* ppc-opc.c: Support optional L form mtmsr.
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 static struct value *value_subscripted_rvalue (struct value *, struct value *, int);
43
44 void _initialize_valarith (void);
45 \f
46
47 /* Given a pointer, return the size of its target.
48 If the pointer type is void *, then return 1.
49 If the target type is incomplete, then error out.
50 This isn't a general purpose function, but just a
51 helper for value_sub & value_add.
52 */
53
54 static LONGEST
55 find_size_for_pointer_math (struct type *ptr_type)
56 {
57 LONGEST sz = -1;
58 struct type *ptr_target;
59
60 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
61
62 sz = TYPE_LENGTH (ptr_target);
63 if (sz == 0)
64 {
65 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
66 sz = 1;
67 else
68 {
69 char *name;
70
71 name = TYPE_NAME (ptr_target);
72 if (name == NULL)
73 name = TYPE_TAG_NAME (ptr_target);
74 if (name == NULL)
75 error (_("Cannot perform pointer math on incomplete types, "
76 "try casting to a known type, or void *."));
77 else
78 error (_("Cannot perform pointer math on incomplete type \"%s\", "
79 "try casting to a known type, or void *."), name);
80 }
81 }
82 return sz;
83 }
84
85 struct value *
86 value_add (struct value *arg1, struct value *arg2)
87 {
88 struct value *valint;
89 struct value *valptr;
90 LONGEST sz;
91 struct type *type1, *type2, *valptrtype;
92
93 arg1 = coerce_array (arg1);
94 arg2 = coerce_array (arg2);
95 type1 = check_typedef (value_type (arg1));
96 type2 = check_typedef (value_type (arg2));
97
98 if ((TYPE_CODE (type1) == TYPE_CODE_PTR
99 || TYPE_CODE (type2) == TYPE_CODE_PTR)
100 &&
101 (is_integral_type (type1) || is_integral_type (type2)))
102 /* Exactly one argument is a pointer, and one is an integer. */
103 {
104 struct value *retval;
105
106 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
107 {
108 valptr = arg1;
109 valint = arg2;
110 valptrtype = type1;
111 }
112 else
113 {
114 valptr = arg2;
115 valint = arg1;
116 valptrtype = type2;
117 }
118
119 sz = find_size_for_pointer_math (valptrtype);
120
121 retval = value_from_pointer (valptrtype,
122 value_as_address (valptr)
123 + (sz * value_as_long (valint)));
124 return retval;
125 }
126
127 return value_binop (arg1, arg2, BINOP_ADD);
128 }
129
130 struct value *
131 value_sub (struct value *arg1, struct value *arg2)
132 {
133 struct type *type1, *type2;
134 arg1 = coerce_array (arg1);
135 arg2 = coerce_array (arg2);
136 type1 = check_typedef (value_type (arg1));
137 type2 = check_typedef (value_type (arg2));
138
139 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
140 {
141 if (is_integral_type (type2))
142 {
143 /* pointer - integer. */
144 LONGEST sz = find_size_for_pointer_math (type1);
145
146 return value_from_pointer (type1,
147 (value_as_address (arg1)
148 - (sz * value_as_long (arg2))));
149 }
150 else if (TYPE_CODE (type2) == TYPE_CODE_PTR
151 && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
152 == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
153 {
154 /* pointer to <type x> - pointer to <type x>. */
155 LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
156 return value_from_longest
157 (builtin_type_long, /* FIXME -- should be ptrdiff_t */
158 (value_as_long (arg1) - value_as_long (arg2)) / sz);
159 }
160 else
161 {
162 error (_("\
163 First argument of `-' is a pointer and second argument is neither\n\
164 an integer nor a pointer of the same type."));
165 }
166 }
167
168 return value_binop (arg1, arg2, BINOP_SUB);
169 }
170
171 /* Return the value of ARRAY[IDX].
172 See comments in value_coerce_array() for rationale for reason for
173 doing lower bounds adjustment here rather than there.
174 FIXME: Perhaps we should validate that the index is valid and if
175 verbosity is set, warn about invalid indices (but still use them). */
176
177 struct value *
178 value_subscript (struct value *array, struct value *idx)
179 {
180 struct value *bound;
181 int c_style = current_language->c_style_arrays;
182 struct type *tarray;
183
184 array = coerce_ref (array);
185 tarray = check_typedef (value_type (array));
186
187 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
188 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
189 {
190 struct type *range_type = TYPE_INDEX_TYPE (tarray);
191 LONGEST lowerbound, upperbound;
192 get_discrete_bounds (range_type, &lowerbound, &upperbound);
193
194 if (VALUE_LVAL (array) != lval_memory)
195 return value_subscripted_rvalue (array, idx, lowerbound);
196
197 if (c_style == 0)
198 {
199 LONGEST index = value_as_long (idx);
200 if (index >= lowerbound && index <= upperbound)
201 return value_subscripted_rvalue (array, idx, lowerbound);
202 /* Emit warning unless we have an array of unknown size.
203 An array of unknown size has lowerbound 0 and upperbound -1. */
204 if (upperbound > -1)
205 warning (_("array or string index out of range"));
206 /* fall doing C stuff */
207 c_style = 1;
208 }
209
210 if (lowerbound != 0)
211 {
212 bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
213 idx = value_sub (idx, bound);
214 }
215
216 array = value_coerce_array (array);
217 }
218
219 if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
220 {
221 struct type *range_type = TYPE_INDEX_TYPE (tarray);
222 LONGEST index = value_as_long (idx);
223 struct value *v;
224 int offset, byte, bit_index;
225 LONGEST lowerbound, upperbound;
226 get_discrete_bounds (range_type, &lowerbound, &upperbound);
227 if (index < lowerbound || index > upperbound)
228 error (_("bitstring index out of range"));
229 index -= lowerbound;
230 offset = index / TARGET_CHAR_BIT;
231 byte = *((char *) value_contents (array) + offset);
232 bit_index = index % TARGET_CHAR_BIT;
233 byte >>= (gdbarch_bits_big_endian (current_gdbarch) ?
