2003-03-27 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "value.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "target.h"
30 #include "language.h"
31 #include "gdb_string.h"
32 #include "doublest.h"
33 #include <math.h>
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 static struct value *value_subscripted_rvalue (struct value *, struct value *, int);
43
44 void _initialize_valarith (void);
45 \f
46
47 /* Given a pointer, return the size of its target.
48 If the pointer type is void *, then return 1.
49 If the target type is incomplete, then error out.
50 This isn't a general purpose function, but just a
51 helper for value_sub & value_add.
52 */
53
54 static LONGEST
55 find_size_for_pointer_math (struct type *ptr_type)
56 {
57 LONGEST sz = -1;
58 struct type *ptr_target;
59
60 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
61
62 sz = TYPE_LENGTH (ptr_target);
63 if (sz == 0)
64 {
65 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
66 sz = 1;
67 else
68 {
69 char *name;
70
71 name = TYPE_NAME (ptr_target);
72 if (name == NULL)
73 name = TYPE_TAG_NAME (ptr_target);
74 if (name == NULL)
75 error ("Cannot perform pointer math on incomplete types, "
76 "try casting to a known type, or void *.");
77 else
78 error ("Cannot perform pointer math on incomplete type \"%s\", "
79 "try casting to a known type, or void *.", name);
80 }
81 }
82 return sz;
83 }
84
85 struct value *
86 value_add (struct value *arg1, struct value *arg2)
87 {
88 struct value *valint;
89 struct value *valptr;
90 LONGEST sz;
91 struct type *type1, *type2, *valptrtype;
92
93 COERCE_NUMBER (arg1);
94 COERCE_NUMBER (arg2);
95 type1 = check_typedef (VALUE_TYPE (arg1));
96 type2 = check_typedef (VALUE_TYPE (arg2));
97
98 if ((TYPE_CODE (type1) == TYPE_CODE_PTR
99 || TYPE_CODE (type2) == TYPE_CODE_PTR)
100 &&
101 (TYPE_CODE (type1) == TYPE_CODE_INT
102 || TYPE_CODE (type2) == TYPE_CODE_INT))
103 /* Exactly one argument is a pointer, and one is an integer. */
104 {
105 struct value *retval;
106
107 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
108 {
109 valptr = arg1;
110 valint = arg2;
111 valptrtype = type1;
112 }
113 else
114 {
115 valptr = arg2;
116 valint = arg1;
117 valptrtype = type2;
118 }
119
120 sz = find_size_for_pointer_math (valptrtype);
121
122 retval = value_from_pointer (valptrtype,
123 value_as_address (valptr)
124 + (sz * value_as_long (valint)));
125 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (valptr);
126 return retval;
127 }
128
129 return value_binop (arg1, arg2, BINOP_ADD);
130 }
131
132 struct value *
133 value_sub (struct value *arg1, struct value *arg2)
134 {
135 struct type *type1, *type2;
136 COERCE_NUMBER (arg1);
137 COERCE_NUMBER (arg2);
138 type1 = check_typedef (VALUE_TYPE (arg1));
139 type2 = check_typedef (VALUE_TYPE (arg2));
140
141 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
142 {
143 if (TYPE_CODE (type2) == TYPE_CODE_INT)
144 {
145 /* pointer - integer. */
146 LONGEST sz = find_size_for_pointer_math (type1);
147
148 return value_from_pointer (type1,
149 (value_as_address (arg1)
150 - (sz * value_as_long (arg2))));
151 }
152 else if (TYPE_CODE (type2) == TYPE_CODE_PTR
153 && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
154 == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
155 {
156 /* pointer to <type x> - pointer to <type x>. */
157 LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
158 return value_from_longest
159 (builtin_type_long, /* FIXME -- should be ptrdiff_t */
160 (value_as_long (arg1) - value_as_long (arg2)) / sz);
161 }
162 else
163 {
164 error ("\
165 First argument of `-' is a pointer and second argument is neither\n\
166 an integer nor a pointer of the same type.");
167 }
168 }
169
170 return value_binop (arg1, arg2, BINOP_SUB);
171 }
172
173 /* Return the value of ARRAY[IDX].
174 See comments in value_coerce_array() for rationale for reason for
175 doing lower bounds adjustment here rather than there.
