* ada-lang.c (assign_component): Use platform-specific integer type
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 void _initialize_valarith (void);
43 \f
44
45 /* Given a pointer, return the size of its target.
46 If the pointer type is void *, then return 1.
47 If the target type is incomplete, then error out.
48 This isn't a general purpose function, but just a
49 helper for value_ptradd.
50 */
51
52 static LONGEST
53 find_size_for_pointer_math (struct type *ptr_type)
54 {
55 LONGEST sz = -1;
56 struct type *ptr_target;
57
58 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
59 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
60
61 sz = TYPE_LENGTH (ptr_target);
62 if (sz == 0)
63 {
64 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
65 sz = 1;
66 else
67 {
68 char *name;
69
70 name = TYPE_NAME (ptr_target);
71 if (name == NULL)
72 name = TYPE_TAG_NAME (ptr_target);
73 if (name == NULL)
74 error (_("Cannot perform pointer math on incomplete types, "
75 "try casting to a known type, or void *."));
76 else
77 error (_("Cannot perform pointer math on incomplete type \"%s\", "
78 "try casting to a known type, or void *."), name);
79 }
80 }
81 return sz;
82 }
83
84 /* Given a pointer ARG1 and an integral value ARG2, return the
85 result of C-style pointer arithmetic ARG1 + ARG2. */
86
87 struct value *
88 value_ptradd (struct value *arg1, LONGEST arg2)
89 {
90 struct type *valptrtype;
91 LONGEST sz;
92
93 arg1 = coerce_array (arg1);
94 valptrtype = check_typedef (value_type (arg1));
95 sz = find_size_for_pointer_math (valptrtype);
96
97 return value_from_pointer (valptrtype,
98 value_as_address (arg1) + sz * arg2);
99 }
100
101 /* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
103
104 LONGEST
105 value_ptrdiff (struct value *arg1, struct value *arg2)
106 {
107 struct type *type1, *type2;
108 LONGEST sz;
109
110 arg1 = coerce_array (arg1);
111 arg2 = coerce_array (arg2);
112 type1 = check_typedef (value_type (arg1));
113 type2 = check_typedef (value_type (arg2));
114
115 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
116 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
117
118 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
119 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
120 error (_("\
121 First argument of `-' is a pointer and second argument is neither\n\
122 an integer nor a pointer of the same type."));
123
124 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
125 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
126 }
127
128 /* Return the value of ARRAY[IDX].
129
130 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
131 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
132 To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
133
134 See comments in value_coerce_array() for rationale for reason for
135 doing lower bounds adjustment here rather than there.
136 FIXME: Perhaps we should validate that the index is valid and if
137 verbosity is set, warn about invalid indices (but still use them). */
138
139 struct value *
140 value_subscript (struct value *array, LONGEST index)
141 {
142 struct value *bound;
143 int c_style = current_language->c_style_arrays;
144 struct type *tarray;
145
146 array = coerce_ref (array);
147 tarray = check_typedef (value_type (array));
148
149 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
150 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
151 {
152 struct type *range_type = TYPE_INDEX_TYPE (tarray);
153 LONGEST lowerbound, upperbound;
154 get_discrete_bounds (range_type, &lowerbound, &upperbound);
155
156 if (VALUE_LVAL (array) != lval_memory)
157 return value_subscripted_rvalue (array, index, lowerbound);
158
159 if (c_style == 0)
160 {
161 if (index >= lowerbound && index <= upperbound)
162 return value_subscripted_rvalue (array, index, lowerbound);
163 /* Emit warning unless we have an array of unknown size.
164 An array of unknown size has lowerbound 0 and upperbound -1. */
165 if (upperbound > -1)
166 warning (_("array or string index out of range"));
167 /* fall doing C stuff */
168 c_style = 1;
169 }
170
171 index -= lowerbound;
172 array = value_coerce_array (array);
173 }
174
175 if (c_style)
176 return value_ind (value_ptradd (array, index));
177 else
178 error (_("not an array or string"));
179 }
180
181 /* Return the value of EXPR[IDX], expr an aggregate rvalue
182 (eg, a vector register). This routine used to promote floats
183 to doubles, but no longer does. */
184
185 struct value *
186 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
187 {
188 struct type *array_type = check_typedef (value_type (array));
189 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
190 unsigned int elt_size = TYPE_LENGTH (elt_type);
191 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
192 struct value *v;
193
194 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
195 error (_("no such vector element"));
196
197 v = allocate_value (elt_type);
198 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
199 set_value_lazy (v, 1);
200 else
201 memcpy (value_contents_writeable (v),
202 value_contents (array) + elt_offs, elt_size);
203
204 set_value_component_location (v, array);
205 VALUE_REGNUM (v) = VALUE_REGNUM (array);
206 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
207 set_value_offset (v, value_offset (array) + elt_offs);
208 return v;
209 }
210
211 /* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
212
213 struct value *
214 value_bitstring_subscript (struct type *type,
215 struct value *bitstring, LONGEST index)
216 {
217
218 struct type *bitstring_type, *range_type;
219 struct value *v;
220 int offset, byte, bit_index;
221 LONGEST lowerbound, upperbound;
222
223 bitstring_type = check_typedef (value_type (bitstring));
224 gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
225
226 range_type = TYPE_INDEX_TYPE (bitstring_type);
227 get_discrete_bounds (range_type, &lowerbound, &upperbound);
228 if (index < lowerbound || index > upperbound)
229 error (_("bitstring index out of range"));
230
231 index -= lowerbound;
232 offset = index / TARGET_CHAR_BIT;
233 byte = *((char *) value_contents (bitstring) + offset);
234
235 bit_index = index % TARGET_CHAR_BIT;
236 byte >>= (gdbarch_bits_big_endian (current_gdbarch) ?