234 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
235 v = value_from_longest (LA_BOOL_TYPE, byte & 1);
236 set_value_bitpos (v, bit_index);
237 set_value_bitsize (v, 1);
238 VALUE_LVAL (v) = VALUE_LVAL (array);
239 if (VALUE_LVAL (array) == lval_internalvar)
240 VALUE_LVAL (v) = lval_internalvar_component;
241 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
242 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
243 set_value_offset (v, offset + value_offset (array));
244 return v;
245 }
246
247 if (c_style)
248 return value_ind (value_add (array, idx));
249 else
250 error (_("not an array or string"));
251 }
252
253 /* Return the value of EXPR[IDX], expr an aggregate rvalue
254 (eg, a vector register). This routine used to promote floats
255 to doubles, but no longer does. */
256
257 static struct value *
258 value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound)
259 {
260 struct type *array_type = check_typedef (value_type (array));
261 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
262 unsigned int elt_size = TYPE_LENGTH (elt_type);
263 LONGEST index = value_as_long (idx);
264 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
265 struct value *v;
266
267 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
268 error (_("no such vector element"));
269
270 v = allocate_value (elt_type);
271 if (value_lazy (array))
272 set_value_lazy (v, 1);
273 else
274 memcpy (value_contents_writeable (v),
275 value_contents (array) + elt_offs, elt_size);
276
277 if (VALUE_LVAL (array) == lval_internalvar)
278 VALUE_LVAL (v) = lval_internalvar_component;
279 else
280 VALUE_LVAL (v) = VALUE_LVAL (array);
281 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
282 VALUE_REGNUM (v) = VALUE_REGNUM (array);
283 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
284 set_value_offset (v, value_offset (array) + elt_offs);
285 return v;
286 }
287 \f
288 /* Check to see if either argument is a structure, or a reference to
289 one. This is called so we know whether to go ahead with the normal
290 binop or look for a user defined function instead.
291
292 For now, we do not overload the `=' operator. */
293
294 int
295 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
296 {
297 struct type *type1, *type2;
298 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
299 return 0;
300
301 type1 = check_typedef (value_type (arg1));
302 if (TYPE_CODE (type1) == TYPE_CODE_REF)
303 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
304
305 type2 = check_typedef (value_type (arg2));
306 if (TYPE_CODE (type2) == TYPE_CODE_REF)
307 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
308
309 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
310 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
311 }
312
313 /* Check to see if argument is a structure. This is called so
314 we know whether to go ahead with the normal unop or look for a
315 user defined function instead.
316
317 For now, we do not overload the `&' operator. */
318
319 int
320 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
321 {
322 struct type *type1;
323 if (op == UNOP_ADDR)
324 return 0;
325 type1 = check_typedef (value_type (arg1));
326 for (;;)
327 {
328 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
329 return 1;
330 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
331 type1 = TYPE_TARGET_TYPE (type1);
332 else
333 return 0;
334 }
335 }
336
337 /* We know either arg1 or arg2 is a structure, so try to find the right
338 user defined function. Create an argument vector that calls
339 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
340 binary operator which is legal for GNU C++).
341
342 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
343 is the opcode saying how to modify it. Otherwise, OTHEROP is
344 unused. */
345
346 struct value *
347 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
348 enum exp_opcode otherop, enum noside noside)
349 {
350 struct value **argvec;
351 char *ptr;
352 char tstr[13];
353 int static_memfuncp;
354
355 arg1 = coerce_ref (arg1);
356 arg2 = coerce_ref (arg2);
357 arg1 = coerce_enum (arg1);
358 arg2 = coerce_enum (arg2);
359
360 /* now we know that what we have to do is construct our
361 arg vector and find the right function to call it with. */
362
363 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
364 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
365
366 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
367 argvec[1] = value_addr (arg1);
368 argvec[2] = arg2;
369 argvec[3] = 0;
370
371 /* make the right function name up */
372 strcpy (tstr, "operator__");
373 ptr = tstr + 8;
374 switch (op)
375 {
376 case BINOP_ADD:
377 strcpy (ptr, "+");
378 break;
379 case BINOP_SUB:
380 strcpy (ptr, "-");
381 break;
382 case BINOP_MUL:
383 strcpy (ptr, "*");
384 break;
385 case BINOP_DIV:
386 strcpy (ptr, "/");
387 break;
388 case BINOP_REM:
389 strcpy (ptr, "%");
390 break;
391 case BINOP_LSH:
392 strcpy (ptr, "<<");
393 break;
394 case BINOP_RSH:
395 strcpy (ptr, ">>");
396 break;
397 case BINOP_BITWISE_AND:
398 strcpy (ptr, "&");
399 break;
400 case BINOP_BITWISE_IOR:
401 strcpy (ptr, "|");
402 break;
403 case BINOP_BITWISE_XOR:
404 strcpy (ptr, "^");
405 break;
