struct value *
132 value_sub (struct value *arg1, struct value *arg2)
133 {
134 struct type *type1, *type2;
135 COERCE_NUMBER (arg1);
136 COERCE_NUMBER (arg2);
137 type1 = check_typedef (VALUE_TYPE (arg1));
138 type2 = check_typedef (VALUE_TYPE (arg2));
139
140 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
141 {
142 if (TYPE_CODE (type2) == TYPE_CODE_INT)
143 {
144 /* pointer - integer. */
145 LONGEST sz = find_size_for_pointer_math (type1);
146
147 return value_from_pointer (type1,
148 (value_as_address (arg1)
149 - (sz * value_as_long (arg2))));
150 }
151 else if (TYPE_CODE (type2) == TYPE_CODE_PTR
152 && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
153 == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
154 {
155 /* pointer to <type x> - pointer to <type x>. */
156 LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
157 return value_from_longest
158 (builtin_type_long, /* FIXME -- should be ptrdiff_t */
159 (value_as_long (arg1) - value_as_long (arg2)) / sz);
160 }
161 else
162 {
163 error ("\
164 First argument of `-' is a pointer and second argument is neither\n\
165 an integer nor a pointer of the same type.");
166 }
167 }
168
169 return value_binop (arg1, arg2, BINOP_SUB);
170 }
171
172 /* Return the value of ARRAY[IDX].
173 See comments in value_coerce_array() for rationale for reason for
174 doing lower bounds adjustment here rather than there.
175 FIXME: Perhaps we should validate that the index is valid and if
176 verbosity is set, warn about invalid indices (but still use them). */
177
178 struct value *
179 value_subscript (struct value *array, struct value *idx)
180 {
181 struct value *bound;
182 int c_style = current_language->c_style_arrays;
183 struct type *tarray;
184
185 COERCE_REF (array);
186 tarray = check_typedef (VALUE_TYPE (array));
187 COERCE_VARYING_ARRAY (array, tarray);
188
189 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
190 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (tarray);
193 LONGEST lowerbound, upperbound;
194 get_discrete_bounds (range_type, &lowerbound, &upperbound);
195
196 if (VALUE_LVAL (array) != lval_memory)
197 return value_subscripted_rvalue (array, idx, lowerbound);
198
199 if (c_style == 0)
200 {
201 LONGEST index = value_as_long (idx);
202 if (index >= lowerbound && index <= upperbound)
203 return value_subscripted_rvalue (array, idx, lowerbound);
204 warning ("array or string index out of range");
205 /* fall doing C stuff */
206 c_style = 1;
207 }
208
209 if (lowerbound != 0)
210 {
211 bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
212 idx = value_sub (idx, bound);
213 }
214
215 array = value_coerce_array (array);
216 }
217
218 if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
219 {
220 struct type *range_type = TYPE_INDEX_TYPE (tarray);
221 LONGEST index = value_as_long (idx);
222 struct value *v;
223 int offset, byte, bit_index;
224 LONGEST lowerbound, upperbound;
225 get_discrete_bounds (range_type, &lowerbound, &upperbound);
226 if (index < lowerbound || index > upperbound)
227 error ("bitstring index out of range");
228 index -= lowerbound;
229 offset = index / TARGET_CHAR_BIT;
230 byte = *((char *) VALUE_CONTENTS (array) + offset);
231 bit_index = index % TARGET_CHAR_BIT;
232 byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index);
233 v = value_from_longest (LA_BOOL_TYPE, byte & 1);
234 VALUE_BITPOS (v) = bit_index;
235 VALUE_BITSIZE (v) = 1;
236 VALUE_LVAL (v) = VALUE_LVAL (array);
237 if (VALUE_LVAL (array) == lval_internalvar)
238 VALUE_LVAL (v) = lval_internalvar_component;
239 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
240 VALUE_OFFSET (v) = offset + VALUE_OFFSET (array);
241 return v;
242 }
243
244 if (c_style)
245 return value_ind (value_add (array, idx));
246 else
247 error ("not an array or string");
248 }
249
250 /* Return the value of EXPR[IDX], expr an aggregate rvalue
251 (eg, a vector register). This routine used to promote floats
252 to doubles, but no longer does. */
253
254 static struct value *
255 value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound)
256 {
257 struct type *array_type = check_typedef (VALUE_TYPE (array));
258 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
259 unsigned int elt_size = TYPE_LENGTH (elt_type);
260 LONGEST index = value_as_long (idx);
261 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
262 struct value *v;
263
264 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
265 error ("no such vector element");
266
267 v = allocate_value (elt_type);
268 if (VALUE_LAZY (array))
269 VALUE_LAZY (v) = 1;
270 else
271 memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size);
272
273 if (VALUE_LVAL (array) == lval_internalvar)
274 VALUE_LVAL (v) = lval_internalvar_component;
275 else
276 VALUE_LVAL (v) = VALUE_LVAL (array);
277 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
278 VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs;
279 return v;
280 }
281 \f
282 /* Check to see if either argument is a structure. This is called so
283 we know whether to go ahead with the normal binop or look for a
284 user defined function instead.