176 FIXME: Perhaps we should validate that the index is valid and if
177 verbosity is set, warn about invalid indices (but still use them). */
178
179 struct value *
180 value_subscript (struct value *array, struct value *idx)
181 {
182 struct value *bound;
183 int c_style = current_language->c_style_arrays;
184 struct type *tarray;
185
186 COERCE_REF (array);
187 tarray = check_typedef (VALUE_TYPE (array));
188 COERCE_VARYING_ARRAY (array, tarray);
189
190 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
191 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
192 {
193 struct type *range_type = TYPE_INDEX_TYPE (tarray);
194 LONGEST lowerbound, upperbound;
195 get_discrete_bounds (range_type, &lowerbound, &upperbound);
196
197 if (VALUE_LVAL (array) != lval_memory)
198 return value_subscripted_rvalue (array, idx, lowerbound);
199
200 if (c_style == 0)
201 {
202 LONGEST index = value_as_long (idx);
203 if (index >= lowerbound && index <= upperbound)
204 return value_subscripted_rvalue (array, idx, lowerbound);
205 warning ("array or string index out of range");
206 /* fall doing C stuff */
207 c_style = 1;
208 }
209
210 if (lowerbound != 0)
211 {
212 bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
213 idx = value_sub (idx, bound);
214 }
215
216 array = value_coerce_array (array);
217 }
218
219 if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
220 {
221 struct type *range_type = TYPE_INDEX_TYPE (tarray);
222 LONGEST index = value_as_long (idx);
223 struct value *v;
224 int offset, byte, bit_index;
225 LONGEST lowerbound, upperbound;
226 get_discrete_bounds (range_type, &lowerbound, &upperbound);
227 if (index < lowerbound || index > upperbound)
228 error ("bitstring index out of range");
229 index -= lowerbound;
230 offset = index / TARGET_CHAR_BIT;
231 byte = *((char *) VALUE_CONTENTS (array) + offset);
232 bit_index = index % TARGET_CHAR_BIT;
233 byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index);
234 v = value_from_longest (LA_BOOL_TYPE, byte & 1);
235 VALUE_BITPOS (v) = bit_index;
236 VALUE_BITSIZE (v) = 1;
237 VALUE_LVAL (v) = VALUE_LVAL (array);
238 if (VALUE_LVAL (array) == lval_internalvar)
239 VALUE_LVAL (v) = lval_internalvar_component;
240 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
241 VALUE_OFFSET (v) = offset + VALUE_OFFSET (array);
242 return v;
243 }
244
245 if (c_style)
246 return value_ind (value_add (array, idx));
247 else
248 error ("not an array or string");
249 }
250
251 /* Return the value of EXPR[IDX], expr an aggregate rvalue
252 (eg, a vector register). This routine used to promote floats
253 to doubles, but no longer does. */
254
255 static struct value *
256 value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound)
257 {
258 struct type *array_type = check_typedef (VALUE_TYPE (array));
259 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
260 unsigned int elt_size = TYPE_LENGTH (elt_type);
261 LONGEST index = value_as_long (idx);
262 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
263 struct value *v;
264
265 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
266 error ("no such vector element");
267
268 v = allocate_value (elt_type);
269 if (VALUE_LAZY (array))
270 VALUE_LAZY (v) = 1;
271 else
272 memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size);
273
274 if (VALUE_LVAL (array) == lval_internalvar)
275 VALUE_LVAL (v) = lval_internalvar_component;
276 else
277 VALUE_LVAL (v) = VALUE_LVAL (array);
278 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
279 VALUE_REGNO (v) = VALUE_REGNO (array);
280 VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs;
281 return v;
282 }
283 \f
284 /* Check to see if either argument is a structure. This is called so
285 we know whether to go ahead with the normal binop or look for a
286 user defined function instead.
287
288 For now, we do not overload the `=' operator. */
289
290 int
291 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
292 {
293 struct type *type1, *type2;
294 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
295 return 0;
296 type1 = check_typedef (VALUE_TYPE (arg1));
297 type2 = check_typedef (VALUE_TYPE (arg2));
298 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
299 || TYPE_CODE (type2) == TYPE_CODE_STRUCT
300 || (TYPE_CODE (type1) == TYPE_CODE_REF
301 && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT)
302 || (TYPE_CODE (type2) == TYPE_CODE_REF
303 && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT));
304 }
305
306 /* Check to see if argument is a structure. This is called so
307 we know whether to go ahead with the normal unop or look for a
308 user defined function instead.
309
310 For now, we do not overload the `&' operator. */
311
312 int
313 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
314 {
315 struct type *type1;
316 if (op == UNOP_ADDR)
317 return 0;
318 type1 = check_typedef (VALUE_TYPE (arg1));
319 for (;;)
320 {
321 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
322 return 1;
323 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
324 type1 = TYPE_TARGET_TYPE (type1);
325 else
326 return 0;
327 }
328 }
329
330 /* We know either arg1 or arg2 is a structure, so try to find the right
331 user defined function. Create an argument vector that calls
332 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
333 binary operator which is legal for GNU C++).