406 case BINOP_LOGICAL_AND:
407 strcpy (ptr, "&&");
408 break;
409 case BINOP_LOGICAL_OR:
410 strcpy (ptr, "||");
411 break;
412 case BINOP_MIN:
413 strcpy (ptr, "<?");
414 break;
415 case BINOP_MAX:
416 strcpy (ptr, ">?");
417 break;
418 case BINOP_ASSIGN:
419 strcpy (ptr, "=");
420 break;
421 case BINOP_ASSIGN_MODIFY:
422 switch (otherop)
423 {
424 case BINOP_ADD:
425 strcpy (ptr, "+=");
426 break;
427 case BINOP_SUB:
428 strcpy (ptr, "-=");
429 break;
430 case BINOP_MUL:
431 strcpy (ptr, "*=");
432 break;
433 case BINOP_DIV:
434 strcpy (ptr, "/=");
435 break;
436 case BINOP_REM:
437 strcpy (ptr, "%=");
438 break;
439 case BINOP_BITWISE_AND:
440 strcpy (ptr, "&=");
441 break;
442 case BINOP_BITWISE_IOR:
443 strcpy (ptr, "|=");
444 break;
445 case BINOP_BITWISE_XOR:
446 strcpy (ptr, "^=");
447 break;
448 case BINOP_MOD: /* invalid */
449 default:
450 error (_("Invalid binary operation specified."));
451 }
452 break;
453 case BINOP_SUBSCRIPT:
454 strcpy (ptr, "[]");
455 break;
456 case BINOP_EQUAL:
457 strcpy (ptr, "==");
458 break;
459 case BINOP_NOTEQUAL:
460 strcpy (ptr, "!=");
461 break;
462 case BINOP_LESS:
463 strcpy (ptr, "<");
464 break;
465 case BINOP_GTR:
466 strcpy (ptr, ">");
467 break;
468 case BINOP_GEQ:
469 strcpy (ptr, ">=");
470 break;
471 case BINOP_LEQ:
472 strcpy (ptr, "<=");
473 break;
474 case BINOP_MOD: /* invalid */
475 default:
476 error (_("Invalid binary operation specified."));
477 }
478
479 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
480
481 if (argvec[0])
482 {
483 if (static_memfuncp)
484 {
485 argvec[1] = argvec[0];
486 argvec++;
487 }
488 if (noside == EVAL_AVOID_SIDE_EFFECTS)
489 {
490 struct type *return_type;
491 return_type
492 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
493 return value_zero (return_type, VALUE_LVAL (arg1));
494 }
495 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
496 }
497 error (_("member function %s not found"), tstr);
498 #ifdef lint
499 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
500 #endif
501 }
502
503 /* We know that arg1 is a structure, so try to find a unary user
504 defined operator that matches the operator in question.
505 Create an argument vector that calls arg1.operator @ (arg1)
506 and return that value (where '@' is (almost) any unary operator which
507 is legal for GNU C++). */
508
509 struct value *
510 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
511 {
512 struct value **argvec;
513 char *ptr, *mangle_ptr;
514 char tstr[13], mangle_tstr[13];
515 int static_memfuncp, nargs;
516
517 arg1 = coerce_ref (arg1);
518 arg1 = coerce_enum (arg1);
519
520 /* now we know that what we have to do is construct our
521 arg vector and find the right function to call it with. */
522
523 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
524 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
525
526 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
527 argvec[1] = value_addr (arg1);
528 argvec[2] = 0;
529
530 nargs = 1;
531
532 /* make the right function name up */
533 strcpy (tstr, "operator__");
534 ptr = tstr + 8;
535 strcpy (mangle_tstr, "__");
536 mangle_ptr = mangle_tstr + 2;
537 switch (op)
538 {
539 case UNOP_PREINCREMENT:
540 strcpy (ptr, "++");
541 break;
542 case UNOP_PREDECREMENT:
543 strcpy (ptr, "--");
544 break;
545 case UNOP_POSTINCREMENT:
546 strcpy (ptr, "++");
547 argvec[2] = value_from_longest (builtin_type_int, 0);
548 argvec[3] = 0;
549 nargs ++;
550 break;
551 case UNOP_POSTDECREMENT:
552 strcpy (ptr, "--");
553 argvec[2] = value_from_longest (builtin_type_int, 0);
554 argvec[3] = 0;
555 nargs ++;
556 break;
557 case UNOP_LOGICAL_NOT:
558 strcpy (ptr, "!");
559 break;
560 case UNOP_COMPLEMENT:
561 strcpy (ptr, "~");
562 break;
563 case UNOP_NEG:
564 strcpy (ptr, "-");
565 break;
566 case UNOP_PLUS:
567 strcpy (ptr, "+");
568 break;
569 case UNOP_IND:
570 strcpy (ptr, "*");
571 break;
572 default:
573 error (_("Invalid unary operation specified."));
574 }
575
576 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
577
578 if (argvec[0])
579 {
580 if (static_memfuncp)
581 {
582 argvec[1] = argvec[0];
583 nargs --;
584 argvec++;
585 }
586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
587 {
588 struct type *return_type;
589 return_type
590 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
591 return value_zero (return_type, VALUE_LVAL (arg1));
592 }
593 return call_function_by_hand (argvec[0], nargs, argvec + 1);
594 }
595 error (_("member function %s not found"), tstr);
596 return 0; /* For lint -- never reached */
597 }
598 \f
599
600 /* Concatenate two values with the following conditions:
601
602 (1) Both values must be either bitstring values or character string
603 values and the resulting value consists of the concatenation of
604 ARG1 followed by ARG2.
605
606 or
607
608 One value must be an integer value and the other value must be
609 either a bitstring value or character string value, which is
610 to be repeated by the number of times specified by the integer
611 value.
612
613
614 (2) Boolean values are also allowed and are treated as bit string
615 values of length 1.
616
617 (3) Character values are also allowed and are treated as character
618 string values of length 1.
