daily update
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "doublest.h"
28 #include "dfp.h"
29 #include <math.h>
30 #include "infcall.h"
31 #include "exceptions.h"
32
33 /* Define whether or not the C operator '/' truncates towards zero for
34 differently signed operands (truncation direction is undefined in C). */
35
36 #ifndef TRUNCATION_TOWARDS_ZERO
37 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
38 #endif
39
40 void _initialize_valarith (void);
41 \f
42
43 /* Given a pointer, return the size of its target.
44 If the pointer type is void *, then return 1.
45 If the target type is incomplete, then error out.
46 This isn't a general purpose function, but just a
47 helper for value_ptradd. */
48
49 static LONGEST
50 find_size_for_pointer_math (struct type *ptr_type)
51 {
52 LONGEST sz = -1;
53 struct type *ptr_target;
54
55 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
56 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
57
58 sz = TYPE_LENGTH (ptr_target);
59 if (sz == 0)
60 {
61 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
62 sz = 1;
63 else
64 {
65 const char *name;
66
67 name = TYPE_NAME (ptr_target);
68 if (name == NULL)
69 name = TYPE_TAG_NAME (ptr_target);
70 if (name == NULL)
71 error (_("Cannot perform pointer math on incomplete types, "
72 "try casting to a known type, or void *."));
73 else
74 error (_("Cannot perform pointer math on incomplete type \"%s\", "
75 "try casting to a known type, or void *."), name);
76 }
77 }
78 return sz;
79 }
80
81 /* Given a pointer ARG1 and an integral value ARG2, return the
82 result of C-style pointer arithmetic ARG1 + ARG2. */
83
84 struct value *
85 value_ptradd (struct value *arg1, LONGEST arg2)
86 {
87 struct type *valptrtype;
88 LONGEST sz;
89 struct value *result;
90
91 arg1 = coerce_array (arg1);
92 valptrtype = check_typedef (value_type (arg1));
93 sz = find_size_for_pointer_math (valptrtype);
94
95 result = value_from_pointer (valptrtype,
96 value_as_address (arg1) + sz * arg2);
97 if (VALUE_LVAL (result) != lval_internalvar)
98 set_value_component_location (result, arg1);
99 return result;
100 }
101
102 /* Given two compatible pointer values ARG1 and ARG2, return the
103 result of C-style pointer arithmetic ARG1 - ARG2. */
104
105 LONGEST
106 value_ptrdiff (struct value *arg1, struct value *arg2)
107 {
108 struct type *type1, *type2;
109 LONGEST sz;
110
111 arg1 = coerce_array (arg1);
112 arg2 = coerce_array (arg2);
113 type1 = check_typedef (value_type (arg1));
114 type2 = check_typedef (value_type (arg2));
115
116 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
117 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
118
119 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
120 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
121 error (_("First argument of `-' is a pointer and "
122 "second argument is neither\n"
123 "an integer nor a pointer of the same type."));
124
125 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
126 if (sz == 0)
127 {
128 warning (_("Type size unknown, assuming 1. "
129 "Try casting to a known type, or void *."));
130 sz = 1;
131 }
132
133 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
134 }
135
136 /* Return the value of ARRAY[IDX].
137
138 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
139 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
140
141 See comments in value_coerce_array() for rationale for reason for
142 doing lower bounds adjustment here rather than there.
143 FIXME: Perhaps we should validate that the index is valid and if
144 verbosity is set, warn about invalid indices (but still use them). */
145
146 struct value *
147 value_subscript (struct value *array, LONGEST index)
148 {
149 int c_style = current_language->c_style_arrays;
150 struct type *tarray;
151
152 array = coerce_ref (array);
153 tarray = check_typedef (value_type (array));
154
155 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
156 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
157 {
158 struct type *range_type = TYPE_INDEX_TYPE (tarray);
159 LONGEST lowerbound, upperbound;
160
161 get_discrete_bounds (range_type, &lowerbound, &upperbound);
162 if (VALUE_LVAL (array) != lval_memory)
163 return value_subscripted_rvalue (array, index, lowerbound);
164
165 if (c_style == 0)
166 {
167 if (index >= lowerbound && index <= upperbound)
168 return value_subscripted_rvalue (array, index, lowerbound);
169 /* Emit warning unless we have an array of unknown size.
170 An array of unknown size has lowerbound 0 and upperbound -1. */
171 if (upperbound > -1)
172 warning (_("array or string index out of range"));
173 /* fall doing C stuff */
174 c_style = 1;
175 }
176
177 index -= lowerbound;
178 array = value_coerce_array (array);
179 }
180
181 if (c_style)
182 return value_ind (value_ptradd (array, index));
183 else
184 error (_("not an array or string"));
185 }
186
187 /* Return the value of EXPR[IDX], expr an aggregate rvalue
188 (eg, a vector register). This routine used to promote floats
189 to doubles, but no longer does. */
190
191 struct value *
192 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
193 {
194 struct type *array_type = check_typedef (value_type (array));
195 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
196 unsigned int elt_size = TYPE_LENGTH (elt_type);
197 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
198 struct value *v;
199
200 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
201 && elt_offs >= TYPE_LENGTH (array_type)))
202 error (_("no such vector element"));
203
204 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
205 v = allocate_value_lazy (elt_type);
206 else
207 {
208 v = allocate_value (elt_type);
209 value_contents_copy (v, value_embedded_offset (v),
210 array, value_embedded_offset (array) + elt_offs,
211 elt_size);
212 }
213
214 set_value_component_location (v, array);
215 VALUE_REGNUM (v) = VALUE_REGNUM (array);
216 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
217 set_value_offset (v, value_offset (array) + elt_offs);
218 return v;
219 }
220
221 \f
222 /* Check to see if either argument is a structure, or a reference to
223 one. This is called so we know whether to go ahead with the normal
224 binop or look for a user defined function instead.
225
226 For now, we do not overload the `=' operator. */
227
228 int
229 binop_types_user_defined_p (enum exp_opcode op,
230 struct type *type1, struct type *type2)
231 {
232 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
233 return 0;
234
235 type1 = check_typedef (type1);
236 if (TYPE_CODE (type1) == TYPE_CODE_REF)
237 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
238
239 type2 = check_typedef (type2);
240 if (TYPE_CODE (type2) == TYPE_CODE_REF)
241 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
242
243 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
244 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
245 }
246
247 /* Check to see if either argument is a structure, or a reference to
248 one. This is called so we know whether to go ahead with the normal
249 binop or look for a user defined function instead.