285
286 For now, we do not overload the `=' operator. */
287
288 int
289 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
290 {
291 struct type *type1, *type2;
292 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
293 return 0;
294 type1 = check_typedef (VALUE_TYPE (arg1));
295 type2 = check_typedef (VALUE_TYPE (arg2));
296 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
297 || TYPE_CODE (type2) == TYPE_CODE_STRUCT
298 || (TYPE_CODE (type1) == TYPE_CODE_REF
299 && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT)
300 || (TYPE_CODE (type2) == TYPE_CODE_REF
301 && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT));
302 }
303
304 /* Check to see if argument is a structure. This is called so
305 we know whether to go ahead with the normal unop or look for a
306 user defined function instead.
307
308 For now, we do not overload the `&' operator. */
309
310 int
311 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
312 {
313 struct type *type1;
314 if (op == UNOP_ADDR)
315 return 0;
316 type1 = check_typedef (VALUE_TYPE (arg1));
317 for (;;)
318 {
319 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
320 return 1;
321 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
322 type1 = TYPE_TARGET_TYPE (type1);
323 else
324 return 0;
325 }
326 }
327
328 /* We know either arg1 or arg2 is a structure, so try to find the right
329 user defined function. Create an argument vector that calls
330 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
331 binary operator which is legal for GNU C++).
332
333 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
334 is the opcode saying how to modify it. Otherwise, OTHEROP is
335 unused. */
336
337 struct value *
338 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
339 enum exp_opcode otherop, enum noside noside)
340 {
341 struct value **argvec;
342 char *ptr;
343 char tstr[13];
344 int static_memfuncp;
345
346 COERCE_REF (arg1);
347 COERCE_REF (arg2);
348 COERCE_ENUM (arg1);
349 COERCE_ENUM (arg2);
350
351 /* now we know that what we have to do is construct our
352 arg vector and find the right function to call it with. */
353
354 if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
355 error ("Can't do that binary op on that type"); /* FIXME be explicit */
356
357 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
358 argvec[1] = value_addr (arg1);
359 argvec[2] = arg2;
360 argvec[3] = 0;
361
362 /* make the right function name up */
363 strcpy (tstr, "operator__");
364 ptr = tstr + 8;
365 switch (op)
366 {
367 case BINOP_ADD:
368 strcpy (ptr, "+");
369 break;
370 case BINOP_SUB:
371 strcpy (ptr, "-");
372 break;
373 case BINOP_MUL:
374 strcpy (ptr, "*");
375 break;
376 case BINOP_DIV:
377 strcpy (ptr, "/");
378 break;
379 case BINOP_REM:
380 strcpy (ptr, "%");
381 break;
382 case BINOP_LSH:
383 strcpy (ptr, "<<");
384 break;
385 case BINOP_RSH:
386 strcpy (ptr, ">>");
387 break;
388 case BINOP_BITWISE_AND:
389 strcpy (ptr, "&");
390 break;
391 case BINOP_BITWISE_IOR:
392 strcpy (ptr, "|");
393 break;
394 case BINOP_BITWISE_XOR:
395 strcpy (ptr, "^");
396 break;
397 case BINOP_LOGICAL_AND:
398 strcpy (ptr, "&&");
399 break;
400 case BINOP_LOGICAL_OR:
401 strcpy (ptr, "||");
402 break;
403 case BINOP_MIN:
404 strcpy (ptr, "<?");
405 break;
406 case BINOP_MAX:
407 strcpy (ptr, ">?");
408 break;
409 case BINOP_ASSIGN:
410 strcpy (ptr, "=");
411 break;
412 case BINOP_ASSIGN_MODIFY:
413 switch (otherop)
414 {
415 case BINOP_ADD:
416 strcpy (ptr, "+=");
417 break;
418 case BINOP_SUB:
419 strcpy (ptr, "-=");
420 break;
421 case BINOP_MUL:
422 strcpy (ptr, "*=");
423 break;
424 case BINOP_DIV:
425 strcpy (ptr, "/=");
426 break;
427 case BINOP_REM:
428 strcpy (ptr, "%=");
429 break;
430 case BINOP_BITWISE_AND:
431 strcpy (ptr, "&=");
432 break;
433 case BINOP_BITWISE_IOR:
434 strcpy (ptr, "|=");
435 break;
436 case BINOP_BITWISE_XOR:
437 strcpy (ptr, "^=");
438 break;
439 case BINOP_MOD: /* invalid */
440 default:
441 error ("Invalid binary operation specified.");
442 }
443 break;
444 case BINOP_SUBSCRIPT:
445 strcpy (ptr, "[]");
446 break;
447 case BINOP_EQUAL:
448 strcpy (ptr, "==");