619 */
620
621 struct value *
622 value_concat (struct value *arg1, struct value *arg2)
623 {
624 struct value *inval1;
625 struct value *inval2;
626 struct value *outval = NULL;
627 int inval1len, inval2len;
628 int count, idx;
629 char *ptr;
630 char inchar;
631 struct type *type1 = check_typedef (value_type (arg1));
632 struct type *type2 = check_typedef (value_type (arg2));
633
634 /* First figure out if we are dealing with two values to be concatenated
635 or a repeat count and a value to be repeated. INVAL1 is set to the
636 first of two concatenated values, or the repeat count. INVAL2 is set
637 to the second of the two concatenated values or the value to be
638 repeated. */
639
640 if (TYPE_CODE (type2) == TYPE_CODE_INT)
641 {
642 struct type *tmp = type1;
643 type1 = tmp;
644 tmp = type2;
645 inval1 = arg2;
646 inval2 = arg1;
647 }
648 else
649 {
650 inval1 = arg1;
651 inval2 = arg2;
652 }
653
654 /* Now process the input values. */
655
656 if (TYPE_CODE (type1) == TYPE_CODE_INT)
657 {
658 /* We have a repeat count. Validate the second value and then
659 construct a value repeated that many times. */
660 if (TYPE_CODE (type2) == TYPE_CODE_STRING
661 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
662 {
663 count = longest_to_int (value_as_long (inval1));
664 inval2len = TYPE_LENGTH (type2);
665 ptr = (char *) alloca (count * inval2len);
666 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
667 {
668 inchar = (char) unpack_long (type2,
669 value_contents (inval2));
670 for (idx = 0; idx < count; idx++)
671 {
672 *(ptr + idx) = inchar;
673 }
674 }
675 else
676 {
677 for (idx = 0; idx < count; idx++)
678 {
679 memcpy (ptr + (idx * inval2len), value_contents (inval2),
680 inval2len);
681 }
682 }
683 outval = value_string (ptr, count * inval2len);
684 }
685 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
686 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
687 {
688 error (_("unimplemented support for bitstring/boolean repeats"));
689 }
690 else
691 {
692 error (_("can't repeat values of that type"));
693 }
694 }
695 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
696 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
697 {
698 /* We have two character strings to concatenate. */
699 if (TYPE_CODE (type2) != TYPE_CODE_STRING
700 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
701 {
702 error (_("Strings can only be concatenated with other strings."));
703 }
704 inval1len = TYPE_LENGTH (type1);
705 inval2len = TYPE_LENGTH (type2);
706 ptr = (char *) alloca (inval1len + inval2len);
707 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
708 {
709 *ptr = (char) unpack_long (type1, value_contents (inval1));
710 }
711 else
712 {
713 memcpy (ptr, value_contents (inval1), inval1len);
714 }
715 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
716 {
717 *(ptr + inval1len) =
718 (char) unpack_long (type2, value_contents (inval2));
719 }
720 else
721 {
722 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
723 }
724 outval = value_string (ptr, inval1len + inval2len);
725 }
726 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
727 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
728 {
729 /* We have two bitstrings to concatenate. */
730 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
731 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
732 {
733 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
734 }
735 error (_("unimplemented support for bitstring/boolean concatenation."));
736 }
737 else
738 {
739 /* We don't know how to concatenate these operands. */
740 error (_("illegal operands for concatenation."));
741 }
742 return (outval);
743 }
744 \f
745
746 /* Obtain decimal value of arguments for binary operation, converting from
747 other types if one of them is not decimal floating point. */
748 static void
749 value_args_as_decimal (struct value *arg1, struct value *arg2,
750 gdb_byte *x, int *len_x, gdb_byte *y, int *len_y)
751 {
752 struct type *type1, *type2;
753
754 type1 = check_typedef (value_type (arg1));
755 type2 = check_typedef (value_type (arg2));
756
757 /* At least one of the arguments must be of decimal float type. */
758 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
759 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
760
761 if (TYPE_CODE (type1) == TYPE_CODE_FLT
762 || TYPE_CODE (type2) == TYPE_CODE_FLT)
763 /* The DFP extension to the C language does not allow mixing of
764 * decimal float types with other float types in expressions
765 * (see WDTR 24732, page 12). */
766 error (_("Mixing decimal floating types with other floating types is not allowed."));
767
768 /* Obtain decimal value of arg1, converting from other types
769 if necessary. */
770
771 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
772 {
773 *len_x = TYPE_LENGTH (type1);
774 memcpy (x, value_contents (arg1), *len_x);
775 }
776 else if (is_integral_type (type1))
777 {
778 *len_x = TYPE_LENGTH (type2);
779 decimal_from_integral (arg1, x, *len_x);
780 }
781 else
782 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
783 TYPE_NAME (type2));
784
785 /* Obtain decimal value of arg2, converting from other types
786 if necessary. */
787
788 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
789 {
790 *len_y = TYPE_LENGTH (type2);
791 memcpy (y, value_contents (arg2), *len_y);
792 }
793 else if (is_integral_type (type2))
794 {
795 *len_y = TYPE_LENGTH (type1);
796 decimal_from_integral (arg2, y, *len_y);
797 }
798 else
799 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
800 TYPE_NAME (type2));
801 }
802
803 /* Perform a binary operation on two operands which have reasonable
804 representations as integers or floats. This includes booleans,
805 characters, integers, or floats.