334
335 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
336 is the opcode saying how to modify it. Otherwise, OTHEROP is
337 unused. */
338
339 struct value *
340 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
341 enum exp_opcode otherop, enum noside noside)
342 {
343 struct value **argvec;
344 char *ptr;
345 char tstr[13];
346 int static_memfuncp;
347
348 COERCE_REF (arg1);
349 COERCE_REF (arg2);
350 COERCE_ENUM (arg1);
351 COERCE_ENUM (arg2);
352
353 /* now we know that what we have to do is construct our
354 arg vector and find the right function to call it with. */
355
356 if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
357 error ("Can't do that binary op on that type"); /* FIXME be explicit */
358
359 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
360 argvec[1] = value_addr (arg1);
361 argvec[2] = arg2;
362 argvec[3] = 0;
363
364 /* make the right function name up */
365 strcpy (tstr, "operator__");
366 ptr = tstr + 8;
367 switch (op)
368 {
369 case BINOP_ADD:
370 strcpy (ptr, "+");
371 break;
372 case BINOP_SUB:
373 strcpy (ptr, "-");
374 break;
375 case BINOP_MUL:
376 strcpy (ptr, "*");
377 break;
378 case BINOP_DIV:
379 strcpy (ptr, "/");
380 break;
381 case BINOP_REM:
382 strcpy (ptr, "%");
383 break;
384 case BINOP_LSH:
385 strcpy (ptr, "<<");
386 break;
387 case BINOP_RSH:
388 strcpy (ptr, ">>");
389 break;
390 case BINOP_BITWISE_AND:
391 strcpy (ptr, "&");
392 break;
393 case BINOP_BITWISE_IOR:
394 strcpy (ptr, "|");
395 break;
396 case BINOP_BITWISE_XOR:
397 strcpy (ptr, "^");
398 break;
399 case BINOP_LOGICAL_AND:
400 strcpy (ptr, "&&");
401 break;
402 case BINOP_LOGICAL_OR:
403 strcpy (ptr, "||");
404 break;
405 case BINOP_MIN:
406 strcpy (ptr, "<?");
407 break;
408 case BINOP_MAX:
409 strcpy (ptr, ">?");
410 break;
411 case BINOP_ASSIGN:
412 strcpy (ptr, "=");
413 break;
414 case BINOP_ASSIGN_MODIFY:
415 switch (otherop)
416 {
417 case BINOP_ADD:
418 strcpy (ptr, "+=");
419 break;
420 case BINOP_SUB:
421 strcpy (ptr, "-=");
422 break;
423 case BINOP_MUL:
424 strcpy (ptr, "*=");
425 break;
426 case BINOP_DIV:
427 strcpy (ptr, "/=");
428 break;
429 case BINOP_REM:
430 strcpy (ptr, "%=");
431 break;
432 case BINOP_BITWISE_AND:
433 strcpy (ptr, "&=");
434 break;
435 case BINOP_BITWISE_IOR:
436 strcpy (ptr, "|=");
437 break;
438 case BINOP_BITWISE_XOR:
439 strcpy (ptr, "^=");
440 break;
441 case BINOP_MOD: /* invalid */
442 default:
443 error ("Invalid binary operation specified.");
444 }
445 break;
446 case BINOP_SUBSCRIPT:
447 strcpy (ptr, "[]");
448 break;
449 case BINOP_EQUAL:
450 strcpy (ptr, "==");
451 break;
452 case BINOP_NOTEQUAL:
453 strcpy (ptr, "!=");
454 break;
455 case BINOP_LESS:
456 strcpy (ptr, "<");
457 break;
458 case BINOP_GTR:
459 strcpy (ptr, ">");
460 break;
461 case BINOP_GEQ:
462 strcpy (ptr, ">=");
463 break;
464 case BINOP_LEQ:
465 strcpy (ptr, "<=");
466 break;
467 case BINOP_MOD: /* invalid */
468 default:
469 error ("Invalid binary operation specified.");
470 }
471
472 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
473
474 if (argvec[0])
475 {
476 if (static_memfuncp)
477 {
478 argvec[1] = argvec[0];
479 argvec++;
480 }
481 if (noside == EVAL_AVOID_SIDE_EFFECTS)
482 {
483 struct type *return_type;
484 return_type
485 = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
486 return value_zero (return_type, VALUE_LVAL (arg1));
487 }
488 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
489 }
490 error ("member function %s not found", tstr);
491 #ifdef lint
492 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
493 #endif
494 }
495
496 /* We know that arg1 is a structure, so try to find a unary user
497 defined operator that matches the operator in question.
