* gdbtypes.c (create_string_type): Receive character type as argument.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68 static
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202 }
203
204 static CORE_ADDR
205 allocate_space_in_inferior (int len)
206 {
207 return value_as_long (value_allocate_space_in_inferior (len));
208 }
209
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
217 {
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = value_address (v2);
258 addr2 -= value_address (v) + value_embedded_offset (v);
259 return value_at (type, addr2);
260 }
261 }
262
263 return NULL;
264 }
265
266 /* Cast one pointer or reference type to another. Both TYPE and
267 the type of ARG2 should be pointer types, or else both should be
268 reference types. Returns the new pointer or reference. */
269
270 struct value *
271 value_cast_pointers (struct type *type, struct value *arg2)
272 {
273 struct type *type1 = check_typedef (type);
274 struct type *type2 = check_typedef (value_type (arg2));
275 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
276 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
277
278 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
279 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
280 && !value_logical_not (arg2))
281 {
282 struct value *v2;
283
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 v2 = coerce_ref (arg2);
286 else
287 v2 = value_ind (arg2);
288 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
289 && !!"Why did coercion fail?");
290 v2 = value_cast_structs (t1, v2);
291 /* At this point we have what we can have, un-dereference if needed. */
292 if (v2)
293 {
294 struct value *v = value_addr (v2);
295 deprecated_set_value_type (v, type);
296 return v;
297 }
298 }
299
300 /* No superclass found, just change the pointer type. */
301 arg2 = value_copy (arg2);
302 deprecated_set_value_type (arg2, type);
303 arg2 = value_change_enclosing_type (arg2, type);
304 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
305 return arg2;
306 }
307
308 /* Cast value ARG2 to type TYPE and return as a value.
309 More general than a C cast: accepts any two types of the same length,
310 and if ARG2 is an lvalue it can be cast into anything at all. */
311 /* In C++, casts may change pointer or object representations. */
312
313 struct value *
314 value_cast (struct type *type, struct value *arg2)
315 {
316 enum type_code code1;
317 enum type_code code2;
318 int scalar;
319 struct type *type2;
320
321 int convert_to_boolean = 0;
322
323 if (value_type (arg2) == type)
324 return arg2;
325
326 code1 = TYPE_CODE (check_typedef (type));
327
328 /* Check if we are casting struct reference to struct reference. */
329 if (code1 == TYPE_CODE_REF)
330 {
331 /* We dereference type; then we recurse and finally
332 we generate value of the given reference. Nothing wrong with
333 that. */
334 struct type *t1 = check_typedef (type);
335 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
336 struct value *val = value_cast (dereftype, arg2);
337 return value_ref (val);
338 }
339
340 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
341
342 if (code2 == TYPE_CODE_REF)
343 /* We deref the value and then do the cast. */
344 return value_cast (type, coerce_ref (arg2));
345
346 CHECK_TYPEDEF (type);
347 code1 = TYPE_CODE (type);
348 arg2 = coerce_ref (arg2);
349 type2 = check_typedef (value_type (arg2));
350
351 /* You can't cast to a reference type. See value_cast_pointers
352 instead. */
353 gdb_assert (code1 != TYPE_CODE_REF);
354
355 /* A cast to an undetermined-length array_type, such as
356 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
357 where N is sizeof(OBJECT)/sizeof(TYPE). */
358 if (code1 == TYPE_CODE_ARRAY)
359 {