250
251 For now, we do not overload the `=' operator. */
252
253 int
254 binop_user_defined_p (enum exp_opcode op,
255 struct value *arg1, struct value *arg2)
256 {
257 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
258 }
259
260 /* Check to see if argument is a structure. This is called so
261 we know whether to go ahead with the normal unop or look for a
262 user defined function instead.
263
264 For now, we do not overload the `&' operator. */
265
266 int
267 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
268 {
269 struct type *type1;
270
271 if (op == UNOP_ADDR)
272 return 0;
273 type1 = check_typedef (value_type (arg1));
274 if (TYPE_CODE (type1) == TYPE_CODE_REF)
275 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
276 return TYPE_CODE (type1) == TYPE_CODE_STRUCT;
277 }
278
279 /* Try to find an operator named OPERATOR which takes NARGS arguments
280 specified in ARGS. If the operator found is a static member operator
281 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
282 The search if performed through find_overload_match which will handle
283 member operators, non member operators, operators imported implicitly or
284 explicitly, and perform correct overload resolution in all of the above
285 situations or combinations thereof. */
286
287 static struct value *
288 value_user_defined_cpp_op (struct value **args, int nargs, char *operator,
289 int *static_memfuncp, enum noside noside)
290 {
291
292 struct symbol *symp = NULL;
293 struct value *valp = NULL;
294
295 find_overload_match (args, nargs, operator, BOTH /* could be method */,
296 &args[0] /* objp */,
297 NULL /* pass NULL symbol since symbol is unknown */,
298 &valp, &symp, static_memfuncp, 0, noside);
299
300 if (valp)
301 return valp;
302
303 if (symp)
304 {
305 /* This is a non member function and does not
306 expect a reference as its first argument
307 rather the explicit structure. */
308 args[0] = value_ind (args[0]);
309 return value_of_variable (symp, 0);
310 }
311
312 error (_("Could not find %s."), operator);
313 }
314
315 /* Lookup user defined operator NAME. Return a value representing the
316 function, otherwise return NULL. */
317
318 static struct value *
319 value_user_defined_op (struct value **argp, struct value **args, char *name,
320 int *static_memfuncp, int nargs, enum noside noside)
321 {
322 struct value *result = NULL;
323
324 if (current_language->la_language == language_cplus)
325 {
326 result = value_user_defined_cpp_op (args, nargs, name, static_memfuncp,
327 noside);
328 }
329 else
330 result = value_struct_elt (argp, args, name, static_memfuncp,
331 "structure");
332
333 return result;
334 }
335
336 /* We know either arg1 or arg2 is a structure, so try to find the right
337 user defined function. Create an argument vector that calls
338 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
339 binary operator which is legal for GNU C++).
340
341 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
342 is the opcode saying how to modify it. Otherwise, OTHEROP is
343 unused. */
344
345 struct value *
346 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
347 enum exp_opcode otherop, enum noside noside)
348 {
349 struct value **argvec;
350 char *ptr;
351 char tstr[13];
352 int static_memfuncp;
353
354 arg1 = coerce_ref (arg1);
355 arg2 = coerce_ref (arg2);
356
357 /* now we know that what we have to do is construct our
358 arg vector and find the right function to call it with. */
359
360 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
361 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
362
363 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
364 argvec[1] = value_addr (arg1);
365 argvec[2] = arg2;
366 argvec[3] = 0;
367
368 /* Make the right function name up. */
369 strcpy (tstr, "operator__");
370 ptr = tstr + 8;
371 switch (op)
372 {
373 case BINOP_ADD:
374 strcpy (ptr, "+");
375 break;
376 case BINOP_SUB:
377 strcpy (ptr, "-");
378 break;
379 case BINOP_MUL:
380 strcpy (ptr, "*");
381 break;
382 case BINOP_DIV:
383 strcpy (ptr, "/");
384 break;
385 case BINOP_REM:
386 strcpy (ptr, "%");
387 break;
388 case BINOP_LSH:
389 strcpy (ptr, "<<");
390 break;
391 case BINOP_RSH:
392 strcpy (ptr, ">>");
393 break;
394 case BINOP_BITWISE_AND:
395 strcpy (ptr, "&");
396 break;
397 case BINOP_BITWISE_IOR:
398 strcpy (ptr, "|");
399 break;
400 case BINOP_BITWISE_XOR:
401 strcpy (ptr, "^");
402 break;
403 case BINOP_LOGICAL_AND:
404 strcpy (ptr, "&&");
405 break;
406 case BINOP_LOGICAL_OR:
407 strcpy (ptr, "||");
408 break;
409 case BINOP_MIN:
410 strcpy (ptr, "<?");
411 break;
412 case BINOP_MAX:
413 strcpy (ptr, ">?");
414 break;
415 case BINOP_ASSIGN:
416 strcpy (ptr, "=");
417 break;
418 case BINOP_ASSIGN_MODIFY:
419 switch (otherop)
420 {
421 case BINOP_ADD:
422 strcpy (ptr, "+=");
423 break;
424 case BINOP_SUB:
425 strcpy (ptr, "-=");
426 break;
427 case BINOP_MUL:
428 strcpy (ptr, "*=");
429 break;
430 case BINOP_DIV:
431 strcpy (ptr, "/=");
432 break;
433 case BINOP_REM:
434 strcpy (ptr, "%=");
435 break;
436 case BINOP_BITWISE_AND:
437 strcpy (ptr, "&=");
438 break;
439 case BINOP_BITWISE_IOR:
440 strcpy (ptr, "|=");
441 break;
442 case BINOP_BITWISE_XOR:
443 strcpy (ptr, "^=");
444 break;
445 case BINOP_MOD: /* invalid */
446 default:
447 error (_("Invalid binary operation specified."));
448 }
449 break;
450 case BINOP_SUBSCRIPT:
451 strcpy (ptr, "[]");
452 break;
453 case BINOP_EQUAL:
454 strcpy (ptr, "==");
455 break;
456 case BINOP_NOTEQUAL:
457 strcpy (ptr, "!=");
458 break;
459 case BINOP_LESS:
460 strcpy (ptr, "<");
461 break;
462 case BINOP_GTR:
463 strcpy (ptr, ">");
464 break;
465 case BINOP_GEQ:
466 strcpy (ptr, ">=");
467 break;
468 case BINOP_LEQ:
469 strcpy (ptr, "<=");
470 break;
471 case BINOP_MOD: /* invalid */
472 default:
473 error (_("Invalid binary operation specified."));
474 }
475
476 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
477 &static_memfuncp, 2, noside);
478
479 if (argvec[0])
480 {
481 if (static_memfuncp)
482 {
483 argvec[1] = argvec[0];
484 argvec++;
485 }
486 if (noside == EVAL_AVOID_SIDE_EFFECTS)
487 {
488 struct type *return_type;
489
490 return_type
491 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
492 return value_zero (return_type, VALUE_LVAL (arg1));
493 }
494
495 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
496 {
497 /* Static xmethods are not supported yet. */
498 gdb_assert (static_memfuncp == 0);
499 return call_xmethod (argvec[0], 2, argvec + 1);
500 }
501 else
502 return call_function_by_hand (argvec[0], 2 - static_memfuncp,
503 argvec + 1);
504 }
505 throw_error (NOT_FOUND_ERROR,
506 _("member function %s not found"), tstr);
507 #ifdef lint
508 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
509 #endif
510 }
511
512 /* We know that arg1 is a structure, so try to find a unary user
513 defined operator that matches the operator in question.