806 Does not support addition and subtraction on pointers;
807 use value_add or value_sub if you want to handle those possibilities. */
808
809 struct value *
810 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
811 {
812 struct value *val;
813 struct type *type1, *type2;
814
815 arg1 = coerce_ref (arg1);
816 arg2 = coerce_ref (arg2);
817 type1 = check_typedef (value_type (arg1));
818 type2 = check_typedef (value_type (arg2));
819
820 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
821 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT && !is_integral_type (type1))
822 ||
823 (TYPE_CODE (type2) != TYPE_CODE_FLT
824 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT && !is_integral_type (type2)))
825 error (_("Argument to arithmetic operation not a number or boolean."));
826
827 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
828 ||
829 TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
830 {
831 struct type *v_type;
832 int len_v1, len_v2, len_v;
833 gdb_byte v1[16], v2[16];
834 gdb_byte v[16];
835
836 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
837
838 switch (op)
839 {
840 case BINOP_ADD:
841 case BINOP_SUB:
842 case BINOP_MUL:
843 case BINOP_DIV:
844 case BINOP_EXP:
845 decimal_binop (op, v1, len_v1, v2, len_v2, v, &len_v);
846 break;
847
848 default:
849 error (_("Operation not valid for decimal floating point number."));
850 }
851
852 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
853 /* If arg1 is not a decimal float, the type of the result is the type
854 of the decimal float argument, arg2. */
855 v_type = type2;
856 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
857 /* Same logic, for the case where arg2 is not a decimal float. */
858 v_type = type1;
859 else
860 /* len_v is equal either to len_v1 or to len_v2. the type of the
861 result is the type of the argument with the same length as v. */
862 v_type = (len_v == len_v1)? type1 : type2;
863
864 val = value_from_decfloat (v_type, v);
865 }
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
867 ||
868 TYPE_CODE (type2) == TYPE_CODE_FLT)
869 {
870 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
871 in target format. real.c in GCC probably has the necessary
872 code. */
873 DOUBLEST v1, v2, v = 0;
874 v1 = value_as_double (arg1);
875 v2 = value_as_double (arg2);
876 switch (op)
877 {
878 case BINOP_ADD:
879 v = v1 + v2;
880 break;
881
882 case BINOP_SUB:
883 v = v1 - v2;
884 break;
885
886 case BINOP_MUL:
887 v = v1 * v2;
888 break;
889
890 case BINOP_DIV:
891 v = v1 / v2;
892 break;
893
894 case BINOP_EXP:
895 errno = 0;
896 v = pow (v1, v2);
897 if (errno)
898 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
899 break;
900
901 default:
902 error (_("Integer-only operation on floating point number."));
903 }
904
905 /* If either arg was long double, make sure that value is also long
906 double. */
907
908 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (current_gdbarch)
909 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (current_gdbarch))
910 val = allocate_value (builtin_type_long_double);
911 else
912 val = allocate_value (builtin_type_double);
913
914 store_typed_floating (value_contents_raw (val), value_type (val), v);
915 }
916 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
917 &&
918 TYPE_CODE (type2) == TYPE_CODE_BOOL)
919 {
920 LONGEST v1, v2, v = 0;
921 v1 = value_as_long (arg1);
922 v2 = value_as_long (arg2);
923
924 switch (op)
925 {
926 case BINOP_BITWISE_AND:
927 v = v1 & v2;
928 break;
929
930 case BINOP_BITWISE_IOR:
931 v = v1 | v2;
932 break;
933
934 case BINOP_BITWISE_XOR:
935 v = v1 ^ v2;
936 break;
937
938 case BINOP_EQUAL:
939 v = v1 == v2;
940 break;
941
942 case BINOP_NOTEQUAL:
943 v = v1 != v2;
944 break;
945
946 default:
947 error (_("Invalid operation on booleans."));
948 }
949
950 val = allocate_value (type1);
951 store_signed_integer (value_contents_raw (val),
952 TYPE_LENGTH (type1),
953 v);
954 }
955 else
956 /* Integral operations here. */
957 /* FIXME: Also mixed integral/booleans, with result an integer. */
958 /* FIXME: This implements ANSI C rules (also correct for C++).
959 What about FORTRAN and (the deleted) chill ? */
960 {
961 unsigned int promoted_len1 = TYPE_LENGTH (type1);
962 unsigned int promoted_len2 = TYPE_LENGTH (type2);
963 int is_unsigned1 = TYPE_UNSIGNED (type1);
964 int is_unsigned2 = TYPE_UNSIGNED (type2);
965 unsigned int result_len;
966 int unsigned_operation;
967
968 /* Determine type length and signedness after promotion for
969 both operands. */
970 if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
971 {
972 is_unsigned1 = 0;
973 promoted_len1 = TYPE_LENGTH (builtin_type_int);
974 }
975 if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
976 {
977 is_unsigned2 = 0;
978 promoted_len2 = TYPE_LENGTH (builtin_type_int);
979 }
980
981 /* Determine type length of the result, and if the operation should
982 be done unsigned.