360 struct type *element_type = TYPE_TARGET_TYPE (type);
361 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
362 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
363 {
364 struct type *range_type = TYPE_INDEX_TYPE (type);
365 int val_length = TYPE_LENGTH (type2);
366 LONGEST low_bound, high_bound, new_length;
367 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
368 low_bound = 0, high_bound = 0;
369 new_length = val_length / element_length;
370 if (val_length % element_length != 0)
371 warning (_("array element type size does not divide object size in cast"));
372 /* FIXME-type-allocation: need a way to free this type when
373 we are done with it. */
374 range_type = create_range_type ((struct type *) NULL,
375 TYPE_TARGET_TYPE (range_type),
376 low_bound,
377 new_length + low_bound - 1);
378 deprecated_set_value_type (arg2,
379 create_array_type ((struct type *) NULL,
380 element_type,
381 range_type));
382 return arg2;
383 }
384 }
385
386 if (current_language->c_style_arrays
387 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
388 arg2 = value_coerce_array (arg2);
389
390 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
391 arg2 = value_coerce_function (arg2);
392
393 type2 = check_typedef (value_type (arg2));
394 code2 = TYPE_CODE (type2);
395
396 if (code1 == TYPE_CODE_COMPLEX)
397 return cast_into_complex (type, arg2);
398 if (code1 == TYPE_CODE_BOOL)
399 {
400 code1 = TYPE_CODE_INT;
401 convert_to_boolean = 1;
402 }
403 if (code1 == TYPE_CODE_CHAR)
404 code1 = TYPE_CODE_INT;
405 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
406 code2 = TYPE_CODE_INT;
407
408 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
409 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
410 || code2 == TYPE_CODE_RANGE);
411
412 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
413 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
414 && TYPE_NAME (type) != 0)
415 {
416 struct value *v = value_cast_structs (type, arg2);
417 if (v)
418 return v;
419 }
420
421 if (code1 == TYPE_CODE_FLT && scalar)
422 return value_from_double (type, value_as_double (arg2));
423 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
424 {
425 int dec_len = TYPE_LENGTH (type);
426 gdb_byte dec[16];
427
428 if (code2 == TYPE_CODE_FLT)
429 decimal_from_floating (arg2, dec, dec_len);
430 else if (code2 == TYPE_CODE_DECFLOAT)
431 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
432 dec, dec_len);
433 else
434 /* The only option left is an integral type. */
435 decimal_from_integral (arg2, dec, dec_len);
436
437 return value_from_decfloat (type, dec);
438 }
439 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
440 || code1 == TYPE_CODE_RANGE)
441 && (scalar || code2 == TYPE_CODE_PTR
442 || code2 == TYPE_CODE_MEMBERPTR))
443 {
444 LONGEST longest;
445
446 /* When we cast pointers to integers, we mustn't use
447 gdbarch_pointer_to_address to find the address the pointer
448 represents, as value_as_long would. GDB should evaluate
449 expressions just as the compiler would --- and the compiler
450 sees a cast as a simple reinterpretation of the pointer's
451 bits. */
452 if (code2 == TYPE_CODE_PTR)
453 longest = extract_unsigned_integer (value_contents (arg2),
454 TYPE_LENGTH (type2));
455 else
456 longest = value_as_long (arg2);
457 return value_from_longest (type, convert_to_boolean ?
458 (LONGEST) (longest ? 1 : 0) : longest);
459 }
460 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
461 || code2 == TYPE_CODE_ENUM
462 || code2 == TYPE_CODE_RANGE))
463 {
464 /* TYPE_LENGTH (type) is the length of a pointer, but we really
465 want the length of an address! -- we are really dealing with
466 addresses (i.e., gdb representations) not pointers (i.e.,
467 target representations) here.