514 Create an argument vector that calls arg1.operator @ (arg1)
515 and return that value (where '@' is (almost) any unary operator which
516 is legal for GNU C++). */
517
518 struct value *
519 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
520 {
521 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
522 struct value **argvec;
523 char *ptr;
524 char tstr[13], mangle_tstr[13];
525 int static_memfuncp, nargs;
526
527 arg1 = coerce_ref (arg1);
528
529 /* now we know that what we have to do is construct our
530 arg vector and find the right function to call it with. */
531
532 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
533 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
534
535 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
536 argvec[1] = value_addr (arg1);
537 argvec[2] = 0;
538
539 nargs = 1;
540
541 /* Make the right function name up. */
542 strcpy (tstr, "operator__");
543 ptr = tstr + 8;
544 strcpy (mangle_tstr, "__");
545 switch (op)
546 {
547 case UNOP_PREINCREMENT:
548 strcpy (ptr, "++");
549 break;
550 case UNOP_PREDECREMENT:
551 strcpy (ptr, "--");
552 break;
553 case UNOP_POSTINCREMENT:
554 strcpy (ptr, "++");
555 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
556 argvec[3] = 0;
557 nargs ++;
558 break;
559 case UNOP_POSTDECREMENT:
560 strcpy (ptr, "--");
561 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
562 argvec[3] = 0;
563 nargs ++;
564 break;
565 case UNOP_LOGICAL_NOT:
566 strcpy (ptr, "!");
567 break;
568 case UNOP_COMPLEMENT:
569 strcpy (ptr, "~");
570 break;
571 case UNOP_NEG:
572 strcpy (ptr, "-");
573 break;
574 case UNOP_PLUS:
575 strcpy (ptr, "+");
576 break;
577 case UNOP_IND:
578 strcpy (ptr, "*");
579 break;
580 case STRUCTOP_PTR:
581 strcpy (ptr, "->");
582 break;
583 default:
584 error (_("Invalid unary operation specified."));
585 }
586
587 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
588 &static_memfuncp, nargs, noside);
589
590 if (argvec[0])
591 {
592 if (static_memfuncp)
593 {
594 argvec[1] = argvec[0];
595 nargs --;
596 argvec++;
597 }
598 if (noside == EVAL_AVOID_SIDE_EFFECTS)
599 {
600 struct type *return_type;
601
602 return_type
603 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
604 return value_zero (return_type, VALUE_LVAL (arg1));
605 }
606 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
607 {
608 /* Static xmethods are not supported yet. */
609 gdb_assert (static_memfuncp == 0);
610 return call_xmethod (argvec[0], 1, argvec + 1);
611 }
612 else
613 return call_function_by_hand (argvec[0], nargs, argvec + 1);
614 }
615 throw_error (NOT_FOUND_ERROR,
616 _("member function %s not found"), tstr);
617
618 return 0; /* For lint -- never reached */
619 }
620 \f
621
622 /* Concatenate two values with the following conditions:
623
624 (1) Both values must be either bitstring values or character string
625 values and the resulting value consists of the concatenation of
626 ARG1 followed by ARG2.
627
628 or
629
630 One value must be an integer value and the other value must be
631 either a bitstring value or character string value, which is
632 to be repeated by the number of times specified by the integer
633 value.
634
635
636 (2) Boolean values are also allowed and are treated as bit string
637 values of length 1.
638
639 (3) Character values are also allowed and are treated as character
640 string values of length 1. */
641
642 struct value *
643 value_concat (struct value *arg1, struct value *arg2)
644 {
645 struct value *inval1;
646 struct value *inval2;
647 struct value *outval = NULL;
648 int inval1len, inval2len;
649 int count, idx;
650 char *ptr;
651 char inchar;
652 struct type *type1 = check_typedef (value_type (arg1));
653 struct type *type2 = check_typedef (value_type (arg2));
654 struct type *char_type;
655
656 /* First figure out if we are dealing with two values to be concatenated
657 or a repeat count and a value to be repeated. INVAL1 is set to the
658 first of two concatenated values, or the repeat count. INVAL2 is set
659 to the second of the two concatenated values or the value to be
660 repeated. */
661
662 if (TYPE_CODE (type2) == TYPE_CODE_INT)
663 {
664 struct type *tmp = type1;
665
666 type1 = tmp;
667 tmp = type2;
668 inval1 = arg2;
669 inval2 = arg1;
670 }
671 else
672 {
673 inval1 = arg1;
674 inval2 = arg2;
675 }
676
677 /* Now process the input values. */
678
679 if (TYPE_CODE (type1) == TYPE_CODE_INT)
680 {
681 /* We have a repeat count. Validate the second value and then
682 construct a value repeated that many times. */
683 if (TYPE_CODE (type2) == TYPE_CODE_STRING
684 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
685 {
686 struct cleanup *back_to;
687
688 count = longest_to_int (value_as_long (inval1));
689 inval2len = TYPE_LENGTH (type2);
690 ptr = (char *) xmalloc (count * inval2len);
691 back_to = make_cleanup (xfree, ptr);
692 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
693 {
694 char_type = type2;
695
696 inchar = (char) unpack_long (type2,
697 value_contents (inval2));
698 for (idx = 0; idx < count; idx++)
699 {
700 *(ptr + idx) = inchar;
701 }
702 }
703 else
704 {
705 char_type = TYPE_TARGET_TYPE (type2);
706
707 for (idx = 0; idx < count; idx++)
708 {
709 memcpy (ptr + (idx * inval2len), value_contents (inval2),
710 inval2len);
711 }
712 }
713 outval = value_string (ptr, count * inval2len, char_type);
714 do_cleanups (back_to);
715 }
716 else if (TYPE_CODE (type2) == TYPE_CODE_BOOL)
717 {
718 error (_("unimplemented support for boolean repeats"));
719 }
720 else
721 {
722 error (_("can't repeat values of that type"));
723 }
724 }
725 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
726 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
727 {
728 struct cleanup *back_to;
729
730 /* We have two character strings to concatenate. */
731 if (TYPE_CODE (type2) != TYPE_CODE_STRING
732 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
733 {