449 break;
450 case BINOP_NOTEQUAL:
451 strcpy (ptr, "!=");
452 break;
453 case BINOP_LESS:
454 strcpy (ptr, "<");
455 break;
456 case BINOP_GTR:
457 strcpy (ptr, ">");
458 break;
459 case BINOP_GEQ:
460 strcpy (ptr, ">=");
461 break;
462 case BINOP_LEQ:
463 strcpy (ptr, "<=");
464 break;
465 case BINOP_MOD: /* invalid */
466 default:
467 error ("Invalid binary operation specified.");
468 }
469
470 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
471
472 if (argvec[0])
473 {
474 if (static_memfuncp)
475 {
476 argvec[1] = argvec[0];
477 argvec++;
478 }
479 if (noside == EVAL_AVOID_SIDE_EFFECTS)
480 {
481 struct type *return_type;
482 return_type
483 = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
484 return value_zero (return_type, VALUE_LVAL (arg1));
485 }
486 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
487 }
488 error ("member function %s not found", tstr);
489 #ifdef lint
490 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
491 #endif
492 }
493
494 /* We know that arg1 is a structure, so try to find a unary user
495 defined operator that matches the operator in question.
496 Create an argument vector that calls arg1.operator @ (arg1)
497 and return that value (where '@' is (almost) any unary operator which
498 is legal for GNU C++). */
499
500 struct value *
501 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
502 {
503 struct value **argvec;
504 char *ptr, *mangle_ptr;
505 char tstr[13], mangle_tstr[13];
506 int static_memfuncp, nargs;
507
508 COERCE_REF (arg1);
509 COERCE_ENUM (arg1);
510
511 /* now we know that what we have to do is construct our
512 arg vector and find the right function to call it with. */
513
514 if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
515 error ("Can't do that unary op on that type"); /* FIXME be explicit */
516
517 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
518 argvec[1] = value_addr (arg1);
519 argvec[2] = 0;
520
521 nargs = 1;
522
523 /* make the right function name up */
524 strcpy (tstr, "operator__");
525 ptr = tstr + 8;
526 strcpy (mangle_tstr, "__");
527 mangle_ptr = mangle_tstr + 2;
528 switch (op)
529 {
530 case UNOP_PREINCREMENT:
531 strcpy (ptr, "++");
532 break;
533 case UNOP_PREDECREMENT:
534 strcpy (ptr, "--");
535 break;
536 case UNOP_POSTINCREMENT:
537 strcpy (ptr, "++");
538 argvec[2] = value_from_longest (builtin_type_int, 0);
539 argvec[3] = 0;
540 nargs ++;
541 break;
542 case UNOP_POSTDECREMENT:
543 strcpy (ptr, "--");
544 argvec[2] = value_from_longest (builtin_type_int, 0);
545 argvec[3] = 0;
546 nargs ++;
547 break;
548 case UNOP_LOGICAL_NOT:
549 strcpy (ptr, "!");
550 break;
551 case UNOP_COMPLEMENT:
552 strcpy (ptr, "~");
553 break;
554 case UNOP_NEG:
555 strcpy (ptr, "-");
556 break;
557 case UNOP_IND:
558 strcpy (ptr, "*");
559 break;
560 default:
561 error ("Invalid unary operation specified.");
562 }
563
564 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
565
566 if (argvec[0])
567 {
568 if (static_memfuncp)
569 {
570 argvec[1] = argvec[0];
571 nargs --;
572 argvec++;
573 }
574 if (noside == EVAL_AVOID_SIDE_EFFECTS)
575 {
576 struct type *return_type;
577 return_type
578 = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
579 return value_zero (return_type, VALUE_LVAL (arg1));
580 }
581 return call_function_by_hand (argvec[0], nargs, argvec + 1);
582 }
583 error ("member function %s not found", tstr);
584 return 0; /* For lint -- never reached */
585 }
586 \f
587
588 /* Concatenate two values with the following conditions:
589
590 (1) Both values must be either bitstring values or character string
591 values and the resulting value consists of the concatenation of
592 ARG1 followed by ARG2.
593
594 or
595
596 One value must be an integer value and the other value must be
597 either a bitstring value or character string value, which is
598 to be repeated by the number of times specified by the integer
599 value.
600
601
602 (2) Boolean values are also allowed and are treated as bit string
603 values of length 1.
604
605 (3) Character values are also allowed and are treated as character
606 string values of length 1.