983 Use the signedness of the operand with the greater length.
984 If both operands are of equal length, use unsigned operation
985 if one of the operands is unsigned. */
986 if (op == BINOP_RSH || op == BINOP_LSH)
987 {
988 /* In case of the shift operators the type of the result only
989 depends on the type of the left operand. */
990 unsigned_operation = is_unsigned1;
991 result_len = promoted_len1;
992 }
993 else if (promoted_len1 > promoted_len2)
994 {
995 unsigned_operation = is_unsigned1;
996 result_len = promoted_len1;
997 }
998 else if (promoted_len2 > promoted_len1)
999 {
1000 unsigned_operation = is_unsigned2;
1001 result_len = promoted_len2;
1002 }
1003 else
1004 {
1005 unsigned_operation = is_unsigned1 || is_unsigned2;
1006 result_len = promoted_len1;
1007 }
1008
1009 if (unsigned_operation)
1010 {
1011 ULONGEST v1, v2, v = 0;
1012 v1 = (ULONGEST) value_as_long (arg1);
1013 v2 = (ULONGEST) value_as_long (arg2);
1014
1015 /* Truncate values to the type length of the result. */
1016 if (result_len < sizeof (ULONGEST))
1017 {
1018 v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
1019 v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
1020 }
1021
1022 switch (op)
1023 {
1024 case BINOP_ADD:
1025 v = v1 + v2;
1026 break;
1027
1028 case BINOP_SUB:
1029 v = v1 - v2;
1030 break;
1031
1032 case BINOP_MUL:
1033 v = v1 * v2;
1034 break;
1035
1036 case BINOP_DIV:
1037 case BINOP_INTDIV:
1038 v = v1 / v2;
1039 break;
1040
1041 case BINOP_EXP:
1042 errno = 0;
1043 v = pow (v1, v2);
1044 if (errno)
1045 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
1046 break;
1047
1048 case BINOP_REM:
1049 v = v1 % v2;
1050 break;
1051
1052 case BINOP_MOD:
1053 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1054 v1 mod 0 has a defined value, v1. */
1055 if (v2 == 0)
1056 {
1057 v = v1;
1058 }
1059 else
1060 {
1061 v = v1 / v2;
1062 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1063 v = v1 - (v2 * v);
1064 }
1065 break;
1066
1067 case BINOP_LSH:
1068 v = v1 << v2;
1069 break;
1070
1071 case BINOP_RSH:
1072 v = v1 >> v2;
1073 break;
1074
1075 case BINOP_BITWISE_AND:
1076 v = v1 & v2;
1077 break;
1078
1079 case BINOP_BITWISE_IOR:
1080 v = v1 | v2;
1081 break;
1082
1083 case BINOP_BITWISE_XOR:
1084 v = v1 ^ v2;
1085 break;
1086
1087 case BINOP_LOGICAL_AND:
1088 v = v1 && v2;
1089 break;
1090
1091 case BINOP_LOGICAL_OR:
1092 v = v1 || v2;
1093 break;
1094
1095 case BINOP_MIN:
1096 v = v1 < v2 ? v1 : v2;
1097 break;
1098
1099 case BINOP_MAX:
1100 v = v1 > v2 ? v1 : v2;
1101 break;
1102
1103 case BINOP_EQUAL:
1104 v = v1 == v2;
1105 break;
1106
1107 case BINOP_NOTEQUAL:
1108 v = v1 != v2;
1109 break;
1110
1111 case BINOP_LESS:
1112 v = v1 < v2;
1113 break;
1114
1115 default:
1116 error (_("Invalid binary operation on numbers."));
1117 }
1118
1119 /* This is a kludge to get around the fact that we don't
1120 know how to determine the result type from the types of
1121 the operands. (I'm not really sure how much we feel the
1122 need to duplicate the exact rules of the current
1123 language. They can get really hairy. But not to do so
1124 makes it hard to document just what we *do* do). */
1125
1126 /* Can't just call init_type because we wouldn't know what
1127 name to give the type. */
1128 val = allocate_value
1129 (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT
1130 ? builtin_type_unsigned_long_long
1131 : builtin_type_unsigned_long);
1132 store_unsigned_integer (value_contents_raw (val),
1133 TYPE_LENGTH (value_type (val)),
1134 v);
1135 }
1136 else
1137 {
1138 LONGEST v1, v2, v = 0;
1139 v1 = value_as_long (arg1);
1140 v2 = value_as_long (arg2);
1141
1142 switch (op)
1143 {
1144 case BINOP_ADD:
1145 v = v1 + v2;
1146 break;
1147
1148 case BINOP_SUB:
1149 v = v1 - v2;
1150 break;
1151
1152 case BINOP_MUL:
1153 v = v1 * v2;
1154 break;
1155
1156 case BINOP_DIV:
1157 case BINOP_INTDIV:
1158 if (v2 != 0)
1159 v = v1 / v2;
1160 else
1161 error (_("Division by zero"));
1162 break;
1163
1164 case BINOP_EXP:
1165 errno = 0;
1166 v = pow (v1, v2);
1167 if (errno)
1168 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
1169 break;
1170
1171 case BINOP_REM:
1172 if (v2 != 0)
1173 v = v1 % v2;
1174 else
1175 error (_("Division by zero"));
1176 break;
1177
1178 case BINOP_MOD:
1179 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1180 X mod 0 has a defined value, X. */
1181 if (v2 == 0)
1182 {
1183 v = v1;
1184 }
1185 else
1186 {
1187 v = v1 / v2;
1188 /* Compute floor. */
1189 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1190 {
1191 v--;
1192 }
1193 v = v1 - (v2 * v);
1194 }
1195 break;
1196
1197 case BINOP_LSH:
1198 v = v1 << v2;
1199 break;
1200
1201 case BINOP_RSH:
1202 v = v1 >> v2;
1203 break;
1204
1205 case BINOP_BITWISE_AND:
1206 v = v1 & v2;
1207 break;
1208
1209 case BINOP_BITWISE_IOR:
1210 v = v1 | v2;
1211 break;
1212
1213 case BINOP_BITWISE_XOR:
1214 v = v1 ^ v2;
1215 break;
1216
1217 case BINOP_LOGICAL_AND:
1218 v = v1 && v2;
1219 break;
1220
1221 case BINOP_LOGICAL_OR:
1222 v = v1 || v2;
1223 break;
1224
1225 case BINOP_MIN:
1226 v = v1 < v2 ? v1 : v2;
1227 break;
1228
1229 case BINOP_MAX:
1230 v = v1 > v2 ? v1 : v2;
1231 break;
1232
1233 case BINOP_EQUAL:
1234 v = v1 == v2;
1235 break;
1236
1237 case BINOP_LESS:
1238 v = v1 < v2;
1239 break;
1240
1241 default:
1242 error (_("Invalid binary operation on numbers."));
1243 }
1244
1245 /* This is a kludge to get around the fact that we don't
1246 know how to determine the result type from the types of
1247 the operands. (I'm not really sure how much we feel the