734 error (_("Strings can only be concatenated with other strings."));
735 }
736 inval1len = TYPE_LENGTH (type1);
737 inval2len = TYPE_LENGTH (type2);
738 ptr = (char *) xmalloc (inval1len + inval2len);
739 back_to = make_cleanup (xfree, ptr);
740 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
741 {
742 char_type = type1;
743
744 *ptr = (char) unpack_long (type1, value_contents (inval1));
745 }
746 else
747 {
748 char_type = TYPE_TARGET_TYPE (type1);
749
750 memcpy (ptr, value_contents (inval1), inval1len);
751 }
752 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
753 {
754 *(ptr + inval1len) =
755 (char) unpack_long (type2, value_contents (inval2));
756 }
757 else
758 {
759 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
760 }
761 outval = value_string (ptr, inval1len + inval2len, char_type);
762 do_cleanups (back_to);
763 }
764 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL)
765 {
766 /* We have two bitstrings to concatenate. */
767 if (TYPE_CODE (type2) != TYPE_CODE_BOOL)
768 {
769 error (_("Booleans can only be concatenated "
770 "with other bitstrings or booleans."));
771 }
772 error (_("unimplemented support for boolean concatenation."));
773 }
774 else
775 {
776 /* We don't know how to concatenate these operands. */
777 error (_("illegal operands for concatenation."));
778 }
779 return (outval);
780 }
781 \f
782 /* Integer exponentiation: V1**V2, where both arguments are
783 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
784
785 static LONGEST
786 integer_pow (LONGEST v1, LONGEST v2)
787 {
788 if (v2 < 0)
789 {
790 if (v1 == 0)
791 error (_("Attempt to raise 0 to negative power."));
792 else
793 return 0;
794 }
795 else
796 {
797 /* The Russian Peasant's Algorithm. */
798 LONGEST v;
799
800 v = 1;
801 for (;;)
802 {
803 if (v2 & 1L)
804 v *= v1;
805 v2 >>= 1;
806 if (v2 == 0)
807 return v;
808 v1 *= v1;
809 }
810 }
811 }
812
813 /* Integer exponentiation: V1**V2, where both arguments are
814 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
815
816 static ULONGEST
817 uinteger_pow (ULONGEST v1, LONGEST v2)
818 {
819 if (v2 < 0)
820 {
821 if (v1 == 0)
822 error (_("Attempt to raise 0 to negative power."));
823 else
824 return 0;
825 }
826 else
827 {
828 /* The Russian Peasant's Algorithm. */
829 ULONGEST v;
830
831 v = 1;
832 for (;;)
833 {
834 if (v2 & 1L)
835 v *= v1;
836 v2 >>= 1;
837 if (v2 == 0)
838 return v;
839 v1 *= v1;
840 }
841 }
842 }
843
844 /* Obtain decimal value of arguments for binary operation, converting from
845 other types if one of them is not decimal floating point. */
846 static void
847 value_args_as_decimal (struct value *arg1, struct value *arg2,
848 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
849 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
850 {
851 struct type *type1, *type2;
852
853 type1 = check_typedef (value_type (arg1));
854 type2 = check_typedef (value_type (arg2));
855
856 /* At least one of the arguments must be of decimal float type. */
857 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
858 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
859
860 if (TYPE_CODE (type1) == TYPE_CODE_FLT
861 || TYPE_CODE (type2) == TYPE_CODE_FLT)
862 /* The DFP extension to the C language does not allow mixing of
863 * decimal float types with other float types in expressions
864 * (see WDTR 24732, page 12). */
865 error (_("Mixing decimal floating types with "
866 "other floating types is not allowed."));
867
868 /* Obtain decimal value of arg1, converting from other types
869 if necessary. */
870
871 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
872 {
873 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
874 *len_x = TYPE_LENGTH (type1);
875 memcpy (x, value_contents (arg1), *len_x);
876 }
877 else if (is_integral_type (type1))
878 {
879 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
880 *len_x = TYPE_LENGTH (type2);
881 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
882 }
883 else
884 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
885 TYPE_NAME (type2));
886
887 /* Obtain decimal value of arg2, converting from other types
888 if necessary. */
889
890 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
891 {
892 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
893 *len_y = TYPE_LENGTH (type2);
894 memcpy (y, value_contents (arg2), *len_y);
895 }
896 else if (is_integral_type (type2))
897 {
898 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
899 *len_y = TYPE_LENGTH (type1);
900 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
901 }
902 else
903 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
904 TYPE_NAME (type2));
905 }
906
907 /* Perform a binary operation on two operands which have reasonable
908 representations as integers or floats. This includes booleans,
909 characters, integers, or floats.
910 Does not support addition and subtraction on pointers;
911 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
912
913 static struct value *
914 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
915 {
916 struct value *val;
917 struct type *type1, *type2, *result_type;
918
919 arg1 = coerce_ref (arg1);
920 arg2 = coerce_ref (arg2);
921
922 type1 = check_typedef (value_type (arg1));
923 type2 = check_typedef (value_type (arg2));
924
925 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
926 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
927 && !is_integral_type (type1))
928 || (TYPE_CODE (type2) != TYPE_CODE_FLT
929 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
930 && !is_integral_type (type2)))
931 error (_("Argument to arithmetic operation not a number or boolean."));
932
933 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
934 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
935 {
936 int len_v1, len_v2, len_v;
937 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
938 gdb_byte v1[16], v2[16];
939 gdb_byte v[16];
940
941 /* If only one type is decimal float, use its type.