498 Create an argument vector that calls arg1.operator @ (arg1)
499 and return that value (where '@' is (almost) any unary operator which
500 is legal for GNU C++). */
501
502 struct value *
503 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
504 {
505 struct value **argvec;
506 char *ptr, *mangle_ptr;
507 char tstr[13], mangle_tstr[13];
508 int static_memfuncp, nargs;
509
510 COERCE_REF (arg1);
511 COERCE_ENUM (arg1);
512
513 /* now we know that what we have to do is construct our
514 arg vector and find the right function to call it with. */
515
516 if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
517 error ("Can't do that unary op on that type"); /* FIXME be explicit */
518
519 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
520 argvec[1] = value_addr (arg1);
521 argvec[2] = 0;
522
523 nargs = 1;
524
525 /* make the right function name up */
526 strcpy (tstr, "operator__");
527 ptr = tstr + 8;
528 strcpy (mangle_tstr, "__");
529 mangle_ptr = mangle_tstr + 2;
530 switch (op)
531 {
532 case UNOP_PREINCREMENT:
533 strcpy (ptr, "++");
534 break;
535 case UNOP_PREDECREMENT:
536 strcpy (ptr, "--");
537 break;
538 case UNOP_POSTINCREMENT:
539 strcpy (ptr, "++");
540 argvec[2] = value_from_longest (builtin_type_int, 0);
541 argvec[3] = 0;
542 nargs ++;
543 break;
544 case UNOP_POSTDECREMENT:
545 strcpy (ptr, "--");
546 argvec[2] = value_from_longest (builtin_type_int, 0);
547 argvec[3] = 0;
548 nargs ++;
549 break;
550 case UNOP_LOGICAL_NOT:
551 strcpy (ptr, "!");
552 break;
553 case UNOP_COMPLEMENT:
554 strcpy (ptr, "~");
555 break;
556 case UNOP_NEG:
557 strcpy (ptr, "-");
558 break;
559 case UNOP_IND:
560 strcpy (ptr, "*");
561 break;
562 default:
563 error ("Invalid unary operation specified.");
564 }
565
566 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
567
568 if (argvec[0])
569 {
570 if (static_memfuncp)
571 {
572 argvec[1] = argvec[0];
573 nargs --;
574 argvec++;
575 }
576 if (noside == EVAL_AVOID_SIDE_EFFECTS)
577 {
578 struct type *return_type;
579 return_type
580 = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
581 return value_zero (return_type, VALUE_LVAL (arg1));
582 }
583 return call_function_by_hand (argvec[0], nargs, argvec + 1);
584 }
585 error ("member function %s not found", tstr);
586 return 0; /* For lint -- never reached */
587 }
588 \f
589
590 /* Concatenate two values with the following conditions:
591
592 (1) Both values must be either bitstring values or character string
593 values and the resulting value consists of the concatenation of
594 ARG1 followed by ARG2.
595
596 or
597
598 One value must be an integer value and the other value must be
599 either a bitstring value or character string value, which is
600 to be repeated by the number of times specified by the integer
601 value.
602
603
604 (2) Boolean values are also allowed and are treated as bit string
605 values of length 1.
606
607 (3) Character values are also allowed and are treated as character
608 string values of length 1.
609 */
610
611 struct value *
612 value_concat (struct value *arg1, struct value *arg2)
613 {
614 struct value *inval1;
615 struct value *inval2;
616 struct value *outval = NULL;
617 int inval1len, inval2len;
618 int count, idx;
619 char *ptr;
620 char inchar;
621 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
622 struct type *type2 = check_typedef (VALUE_TYPE (arg2));
623
624 COERCE_VARYING_ARRAY (arg1, type1);
625 COERCE_VARYING_ARRAY (arg2, type2);
626
627 /* First figure out if we are dealing with two values to be concatenated
628 or a repeat count and a value to be repeated. INVAL1 is set to the
629 first of two concatenated values, or the repeat count. INVAL2 is set
630 to the second of the two concatenated values or the value to be
631 repeated. */
632
633 if (TYPE_CODE (type2) == TYPE_CODE_INT)
634 {
635 struct type *tmp = type1;
636 type1 = tmp;
637 tmp = type2;
638 inval1 = arg2;
639 inval2 = arg1;
640 }
641 else
642 {
643 inval1 = arg1;
644 inval2 = arg2;
645 }
646
647 /* Now process the input values. */
648
649 if (TYPE_CODE (type1) == TYPE_CODE_INT)
650 {
651 /* We have a repeat count. Validate the second value and then
652 construct a value repeated that many times. */
653 if (TYPE_CODE (type2) == TYPE_CODE_STRING
654 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
655 {
656 count = longest_to_int (value_as_long (inval1));
657 inval2len = TYPE_LENGTH (type2);
658 ptr = (char *) alloca (count * inval2len);
659 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
660 {
661 inchar = (char) unpack_long (type2,
662 VALUE_CONTENTS (inval2));
663 for (idx = 0; idx < count; idx++)
664 {
665 *(ptr + idx) = inchar;
666 }
667 }
668 else
669 {
670 for (idx = 0; idx < count; idx++)
671 {
672 memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2),
673 inval2len);
674 }
675 }
676 outval = value_string (ptr, count * inval2len);
677 }
678 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
679 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
680 {
681 error ("unimplemented support for bitstring/boolean repeats");
682 }
683 else
684 {
685 error ("can't repeat values of that type");
686 }
687 }
688 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
689 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
690 {
691 /* We have two character strings to concatenate. */
692 if (TYPE_CODE (type2) != TYPE_CODE_STRING
693 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
694 {
695 error ("Strings can only be concatenated with other strings.");
696 }
697 inval1len = TYPE_LENGTH (type1);
698 inval2len = TYPE_LENGTH (type2);
699 ptr = (char *) alloca (inval1len + inval2len);
700 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
701 {
702 *ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1));
703 }
704 else
705 {
706 memcpy (ptr, VALUE_CONTENTS (inval1), inval1len);
707 }
708 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
709 {
710 *(ptr + inval1len) =
711 (char) unpack_long (type2, VALUE_CONTENTS (inval2));
712 }
713 else
714 {
715 memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len);
716 }
717 outval = value_string (ptr, inval1len + inval2len);
718 }
719 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
720 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
721 {
722 /* We have two bitstrings to concatenate. */
723 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
724 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
725 {
726 error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.");
727 }
728 error ("unimplemented support for bitstring/boolean concatenation.");
729 }
730 else
731 {
732 /* We don't know how to concatenate these operands. */
733 error ("illegal operands for concatenation.");
734 }
735 return (outval);
736 }
737 \f
738
739
740 /* Perform a binary operation on two operands which have reasonable
741 representations as integers or floats. This includes booleans,
742 characters, integers, or floats.