468
469 This allows things like "print *(int *)0x01000234" to work
470 without printing a misleading message -- which would
471 otherwise occur when dealing with a target having two byte
472 pointers and four byte addresses. */
473
474 int addr_bit = gdbarch_addr_bit (current_gdbarch);
475
476 LONGEST longest = value_as_long (arg2);
477 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
478 {
479 if (longest >= ((LONGEST) 1 << addr_bit)
480 || longest <= -((LONGEST) 1 << addr_bit))
481 warning (_("value truncated"));
482 }
483 return value_from_longest (type, longest);
484 }
485 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
486 && value_as_long (arg2) == 0)
487 {
488 struct value *result = allocate_value (type);
489 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
490 return result;
491 }
492 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
493 && value_as_long (arg2) == 0)
494 {
495 /* The Itanium C++ ABI represents NULL pointers to members as
496 minus one, instead of biasing the normal case. */
497 return value_from_longest (type, -1);
498 }
499 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
500 {
501 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
502 return value_cast_pointers (type, arg2);
503
504 arg2 = value_copy (arg2);
505 deprecated_set_value_type (arg2, type);
506 arg2 = value_change_enclosing_type (arg2, type);
507 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
508 return arg2;
509 }
510 else if (VALUE_LVAL (arg2) == lval_memory)
511 return value_at_lazy (type, value_address (arg2));
512 else if (code1 == TYPE_CODE_VOID)
513 {
514 return value_zero (builtin_type_void, not_lval);
515 }
516 else
517 {
518 error (_("Invalid cast."));
519 return 0;
520 }
521 }
522
523 /* Create a value of type TYPE that is zero, and return it. */
524
525 struct value *
526 value_zero (struct type *type, enum lval_type lv)
527 {
528 struct value *val = allocate_value (type);
529 VALUE_LVAL (val) = lv;
530
531 return val;
532 }
533
534 /* Create a value of numeric type TYPE that is one, and return it. */
535
536 struct value *
537 value_one (struct type *type, enum lval_type lv)
538 {
539 struct type *type1 = check_typedef (type);
540 struct value *val = NULL; /* avoid -Wall warning */
541
542 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
543 {
544 struct value *int_one = value_from_longest (builtin_type_int32, 1);
545 struct value *val;
546 gdb_byte v[16];
547
548 decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int32));
549 val = value_from_decfloat (type, v);
550 }
551 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
552 {
553 val = value_from_double (type, (DOUBLEST) 1);
554 }
555 else if (is_integral_type (type1))
556 {
557 val = value_from_longest (type, (LONGEST) 1);
558 }
559 else
560 {
561 error (_("Not a numeric type."));
562 }
563
564 VALUE_LVAL (val) = lv;
565 return val;
566 }
567
568 /* Return a value with type TYPE located at ADDR.
569
570 Call value_at only if the data needs to be fetched immediately;
571 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
572 value_at_lazy instead. value_at_lazy simply records the address of
573 the data and sets the lazy-evaluation-required flag. The lazy flag
574 is tested in the value_contents macro, which is used if and when
575 the contents are actually required.
576
577 Note: value_at does *NOT* handle embedded offsets; perform such
578 adjustments before or after calling it. */
579
580 struct value *
581 value_at (struct type *type, CORE_ADDR addr)
582 {
583 struct value *val;
584
585 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
586 error (_("Attempt to dereference a generic pointer."));
587
588 val = allocate_value (type);
589
590 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
591
592 VALUE_LVAL (val) = lval_memory;
593 set_value_address (val, addr);
594
595 return val;
596 }
597
598 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
599
600 struct value *
601 value_at_lazy (struct type *type, CORE_ADDR addr)
602 {
603 struct value *val;
604
605 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
606 error (_("Attempt to dereference a generic pointer."));
607
608 val = allocate_value_lazy (type);
609
610 VALUE_LVAL (val) = lval_memory;
611 set_value_address (val, addr);
612
613 return val;
614 }
615
616 /* Called only from the value_contents and value_contents_all()
617 macros, if the current data for a variable needs to be loaded into
618 value_contents(VAL). Fetches the data from the user's process, and
619 clears the lazy flag to indicate that the data in the buffer is
620 valid.
621
622 If the value is zero-length, we avoid calling read_memory, which
623 would abort. We mark the value as fetched anyway -- all 0 bytes of
624 it.