942 Otherwise use the bigger type. */
943 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
944 result_type = type2;
945 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
946 result_type = type1;
947 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
948 result_type = type2;
949 else
950 result_type = type1;
951
952 len_v = TYPE_LENGTH (result_type);
953 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
954
955 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
956 v2, &len_v2, &byte_order_v2);
957
958 switch (op)
959 {
960 case BINOP_ADD:
961 case BINOP_SUB:
962 case BINOP_MUL:
963 case BINOP_DIV:
964 case BINOP_EXP:
965 decimal_binop (op, v1, len_v1, byte_order_v1,
966 v2, len_v2, byte_order_v2,
967 v, len_v, byte_order_v);
968 break;
969
970 default:
971 error (_("Operation not valid for decimal floating point number."));
972 }
973
974 val = value_from_decfloat (result_type, v);
975 }
976 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
977 || TYPE_CODE (type2) == TYPE_CODE_FLT)
978 {
979 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
980 in target format. real.c in GCC probably has the necessary
981 code. */
982 DOUBLEST v1, v2, v = 0;
983
984 v1 = value_as_double (arg1);
985 v2 = value_as_double (arg2);
986
987 switch (op)
988 {
989 case BINOP_ADD:
990 v = v1 + v2;
991 break;
992
993 case BINOP_SUB:
994 v = v1 - v2;
995 break;
996
997 case BINOP_MUL:
998 v = v1 * v2;
999 break;
1000
1001 case BINOP_DIV:
1002 v = v1 / v2;
1003 break;
1004
1005 case BINOP_EXP:
1006 errno = 0;
1007 v = pow (v1, v2);
1008 if (errno)
1009 error (_("Cannot perform exponentiation: %s"),
1010 safe_strerror (errno));
1011 break;
1012
1013 case BINOP_MIN:
1014 v = v1 < v2 ? v1 : v2;
1015 break;
1016
1017 case BINOP_MAX:
1018 v = v1 > v2 ? v1 : v2;
1019 break;
1020
1021 default:
1022 error (_("Integer-only operation on floating point number."));
1023 }
1024
1025 /* If only one type is float, use its type.
1026 Otherwise use the bigger type. */
1027 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
1028 result_type = type2;
1029 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
1030 result_type = type1;
1031 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1032 result_type = type2;
1033 else
1034 result_type = type1;
1035
1036 val = allocate_value (result_type);
1037 store_typed_floating (value_contents_raw (val), value_type (val), v);
1038 }
1039 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
1040 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
1041 {
1042 LONGEST v1, v2, v = 0;
1043
1044 v1 = value_as_long (arg1);
1045 v2 = value_as_long (arg2);
1046
1047 switch (op)
1048 {
1049 case BINOP_BITWISE_AND:
1050 v = v1 & v2;
1051 break;
1052
1053 case BINOP_BITWISE_IOR:
1054 v = v1 | v2;
1055 break;
1056
1057 case BINOP_BITWISE_XOR:
1058 v = v1 ^ v2;
1059 break;
1060
1061 case BINOP_EQUAL:
1062 v = v1 == v2;
1063 break;
1064
1065 case BINOP_NOTEQUAL:
1066 v = v1 != v2;
1067 break;
1068
1069 default:
1070 error (_("Invalid operation on booleans."));
1071 }
1072
1073 result_type = type1;
1074
1075 val = allocate_value (result_type);
1076 store_signed_integer (value_contents_raw (val),
1077 TYPE_LENGTH (result_type),
1078 gdbarch_byte_order (get_type_arch (result_type)),
1079 v);
1080 }
1081 else
1082 /* Integral operations here. */
1083 {
1084 /* Determine type length of the result, and if the operation should
1085 be done unsigned. For exponentiation and shift operators,
1086 use the length and type of the left operand. Otherwise,
1087 use the signedness of the operand with the greater length.
1088 If both operands are of equal length, use unsigned operation
1089 if one of the operands is unsigned. */
1090 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1091 result_type = type1;
1092 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1093 result_type = type1;
1094 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1095 result_type = type2;
1096 else if (TYPE_UNSIGNED (type1))
1097 result_type = type1;
1098 else if (TYPE_UNSIGNED (type2))
1099 result_type = type2;
1100 else
1101 result_type = type1;
1102
1103 if (TYPE_UNSIGNED (result_type))
1104 {
1105 LONGEST v2_signed = value_as_long (arg2);
1106 ULONGEST v1, v2, v = 0;
1107
1108 v1 = (ULONGEST) value_as_long (arg1);
1109 v2 = (ULONGEST) v2_signed;
1110
1111 switch (op)
1112 {
1113 case BINOP_ADD:
1114 v = v1 + v2;
1115 break;
1116
1117 case BINOP_SUB:
1118 v = v1 - v2;
1119 break;
1120
1121 case BINOP_MUL:
1122 v = v1 * v2;
1123 break;
1124
1125 case BINOP_DIV:
1126 case BINOP_INTDIV:
1127 if (v2 != 0)
1128 v = v1 / v2;
1129 else
1130 error (_("Division by zero"));
1131 break;
1132
1133 case BINOP_EXP:
1134 v = uinteger_pow (v1, v2_signed);
1135 break;
1136
1137 case BINOP_REM:
1138 if (v2 != 0)
1139 v = v1 % v2;
1140 else
1141 error (_("Division by zero"));
1142 break;
1143
1144 case BINOP_MOD:
1145 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1146 v1 mod 0 has a defined value, v1. */
1147 if (v2 == 0)
1148 {
1149 v = v1;
1150 }
1151 else
1152 {
1153 v = v1 / v2;
1154 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1155 v = v1 - (v2 * v);
1156 }
1157 break;
1158
1159 case BINOP_LSH:
1160 v = v1 << v2;
1161 break;
1162
1163 case BINOP_RSH:
1164 v = v1 >> v2;
1165 break;
1166
1167 case BINOP_BITWISE_AND:
1168 v = v1 & v2;
1169 break;
1170
1171 case BINOP_BITWISE_IOR:
1172 v = v1 | v2;
1173 break;
1174
1175 case BINOP_BITWISE_XOR:
1176 v = v1 ^ v2;
1177 break;
1178
1179 case BINOP_LOGICAL_AND:
1180 v = v1 && v2;
1181 break;
1182
1183 case BINOP_LOGICAL_OR:
1184 v = v1 || v2;
1185 break;
1186
1187 case BINOP_MIN:
1188 v = v1 < v2 ? v1 : v2;
1189 break;
1190
1191 case BINOP_MAX:
1192 v = v1 > v2 ? v1 : v2;
1193 break;
1194
1195 case BINOP_EQUAL:
1196 v = v1 == v2;
1197 break;
1198
1199 case BINOP_NOTEQUAL:
1200 v = v1 != v2;
1201 break;
1202
1203 case BINOP_LESS:
1204 v = v1 < v2;
1205 break;
1206
1207 case BINOP_GTR:
1208 v = v1 > v2;
1209 break;
1210
1211 case BINOP_LEQ:
1212 v = v1 <= v2;
1213 break;
1214
1215 case BINOP_GEQ:
1216 v = v1 >= v2;
1217 break;
1218
1219 default:
1220 error (_("Invalid binary operation on numbers."));
1221 }
1222
1223 val = allocate_value (result_type);
1224 store_unsigned_integer (value_contents_raw (val),
1225 TYPE_LENGTH (value_type (val)),
1226 gdbarch_byte_order
1227 (get_type_arch (result_type)),
1228 v);
1229 }
1230 else
1231 {