743 Does not support addition and subtraction on pointers;
744 use value_add or value_sub if you want to handle those possibilities. */
745
746 struct value *
747 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
748 {
749 struct value *val;
750 struct type *type1, *type2;
751
752 COERCE_REF (arg1);
753 COERCE_REF (arg2);
754 COERCE_ENUM (arg1);
755 COERCE_ENUM (arg2);
756 type1 = check_typedef (VALUE_TYPE (arg1));
757 type2 = check_typedef (VALUE_TYPE (arg2));
758
759 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
760 && TYPE_CODE (type1) != TYPE_CODE_CHAR
761 && TYPE_CODE (type1) != TYPE_CODE_INT
762 && TYPE_CODE (type1) != TYPE_CODE_BOOL
763 && TYPE_CODE (type1) != TYPE_CODE_RANGE)
764 ||
765 (TYPE_CODE (type2) != TYPE_CODE_FLT
766 && TYPE_CODE (type2) != TYPE_CODE_CHAR
767 && TYPE_CODE (type2) != TYPE_CODE_INT
768 && TYPE_CODE (type2) != TYPE_CODE_BOOL
769 && TYPE_CODE (type2) != TYPE_CODE_RANGE))
770 error ("Argument to arithmetic operation not a number or boolean.");
771
772 if (TYPE_CODE (type1) == TYPE_CODE_FLT
773 ||
774 TYPE_CODE (type2) == TYPE_CODE_FLT)
775 {
776 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
777 in target format. real.c in GCC probably has the necessary
778 code. */
779 DOUBLEST v1, v2, v = 0;
780 v1 = value_as_double (arg1);
781 v2 = value_as_double (arg2);
782 switch (op)
783 {
784 case BINOP_ADD:
785 v = v1 + v2;
786 break;
787
788 case BINOP_SUB:
789 v = v1 - v2;
790 break;
791
792 case BINOP_MUL:
793 v = v1 * v2;
794 break;
795
796 case BINOP_DIV:
797 v = v1 / v2;
798 break;
799
800 case BINOP_EXP:
801 v = pow (v1, v2);
802 if (errno)
803 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
804 break;
805
806 default:
807 error ("Integer-only operation on floating point number.");
808 }
809
810 /* If either arg was long double, make sure that value is also long
811 double. */
812
813 if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT
814 || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT)
815 val = allocate_value (builtin_type_long_double);
816 else
817 val = allocate_value (builtin_type_double);
818
819 store_typed_floating (VALUE_CONTENTS_RAW (val), VALUE_TYPE (val), v);
820 }
821 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
822 &&
823 TYPE_CODE (type2) == TYPE_CODE_BOOL)
824 {
825 LONGEST v1, v2, v = 0;
826 v1 = value_as_long (arg1);
827 v2 = value_as_long (arg2);
828
829 switch (op)
830 {
831 case BINOP_BITWISE_AND:
832 v = v1 & v2;
833 break;
834
835 case BINOP_BITWISE_IOR:
836 v = v1 | v2;
837 break;
838
839 case BINOP_BITWISE_XOR:
840 v = v1 ^ v2;
841 break;
842
843 case BINOP_EQUAL:
844 v = v1 == v2;
845 break;
846
847 case BINOP_NOTEQUAL:
848 v = v1 != v2;
849 break;
850
851 default:
852 error ("Invalid operation on booleans.");
853 }
854
855 val = allocate_value (type1);
856 store_signed_integer (VALUE_CONTENTS_RAW (val),
857 TYPE_LENGTH (type1),
858 v);
859 }
860 else
861 /* Integral operations here. */
862 /* FIXME: Also mixed integral/booleans, with result an integer. */
863 /* FIXME: This implements ANSI C rules (also correct for C++).
864 What about FORTRAN and (the deleted) chill ? */
865 {
866 unsigned int promoted_len1 = TYPE_LENGTH (type1);
867 unsigned int promoted_len2 = TYPE_LENGTH (type2);
868 int is_unsigned1 = TYPE_UNSIGNED (type1);
869 int is_unsigned2 = TYPE_UNSIGNED (type2);
870 unsigned int result_len;
871 int unsigned_operation;
872
873 /* Determine type length and signedness after promotion for
874 both operands. */
875 if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
876 {
877 is_unsigned1 = 0;
878 promoted_len1 = TYPE_LENGTH (builtin_type_int);
879 }
880 if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
881 {
882 is_unsigned2 = 0;
883 promoted_len2 = TYPE_LENGTH (builtin_type_int);
884 }
885
886 /* Determine type length of the result, and if the operation should
887 be done unsigned.