607 */
608
609 struct value *
610 value_concat (struct value *arg1, struct value *arg2)
611 {
612 struct value *inval1;
613 struct value *inval2;
614 struct value *outval = NULL;
615 int inval1len, inval2len;
616 int count, idx;
617 char *ptr;
618 char inchar;
619 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
620 struct type *type2 = check_typedef (VALUE_TYPE (arg2));
621
622 COERCE_VARYING_ARRAY (arg1, type1);
623 COERCE_VARYING_ARRAY (arg2, type2);
624
625 /* First figure out if we are dealing with two values to be concatenated
626 or a repeat count and a value to be repeated. INVAL1 is set to the
627 first of two concatenated values, or the repeat count. INVAL2 is set
628 to the second of the two concatenated values or the value to be
629 repeated. */
630
631 if (TYPE_CODE (type2) == TYPE_CODE_INT)
632 {
633 struct type *tmp = type1;
634 type1 = tmp;
635 tmp = type2;
636 inval1 = arg2;
637 inval2 = arg1;
638 }
639 else
640 {
641 inval1 = arg1;
642 inval2 = arg2;
643 }
644
645 /* Now process the input values. */
646
647 if (TYPE_CODE (type1) == TYPE_CODE_INT)
648 {
649 /* We have a repeat count. Validate the second value and then
650 construct a value repeated that many times. */
651 if (TYPE_CODE (type2) == TYPE_CODE_STRING
652 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
653 {
654 count = longest_to_int (value_as_long (inval1));
655 inval2len = TYPE_LENGTH (type2);
656 ptr = (char *) alloca (count * inval2len);
657 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
658 {
659 inchar = (char) unpack_long (type2,
660 VALUE_CONTENTS (inval2));
661 for (idx = 0; idx < count; idx++)
662 {
663 *(ptr + idx) = inchar;
664 }
665 }
666 else
667 {
668 for (idx = 0; idx < count; idx++)
669 {
670 memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2),
671 inval2len);
672 }
673 }
674 outval = value_string (ptr, count * inval2len);
675 }
676 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
677 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
678 {
679 error ("unimplemented support for bitstring/boolean repeats");
680 }
681 else
682 {
683 error ("can't repeat values of that type");
684 }
685 }
686 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
687 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
688 {
689 /* We have two character strings to concatenate. */
690 if (TYPE_CODE (type2) != TYPE_CODE_STRING
691 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
692 {
693 error ("Strings can only be concatenated with other strings.");
694 }
695 inval1len = TYPE_LENGTH (type1);
696 inval2len = TYPE_LENGTH (type2);
697 ptr = (char *) alloca (inval1len + inval2len);
698 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
699 {
700 *ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1));
701 }
702 else
703 {
704 memcpy (ptr, VALUE_CONTENTS (inval1), inval1len);
705 }
706 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
707 {
708 *(ptr + inval1len) =
709 (char) unpack_long (type2, VALUE_CONTENTS (inval2));
710 }
711 else
712 {
713 memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len);
714 }
715 outval = value_string (ptr, inval1len + inval2len);
716 }
717 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
718 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
719 {
720 /* We have two bitstrings to concatenate. */
721 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
722 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
723 {
724 error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.");
725 }
726 error ("unimplemented support for bitstring/boolean concatenation.");
727 }
728 else
729 {
730 /* We don't know how to concatenate these operands. */
731 error ("illegal operands for concatenation.");
732 }
733 return (outval);
734 }
735 \f
736
737
738 /* Perform a binary operation on two operands which have reasonable
739 representations as integers or floats. This includes booleans,
740 characters, integers, or floats.