1232 LONGEST v1, v2, v = 0;
1233
1234 v1 = value_as_long (arg1);
1235 v2 = value_as_long (arg2);
1236
1237 switch (op)
1238 {
1239 case BINOP_ADD:
1240 v = v1 + v2;
1241 break;
1242
1243 case BINOP_SUB:
1244 v = v1 - v2;
1245 break;
1246
1247 case BINOP_MUL:
1248 v = v1 * v2;
1249 break;
1250
1251 case BINOP_DIV:
1252 case BINOP_INTDIV:
1253 if (v2 != 0)
1254 v = v1 / v2;
1255 else
1256 error (_("Division by zero"));
1257 break;
1258
1259 case BINOP_EXP:
1260 v = integer_pow (v1, v2);
1261 break;
1262
1263 case BINOP_REM:
1264 if (v2 != 0)
1265 v = v1 % v2;
1266 else
1267 error (_("Division by zero"));
1268 break;
1269
1270 case BINOP_MOD:
1271 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1272 X mod 0 has a defined value, X. */
1273 if (v2 == 0)
1274 {
1275 v = v1;
1276 }
1277 else
1278 {
1279 v = v1 / v2;
1280 /* Compute floor. */
1281 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1282 {
1283 v--;
1284 }
1285 v = v1 - (v2 * v);
1286 }
1287 break;
1288
1289 case BINOP_LSH:
1290 v = v1 << v2;
1291 break;
1292
1293 case BINOP_RSH:
1294 v = v1 >> v2;
1295 break;
1296
1297 case BINOP_BITWISE_AND:
1298 v = v1 & v2;
1299 break;
1300
1301 case BINOP_BITWISE_IOR:
1302 v = v1 | v2;
1303 break;
1304
1305 case BINOP_BITWISE_XOR:
1306 v = v1 ^ v2;
1307 break;
1308
1309 case BINOP_LOGICAL_AND:
1310 v = v1 && v2;
1311 break;
1312
1313 case BINOP_LOGICAL_OR:
1314 v = v1 || v2;
1315 break;
1316
1317 case BINOP_MIN:
1318 v = v1 < v2 ? v1 : v2;
1319 break;
1320
1321 case BINOP_MAX:
1322 v = v1 > v2 ? v1 : v2;
1323 break;
1324
1325 case BINOP_EQUAL:
1326 v = v1 == v2;
1327 break;
1328
1329 case BINOP_NOTEQUAL:
1330 v = v1 != v2;
1331 break;
1332
1333 case BINOP_LESS:
1334 v = v1 < v2;
1335 break;
1336
1337 case BINOP_GTR:
1338 v = v1 > v2;
1339 break;
1340
1341 case BINOP_LEQ:
1342 v = v1 <= v2;
1343 break;
1344
1345 case BINOP_GEQ:
1346 v = v1 >= v2;
1347 break;
1348
1349 default:
1350 error (_("Invalid binary operation on numbers."));
1351 }
1352
1353 val = allocate_value (result_type);
1354 store_signed_integer (value_contents_raw (val),
1355 TYPE_LENGTH (value_type (val)),
1356 gdbarch_byte_order
1357 (get_type_arch (result_type)),
1358 v);
1359 }
1360 }
1361
1362 return val;
1363 }
1364
1365 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1366 replicating SCALAR_VALUE for each element of the vector. Only scalar
1367 types that can be cast to the type of one element of the vector are
1368 acceptable. The newly created vector value is returned upon success,
1369 otherwise an error is thrown. */
1370
1371 struct value *
1372 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1373 {
1374 /* Widen the scalar to a vector. */
1375 struct type *eltype, *scalar_type;
1376 struct value *val, *elval;
1377 LONGEST low_bound, high_bound;
1378 int i;
1379
1380 CHECK_TYPEDEF (vector_type);
1381
1382 gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY
1383 && TYPE_VECTOR (vector_type));
1384
1385 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1386 error (_("Could not determine the vector bounds"));
1387
1388 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1389 elval = value_cast (eltype, scalar_value);
1390
1391 scalar_type = check_typedef (value_type (scalar_value));
1392
1393 /* If we reduced the length of the scalar then check we didn't loose any
1394 important bits. */
1395 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1396 && !value_equal (elval, scalar_value))
1397 error (_("conversion of scalar to vector involves truncation"));
1398
1399 val = allocate_value (vector_type);
1400 for (i = 0; i < high_bound - low_bound + 1; i++)
1401 /* Duplicate the contents of elval into the destination vector. */
1402 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1403 value_contents_all (elval), TYPE_LENGTH (eltype));
1404
1405 return val;
1406 }
1407
1408 /* Performs a binary operation on two vector operands by calling scalar_binop
1409 for each pair of vector components. */
1410
1411 static struct value *
1412 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1413 {
1414 struct value *val, *tmp, *mark;
1415 struct type *type1, *type2, *eltype1, *eltype2;
1416 int t1_is_vec, t2_is_vec, elsize, i;
1417 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1418
1419 type1 = check_typedef (value_type (val1));
1420 type2 = check_typedef (value_type (val2));
1421
1422 t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1423 && TYPE_VECTOR (type1)) ? 1 : 0;
1424 t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1425 && TYPE_VECTOR (type2)) ? 1 : 0;
1426
1427 if (!t1_is_vec || !t2_is_vec)
1428 error (_("Vector operations are only supported among vectors"));
1429
1430 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1431 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1432 error (_("Could not determine the vector bounds"));
1433
1434 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1435 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1436 elsize = TYPE_LENGTH (eltype1);
1437
1438 if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
1439 || elsize != TYPE_LENGTH (eltype2)
1440 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
1441 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1442 error (_("Cannot perform operation on vectors with different types"));
1443
1444 val = allocate_value (type1);
1445 mark = value_mark ();
1446 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1447 {
1448 tmp = value_binop (value_subscript (val1, i),
1449 value_subscript (val2, i), op);
1450 memcpy (value_contents_writeable (val) + i * elsize,
1451 value_contents_all (tmp),
1452 elsize);
1453 }
1454 value_free_to_mark (mark);
1455
1456 return val;
1457 }
1458
1459 /* Perform a binary operation on two operands. */
1460
1461 struct value *
1462 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1463 {
1464 struct value *val;
1465 struct type *type1 = check_typedef (value_type (arg1));
1466 struct type *type2 = check_typedef (value_type (arg2));
1467 int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1468 && TYPE_VECTOR (type1));
1469 int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1470 && TYPE_VECTOR (type2));
1471
1472 if (!t1_is_vec && !t2_is_vec)
1473 val = scalar_binop (arg1, arg2, op);
1474 else if (t1_is_vec && t2_is_vec)
1475 val = vector_binop (arg1, arg2, op);
1476 else
1477 {
1478 /* Widen the scalar operand to a vector. */