237 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
238
239 v = value_from_longest (type, byte & 1);
240
241 set_value_bitpos (v, bit_index);
242 set_value_bitsize (v, 1);
243 set_value_component_location (v, bitstring);
244 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
245
246 set_value_offset (v, offset + value_offset (bitstring));
247
248 return v;
249 }
250
251 \f
252 /* Check to see if either argument is a structure, or a reference to
253 one. This is called so we know whether to go ahead with the normal
254 binop or look for a user defined function instead.
255
256 For now, we do not overload the `=' operator. */
257
258 int
259 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
260 {
261 struct type *type1, *type2;
262 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
263 return 0;
264
265 type1 = check_typedef (value_type (arg1));
266 if (TYPE_CODE (type1) == TYPE_CODE_REF)
267 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
268
269 type2 = check_typedef (value_type (arg2));
270 if (TYPE_CODE (type2) == TYPE_CODE_REF)
271 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
272
273 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
274 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
275 }
276
277 /* Check to see if argument is a structure. This is called so
278 we know whether to go ahead with the normal unop or look for a
279 user defined function instead.
280
281 For now, we do not overload the `&' operator. */
282
283 int
284 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
285 {
286 struct type *type1;
287 if (op == UNOP_ADDR)
288 return 0;
289 type1 = check_typedef (value_type (arg1));
290 for (;;)
291 {
292 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
293 return 1;
294 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
295 type1 = TYPE_TARGET_TYPE (type1);
296 else
297 return 0;
298 }
299 }
300
301 /* We know either arg1 or arg2 is a structure, so try to find the right
302 user defined function. Create an argument vector that calls
303 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
304 binary operator which is legal for GNU C++).
305
306 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
307 is the opcode saying how to modify it. Otherwise, OTHEROP is
308 unused. */
309
310 struct value *
311 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
312 enum exp_opcode otherop, enum noside noside)
313 {
314 struct value **argvec;
315 char *ptr;
316 char tstr[13];
317 int static_memfuncp;
318
319 arg1 = coerce_ref (arg1);
320 arg2 = coerce_ref (arg2);
321
322 /* now we know that what we have to do is construct our
323 arg vector and find the right function to call it with. */
324
325 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
326 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
327
328 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
329 argvec[1] = value_addr (arg1);
330 argvec[2] = arg2;
331 argvec[3] = 0;
332
333 /* make the right function name up */
334 strcpy (tstr, "operator__");
335 ptr = tstr + 8;
336 switch (op)
337 {
338 case BINOP_ADD:
339 strcpy (ptr, "+");
340 break;
341 case BINOP_SUB:
342 strcpy (ptr, "-");
343 break;
344 case BINOP_MUL:
345 strcpy (ptr, "*");
346 break;
347 case BINOP_DIV:
348 strcpy (ptr, "/");
349 break;
350 case BINOP_REM:
351 strcpy (ptr, "%");
352 break;
353 case BINOP_LSH:
354 strcpy (ptr, "<<");
355 break;
356 case BINOP_RSH:
357 strcpy (ptr, ">>");
358 break;
359 case BINOP_BITWISE_AND:
360 strcpy (ptr, "&");
361 break;
362 case BINOP_BITWISE_IOR:
363 strcpy (ptr, "|");
364 break;
365 case BINOP_BITWISE_XOR:
366 strcpy (ptr, "^");
367 break;
368 case BINOP_LOGICAL_AND:
369 strcpy (ptr, "&&");
370 break;
371 case BINOP_LOGICAL_OR:
372 strcpy (ptr, "||");
373 break;
374 case BINOP_MIN:
375 strcpy (ptr, "<?");
376 break;
377 case BINOP_MAX:
378 strcpy (ptr, ">?");
379 break;
380 case BINOP_ASSIGN:
381 strcpy (ptr, "=");
382 break;
383 case BINOP_ASSIGN_MODIFY:
384 switch (otherop)
385 {
386 case BINOP_ADD:
387 strcpy (ptr, "+=");
388 break;
389 case BINOP_SUB:
390 strcpy (ptr, "-=");
391 break;
392 case BINOP_MUL:
393 strcpy (ptr, "*=");
394 break;
395 case BINOP_DIV:
396 strcpy (ptr, "/=");
397 break;
398 case BINOP_REM:
399 strcpy (ptr, "%=");
400 break;
401 case BINOP_BITWISE_AND:
402 strcpy (ptr, "&=");
403 break;
404 case BINOP_BITWISE_IOR:
405 strcpy (ptr, "|=");
406 break;
407 case BINOP_BITWISE_XOR:
408 strcpy (ptr, "^=");
409 break;
410 case BINOP_MOD: /* invalid */
411 default:
412 error (_("Invalid binary operation specified."));
413 }
414 break;
415 case BINOP_SUBSCRIPT:
416 strcpy (ptr, "[]");
417 break;
418 case BINOP_EQUAL:
419 strcpy (ptr, "==");
420 break;
421 case BINOP_NOTEQUAL:
422 strcpy (ptr, "!=");
423 break;
424 case BINOP_LESS:
425 strcpy (ptr, "<");
426 break;
427 case BINOP_GTR:
428 strcpy (ptr, ">");
429 break;
430 case BINOP_GEQ:
431 strcpy (ptr, ">=");
432 break;
433 case BINOP_LEQ:
434 strcpy (ptr, "<=");
435 break;
436 case BINOP_MOD: /* invalid */
437 default:
438 error (_("Invalid binary operation specified."));
439 }
440
441 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
442
443 if (argvec[0])
444 {
445 if (static_memfuncp)
446 {
447 argvec[1] = argvec[0];
448 argvec++;
449 }
450 if (noside == EVAL_AVOID_SIDE_EFFECTS)
451 {
452 struct type *return_type;
453 return_type
454 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
455 return value_zero (return_type, VALUE_LVAL (arg1));
456 }
457 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
458 }
459 error (_("member function %s not found"), tstr);
460 #ifdef lint
461 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
462 #endif
463 }
464
465 /* We know that arg1 is a structure, so try to find a unary user
466 defined operator that matches the operator in question.