1248 need to duplicate the exact rules of the current
1249 language. They can get really hairy. But not to do so
1250 makes it hard to document just what we *do* do). */
1251
1252 /* Can't just call init_type because we wouldn't know what
1253 name to give the type. */
1254 val = allocate_value
1255 (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT
1256 ? builtin_type_long_long
1257 : builtin_type_long);
1258 store_signed_integer (value_contents_raw (val),
1259 TYPE_LENGTH (value_type (val)),
1260 v);
1261 }
1262 }
1263
1264 return val;
1265 }
1266 \f
1267 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1268
1269 int
1270 value_logical_not (struct value *arg1)
1271 {
1272 int len;
1273 const gdb_byte *p;
1274 struct type *type1;
1275
1276 arg1 = coerce_number (arg1);
1277 type1 = check_typedef (value_type (arg1));
1278
1279 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1280 return 0 == value_as_double (arg1);
1281 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1282 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1));
1283
1284 len = TYPE_LENGTH (type1);
1285 p = value_contents (arg1);
1286
1287 while (--len >= 0)
1288 {
1289 if (*p++)
1290 break;
1291 }
1292
1293 return len < 0;
1294 }
1295
1296 /* Perform a comparison on two string values (whose content are not
1297 necessarily null terminated) based on their length */
1298
1299 static int
1300 value_strcmp (struct value *arg1, struct value *arg2)
1301 {
1302 int len1 = TYPE_LENGTH (value_type (arg1));
1303 int len2 = TYPE_LENGTH (value_type (arg2));
1304 const gdb_byte *s1 = value_contents (arg1);
1305 const gdb_byte *s2 = value_contents (arg2);
1306 int i, len = len1 < len2 ? len1 : len2;
1307
1308 for (i = 0; i < len; i++)
1309 {
1310 if (s1[i] < s2[i])
1311 return -1;
1312 else if (s1[i] > s2[i])
1313 return 1;
1314 else
1315 continue;
1316 }
1317
1318 if (len1 < len2)
1319 return -1;
1320 else if (len1 > len2)
1321 return 1;
1322 else
1323 return 0;
1324 }
1325
1326 /* Simulate the C operator == by returning a 1
1327 iff ARG1 and ARG2 have equal contents. */
1328
1329 int
1330 value_equal (struct value *arg1, struct value *arg2)
1331 {
1332 int len;
1333 const gdb_byte *p1;
1334 const gdb_byte *p2;
1335 struct type *type1, *type2;
1336 enum type_code code1;
1337 enum type_code code2;
1338 int is_int1, is_int2;
1339
1340 arg1 = coerce_array (arg1);
1341 arg2 = coerce_array (arg2);
1342
1343 type1 = check_typedef (value_type (arg1));
1344 type2 = check_typedef (value_type (arg2));
1345 code1 = TYPE_CODE (type1);
1346 code2 = TYPE_CODE (type2);
1347 is_int1 = is_integral_type (type1);
1348 is_int2 = is_integral_type (type2);
1349
1350 if (is_int1 && is_int2)
1351 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1352 BINOP_EQUAL)));
1353 else if ((code1 == TYPE_CODE_FLT || is_int1)
1354 && (code2 == TYPE_CODE_FLT || is_int2))
1355 {
1356 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1357 `long double' values are returned in static storage (m68k). */
1358 DOUBLEST d = value_as_double (arg1);
1359 return d == value_as_double (arg2);
1360 }
1361 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1362 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1363 {
1364 gdb_byte v1[16], v2[16];
1365 int len_v1, len_v2;
1366
1367 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1368
1369 return decimal_compare (v1, len_v1, v2, len_v2) == 0;
1370 }
1371
1372 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1373 is bigger. */
1374 else if (code1 == TYPE_CODE_PTR && is_int2)
1375 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1376 else if (code2 == TYPE_CODE_PTR && is_int1)
1377 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1378
1379 else if (code1 == code2
1380 && ((len = (int) TYPE_LENGTH (type1))
1381 == (int) TYPE_LENGTH (type2)))
1382 {
1383 p1 = value_contents (arg1);
1384 p2 = value_contents (arg2);
1385 while (--len >= 0)
1386 {
1387 if (*p1++ != *p2++)
1388 break;
1389 }
1390 return len < 0;
1391 }
1392 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1393 {
1394 return value_strcmp (arg1, arg2) == 0;
1395 }
1396 else
1397 {
1398 error (_("Invalid type combination in equality test."));
1399 return 0; /* For lint -- never reached */
1400 }
1401 }
1402
1403 /* Simulate the C operator < by returning 1
1404 iff ARG1's contents are less than ARG2's. */
1405
1406 int
1407 value_less (struct value *arg1, struct value *arg2)
1408 {
1409 enum type_code code1;
1410 enum type_code code2;
1411 struct type *type1, *type2;
1412 int is_int1, is_int2;
1413
1414 arg1 = coerce_array (arg1);
1415 arg2 = coerce_array (arg2);
1416
1417 type1 = check_typedef (value_type (arg1));
1418 type2 = check_typedef (value_type (arg2));
1419 code1 = TYPE_CODE (type1);
1420 code2 = TYPE_CODE (type2);
1421 is_int1 = is_integral_type (type1);
1422 is_int2 = is_integral_type (type2);
1423
1424 if (is_int1 && is_int2)
1425 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1426 BINOP_LESS)));
1427 else if ((code1 == TYPE_CODE_FLT || is_int1)
1428 && (code2 == TYPE_CODE_FLT || is_int2))
1429 {
1430 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1431 `long double' values are returned in static storage (m68k). */
1432 DOUBLEST d = value_as_double (arg1);
1433 return d < value_as_double (arg2);
1434 }
1435 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1436 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1437 {
1438 gdb_byte v1[16], v2[16];
1439 int len_v1, len_v2;
1440
1441 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1442