1479 struct value **v = t1_is_vec ? &arg2 : &arg1;
1480 struct type *t = t1_is_vec ? type2 : type1;
1481
1482 if (TYPE_CODE (t) != TYPE_CODE_FLT
1483 && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
1484 && !is_integral_type (t))
1485 error (_("Argument to operation not a number or boolean."));
1486
1487 /* Replicate the scalar value to make a vector value. */
1488 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1489
1490 val = vector_binop (arg1, arg2, op);
1491 }
1492
1493 return val;
1494 }
1495 \f
1496 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1497
1498 int
1499 value_logical_not (struct value *arg1)
1500 {
1501 int len;
1502 const gdb_byte *p;
1503 struct type *type1;
1504
1505 arg1 = coerce_array (arg1);
1506 type1 = check_typedef (value_type (arg1));
1507
1508 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1509 return 0 == value_as_double (arg1);
1510 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1511 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1512 gdbarch_byte_order (get_type_arch (type1)));
1513
1514 len = TYPE_LENGTH (type1);
1515 p = value_contents (arg1);
1516
1517 while (--len >= 0)
1518 {
1519 if (*p++)
1520 break;
1521 }
1522
1523 return len < 0;
1524 }
1525
1526 /* Perform a comparison on two string values (whose content are not
1527 necessarily null terminated) based on their length. */
1528
1529 static int
1530 value_strcmp (struct value *arg1, struct value *arg2)
1531 {
1532 int len1 = TYPE_LENGTH (value_type (arg1));
1533 int len2 = TYPE_LENGTH (value_type (arg2));
1534 const gdb_byte *s1 = value_contents (arg1);
1535 const gdb_byte *s2 = value_contents (arg2);
1536 int i, len = len1 < len2 ? len1 : len2;
1537
1538 for (i = 0; i < len; i++)
1539 {
1540 if (s1[i] < s2[i])
1541 return -1;
1542 else if (s1[i] > s2[i])
1543 return 1;
1544 else
1545 continue;
1546 }
1547
1548 if (len1 < len2)
1549 return -1;
1550 else if (len1 > len2)
1551 return 1;
1552 else
1553 return 0;
1554 }
1555
1556 /* Simulate the C operator == by returning a 1
1557 iff ARG1 and ARG2 have equal contents. */
1558
1559 int
1560 value_equal (struct value *arg1, struct value *arg2)
1561 {
1562 int len;
1563 const gdb_byte *p1;
1564 const gdb_byte *p2;
1565 struct type *type1, *type2;
1566 enum type_code code1;
1567 enum type_code code2;
1568 int is_int1, is_int2;
1569
1570 arg1 = coerce_array (arg1);
1571 arg2 = coerce_array (arg2);
1572
1573 type1 = check_typedef (value_type (arg1));
1574 type2 = check_typedef (value_type (arg2));
1575 code1 = TYPE_CODE (type1);
1576 code2 = TYPE_CODE (type2);
1577 is_int1 = is_integral_type (type1);
1578 is_int2 = is_integral_type (type2);
1579
1580 if (is_int1 && is_int2)
1581 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1582 BINOP_EQUAL)));
1583 else if ((code1 == TYPE_CODE_FLT || is_int1)
1584 && (code2 == TYPE_CODE_FLT || is_int2))
1585 {
1586 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1587 `long double' values are returned in static storage (m68k). */
1588 DOUBLEST d = value_as_double (arg1);
1589
1590 return d == value_as_double (arg2);
1591 }
1592 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1593 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1594 {
1595 gdb_byte v1[16], v2[16];
1596 int len_v1, len_v2;
1597 enum bfd_endian byte_order_v1, byte_order_v2;
1598
1599 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1600 v2, &len_v2, &byte_order_v2);
1601
1602 return decimal_compare (v1, len_v1, byte_order_v1,
1603 v2, len_v2, byte_order_v2) == 0;
1604 }
1605
1606 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1607 is bigger. */
1608 else if (code1 == TYPE_CODE_PTR && is_int2)
1609 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1610 else if (code2 == TYPE_CODE_PTR && is_int1)
1611 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1612
1613 else if (code1 == code2
1614 && ((len = (int) TYPE_LENGTH (type1))
1615 == (int) TYPE_LENGTH (type2)))
1616 {
1617 p1 = value_contents (arg1);
1618 p2 = value_contents (arg2);
1619 while (--len >= 0)
1620 {
1621 if (*p1++ != *p2++)
1622 break;
1623 }
1624 return len < 0;
1625 }
1626 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1627 {
1628 return value_strcmp (arg1, arg2) == 0;
1629 }
1630 else
1631 {
1632 error (_("Invalid type combination in equality test."));
1633 return 0; /* For lint -- never reached. */
1634 }
1635 }
1636
1637 /* Compare values based on their raw contents. Useful for arrays since
1638 value_equal coerces them to pointers, thus comparing just the address
1639 of the array instead of its contents. */
1640
1641 int
1642 value_equal_contents (struct value *arg1, struct value *arg2)
1643 {
1644 struct type *type1, *type2;
1645
1646 type1 = check_typedef (value_type (arg1));
1647 type2 = check_typedef (value_type (arg2));
1648
1649 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1650 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1651 && memcmp (value_contents (arg1), value_contents (arg2),
1652 TYPE_LENGTH (type1)) == 0);
1653 }
1654
1655 /* Simulate the C operator < by returning 1
1656 iff ARG1's contents are less than ARG2's. */
1657
1658 int
1659 value_less (struct value *arg1, struct value *arg2)
1660 {
1661 enum type_code code1;
1662 enum type_code code2;
1663 struct type *type1, *type2;
1664 int is_int1, is_int2;
1665
1666 arg1 = coerce_array (arg1);
1667 arg2 = coerce_array (arg2);
1668
1669 type1 = check_typedef (value_type (arg1));
1670 type2 = check_typedef (value_type (arg2));
1671 code1 = TYPE_CODE (type1);
1672 code2 = TYPE_CODE (type2);
1673 is_int1 = is_integral_type (type1);
1674 is_int2 = is_integral_type (type2);
1675
1676 if (is_int1 && is_int2)
1677 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1678 BINOP_LESS)));
1679 else if ((code1 == TYPE_CODE_FLT || is_int1)
1680 && (code2 == TYPE_CODE_FLT || is_int2))
1681 {
1682 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1683 `long double' values are returned in static storage (m68k). */
1684 DOUBLEST d = value_as_double (arg1);
1685
1686 return d < value_as_double (arg2);
1687 }
1688 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1689 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1690 {
1691 gdb_byte v1[16], v2[16];
1692 int len_v1, len_v2;
1693 enum bfd_endian byte_order_v1, byte_order_v2;
1694
1695 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1696 v2, &len_v2, &byte_order_v2);