467 Create an argument vector that calls arg1.operator @ (arg1)
468 and return that value (where '@' is (almost) any unary operator which
469 is legal for GNU C++). */
470
471 struct value *
472 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
473 {
474 struct gdbarch *gdbarch = current_gdbarch;
475 struct value **argvec;
476 char *ptr, *mangle_ptr;
477 char tstr[13], mangle_tstr[13];
478 int static_memfuncp, nargs;
479
480 arg1 = coerce_ref (arg1);
481
482 /* now we know that what we have to do is construct our
483 arg vector and find the right function to call it with. */
484
485 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
486 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
487
488 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
489 argvec[1] = value_addr (arg1);
490 argvec[2] = 0;
491
492 nargs = 1;
493
494 /* make the right function name up */
495 strcpy (tstr, "operator__");
496 ptr = tstr + 8;
497 strcpy (mangle_tstr, "__");
498 mangle_ptr = mangle_tstr + 2;
499 switch (op)
500 {
501 case UNOP_PREINCREMENT:
502 strcpy (ptr, "++");
503 break;
504 case UNOP_PREDECREMENT:
505 strcpy (ptr, "--");
506 break;
507 case UNOP_POSTINCREMENT:
508 strcpy (ptr, "++");
509 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
510 argvec[3] = 0;
511 nargs ++;
512 break;
513 case UNOP_POSTDECREMENT:
514 strcpy (ptr, "--");
515 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
516 argvec[3] = 0;
517 nargs ++;
518 break;
519 case UNOP_LOGICAL_NOT:
520 strcpy (ptr, "!");
521 break;
522 case UNOP_COMPLEMENT:
523 strcpy (ptr, "~");
524 break;
525 case UNOP_NEG:
526 strcpy (ptr, "-");
527 break;
528 case UNOP_PLUS:
529 strcpy (ptr, "+");
530 break;
531 case UNOP_IND:
532 strcpy (ptr, "*");
533 break;
534 default:
535 error (_("Invalid unary operation specified."));
536 }
537
538 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
539
540 if (argvec[0])
541 {
542 if (static_memfuncp)
543 {
544 argvec[1] = argvec[0];
545 nargs --;
546 argvec++;
547 }
548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
549 {
550 struct type *return_type;
551 return_type
552 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
553 return value_zero (return_type, VALUE_LVAL (arg1));
554 }
555 return call_function_by_hand (argvec[0], nargs, argvec + 1);
556 }
557 error (_("member function %s not found"), tstr);
558 return 0; /* For lint -- never reached */
559 }
560 \f
561
562 /* Concatenate two values with the following conditions:
563
564 (1) Both values must be either bitstring values or character string
565 values and the resulting value consists of the concatenation of
566 ARG1 followed by ARG2.
567
568 or
569
570 One value must be an integer value and the other value must be
571 either a bitstring value or character string value, which is
572 to be repeated by the number of times specified by the integer
573 value.
574
575
576 (2) Boolean values are also allowed and are treated as bit string
577 values of length 1.
578
579 (3) Character values are also allowed and are treated as character
580 string values of length 1.