741 Does not support addition and subtraction on pointers;
742 use value_add or value_sub if you want to handle those possibilities. */
743
744 struct value *
745 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
746 {
747 struct value *val;
748 struct type *type1, *type2;
749
750 COERCE_REF (arg1);
751 COERCE_REF (arg2);
752 COERCE_ENUM (arg1);
753 COERCE_ENUM (arg2);
754 type1 = check_typedef (VALUE_TYPE (arg1));
755 type2 = check_typedef (VALUE_TYPE (arg2));
756
757 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
758 && TYPE_CODE (type1) != TYPE_CODE_CHAR
759 && TYPE_CODE (type1) != TYPE_CODE_INT
760 && TYPE_CODE (type1) != TYPE_CODE_BOOL
761 && TYPE_CODE (type1) != TYPE_CODE_RANGE)
762 ||
763 (TYPE_CODE (type2) != TYPE_CODE_FLT
764 && TYPE_CODE (type2) != TYPE_CODE_CHAR
765 && TYPE_CODE (type2) != TYPE_CODE_INT
766 && TYPE_CODE (type2) != TYPE_CODE_BOOL
767 && TYPE_CODE (type2) != TYPE_CODE_RANGE))
768 error ("Argument to arithmetic operation not a number or boolean.");
769
770 if (TYPE_CODE (type1) == TYPE_CODE_FLT
771 ||
772 TYPE_CODE (type2) == TYPE_CODE_FLT)
773 {
774 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
775 in target format. real.c in GCC probably has the necessary
776 code. */
777 DOUBLEST v1, v2, v = 0;
778 v1 = value_as_double (arg1);
779 v2 = value_as_double (arg2);
780 switch (op)
781 {
782 case BINOP_ADD:
783 v = v1 + v2;
784 break;
785
786 case BINOP_SUB:
787 v = v1 - v2;
788 break;
789
790 case BINOP_MUL:
791 v = v1 * v2;
792 break;
793
794 case BINOP_DIV:
795 v = v1 / v2;
796 break;
797
798 case BINOP_EXP:
799 v = pow (v1, v2);
800 if (errno)
801 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
802 break;
803
804 default:
805 error ("Integer-only operation on floating point number.");
806 }
807
808 /* If either arg was long double, make sure that value is also long
809 double. */
810
811 if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT
812 || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT)
813 val = allocate_value (builtin_type_long_double);
814 else
815 val = allocate_value (builtin_type_double);
816
817 store_typed_floating (VALUE_CONTENTS_RAW (val), VALUE_TYPE (val), v);
818 }
819 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
820 &&
821 TYPE_CODE (type2) == TYPE_CODE_BOOL)
822 {
823 LONGEST v1, v2, v = 0;
824 v1 = value_as_long (arg1);
825 v2 = value_as_long (arg2);
826
827 switch (op)
828 {
829 case BINOP_BITWISE_AND:
830 v = v1 & v2;
831 break;
832
833 case BINOP_BITWISE_IOR:
834 v = v1 | v2;
835 break;
836
837 case BINOP_BITWISE_XOR:
838 v = v1 ^ v2;
839 break;
840
841 case BINOP_EQUAL:
842 v = v1 == v2;
843 break;
844
845 case BINOP_NOTEQUAL:
846 v = v1 != v2;
847 break;
848
849 default:
850 error ("Invalid operation on booleans.");
851 }
852
853 val = allocate_value (type1);
854 store_signed_integer (VALUE_CONTENTS_RAW (val),
855 TYPE_LENGTH (type1),
856 v);
857 }
858 else
859 /* Integral operations here. */
860 /* FIXME: Also mixed integral/booleans, with result an integer. */
861 /* FIXME: This implements ANSI C rules (also correct for C++).
862 What about FORTRAN and (OBSOLETE) chill ? */
863 {
864 unsigned int promoted_len1 = TYPE_LENGTH (type1);
865 unsigned int promoted_len2 = TYPE_LENGTH (type2);
866 int is_unsigned1 = TYPE_UNSIGNED (type1);
867 int is_unsigned2 = TYPE_UNSIGNED (type2);
868 unsigned int result_len;
869 int unsigned_operation;
870
871 /* Determine type length and signedness after promotion for
872 both operands. */
873 if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
874 {
875 is_unsigned1 = 0;
876 promoted_len1 = TYPE_LENGTH (builtin_type_int);
877 }
878 if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
879 {
880 is_unsigned2 = 0;
881 promoted_len2 = TYPE_LENGTH (builtin_type_int);
882 }
883
884 /* Determine type length of the result, and if the operation should
885 be done unsigned.