1697
1698 return decimal_compare (v1, len_v1, byte_order_v1,
1699 v2, len_v2, byte_order_v2) == -1;
1700 }
1701 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1702 return value_as_address (arg1) < value_as_address (arg2);
1703
1704 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1705 is bigger. */
1706 else if (code1 == TYPE_CODE_PTR && is_int2)
1707 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1708 else if (code2 == TYPE_CODE_PTR && is_int1)
1709 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1710 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1711 return value_strcmp (arg1, arg2) < 0;
1712 else
1713 {
1714 error (_("Invalid type combination in ordering comparison."));
1715 return 0;
1716 }
1717 }
1718 \f
1719 /* The unary operators +, - and ~. They free the argument ARG1. */
1720
1721 struct value *
1722 value_pos (struct value *arg1)
1723 {
1724 struct type *type;
1725
1726 arg1 = coerce_ref (arg1);
1727 type = check_typedef (value_type (arg1));
1728
1729 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1730 return value_from_double (type, value_as_double (arg1));
1731 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1732 return value_from_decfloat (type, value_contents (arg1));
1733 else if (is_integral_type (type))
1734 {
1735 return value_from_longest (type, value_as_long (arg1));
1736 }
1737 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1738 {
1739 struct value *val = allocate_value (type);
1740
1741 memcpy (value_contents_raw (val), value_contents (arg1),
1742 TYPE_LENGTH (type));
1743 return val;
1744 }
1745 else
1746 {
1747 error (_("Argument to positive operation not a number."));
1748 return 0; /* For lint -- never reached. */
1749 }
1750 }
1751
1752 struct value *
1753 value_neg (struct value *arg1)
1754 {
1755 struct type *type;
1756
1757 arg1 = coerce_ref (arg1);
1758 type = check_typedef (value_type (arg1));
1759
1760 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1761 {
1762 struct value *val = allocate_value (type);
1763 int len = TYPE_LENGTH (type);
1764 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long. */
1765
1766 memcpy (decbytes, value_contents (arg1), len);
1767
1768 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1769 decbytes[len-1] = decbytes[len - 1] | 0x80;
1770 else
1771 decbytes[0] = decbytes[0] | 0x80;
1772
1773 memcpy (value_contents_raw (val), decbytes, len);
1774 return val;
1775 }
1776 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1777 return value_from_double (type, -value_as_double (arg1));
1778 else if (is_integral_type (type))
1779 {
1780 return value_from_longest (type, -value_as_long (arg1));
1781 }
1782 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1783 {
1784 struct value *tmp, *val = allocate_value (type);
1785 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1786 int i;
1787 LONGEST low_bound, high_bound;
1788
1789 if (!get_array_bounds (type, &low_bound, &high_bound))
1790 error (_("Could not determine the vector bounds"));
1791
1792 for (i = 0; i < high_bound - low_bound + 1; i++)
1793 {
1794 tmp = value_neg (value_subscript (arg1, i));
1795 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1796 value_contents_all (tmp), TYPE_LENGTH (eltype));
1797 }
1798 return val;
1799 }
1800 else
1801 {
1802 error (_("Argument to negate operation not a number."));
1803 return 0; /* For lint -- never reached. */
1804 }
1805 }
1806
1807 struct value *
1808 value_complement (struct value *arg1)
1809 {
1810 struct type *type;
1811 struct value *val;
1812
1813 arg1 = coerce_ref (arg1);
1814 type = check_typedef (value_type (arg1));
1815
1816 if (is_integral_type (type))
1817 val = value_from_longest (type, ~value_as_long (arg1));
1818 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1819 {
1820 struct value *tmp;
1821 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1822 int i;
1823 LONGEST low_bound, high_bound;
1824
1825 if (!get_array_bounds (type, &low_bound, &high_bound))
1826 error (_("Could not determine the vector bounds"));
1827
1828 val = allocate_value (type);
1829 for (i = 0; i < high_bound - low_bound + 1; i++)
1830 {
1831 tmp = value_complement (value_subscript (arg1, i));
1832 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1833 value_contents_all (tmp), TYPE_LENGTH (eltype));
1834 }
1835 }
1836 else
1837 error (_("Argument to complement operation not an integer, boolean."));
1838
1839 return val;
1840 }
1841 \f
1842 /* The INDEX'th bit of SET value whose value_type is TYPE,
1843 and whose value_contents is valaddr.
1844 Return -1 if out of range, -2 other error. */
1845
1846 int
1847 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1848 {
1849 struct gdbarch *gdbarch = get_type_arch (type);
1850 LONGEST low_bound, high_bound;
1851 LONGEST word;
1852 unsigned rel_index;
1853 struct type *range = TYPE_INDEX_TYPE (type);
1854
1855 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1856 return -2;
1857 if (index < low_bound || index > high_bound)
1858 return -1;
1859 rel_index = index - low_bound;
1860 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1861 gdbarch_byte_order (gdbarch));
1862 rel_index %= TARGET_CHAR_BIT;
1863 if (gdbarch_bits_big_endian (gdbarch))
1864 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1865 return (word >> rel_index) & 1;
1866 }
1867
1868 int
1869 value_in (struct value *element, struct value *set)
1870 {
1871 int member;
1872 struct type *settype = check_typedef (value_type (set));
1873 struct type *eltype = check_typedef (value_type (element));
1874
1875 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1876 eltype = TYPE_TARGET_TYPE (eltype);
1877 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1878 error (_("Second argument of 'IN' has wrong type"));
1879 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1880 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1881 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1882 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1883 error (_("First argument of 'IN' has wrong type"));
1884 member = value_bit_index (settype, value_contents (set),
1885 value_as_long (element));
1886 if (member < 0)
1887 error (_("First argument of 'IN' not in range"));
1888 return member;
1889 }
1890
1891 void
1892 _initialize_valarith (void)
1893 {
1894 }
This page took 0.068473 seconds and 4 git commands to generate.