581 */
582
583 struct value *
584 value_concat (struct value *arg1, struct value *arg2)
585 {
586 struct value *inval1;
587 struct value *inval2;
588 struct value *outval = NULL;
589 int inval1len, inval2len;
590 int count, idx;
591 char *ptr;
592 char inchar;
593 struct type *type1 = check_typedef (value_type (arg1));
594 struct type *type2 = check_typedef (value_type (arg2));
595 struct type *char_type;
596
597 /* First figure out if we are dealing with two values to be concatenated
598 or a repeat count and a value to be repeated. INVAL1 is set to the
599 first of two concatenated values, or the repeat count. INVAL2 is set
600 to the second of the two concatenated values or the value to be
601 repeated. */
602
603 if (TYPE_CODE (type2) == TYPE_CODE_INT)
604 {
605 struct type *tmp = type1;
606 type1 = tmp;
607 tmp = type2;
608 inval1 = arg2;
609 inval2 = arg1;
610 }
611 else
612 {
613 inval1 = arg1;
614 inval2 = arg2;
615 }
616
617 /* Now process the input values. */
618
619 if (TYPE_CODE (type1) == TYPE_CODE_INT)
620 {
621 /* We have a repeat count. Validate the second value and then
622 construct a value repeated that many times. */
623 if (TYPE_CODE (type2) == TYPE_CODE_STRING
624 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
625 {
626 count = longest_to_int (value_as_long (inval1));
627 inval2len = TYPE_LENGTH (type2);
628 ptr = (char *) alloca (count * inval2len);
629 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
630 {
631 char_type = type2;
632 inchar = (char) unpack_long (type2,
633 value_contents (inval2));
634 for (idx = 0; idx < count; idx++)
635 {
636 *(ptr + idx) = inchar;
637 }
638 }
639 else
640 {
641 char_type = TYPE_TARGET_TYPE (type2);
642 for (idx = 0; idx < count; idx++)
643 {
644 memcpy (ptr + (idx * inval2len), value_contents (inval2),
645 inval2len);
646 }
647 }
648 outval = value_string (ptr, count * inval2len, char_type);
649 }
650 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
651 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
652 {
653 error (_("unimplemented support for bitstring/boolean repeats"));
654 }
655 else
656 {
657 error (_("can't repeat values of that type"));
658 }
659 }
660 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
661 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
662 {
663 /* We have two character strings to concatenate. */
664 if (TYPE_CODE (type2) != TYPE_CODE_STRING
665 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
666 {
667 error (_("Strings can only be concatenated with other strings."));
668 }
669 inval1len = TYPE_LENGTH (type1);
670 inval2len = TYPE_LENGTH (type2);
671 ptr = (char *) alloca (inval1len + inval2len);
672 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
673 {
674 char_type = type1;
675 *ptr = (char) unpack_long (type1, value_contents (inval1));
676 }
677 else
678 {
679 char_type = TYPE_TARGET_TYPE (type1);
680 memcpy (ptr, value_contents (inval1), inval1len);
681 }
682 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
683 {
684 *(ptr + inval1len) =
685 (char) unpack_long (type2, value_contents (inval2));
686 }
687 else
688 {
689 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
690 }
691 outval = value_string (ptr, inval1len + inval2len, char_type);
692 }
693 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
694 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
695 {
696 /* We have two bitstrings to concatenate. */
697 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
698 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
699 {
700 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
701 }
702 error (_("unimplemented support for bitstring/boolean concatenation."));
703 }
704 else
705 {
706 /* We don't know how to concatenate these operands. */
707 error (_("illegal operands for concatenation."));
708 }
709 return (outval);
710 }
711 \f
712 /* Integer exponentiation: V1**V2, where both arguments are
713 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
714 static LONGEST
715 integer_pow (LONGEST v1, LONGEST v2)
716 {
717 if (v2 < 0)
718 {
719 if (v1 == 0)
720 error (_("Attempt to raise 0 to negative power."));
721 else
722 return 0;
723 }
724 else
725 {
726 /* The Russian Peasant's Algorithm */
727 LONGEST v;
728
729 v = 1;
730 for (;;)
731 {
732 if (v2 & 1L)
733 v *= v1;
734 v2 >>= 1;
735 if (v2 == 0)
736 return v;
737 v1 *= v1;
738 }
739 }
740 }
741
742 /* Integer exponentiation: V1**V2, where both arguments are
743 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
744 static ULONGEST
745 uinteger_pow (ULONGEST v1, LONGEST v2)
746 {
747 if (v2 < 0)
748 {
749 if (v1 == 0)
750 error (_("Attempt to raise 0 to negative power."));
751 else
752 return 0;
753 }
754 else
755 {
756 /* The Russian Peasant's Algorithm */
757 ULONGEST v;
758
759 v = 1;
760 for (;;)
761 {
762 if (v2 & 1L)
763 v *= v1;
764 v2 >>= 1;
765 if (v2 == 0)
766 return v;
767 v1 *= v1;
768 }
769 }
770 }
771
772 /* Obtain decimal value of arguments for binary operation, converting from
773 other types if one of them is not decimal floating point. */
774 static void
775 value_args_as_decimal (struct value *arg1, struct value *arg2,
776 gdb_byte *x, int *len_x, gdb_byte *y, int *len_y)
777 {
778 struct type *type1, *type2;
779
780 type1 = check_typedef (value_type (arg1));
781 type2 = check_typedef (value_type (arg2));
782
783 /* At least one of the arguments must be of decimal float type. */
784 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
785 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
786
787 if (TYPE_CODE (type1) == TYPE_CODE_FLT
788 || TYPE_CODE (type2) == TYPE_CODE_FLT)
789 /* The DFP extension to the C language does not allow mixing of
790 * decimal float types with other float types in expressions
791 * (see WDTR 24732, page 12). */
792 error (_("Mixing decimal floating types with other floating types is not allowed."));
793
794 /* Obtain decimal value of arg1, converting from other types
795 if necessary. */
796
797 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
798 {
799 *len_x = TYPE_LENGTH (type1);
800 memcpy (x, value_contents (arg1), *len_x);
801 }
802 else if (is_integral_type (type1))
803 {
804 *len_x = TYPE_LENGTH (type2);
805 decimal_from_integral (arg1, x, *len_x);
806 }
807 else
808 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
809 TYPE_NAME (type2));
810
811 /* Obtain decimal value of arg2, converting from other types
812 if necessary. */
813
814 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
815 {
816 *len_y = TYPE_LENGTH (type2);
817 memcpy (y, value_contents (arg2), *len_y);
818 }
819 else if (is_integral_type (type2))
820 {
821 *len_y = TYPE_LENGTH (type1);
822 decimal_from_integral (arg2, y, *len_y);
823 }
824 else
825 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
826 TYPE_NAME (type2));
827 }
828
829 /* Perform a binary operation on two operands which have reasonable
830 representations as integers or floats. This includes booleans,
831 characters, integers, or floats.