886 Use the signedness of the operand with the greater length.
887 If both operands are of equal length, use unsigned operation
888 if one of the operands is unsigned. */
889 if (promoted_len1 > promoted_len2)
890 {
891 unsigned_operation = is_unsigned1;
892 result_len = promoted_len1;
893 }
894 else if (promoted_len2 > promoted_len1)
895 {
896 unsigned_operation = is_unsigned2;
897 result_len = promoted_len2;
898 }
899 else
900 {
901 unsigned_operation = is_unsigned1 || is_unsigned2;
902 result_len = promoted_len1;
903 }
904
905 if (unsigned_operation)
906 {
907 ULONGEST v1, v2, v = 0;
908 v1 = (ULONGEST) value_as_long (arg1);
909 v2 = (ULONGEST) value_as_long (arg2);
910
911 /* Truncate values to the type length of the result. */
912 if (result_len < sizeof (ULONGEST))
913 {
914 v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
915 v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
916 }
917
918 switch (op)
919 {
920 case BINOP_ADD:
921 v = v1 + v2;
922 break;
923
924 case BINOP_SUB:
925 v = v1 - v2;
926 break;
927
928 case BINOP_MUL:
929 v = v1 * v2;
930 break;
931
932 case BINOP_DIV:
933 v = v1 / v2;
934 break;
935
936 case BINOP_EXP:
937 v = pow (v1, v2);
938 if (errno)
939 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
940 break;
941
942 case BINOP_REM:
943 v = v1 % v2;
944 break;
945
946 case BINOP_MOD:
947 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
948 v1 mod 0 has a defined value, v1. */
949 /* OBSOLETE Chill specifies that v2 must be > 0, so check for that. */
950 /* OBSOLETE if (current_language->la_language == language_chill */
951 /* OBSOLETE && value_as_long (arg2) <= 0) */
952 /* OBSOLETE { */
953 /* OBSOLETE error ("Second operand of MOD must be greater than zero."); */
954 /* OBSOLETE } */
955 if (v2 == 0)
956 {
957 v = v1;
958 }
959 else
960 {
961 v = v1 / v2;
962 /* Note floor(v1/v2) == v1/v2 for unsigned. */
963 v = v1 - (v2 * v);
964 }
965 break;
966
967 case BINOP_LSH:
968 v = v1 << v2;
969 break;
970
971 case BINOP_RSH:
972 v = v1 >> v2;
973 break;
974
975 case BINOP_BITWISE_AND:
976 v = v1 & v2;
977 break;
978
979 case BINOP_BITWISE_IOR:
980 v = v1 | v2;
981 break;
982
983 case BINOP_BITWISE_XOR:
984 v = v1 ^ v2;
985 break;
986
987 case BINOP_LOGICAL_AND:
988 v = v1 && v2;
989 break;
990
991 case BINOP_LOGICAL_OR:
992 v = v1 || v2;
993 break;
994
995 case BINOP_MIN:
996 v = v1 < v2 ? v1 : v2;
997 break;
998
999 case BINOP_MAX:
1000 v = v1 > v2 ? v1 : v2;
1001 break;
1002
1003 case BINOP_EQUAL:
1004 v = v1 == v2;
1005 break;
1006
1007 case BINOP_NOTEQUAL:
1008 v = v1 != v2;
1009 break;
1010
1011 case BINOP_LESS:
1012 v = v1 < v2;
1013 break;
1014
1015 default:
1016 error ("Invalid binary operation on numbers.");
1017 }
1018
1019 /* This is a kludge to get around the fact that we don't
1020 know how to determine the result type from the types of
1021 the operands. (I'm not really sure how much we feel the
1022 need to duplicate the exact rules of the current
1023 language. They can get really hairy. But not to do so
1024 makes it hard to document just what we *do* do). */
1025
1026 /* Can't just call init_type because we wouldn't know what
1027 name to give the type. */
1028 val = allocate_value
1029 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1030 ? builtin_type_unsigned_long_long
1031 : builtin_type_unsigned_long);
1032 store_unsigned_integer (VALUE_CONTENTS_RAW (val),
1033 TYPE_LENGTH (VALUE_TYPE (val)),
1034 v);
1035 }
1036 else
1037 {
1038 LONGEST v1, v2, v = 0;
1039 v1 = value_as_long (arg1);
1040 v2 = value_as_long (arg2);
1041
1042 switch (op)
1043 {
1044 case BINOP_ADD:
1045 v = v1 + v2;
1046 break;
1047
1048 case BINOP_SUB:
1049 v = v1 - v2;
1050 break;
1051
1052 case BINOP_MUL:
1053 v = v1 * v2;
1054 break;
1055
1056 case BINOP_DIV:
1057 v = v1 / v2;
1058 break;
1059
1060 case BINOP_EXP:
1061 v = pow (v1, v2);
1062 if (errno)
1063 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
1064 break;
1065
1066 case BINOP_REM:
1067 v = v1 % v2;
1068 break;
1069
1070 case BINOP_MOD:
1071 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1072 X mod 0 has a defined value, X. */
1073 /* OBSOLETE Chill specifies that v2 must be > 0, so check for that. */
1074 /* OBSOLETE if (current_language->la_language == language_chill */
1075 /* OBSOLETE && v2 <= 0) */
1076 /* OBSOLETE { */
1077 /* OBSOLETE error ("Second operand of MOD must be greater than zero."); */
1078 /* OBSOLETE } */
1079 if (v2 == 0)
1080 {
1081 v = v1;
1082 }
1083 else
1084 {
1085 v = v1 / v2;
1086 /* Compute floor. */
1087 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1088 {
1089 v--;
1090 }
1091 v = v1 - (v2 * v);
1092 }
1093 break;
1094
1095 case BINOP_LSH:
1096 v = v1 << v2;
1097 break;
1098
1099 case BINOP_RSH:
1100 v = v1 >> v2;
1101 break;
1102
1103 case BINOP_BITWISE_AND:
1104 v = v1 & v2;
1105 break;
1106
1107 case BINOP_BITWISE_IOR:
1108 v = v1 | v2;
1109 break;
1110
1111 case BINOP_BITWISE_XOR:
1112 v = v1 ^ v2;
1113 break;
1114
1115 case BINOP_LOGICAL_AND:
1116 v = v1 && v2;
1117 break;
1118
1119 case BINOP_LOGICAL_OR:
1120 v = v1 || v2;
1121 break;
1122
1123 case BINOP_MIN:
1124 v = v1 < v2 ? v1 : v2;
1125 break;
1126
1127 case BINOP_MAX:
1128 v = v1 > v2 ? v1 : v2;
1129 break;
1130
1131 case BINOP_EQUAL:
1132 v = v1 == v2;
1133 break;
1134
1135 case BINOP_LESS:
1136 v = v1 < v2;
1137 break;
1138
1139 default:
1140 error ("Invalid binary operation on numbers.");
1141 }
1142
1143 /* This is a kludge to get around the fact that we don't
1144 know how to determine the result type from the types of
1145 the operands. (I'm not really sure how much we feel the
1146 need to duplicate the exact rules of the current
1147 language. They can get really hairy. But not to do so
1148 makes it hard to document just what we *do* do). */
1149
1150 /* Can't just call init_type because we wouldn't know what
1151 name to give the type. */
1152 val = allocate_value
1153 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1154 ? builtin_type_long_long
1155 : builtin_type_long);
1156 store_signed_integer (VALUE_CONTENTS_RAW (val),
1157 TYPE_LENGTH (VALUE_TYPE (val)),
1158 v);
1159 }
1160 }
1161
1162 return val;
1163 }
1164 \f
1165 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1166
1167 int
1168 value_logical_not (struct value *arg1)
1169 {
1170 register int len;
1171 register char *p;
1172 struct type *type1;
1173
1174 COERCE_NUMBER (arg1);
1175 type1 = check_typedef (VALUE_TYPE (arg1));
1176
1177 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1178 return 0 == value_as_double (arg1);
1179
1180 len = TYPE_LENGTH (type1);
1181 p = VALUE_CONTENTS (arg1);
1182
1183 while (--len >= 0)
1184 {
1185 if (*p++)
1186 break;
1187 }
1188
1189 return len < 0;
1190 }
1191
1192 /* Perform a comparison on two string values (whose content are not
1193 necessarily null terminated) based on their length */
1194
1195 static int
1196 value_strcmp (struct value *arg1, struct value *arg2)
1197 {
1198 int len1 = TYPE_LENGTH (VALUE_TYPE (arg1));
1199 int len2 = TYPE_LENGTH (VALUE_TYPE (arg2));
1200 char *s1 = VALUE_CONTENTS (arg1);
1201 char *s2 = VALUE_CONTENTS (arg2);
1202 int i, len = len1 < len2 ? len1 : len2;
1203
1204 for (i = 0; i < len; i++)
1205 {
1206 if (s1[i] < s2[i])
1207 return -1;
1208 else if (s1[i] > s2[i])
1209 return 1;
1210 else
1211 continue;
1212 }
1213
1214 if (len1 < len2)
1215 return -1;
1216 else if (len1 > len2)
1217 return 1;
1218 else
1219 return 0;
1220 }
1221
1222 /* Simulate the C operator == by returning a 1
1223 iff ARG1 and ARG2 have equal contents. */
1224
1225 int
1226 value_equal (struct value *arg1, struct value *arg2)
1227 {
1228 register int len;
1229 register char *p1, *p2;
1230 struct type *type1, *type2;
1231 enum type_code code1;
1232 enum type_code code2;
1233
1234 COERCE_NUMBER (arg1);
1235 COERCE_NUMBER (arg2);
1236
1237 type1 = check_typedef (VALUE_TYPE (arg1));
1238 type2 = check_typedef (VALUE_TYPE (arg2));
1239 code1 = TYPE_CODE (type1);
1240 code2 = TYPE_CODE (type2);
1241
1242 if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
1243 (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1244 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1245 BINOP_EQUAL)));
1246 else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
1247 && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1248 return value_as_double (arg1) == value_as_double (arg2);
1249
1250 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1251 is bigger. */
1252 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1253 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1254 else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
1255 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1256
1257 else if (code1 == code2
1258 && ((len = (int) TYPE_LENGTH (type1))
1259 == (int) TYPE_LENGTH (type2)))
1260 {
1261 p1 = VALUE_CONTENTS (arg1);
1262 p2 = VALUE_CONTENTS (arg2);
1263 while (--len >= 0)
1264 {
1265 if (*p1++ != *p2++)
1266 break;
1267 }
1268 return len < 0;
1269 }
1270 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1271 {
1272 return value_strcmp (arg1, arg2) == 0;
1273 }
1274 else
1275 {
1276 error ("Invalid type combination in equality test.");
1277 return 0; /* For lint -- never reached */
1278 }
1279 }
1280
1281 /* Simulate the C operator < by returning 1
1282 iff ARG1's contents are less than ARG2's. */
1283
1284 int
1285 value_less (struct value *arg1, struct value *arg2)
1286 {
1287 register enum type_code code1;
1288 register enum type_code code2;
1289 struct type *type1, *type2;
1290
1291 COERCE_NUMBER (arg1);
1292 COERCE_NUMBER (arg2);
1293