888 Use the signedness of the operand with the greater length.
889 If both operands are of equal length, use unsigned operation
890 if one of the operands is unsigned. */
891 if (promoted_len1 > promoted_len2)
892 {
893 unsigned_operation = is_unsigned1;
894 result_len = promoted_len1;
895 }
896 else if (promoted_len2 > promoted_len1)
897 {
898 unsigned_operation = is_unsigned2;
899 result_len = promoted_len2;
900 }
901 else
902 {
903 unsigned_operation = is_unsigned1 || is_unsigned2;
904 result_len = promoted_len1;
905 }
906
907 if (unsigned_operation)
908 {
909 ULONGEST v1, v2, v = 0;
910 v1 = (ULONGEST) value_as_long (arg1);
911 v2 = (ULONGEST) value_as_long (arg2);
912
913 /* Truncate values to the type length of the result. */
914 if (result_len < sizeof (ULONGEST))
915 {
916 v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
917 v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
918 }
919
920 switch (op)
921 {
922 case BINOP_ADD:
923 v = v1 + v2;
924 break;
925
926 case BINOP_SUB:
927 v = v1 - v2;
928 break;
929
930 case BINOP_MUL:
931 v = v1 * v2;
932 break;
933
934 case BINOP_DIV:
935 v = v1 / v2;
936 break;
937
938 case BINOP_EXP:
939 v = pow (v1, v2);
940 if (errno)
941 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
942 break;
943
944 case BINOP_REM:
945 v = v1 % v2;
946 break;
947
948 case BINOP_MOD:
949 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
950 v1 mod 0 has a defined value, v1. */
951 if (v2 == 0)
952 {
953 v = v1;
954 }
955 else
956 {
957 v = v1 / v2;
958 /* Note floor(v1/v2) == v1/v2 for unsigned. */
959 v = v1 - (v2 * v);
960 }
961 break;
962
963 case BINOP_LSH:
964 v = v1 << v2;
965 break;
966
967 case BINOP_RSH:
968 v = v1 >> v2;
969 break;
970
971 case BINOP_BITWISE_AND:
972 v = v1 & v2;
973 break;
974
975 case BINOP_BITWISE_IOR:
976 v = v1 | v2;
977 break;
978
979 case BINOP_BITWISE_XOR:
980 v = v1 ^ v2;
981 break;
982
983 case BINOP_LOGICAL_AND:
984 v = v1 && v2;
985 break;
986
987 case BINOP_LOGICAL_OR:
988 v = v1 || v2;
989 break;
990
991 case BINOP_MIN:
992 v = v1 < v2 ? v1 : v2;
993 break;
994
995 case BINOP_MAX:
996 v = v1 > v2 ? v1 : v2;
997 break;
998
999 case BINOP_EQUAL:
1000 v = v1 == v2;
1001 break;
1002
1003 case BINOP_NOTEQUAL:
1004 v = v1 != v2;
1005 break;
1006
1007 case BINOP_LESS:
1008 v = v1 < v2;
1009 break;
1010
1011 default:
1012 error ("Invalid binary operation on numbers.");
1013 }
1014
1015 /* This is a kludge to get around the fact that we don't
1016 know how to determine the result type from the types of
1017 the operands. (I'm not really sure how much we feel the
1018 need to duplicate the exact rules of the current
1019 language. They can get really hairy. But not to do so
1020 makes it hard to document just what we *do* do). */
1021
1022 /* Can't just call init_type because we wouldn't know what
1023 name to give the type. */
1024 val = allocate_value
1025 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1026 ? builtin_type_unsigned_long_long
1027 : builtin_type_unsigned_long);
1028 store_unsigned_integer (VALUE_CONTENTS_RAW (val),
1029 TYPE_LENGTH (VALUE_TYPE (val)),
1030 v);
1031 }
1032 else
1033 {
1034 LONGEST v1, v2, v = 0;
1035 v1 = value_as_long (arg1);
1036 v2 = value_as_long (arg2);
1037
1038 switch (op)
1039 {
1040 case BINOP_ADD:
1041 v = v1 + v2;
1042 break;
1043
1044 case BINOP_SUB:
1045 v = v1 - v2;
1046 break;
1047
1048 case BINOP_MUL:
1049 v = v1 * v2;
1050 break;
1051
1052 case BINOP_DIV:
1053 v = v1 / v2;
1054 break;
1055
1056 case BINOP_EXP:
1057 v = pow (v1, v2);
1058 if (errno)
1059 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
1060 break;
1061
1062 case BINOP_REM:
1063 v = v1 % v2;
1064 break;
1065
1066 case BINOP_MOD:
1067 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1068 X mod 0 has a defined value, X. */
1069 if (v2 == 0)
1070 {
1071 v = v1;
1072 }
1073 else
1074 {
1075 v = v1 / v2;
1076 /* Compute floor. */
1077 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1078 {
1079 v--;
1080 }
1081 v = v1 - (v2 * v);
1082 }
1083 break;
1084
1085 case BINOP_LSH:
1086 v = v1 << v2;
1087 break;
1088
1089 case BINOP_RSH:
1090 v = v1 >> v2;
1091 break;
1092
1093 case BINOP_BITWISE_AND:
1094 v = v1 & v2;
1095 break;
1096
1097 case BINOP_BITWISE_IOR:
1098 v = v1 | v2;
1099 break;
1100
1101 case BINOP_BITWISE_XOR:
1102 v = v1 ^ v2;
1103 break;
1104
1105 case BINOP_LOGICAL_AND:
1106 v = v1 && v2;
1107 break;
1108
1109 case BINOP_LOGICAL_OR:
1110 v = v1 || v2;
1111 break;
1112
1113 case BINOP_MIN:
1114 v = v1 < v2 ? v1 : v2;
1115 break;
1116
1117 case BINOP_MAX:
1118 v = v1 > v2 ? v1 : v2;
1119 break;