832 Does not support addition and subtraction on pointers;
833 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
834
835 struct value *
836 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
837 {
838 struct value *val;
839 struct type *type1, *type2, *result_type;
840
841 arg1 = coerce_ref (arg1);
842 arg2 = coerce_ref (arg2);
843
844 type1 = check_typedef (value_type (arg1));
845 type2 = check_typedef (value_type (arg2));
846
847 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
848 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
849 && !is_integral_type (type1))
850 || (TYPE_CODE (type2) != TYPE_CODE_FLT
851 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
852 && !is_integral_type (type2)))
853 error (_("Argument to arithmetic operation not a number or boolean."));
854
855 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
856 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
857 {
858 struct type *v_type;
859 int len_v1, len_v2, len_v;
860 gdb_byte v1[16], v2[16];
861 gdb_byte v[16];
862
863 /* If only one type is decimal float, use its type.
864 Otherwise use the bigger type. */
865 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
866 result_type = type2;
867 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
868 result_type = type1;
869 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
870 result_type = type2;
871 else
872 result_type = type1;
873
874 len_v = TYPE_LENGTH (result_type);
875
876 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
877
878 switch (op)
879 {
880 case BINOP_ADD:
881 case BINOP_SUB:
882 case BINOP_MUL:
883 case BINOP_DIV:
884 case BINOP_EXP:
885 decimal_binop (op, v1, len_v1, v2, len_v2, v, len_v);
886 break;
887
888 default:
889 error (_("Operation not valid for decimal floating point number."));
890 }
891
892 val = value_from_decfloat (result_type, v);
893 }
894 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
895 || TYPE_CODE (type2) == TYPE_CODE_FLT)
896 {
897 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
898 in target format. real.c in GCC probably has the necessary
899 code. */
900 DOUBLEST v1, v2, v = 0;
901 v1 = value_as_double (arg1);
902 v2 = value_as_double (arg2);
903
904 switch (op)
905 {
906 case BINOP_ADD:
907 v = v1 + v2;
908 break;
909
910 case BINOP_SUB:
911 v = v1 - v2;
912 break;
913
914 case BINOP_MUL:
915 v = v1 * v2;
916 break;
917
918 case BINOP_DIV:
919 v = v1 / v2;
920 break;
921
922 case BINOP_EXP:
923 errno = 0;
924 v = pow (v1, v2);
925 if (errno)
926 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
927 break;
928
929 case BINOP_MIN:
930 v = v1 < v2 ? v1 : v2;
931 break;
932
933 case BINOP_MAX:
934 v = v1 > v2 ? v1 : v2;
935 break;
936
937 default:
938 error (_("Integer-only operation on floating point number."));
939 }
940
941 /* If only one type is float, use its type.
942 Otherwise use the bigger type. */
943 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
944 result_type = type2;
945 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
946 result_type = type1;
947 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
948 result_type = type2;
949 else
950 result_type = type1;
951
952 val = allocate_value (result_type);
953 store_typed_floating (value_contents_raw (val), value_type (val), v);
954 }
955 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
956 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
957 {
958 LONGEST v1, v2, v = 0;
959 v1 = value_as_long (arg1);
960 v2 = value_as_long (arg2);
961
962 switch (op)
963 {
964 case BINOP_BITWISE_AND:
965 v = v1 & v2;
966 break;
967
968 case BINOP_BITWISE_IOR:
969 v = v1 | v2;
970 break;
971
972 case BINOP_BITWISE_XOR:
973 v = v1 ^ v2;
974 break;
975
976 case BINOP_EQUAL:
977 v = v1 == v2;
978 break;
979
980 case BINOP_NOTEQUAL:
981 v = v1 != v2;
982 break;
983
984 default:
985 error (_("Invalid operation on booleans."));
986 }
987
988 result_type = type1;
989
990 val = allocate_value (result_type);
991 store_signed_integer (value_contents_raw (val),
992 TYPE_LENGTH (result_type),
993 v);
994 }
995 else
996 /* Integral operations here. */
997 {
998 /* Determine type length of the result, and if the operation should
999 be done unsigned. For exponentiation and shift operators,
1000 use the length and type of the left operand. Otherwise,
1001 use the signedness of the operand with the greater length.