1294 type1 = check_typedef (VALUE_TYPE (arg1));
1295 type2 = check_typedef (VALUE_TYPE (arg2));
1296 code1 = TYPE_CODE (type1);
1297 code2 = TYPE_CODE (type2);
1298
1299 if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
1300 (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1301 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1302 BINOP_LESS)));
1303 else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
1304 && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1305 return value_as_double (arg1) < value_as_double (arg2);
1306 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1307 return value_as_address (arg1) < value_as_address (arg2);
1308
1309 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1310 is bigger. */
1311 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1312 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1313 else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
1314 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1315 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1316 return value_strcmp (arg1, arg2) < 0;
1317 else
1318 {
1319 error ("Invalid type combination in ordering comparison.");
1320 return 0;
1321 }
1322 }
1323 \f
1324 /* The unary operators - and ~. Both free the argument ARG1. */
1325
1326 struct value *
1327 value_neg (struct value *arg1)
1328 {
1329 register struct type *type;
1330 register struct type *result_type = VALUE_TYPE (arg1);
1331
1332 COERCE_REF (arg1);
1333 COERCE_ENUM (arg1);
1334
1335 type = check_typedef (VALUE_TYPE (arg1));
1336
1337 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1338 return value_from_double (result_type, -value_as_double (arg1));
1339 else if (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_BOOL)
1340 {
1341 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1342 FORTRAN and (OBSOLETE) chill ? */
1343 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1344 result_type = builtin_type_int;
1345
1346 return value_from_longest (result_type, -value_as_long (arg1));
1347 }
1348 else
1349 {
1350 error ("Argument to negate operation not a number.");
1351 return 0; /* For lint -- never reached */
1352 }
1353 }
1354
1355 struct value *
1356 value_complement (struct value *arg1)
1357 {
1358 register struct type *type;
1359 register struct type *result_type = VALUE_TYPE (arg1);
1360 int typecode;
1361
1362 COERCE_REF (arg1);
1363 COERCE_ENUM (arg1);
1364
1365 type = check_typedef (VALUE_TYPE (arg1));
1366
1367 typecode = TYPE_CODE (type);
1368 if ((typecode != TYPE_CODE_INT) && (typecode != TYPE_CODE_BOOL))
1369 error ("Argument to complement operation not an integer or boolean.");
1370
1371 /* Perform integral promotion for ANSI C/C++.
1372 FIXME: What about FORTRAN ? */
1373 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1374 result_type = builtin_type_int;
1375
1376 return value_from_longest (result_type, ~value_as_long (arg1));
1377 }
1378 \f
1379 /* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE,
1380 and whose VALUE_CONTENTS is valaddr.
1381 Return -1 if out of range, -2 other error. */
1382
1383 int
1384 value_bit_index (struct type *type, char *valaddr, int index)
1385 {
1386 LONGEST low_bound, high_bound;
1387 LONGEST word;
1388 unsigned rel_index;
1389 struct type *range = TYPE_FIELD_TYPE (type, 0);
1390 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1391 return -2;
1392 if (index < low_bound || index > high_bound)
1393 return -1;
1394 rel_index = index - low_bound;
1395 word = unpack_long (builtin_type_unsigned_char,
1396 valaddr + (rel_index / TARGET_CHAR_BIT));
1397 rel_index %= TARGET_CHAR_BIT;
1398 if (BITS_BIG_ENDIAN)
1399 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1400 return (word >> rel_index) & 1;
1401 }
1402
1403 struct value *
1404 value_in (struct value *element, struct value *set)
1405 {
1406 int member;
1407 struct type *settype = check_typedef (VALUE_TYPE (set));
1408 struct type *eltype = check_typedef (VALUE_TYPE (element));
1409 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1410 eltype = TYPE_TARGET_TYPE (eltype);
1411 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1412 error ("Second argument of 'IN' has wrong type");
1413 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1414 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1415 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1416 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1417 error ("First argument of 'IN' has wrong type");
1418 member = value_bit_index (settype, VALUE_CONTENTS (set),
1419 value_as_long (element));
1420 if (member < 0)
1421 error ("First argument of 'IN' not in range");
1422 return value_from_longest (LA_BOOL_TYPE, member);
1423 }
1424
1425 void
1426 _initialize_valarith (void)
1427 {
1428 }
This page took 0.062241 seconds and 4 git commands to generate.