625
626 This function returns a value because it is used in the
627 value_contents macro as part of an expression, where a void would
628 not work. The value is ignored. */
629
630 int
631 value_fetch_lazy (struct value *val)
632 {
633 gdb_assert (value_lazy (val));
634 allocate_value_contents (val);
635 if (VALUE_LVAL (val) == lval_memory)
636 {
637 CORE_ADDR addr = value_address (val);
638 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
639
640 if (length)
641 read_memory (addr, value_contents_all_raw (val), length);
642 }
643 else if (VALUE_LVAL (val) == lval_register)
644 {
645 struct frame_info *frame;
646 int regnum;
647 struct type *type = check_typedef (value_type (val));
648 struct value *new_val = val, *mark = value_mark ();
649
650 /* Offsets are not supported here; lazy register values must
651 refer to the entire register. */
652 gdb_assert (value_offset (val) == 0);
653
654 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
655 {
656 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
657 regnum = VALUE_REGNUM (new_val);
658
659 gdb_assert (frame != NULL);
660
661 /* Convertible register routines are used for multi-register
662 values and for interpretation in different types
663 (e.g. float or int from a double register). Lazy
664 register values should have the register's natural type,
665 so they do not apply. */
666 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
667 regnum, type));
668
669 new_val = get_frame_register_value (frame, regnum);
670 }
671
672 /* If it's still lazy (for instance, a saved register on the
673 stack), fetch it. */
674 if (value_lazy (new_val))
675 value_fetch_lazy (new_val);
676
677 /* If the register was not saved, mark it unavailable. */
678 if (value_optimized_out (new_val))
679 set_value_optimized_out (val, 1);
680 else
681 memcpy (value_contents_raw (val), value_contents (new_val),
682 TYPE_LENGTH (type));
683
684 if (frame_debug)
685 {
686 struct gdbarch *gdbarch;
687 frame = frame_find_by_id (VALUE_FRAME_ID (val));
688 regnum = VALUE_REGNUM (val);
689 gdbarch = get_frame_arch (frame);
690
691 fprintf_unfiltered (gdb_stdlog, "\
692 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
693 frame_relative_level (frame), regnum,
694 user_reg_map_regnum_to_name (gdbarch, regnum));
695
696 fprintf_unfiltered (gdb_stdlog, "->");
697 if (value_optimized_out (new_val))
698 fprintf_unfiltered (gdb_stdlog, " optimized out");
699 else
700 {
701 int i;
702 const gdb_byte *buf = value_contents (new_val);
703
704 if (VALUE_LVAL (new_val) == lval_register)
705 fprintf_unfiltered (gdb_stdlog, " register=%d",
706 VALUE_REGNUM (new_val));
707 else if (VALUE_LVAL (new_val) == lval_memory)
708 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
709 paddr_nz (value_address (new_val)));
710 else
711 fprintf_unfiltered (gdb_stdlog, " computed");
712
713 fprintf_unfiltered (gdb_stdlog, " bytes=");
714 fprintf_unfiltered (gdb_stdlog, "[");
715 for (i = 0; i < register_size (gdbarch, regnum); i++)
716 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
717 fprintf_unfiltered (gdb_stdlog, "]");
718 }
719
720 fprintf_unfiltered (gdb_stdlog, " }\n");
721 }
722
723 /* Dispose of the intermediate values. This prevents
724 watchpoints from trying to watch the saved frame pointer. */
725 value_free_to_mark (mark);
726 }
727 else if (VALUE_LVAL (val) == lval_computed)
728 value_computed_funcs (val)->read (val);
729 else
730 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
731
732 set_value_lazy (val, 0);
733 return 0;
734 }
735
736
737 /* Store the contents of FROMVAL into the location of TOVAL.
738 Return a new value with the location of TOVAL and contents of FROMVAL. */
739
740 struct value *
741 value_assign (struct value *toval, struct value *fromval)
742 {
743 struct type *type;
744 struct value *val;
745 struct frame_id old_frame;
746
747 if (!deprecated_value_modifiable (toval))
748 error (_("Left operand of assignment is not a modifiable lvalue."));
749
750 toval = coerce_ref (toval);
751
752 type = value_type (toval);