1002 If both operands are of equal length, use unsigned operation
1003 if one of the operands is unsigned. */
1004 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1005 result_type = type1;
1006 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1007 result_type = type1;
1008 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1009 result_type = type2;
1010 else if (TYPE_UNSIGNED (type1))
1011 result_type = type1;
1012 else if (TYPE_UNSIGNED (type2))
1013 result_type = type2;
1014 else
1015 result_type = type1;
1016
1017 if (TYPE_UNSIGNED (result_type))
1018 {
1019 LONGEST v2_signed = value_as_long (arg2);
1020 ULONGEST v1, v2, v = 0;
1021 v1 = (ULONGEST) value_as_long (arg1);
1022 v2 = (ULONGEST) v2_signed;
1023
1024 switch (op)
1025 {
1026 case BINOP_ADD:
1027 v = v1 + v2;
1028 break;
1029
1030 case BINOP_SUB:
1031 v = v1 - v2;
1032 break;
1033
1034 case BINOP_MUL:
1035 v = v1 * v2;
1036 break;
1037
1038 case BINOP_DIV:
1039 case BINOP_INTDIV:
1040 if (v2 != 0)
1041 v = v1 / v2;
1042 else
1043 error (_("Division by zero"));
1044 break;
1045
1046 case BINOP_EXP:
1047 v = uinteger_pow (v1, v2_signed);
1048 break;
1049
1050 case BINOP_REM:
1051 if (v2 != 0)
1052 v = v1 % v2;
1053 else
1054 error (_("Division by zero"));
1055 break;
1056
1057 case BINOP_MOD:
1058 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1059 v1 mod 0 has a defined value, v1. */
1060 if (v2 == 0)
1061 {
1062 v = v1;
1063 }
1064 else
1065 {
1066 v = v1 / v2;
1067 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1068 v = v1 - (v2 * v);
1069 }
1070 break;
1071
1072 case BINOP_LSH:
1073 v = v1 << v2;
1074 break;
1075
1076 case BINOP_RSH:
1077 v = v1 >> v2;
1078 break;
1079
1080 case BINOP_BITWISE_AND:
1081 v = v1 & v2;
1082 break;
1083
1084 case BINOP_BITWISE_IOR:
1085 v = v1 | v2;
1086 break;
1087
1088 case BINOP_BITWISE_XOR:
1089 v = v1 ^ v2;
1090 break;
1091
1092 case BINOP_LOGICAL_AND:
1093 v = v1 && v2;
1094 break;
1095
1096 case BINOP_LOGICAL_OR:
1097 v = v1 || v2;
1098 break;
1099
1100 case BINOP_MIN:
1101 v = v1 < v2 ? v1 : v2;
1102 break;
1103
1104 case BINOP_MAX:
1105 v = v1 > v2 ? v1 : v2;
1106 break;
1107
1108 case BINOP_EQUAL:
1109 v = v1 == v2;
1110 break;
1111
1112 case BINOP_NOTEQUAL:
1113 v = v1 != v2;
1114 break;
1115
1116 case BINOP_LESS:
1117 v = v1 < v2;
1118 break;
1119
1120 default:
1121 error (_("Invalid binary operation on numbers."));
1122 }
1123
1124 val = allocate_value (result_type);
1125 store_unsigned_integer (value_contents_raw (val),
1126 TYPE_LENGTH (value_type (val)),
1127 v);
1128 }
1129 else
1130 {
1131 LONGEST v1, v2, v = 0;
1132 v1 = value_as_long (arg1);
1133 v2 = value_as_long (arg2);
1134
1135 switch (op)
1136 {
1137 case BINOP_ADD:
1138 v = v1 + v2;
1139 break;
1140
1141 case BINOP_SUB:
1142 v = v1 - v2;
1143 break;
1144
1145 case BINOP_MUL:
1146 v = v1 * v2;
1147 break;
1148
1149 case BINOP_DIV:
1150 case BINOP_INTDIV:
1151 if (v2 != 0)
1152 v = v1 / v2;
1153 else
1154 error (_("Division by zero"));
1155 break;
1156
1157 case BINOP_EXP:
1158 v = integer_pow (v1, v2);
1159 break;
1160
1161 case BINOP_REM:
1162 if (v2 != 0)
1163 v = v1 % v2;
1164 else
1165 error (_("Division by zero"));
1166 break;
1167
1168 case BINOP_MOD:
1169 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1170 X mod 0 has a defined value, X. */
1171 if (v2 == 0)
1172 {
1173 v = v1;
1174 }
1175 else
1176 {
1177 v = v1 / v2;
1178 /* Compute floor. */
1179 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1180 {
1181 v--;
1182 }
1183 v = v1 - (v2 * v);
1184 }
1185 break;
1186
1187 case BINOP_LSH:
1188 v = v1 << v2;
1189 break;
1190
1191 case BINOP_RSH:
1192 v = v1 >> v2;
1193 break;
1194
1195 case BINOP_BITWISE_AND:
1196 v = v1 & v2;
1197 break;
1198
1199 case BINOP_BITWISE_IOR:
1200 v = v1 | v2;
1201 break;
1202
1203 case BINOP_BITWISE_XOR:
1204 v = v1 ^ v2;
1205 break;
1206
1207 case BINOP_LOGICAL_AND:
1208 v = v1 && v2;
1209 break;
1210
1211 case BINOP_LOGICAL_OR:
1212 v = v1 || v2;
1213 break;
1214
1215 case BINOP_MIN:
1216 v = v1 < v2 ? v1 : v2;
1217 break;
1218
1219 case BINOP_MAX:
1220 v = v1 > v2 ? v1 : v2;
1221 break;
1222
1223 case BINOP_EQUAL:
1224 v = v1 == v2;
1225 break;
1226
1227 case BINOP_LESS:
1228 v = v1 < v2;
1229 break;
1230
1231 default:
1232 error (_("Invalid binary operation on numbers."));
1233 }
1234
1235 val = allocate_value (result_type);
1236 store_signed_integer (value_contents_raw (val),
1237 TYPE_LENGTH (value_type (val)),
1238 v);
1239 }
1240 }
1241
1242 return val;
1243 }
1244 \f
1245 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1246
1247 int
1248 value_logical_not (struct value *arg1)
1249 {
1250 int len;
1251 const gdb_byte *p;
1252 struct type *type1;
1253
1254 arg1 = coerce_array (arg1);