1120
1121 case BINOP_EQUAL:
1122 v = v1 == v2;
1123 break;
1124
1125 case BINOP_LESS:
1126 v = v1 < v2;
1127 break;
1128
1129 default:
1130 error ("Invalid binary operation on numbers.");
1131 }
1132
1133 /* This is a kludge to get around the fact that we don't
1134 know how to determine the result type from the types of
1135 the operands. (I'm not really sure how much we feel the
1136 need to duplicate the exact rules of the current
1137 language. They can get really hairy. But not to do so
1138 makes it hard to document just what we *do* do). */
1139
1140 /* Can't just call init_type because we wouldn't know what
1141 name to give the type. */
1142 val = allocate_value
1143 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1144 ? builtin_type_long_long
1145 : builtin_type_long);
1146 store_signed_integer (VALUE_CONTENTS_RAW (val),
1147 TYPE_LENGTH (VALUE_TYPE (val)),
1148 v);
1149 }
1150 }
1151
1152 return val;
1153 }
1154 \f
1155 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1156
1157 int
1158 value_logical_not (struct value *arg1)
1159 {
1160 register int len;
1161 register char *p;
1162 struct type *type1;
1163
1164 COERCE_NUMBER (arg1);
1165 type1 = check_typedef (VALUE_TYPE (arg1));
1166
1167 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1168 return 0 == value_as_double (arg1);
1169
1170 len = TYPE_LENGTH (type1);
1171 p = VALUE_CONTENTS (arg1);
1172
1173 while (--len >= 0)
1174 {
1175 if (*p++)
1176 break;
1177 }
1178
1179 return len < 0;
1180 }
1181
1182 /* Perform a comparison on two string values (whose content are not
1183 necessarily null terminated) based on their length */
1184
1185 static int
1186 value_strcmp (struct value *arg1, struct value *arg2)
1187 {
1188 int len1 = TYPE_LENGTH (VALUE_TYPE (arg1));
1189 int len2 = TYPE_LENGTH (VALUE_TYPE (arg2));
1190 char *s1 = VALUE_CONTENTS (arg1);
1191 char *s2 = VALUE_CONTENTS (arg2);
1192 int i, len = len1 < len2 ? len1 : len2;
1193
1194 for (i = 0; i < len; i++)
1195 {
1196 if (s1[i] < s2[i])
1197 return -1;
1198 else if (s1[i] > s2[i])
1199 return 1;
1200 else
1201 continue;
1202 }
1203
1204 if (len1 < len2)
1205 return -1;
1206 else if (len1 > len2)
1207 return 1;
1208 else
1209 return 0;
1210 }
1211
1212 /* Simulate the C operator == by returning a 1
1213 iff ARG1 and ARG2 have equal contents. */
1214
1215 int
1216 value_equal (struct value *arg1, struct value *arg2)
1217 {
1218 register int len;
1219 register char *p1, *p2;
1220 struct type *type1, *type2;
1221 enum type_code code1;
1222 enum type_code code2;
1223
1224 COERCE_NUMBER (arg1);
1225 COERCE_NUMBER (arg2);
1226
1227 type1 = check_typedef (VALUE_TYPE (arg1));
1228 type2 = check_typedef (VALUE_TYPE (arg2));
1229 code1 = TYPE_CODE (type1);
1230 code2 = TYPE_CODE (type2);
1231
1232 if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
1233 (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1234 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1235 BINOP_EQUAL)));
1236 else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
1237 && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1238 return value_as_double (arg1) == value_as_double (arg2);
1239
1240 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1241 is bigger. */
1242 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1243 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1244 else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
1245 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1246
1247 else if (code1 == code2
1248 && ((len = (int) TYPE_LENGTH (type1))
1249 == (int) TYPE_LENGTH (type2)))
1250 {
1251 p1 = VALUE_CONTENTS (arg1);
1252 p2 = VALUE_CONTENTS (arg2);
1253 while (--len >= 0)
1254 {
1255 if (*p1++ != *p2++)
1256 break;
1257 }
1258 return len < 0;
1259 }
1260 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1261 {
1262 return value_strcmp (arg1, arg2) == 0;
1263 }
1264 else
1265 {
1266 error ("Invalid type combination in equality test.");
1267 return 0; /* For lint -- never reached */
1268 }
1269 }
1270
1271 /* Simulate the C operator < by returning 1
1272 iff ARG1's contents are less than ARG2's. */
1273
1274 int
1275 value_less (struct value *arg1, struct value *arg2)
1276 {
1277 register enum type_code code1;
1278 register enum type_code code2;
1279 struct type *type1, *type2;
1280
1281 COERCE_NUMBER (arg1);
1282 COERCE_NUMBER (arg2);
1283
1284 type1 = check_typedef (VALUE_TYPE (arg1));
1285 type2 = check_typedef (VALUE_TYPE (arg2));
1286 code1 = TYPE_CODE (type1);
1287 code2 = TYPE_CODE (type2);
1288
1289 if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