753 if (VALUE_LVAL (toval) != lval_internalvar)
754 {
755 toval = value_coerce_to_target (toval);
756 fromval = value_cast (type, fromval);
757 }
758 else
759 {
760 /* Coerce arrays and functions to pointers, except for arrays
761 which only live in GDB's storage. */
762 if (!value_must_coerce_to_target (fromval))
763 fromval = coerce_array (fromval);
764 }
765
766 CHECK_TYPEDEF (type);
767
768 /* Since modifying a register can trash the frame chain, and
769 modifying memory can trash the frame cache, we save the old frame
770 and then restore the new frame afterwards. */
771 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
772
773 switch (VALUE_LVAL (toval))
774 {
775 case lval_internalvar:
776 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
777 val = value_copy (fromval);
778 val = value_change_enclosing_type (val,
779 value_enclosing_type (fromval));
780 set_value_embedded_offset (val, value_embedded_offset (fromval));
781 set_value_pointed_to_offset (val,
782 value_pointed_to_offset (fromval));
783 return val;
784
785 case lval_internalvar_component:
786 set_internalvar_component (VALUE_INTERNALVAR (toval),
787 value_offset (toval),
788 value_bitpos (toval),
789 value_bitsize (toval),
790 fromval);
791 break;
792
793 case lval_memory:
794 {
795 const gdb_byte *dest_buffer;
796 CORE_ADDR changed_addr;
797 int changed_len;
798 gdb_byte buffer[sizeof (LONGEST)];
799
800 if (value_bitsize (toval))
801 {
802 /* We assume that the argument to read_memory is in units
803 of host chars. FIXME: Is that correct? */
804 changed_len = (value_bitpos (toval)
805 + value_bitsize (toval)
806 + HOST_CHAR_BIT - 1)
807 / HOST_CHAR_BIT;
808
809 if (changed_len > (int) sizeof (LONGEST))
810 error (_("Can't handle bitfields which don't fit in a %d bit word."),
811 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
812
813 read_memory (value_address (toval), buffer, changed_len);
814 modify_field (buffer, value_as_long (fromval),
815 value_bitpos (toval), value_bitsize (toval));
816 changed_addr = value_address (toval);
817 dest_buffer = buffer;
818 }
819 else
820 {
821 changed_addr = value_address (toval);
822 changed_len = TYPE_LENGTH (type);
823 dest_buffer = value_contents (fromval);
824 }
825
826 write_memory (changed_addr, dest_buffer, changed_len);
827 if (deprecated_memory_changed_hook)
828 deprecated_memory_changed_hook (changed_addr, changed_len);
829 }
830 break;
831
832 case lval_register:
833 {
834 struct frame_info *frame;
835 struct gdbarch *gdbarch;
836 int value_reg;
837
838 /* Figure out which frame this is in currently. */
839 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
840 value_reg = VALUE_REGNUM (toval);
841
842 if (!frame)
843 error (_("Value being assigned to is no longer active."));
844
845 gdbarch = get_frame_arch (frame);
846 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
847 {
848 /* If TOVAL is a special machine register requiring
849 conversion of program values to a special raw
850 format. */
851 gdbarch_value_to_register (gdbarch, frame,
852 VALUE_REGNUM (toval), type,
853 value_contents (fromval));
854 }
855 else
856 {
857 if (value_bitsize (toval))
858 {
859 int changed_len;
860 gdb_byte buffer[sizeof (LONGEST)];
861
862 changed_len = (value_bitpos (toval)
863 + value_bitsize (toval)
864 + HOST_CHAR_BIT - 1)
865 / HOST_CHAR_BIT;
866
867 if (changed_len > (int) sizeof (LONGEST))
868 error (_("Can't handle bitfields which don't fit in a %d bit word."),
869 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
870
871 get_frame_register_bytes (frame, value_reg,
872 value_offset (toval),
873 changed_len, buffer);
874
875 modify_field (buffer, value_as_long (fromval),
876 value_bitpos (toval),
877 value_bitsize (toval));
878
879 put_frame_register_bytes (frame, value_reg,
880 value_offset (toval),
881 changed_len, buffer);
882 }
883 else
884 {
885 put_frame_register_bytes (frame, value_reg,
886 value_offset (toval),
887 TYPE_LENGTH (type),
888 value_contents (fromval));
889 }
890 }
891
892 if (deprecated_register_changed_hook)