1255 type1 = check_typedef (value_type (arg1));
1256
1257 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1258 return 0 == value_as_double (arg1);
1259 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1260 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1));
1261
1262 len = TYPE_LENGTH (type1);
1263 p = value_contents (arg1);
1264
1265 while (--len >= 0)
1266 {
1267 if (*p++)
1268 break;
1269 }
1270
1271 return len < 0;
1272 }
1273
1274 /* Perform a comparison on two string values (whose content are not
1275 necessarily null terminated) based on their length */
1276
1277 static int
1278 value_strcmp (struct value *arg1, struct value *arg2)
1279 {
1280 int len1 = TYPE_LENGTH (value_type (arg1));
1281 int len2 = TYPE_LENGTH (value_type (arg2));
1282 const gdb_byte *s1 = value_contents (arg1);
1283 const gdb_byte *s2 = value_contents (arg2);
1284 int i, len = len1 < len2 ? len1 : len2;
1285
1286 for (i = 0; i < len; i++)
1287 {
1288 if (s1[i] < s2[i])
1289 return -1;
1290 else if (s1[i] > s2[i])
1291 return 1;
1292 else
1293 continue;
1294 }
1295
1296 if (len1 < len2)
1297 return -1;
1298 else if (len1 > len2)
1299 return 1;
1300 else
1301 return 0;
1302 }
1303
1304 /* Simulate the C operator == by returning a 1
1305 iff ARG1 and ARG2 have equal contents. */
1306
1307 int
1308 value_equal (struct value *arg1, struct value *arg2)
1309 {
1310 int len;
1311 const gdb_byte *p1;
1312 const gdb_byte *p2;
1313 struct type *type1, *type2;
1314 enum type_code code1;
1315 enum type_code code2;
1316 int is_int1, is_int2;
1317
1318 arg1 = coerce_array (arg1);
1319 arg2 = coerce_array (arg2);
1320
1321 type1 = check_typedef (value_type (arg1));
1322 type2 = check_typedef (value_type (arg2));
1323 code1 = TYPE_CODE (type1);
1324 code2 = TYPE_CODE (type2);
1325 is_int1 = is_integral_type (type1);
1326 is_int2 = is_integral_type (type2);
1327
1328 if (is_int1 && is_int2)
1329 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1330 BINOP_EQUAL)));
1331 else if ((code1 == TYPE_CODE_FLT || is_int1)
1332 && (code2 == TYPE_CODE_FLT || is_int2))
1333 {
1334 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1335 `long double' values are returned in static storage (m68k). */
1336 DOUBLEST d = value_as_double (arg1);
1337 return d == value_as_double (arg2);
1338 }
1339 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1340 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1341 {
1342 gdb_byte v1[16], v2[16];
1343 int len_v1, len_v2;
1344
1345 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1346
1347 return decimal_compare (v1, len_v1, v2, len_v2) == 0;
1348 }
1349
1350 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1351 is bigger. */
1352 else if (code1 == TYPE_CODE_PTR && is_int2)
1353 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1354 else if (code2 == TYPE_CODE_PTR && is_int1)
1355 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1356
1357 else if (code1 == code2
1358 && ((len = (int) TYPE_LENGTH (type1))
1359 == (int) TYPE_LENGTH (type2)))
1360 {
1361 p1 = value_contents (arg1);
1362 p2 = value_contents (arg2);
1363 while (--len >= 0)
1364 {
1365 if (*p1++ != *p2++)
1366 break;
1367 }
1368 return len < 0;
1369 }
1370 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1371 {
1372 return value_strcmp (arg1, arg2) == 0;
1373 }
1374 else
1375 {
1376 error (_("Invalid type combination in equality test."));
1377 return 0; /* For lint -- never reached */
1378 }
1379 }
1380
1381 /* Simulate the C operator < by returning 1
1382 iff ARG1's contents are less than ARG2's. */
1383
1384 int
1385 value_less (struct value *arg1, struct value *arg2)
1386 {
1387 enum type_code code1;
1388 enum type_code code2;
1389 struct type *type1, *type2;
1390 int is_int1, is_int2;
1391
1392 arg1 = coerce_array (arg1);
1393 arg2 = coerce_array (arg2);
1394
1395 type1 = check_typedef (value_type (arg1));
1396 type2 = check_typedef (value_type (arg2));
1397 code1 = TYPE_CODE (type1);
1398 code2 = TYPE_CODE (type2);
1399 is_int1 = is_integral_type (type1);
1400 is_int2 = is_integral_type (type2);
1401
1402 if (is_int1 && is_int2)
1403 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1404 BINOP_LESS)));
1405 else if ((code1 == TYPE_CODE_FLT || is_int1)
1406 && (code2 == TYPE_CODE_FLT || is_int2))
1407 {
1408 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1409 `long double' values are returned in static storage (m68k). */
1410 DOUBLEST d = value_as_double (arg1);
1411 return d < value_as_double (arg2);
1412 }
1413 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1414 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1415 {
1416 gdb_byte v1[16], v2[16];
1417 int len_v1, len_v2;
1418
1419 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1420