1290 (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1291 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1292 BINOP_LESS)));
1293 else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
1294 && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1295 return value_as_double (arg1) < value_as_double (arg2);
1296 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1297 return value_as_address (arg1) < value_as_address (arg2);
1298
1299 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1300 is bigger. */
1301 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
1302 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1303 else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
1304 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1305 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1306 return value_strcmp (arg1, arg2) < 0;
1307 else
1308 {
1309 error ("Invalid type combination in ordering comparison.");
1310 return 0;
1311 }
1312 }
1313 \f
1314 /* The unary operators - and ~. Both free the argument ARG1. */
1315
1316 struct value *
1317 value_neg (struct value *arg1)
1318 {
1319 register struct type *type;
1320 register struct type *result_type = VALUE_TYPE (arg1);
1321
1322 COERCE_REF (arg1);
1323 COERCE_ENUM (arg1);
1324
1325 type = check_typedef (VALUE_TYPE (arg1));
1326
1327 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1328 return value_from_double (result_type, -value_as_double (arg1));
1329 else if (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_BOOL)
1330 {
1331 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1332 FORTRAN and (the deleted) chill ? */
1333 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1334 result_type = builtin_type_int;
1335
1336 return value_from_longest (result_type, -value_as_long (arg1));
1337 }
1338 else
1339 {
1340 error ("Argument to negate operation not a number.");
1341 return 0; /* For lint -- never reached */
1342 }
1343 }
1344
1345 struct value *
1346 value_complement (struct value *arg1)
1347 {
1348 register struct type *type;
1349 register struct type *result_type = VALUE_TYPE (arg1);
1350 int typecode;
1351
1352 COERCE_REF (arg1);
1353 COERCE_ENUM (arg1);
1354
1355 type = check_typedef (VALUE_TYPE (arg1));
1356
1357 typecode = TYPE_CODE (type);
1358 if ((typecode != TYPE_CODE_INT) && (typecode != TYPE_CODE_BOOL))
1359 error ("Argument to complement operation not an integer or boolean.");
1360
1361 /* Perform integral promotion for ANSI C/C++.
1362 FIXME: What about FORTRAN ? */
1363 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1364 result_type = builtin_type_int;
1365
1366 return value_from_longest (result_type, ~value_as_long (arg1));
1367 }
1368 \f
1369 /* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE,
1370 and whose VALUE_CONTENTS is valaddr.
1371 Return -1 if out of range, -2 other error. */
1372
1373 int
1374 value_bit_index (struct type *type, char *valaddr, int index)
1375 {
1376 LONGEST low_bound, high_bound;
1377 LONGEST word;
1378 unsigned rel_index;
1379 struct type *range = TYPE_FIELD_TYPE (type, 0);
1380 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1381 return -2;
1382 if (index < low_bound || index > high_bound)
1383 return -1;
1384 rel_index = index - low_bound;
1385 word = unpack_long (builtin_type_unsigned_char,
1386 valaddr + (rel_index / TARGET_CHAR_BIT));
1387 rel_index %= TARGET_CHAR_BIT;
1388 if (BITS_BIG_ENDIAN)
1389 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1390 return (word >> rel_index) & 1;
1391 }
1392
1393 struct value *
1394 value_in (struct value *element, struct value *set)
1395 {
1396 int member;
1397 struct type *settype = check_typedef (VALUE_TYPE (set));
1398 struct type *eltype = check_typedef (VALUE_TYPE (element));
1399 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1400 eltype = TYPE_TARGET_TYPE (eltype);
1401 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1402 error ("Second argument of 'IN' has wrong type");
1403 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1404 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1405 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1406 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1407 error ("First argument of 'IN' has wrong type");
1408 member = value_bit_index (settype, VALUE_CONTENTS (set),
1409 value_as_long (element));
1410 if (member < 0)
1411 error ("First argument of 'IN' not in range");
1412 return value_from_longest (LA_BOOL_TYPE, member);
1413 }
1414
1415 void
1416 _initialize_valarith (void)
1417 {
1418 }
This page took 0.059532 seconds and 4 git commands to generate.