893 deprecated_register_changed_hook (-1);
894 observer_notify_target_changed (&current_target);
895 break;
896 }
897
898 case lval_computed:
899 {
900 struct lval_funcs *funcs = value_computed_funcs (toval);
901
902 funcs->write (toval, fromval);
903 }
904 break;
905
906 default:
907 error (_("Left operand of assignment is not an lvalue."));
908 }
909
910 /* Assigning to the stack pointer, frame pointer, and other
911 (architecture and calling convention specific) registers may
912 cause the frame cache to be out of date. Assigning to memory
913 also can. We just do this on all assignments to registers or
914 memory, for simplicity's sake; I doubt the slowdown matters. */
915 switch (VALUE_LVAL (toval))
916 {
917 case lval_memory:
918 case lval_register:
919
920 reinit_frame_cache ();
921
922 /* Having destroyed the frame cache, restore the selected
923 frame. */
924
925 /* FIXME: cagney/2002-11-02: There has to be a better way of
926 doing this. Instead of constantly saving/restoring the
927 frame. Why not create a get_selected_frame() function that,
928 having saved the selected frame's ID can automatically
929 re-find the previously selected frame automatically. */
930
931 {
932 struct frame_info *fi = frame_find_by_id (old_frame);
933 if (fi != NULL)
934 select_frame (fi);
935 }
936
937 break;
938 default:
939 break;
940 }
941
942 /* If the field does not entirely fill a LONGEST, then zero the sign
943 bits. If the field is signed, and is negative, then sign
944 extend. */
945 if ((value_bitsize (toval) > 0)
946 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
947 {
948 LONGEST fieldval = value_as_long (fromval);
949 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
950
951 fieldval &= valmask;
952 if (!TYPE_UNSIGNED (type)
953 && (fieldval & (valmask ^ (valmask >> 1))))
954 fieldval |= ~valmask;
955
956 fromval = value_from_longest (type, fieldval);
957 }
958
959 val = value_copy (toval);
960 memcpy (value_contents_raw (val), value_contents (fromval),
961 TYPE_LENGTH (type));
962 deprecated_set_value_type (val, type);
963 val = value_change_enclosing_type (val,
964 value_enclosing_type (fromval));
965 set_value_embedded_offset (val, value_embedded_offset (fromval));
966 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
967
968 return val;
969 }
970
971 /* Extend a value VAL to COUNT repetitions of its type. */
972
973 struct value *
974 value_repeat (struct value *arg1, int count)
975 {
976 struct value *val;
977
978 if (VALUE_LVAL (arg1) != lval_memory)
979 error (_("Only values in memory can be extended with '@'."));
980 if (count < 1)
981 error (_("Invalid number %d of repetitions."), count);
982
983 val = allocate_repeat_value (value_enclosing_type (arg1), count);
984
985 read_memory (value_address (arg1),
986 value_contents_all_raw (val),
987 TYPE_LENGTH (value_enclosing_type (val)));
988 VALUE_LVAL (val) = lval_memory;
989 set_value_address (val, value_address (arg1));
990
991 return val;
992 }
993
994 struct value *
995 value_of_variable (struct symbol *var, struct block *b)
996 {
997 struct value *val;
998 struct frame_info *frame;
999
1000 if (!symbol_read_needs_frame (var))
1001 frame = NULL;
1002 else if (!b)
1003 frame = get_selected_frame (_("No frame selected."));
1004 else
1005 {
1006 frame = block_innermost_frame (b);
1007 if (!frame)
1008 {
1009 if (BLOCK_FUNCTION (b)
1010 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1011 error (_("No frame is currently executing in block %s."),
1012 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1013 else
1014 error (_("No frame is currently executing in specified block"));
1015 }
1016 }
1017
1018 val = read_var_value (var, frame);
1019 if (!val)
1020 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1021
1022 return val;
1023 }
1024
1025 struct value *
1026 address_of_variable (struct symbol *var, struct block *b)
1027 {
1028 struct type *type = SYMBOL_TYPE (var);
1029 struct value *val;
1030
1031 /* Evaluate it first; if the result is a memory address, we're fine.