1421 return decimal_compare (v1, len_v1, v2, len_v2) == -1;
1422 }
1423 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1424 return value_as_address (arg1) < value_as_address (arg2);
1425
1426 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1427 is bigger. */
1428 else if (code1 == TYPE_CODE_PTR && is_int2)
1429 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1430 else if (code2 == TYPE_CODE_PTR && is_int1)
1431 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1432 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1433 return value_strcmp (arg1, arg2) < 0;
1434 else
1435 {
1436 error (_("Invalid type combination in ordering comparison."));
1437 return 0;
1438 }
1439 }
1440 \f
1441 /* The unary operators +, - and ~. They free the argument ARG1. */
1442
1443 struct value *
1444 value_pos (struct value *arg1)
1445 {
1446 struct type *type;
1447
1448 arg1 = coerce_ref (arg1);
1449 type = check_typedef (value_type (arg1));
1450
1451 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1452 return value_from_double (type, value_as_double (arg1));
1453 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1454 return value_from_decfloat (type, value_contents (arg1));
1455 else if (is_integral_type (type))
1456 {
1457 return value_from_longest (type, value_as_long (arg1));
1458 }
1459 else
1460 {
1461 error ("Argument to positive operation not a number.");
1462 return 0; /* For lint -- never reached */
1463 }
1464 }
1465
1466 struct value *
1467 value_neg (struct value *arg1)
1468 {
1469 struct type *type;
1470
1471 arg1 = coerce_ref (arg1);
1472 type = check_typedef (value_type (arg1));
1473
1474 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1475 {
1476 struct value *val = allocate_value (type);
1477 int len = TYPE_LENGTH (type);
1478 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1479
1480 memcpy (decbytes, value_contents (arg1), len);
1481
1482 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1483 decbytes[len-1] = decbytes[len - 1] | 0x80;
1484 else
1485 decbytes[0] = decbytes[0] | 0x80;
1486
1487 memcpy (value_contents_raw (val), decbytes, len);
1488 return val;
1489 }
1490 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1491 return value_from_double (type, -value_as_double (arg1));
1492 else if (is_integral_type (type))
1493 {
1494 return value_from_longest (type, -value_as_long (arg1));
1495 }
1496 else
1497 {
1498 error (_("Argument to negate operation not a number."));
1499 return 0; /* For lint -- never reached */
1500 }
1501 }
1502
1503 struct value *
1504 value_complement (struct value *arg1)
1505 {
1506 struct type *type;
1507
1508 arg1 = coerce_ref (arg1);
1509 type = check_typedef (value_type (arg1));
1510
1511 if (!is_integral_type (type))
1512 error (_("Argument to complement operation not an integer or boolean."));
1513
1514 return value_from_longest (type, ~value_as_long (arg1));
1515 }
1516 \f
1517 /* The INDEX'th bit of SET value whose value_type is TYPE,
1518 and whose value_contents is valaddr.
1519 Return -1 if out of range, -2 other error. */
1520
1521 int
1522 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1523 {
1524 LONGEST low_bound, high_bound;
1525 LONGEST word;
1526 unsigned rel_index;
1527 struct type *range = TYPE_INDEX_TYPE (type);
1528 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1529 return -2;
1530 if (index < low_bound || index > high_bound)
1531 return -1;
1532 rel_index = index - low_bound;
1533 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1);
1534 rel_index %= TARGET_CHAR_BIT;
1535 if (gdbarch_bits_big_endian (current_gdbarch))
1536 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1537 return (word >> rel_index) & 1;
1538 }
1539
1540 int
1541 value_in (struct value *element, struct value *set)
1542 {
1543 int member;
1544 struct type *settype = check_typedef (value_type (set));
1545 struct type *eltype = check_typedef (value_type (element));
1546 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1547 eltype = TYPE_TARGET_TYPE (eltype);
1548 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1549 error (_("Second argument of 'IN' has wrong type"));
1550 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1551 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1552 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1553 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1554 error (_("First argument of 'IN' has wrong type"));
1555 member = value_bit_index (settype, value_contents (set),
1556 value_as_long (element));
1557 if (member < 0)
1558 error (_("First argument of 'IN' not in range"));
1559 return member;
1560 }
1561
1562 void
1563 _initialize_valarith (void)
1564 {
1565 }
This page took 0.06326 seconds and 5 git commands to generate.