1443 return decimal_compare (v1, len_v1, v2, len_v2) == -1;
1444 }
1445 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1446 return value_as_address (arg1) < value_as_address (arg2);
1447
1448 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1449 is bigger. */
1450 else if (code1 == TYPE_CODE_PTR && is_int2)
1451 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1452 else if (code2 == TYPE_CODE_PTR && is_int1)
1453 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1454 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1455 return value_strcmp (arg1, arg2) < 0;
1456 else
1457 {
1458 error (_("Invalid type combination in ordering comparison."));
1459 return 0;
1460 }
1461 }
1462 \f
1463 /* The unary operators +, - and ~. They free the argument ARG1. */
1464
1465 struct value *
1466 value_pos (struct value *arg1)
1467 {
1468 struct type *type;
1469
1470 arg1 = coerce_ref (arg1);
1471
1472 type = check_typedef (value_type (arg1));
1473
1474 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1475 return value_from_double (type, value_as_double (arg1));
1476 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1477 return value_from_decfloat (type, value_contents (arg1));
1478 else if (is_integral_type (type))
1479 {
1480 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1481 FORTRAN and (the deleted) chill ? */
1482 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1483 type = builtin_type_int;
1484
1485 return value_from_longest (type, value_as_long (arg1));
1486 }
1487 else
1488 {
1489 error ("Argument to positive operation not a number.");
1490 return 0; /* For lint -- never reached */
1491 }
1492 }
1493
1494 struct value *
1495 value_neg (struct value *arg1)
1496 {
1497 struct type *type;
1498 struct type *result_type = value_type (arg1);
1499
1500 arg1 = coerce_ref (arg1);
1501
1502 type = check_typedef (value_type (arg1));
1503
1504 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1505 {
1506 struct value *val = allocate_value (result_type);
1507 int len = TYPE_LENGTH (type);
1508 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1509
1510 memcpy (decbytes, value_contents (arg1), len);
1511
1512 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1513 decbytes[len-1] = decbytes[len - 1] | 0x80;
1514 else
1515 decbytes[0] = decbytes[0] | 0x80;
1516
1517 memcpy (value_contents_raw (val), decbytes, len);
1518 return val;
1519 }
1520
1521 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1522 return value_from_double (result_type, -value_as_double (arg1));
1523 else if (is_integral_type (type))
1524 {
1525 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1526 FORTRAN and (the deleted) chill ? */
1527 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1528 result_type = builtin_type_int;
1529
1530 return value_from_longest (result_type, -value_as_long (arg1));
1531 }
1532 else
1533 {
1534 error (_("Argument to negate operation not a number."));
1535 return 0; /* For lint -- never reached */
1536 }
1537 }
1538
1539 struct value *
1540 value_complement (struct value *arg1)
1541 {
1542 struct type *type;
1543 struct type *result_type = value_type (arg1);
1544
1545 arg1 = coerce_ref (arg1);
1546
1547 type = check_typedef (value_type (arg1));
1548
1549 if (!is_integral_type (type))
1550 error (_("Argument to complement operation not an integer or boolean."));
1551
1552 /* Perform integral promotion for ANSI C/C++.
1553 FIXME: What about FORTRAN ? */
1554 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1555 result_type = builtin_type_int;
1556
1557 return value_from_longest (result_type, ~value_as_long (arg1));
1558 }
1559 \f
1560 /* The INDEX'th bit of SET value whose value_type is TYPE,
1561 and whose value_contents is valaddr.
1562 Return -1 if out of range, -2 other error. */
1563
1564 int
1565 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1566 {
1567 LONGEST low_bound, high_bound;
1568 LONGEST word;
1569 unsigned rel_index;
1570 struct type *range = TYPE_FIELD_TYPE (type, 0);
1571 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1572 return -2;
1573 if (index < low_bound || index > high_bound)
1574 return -1;
1575 rel_index = index - low_bound;
1576 word = unpack_long (builtin_type_unsigned_char,
1577 valaddr + (rel_index / TARGET_CHAR_BIT));
1578 rel_index %= TARGET_CHAR_BIT;
1579 if (gdbarch_bits_big_endian (current_gdbarch))
1580 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1581 return (word >> rel_index) & 1;
1582 }
1583
1584 struct value *
1585 value_in (struct value *element, struct value *set)
1586 {
1587 int member;
1588 struct type *settype = check_typedef (value_type (set));
1589 struct type *eltype = check_typedef (value_type (element));
1590 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1591 eltype = TYPE_TARGET_TYPE (eltype);
1592 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1593 error (_("Second argument of 'IN' has wrong type"));
1594 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1595 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1596 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1597 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1598 error (_("First argument of 'IN' has wrong type"));
1599 member = value_bit_index (settype, value_contents (set),
1600 value_as_long (element));
1601 if (member < 0)
1602 error (_("First argument of 'IN' not in range"));
1603 return value_from_longest (LA_BOOL_TYPE, member);
1604 }
1605
1606 void
1607 _initialize_valarith (void)
1608 {
1609 }
This page took 0.061636 seconds and 5 git commands to generate.