1032 Lazy evaluation pays off here. */
1033
1034 val = value_of_variable (var, b);
1035
1036 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1037 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1038 {
1039 CORE_ADDR addr = value_address (val);
1040 return value_from_pointer (lookup_pointer_type (type), addr);
1041 }
1042
1043 /* Not a memory address; check what the problem was. */
1044 switch (VALUE_LVAL (val))
1045 {
1046 case lval_register:
1047 {
1048 struct frame_info *frame;
1049 const char *regname;
1050
1051 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1052 gdb_assert (frame);
1053
1054 regname = gdbarch_register_name (get_frame_arch (frame),
1055 VALUE_REGNUM (val));
1056 gdb_assert (regname && *regname);
1057
1058 error (_("Address requested for identifier "
1059 "\"%s\" which is in register $%s"),
1060 SYMBOL_PRINT_NAME (var), regname);
1061 break;
1062 }
1063
1064 default:
1065 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1066 SYMBOL_PRINT_NAME (var));
1067 break;
1068 }
1069
1070 return val;
1071 }
1072
1073 /* Return one if VAL does not live in target memory, but should in order
1074 to operate on it. Otherwise return zero. */
1075
1076 int
1077 value_must_coerce_to_target (struct value *val)
1078 {
1079 struct type *valtype;
1080
1081 /* The only lval kinds which do not live in target memory. */
1082 if (VALUE_LVAL (val) != not_lval
1083 && VALUE_LVAL (val) != lval_internalvar)
1084 return 0;
1085
1086 valtype = check_typedef (value_type (val));
1087
1088 switch (TYPE_CODE (valtype))
1089 {
1090 case TYPE_CODE_ARRAY:
1091 case TYPE_CODE_STRING:
1092 return 1;
1093 default:
1094 return 0;
1095 }
1096 }
1097
1098 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1099 strings are constructed as character arrays in GDB's storage, and this
1100 function copies them to the target. */
1101
1102 struct value *
1103 value_coerce_to_target (struct value *val)
1104 {
1105 LONGEST length;
1106 CORE_ADDR addr;
1107
1108 if (!value_must_coerce_to_target (val))
1109 return val;
1110
1111 length = TYPE_LENGTH (check_typedef (value_type (val)));
1112 addr = allocate_space_in_inferior (length);
1113 write_memory (addr, value_contents (val), length);
1114 return value_at_lazy (value_type (val), addr);
1115 }
1116
1117 /* Given a value which is an array, return a value which is a pointer
1118 to its first element, regardless of whether or not the array has a
1119 nonzero lower bound.
1120
1121 FIXME: A previous comment here indicated that this routine should
1122 be substracting the array's lower bound. It's not clear to me that
1123 this is correct. Given an array subscripting operation, it would
1124 certainly work to do the adjustment here, essentially computing:
1125
1126 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1127
1128 However I believe a more appropriate and logical place to account
1129 for the lower bound is to do so in value_subscript, essentially
1130 computing:
1131
1132 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1133
1134 As further evidence consider what would happen with operations
1135 other than array subscripting, where the caller would get back a
1136 value that had an address somewhere before the actual first element
1137 of the array, and the information about the lower bound would be
1138 lost because of the coercion to pointer type.
1139 */
1140
1141 struct value *
1142 value_coerce_array (struct value *arg1)
1143 {
1144 struct type *type = check_typedef (value_type (arg1));
1145
1146 /* If the user tries to do something requiring a pointer with an
1147 array that has not yet been pushed to the target, then this would
1148 be a good time to do so. */
1149 arg1 = value_coerce_to_target (arg1);
1150
1151 if (VALUE_LVAL (arg1) != lval_memory)
1152 error (_("Attempt to take address of value not located in memory."));
1153
1154 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1155 value_address (arg1));
1156 }
1157
1158 /* Given a value which is a function, return a value which is a pointer
1159 to it. */
1160
1161 struct value *
1162 value_coerce_function (struct value *arg1)
1163 {
1164 struct value *retval;
1165
1166 if (VALUE_LVAL (arg1) != lval_memory)
1167 error (_("Attempt to take address of value not located in memory."));
1168
1169 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1170 value_address (arg1));
1171 return retval;
1172 }
1173
1174 /* Return a pointer value for the object for which ARG1 is the
1175 contents. */
1176
1177 struct value *
1178 value_addr (struct value *arg1)
1179 {
1180 struct value *arg2;
1181
1182 struct type *type = check_typedef (value_type (arg1));
1183 if (TYPE_CODE (type) == TYPE_CODE_REF)
1184 {
1185 /* Copy the value, but change the type from (T&) to (T*). We
1186 keep the same location information, which is efficient, and
1187 allows &(&X) to get the location containing the reference. */
1188 arg2 = value_copy (arg1);
1189 deprecated_set_value_type (arg2,
1190 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1191 return arg2;
1192 }
1193 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1194 return value_coerce_function (arg1);
1195
1196 /* If this is an array that has not yet been pushed to the target,
1197 then this would be a good time to force it to memory. */
1198 arg1 = value_coerce_to_target (arg1);
1199
1200 if (VALUE_LVAL (arg1) != lval_memory)
1201 error (_("Attempt to take address of value not located in memory."));
1202
1203 /* Get target memory address */
1204 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1205 (value_address (arg1)
1206 + value_embedded_offset (arg1)));
1207
1208 /* This may be a pointer to a base subobject; so remember the
1209 full derived object's type ... */
1210 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1211 /* ... and also the relative position of the subobject in the full
1212 object. */
1213 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1214 return arg2;
1215 }
1216
1217 /* Return a reference value for the object for which ARG1 is the
1218 contents. */
1219
1220 struct value *
1221 value_ref (struct value *arg1)
1222 {
1223 struct value *arg2;
1224
1225 struct type *type = check_typedef (value_type (arg1));
1226 if (TYPE_CODE (type) == TYPE_CODE_REF)
1227 return arg1;
1228
1229 arg2 = value_addr (arg1);
1230 deprecated_set_value_type (arg2, lookup_reference_type (type));
1231 return arg2;
1232 }
1233
1234 /* Given a value of a pointer type, apply the C unary * operator to
1235 it. */
1236
1237 struct value *
1238 value_ind (struct value *arg1)
1239 {
1240 struct type *base_type;
1241 struct value *arg2;
1242
1243 arg1 = coerce_array (arg1);
1244
1245 base_type = check_typedef (value_type (arg1));
1246
1247 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1248 {
1249 struct type *enc_type;
1250 /* We may be pointing to something embedded in a larger object.
1251 Get the real type of the enclosing object. */
1252 enc_type = check_typedef (value_enclosing_type (arg1));
1253 enc_type = TYPE_TARGET_TYPE (enc_type);
1254
1255 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1256 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1257 /* For functions, go through find_function_addr, which knows
1258 how to handle function descriptors. */
1259 arg2 = value_at_lazy (enc_type,
1260 find_function_addr (arg1, NULL));
1261 else
1262 /* Retrieve the enclosing object pointed to */
1263 arg2 = value_at_lazy (enc_type,
1264 (value_as_address (arg1)
1265 - value_pointed_to_offset (arg1)));
1266
1267 /* Re-adjust type. */
1268 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1269 /* Add embedding info. */
1270 arg2 = value_change_enclosing_type (arg2, enc_type);
1271 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1272
1273 /* We may be pointing to an object of some derived type. */
1274 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1275 return arg2;
1276 }
1277
1278 error (_("Attempt to take contents of a non-pointer value."));
1279 return 0; /* For lint -- never reached. */
1280 }
1281 \f
1282 /* Create a value for an array by allocating space in GDB, copying
1283 copying the data into that space, and then setting up an array
1284 value.
1285
1286 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1287 is populated from the values passed in ELEMVEC.
1288
1289 The element type of the array is inherited from the type of the
1290 first element, and all elements must have the same size (though we
1291 don't currently enforce any restriction on their types). */
1292
1293 struct value *
1294 value_array (int lowbound, int highbound, struct value **elemvec)
1295 {
1296 int nelem;
1297 int idx;
1298 unsigned int typelength;
1299 struct value *val;
1300 struct type *rangetype;
1301 struct type *arraytype;
1302 CORE_ADDR addr;
1303
1304 /* Validate that the bounds are reasonable and that each of the
1305 elements have the same size. */
1306
1307 nelem = highbound - lowbound + 1;
1308 if (nelem <= 0)
1309 {
1310 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1311 }
1312 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1313 for (idx = 1; idx < nelem; idx++)
1314 {
1315 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1316 {
1317 error (_("array elements must all be the same size"));
1318 }
1319 }
1320
1321 rangetype = create_range_type ((struct type *) NULL,
1322 builtin_type_int32,
1323 lowbound, highbound);
1324 arraytype = create_array_type ((struct type *) NULL,
1325 value_enclosing_type (elemvec[0]),
1326 rangetype);
1327
1328 if (!current_language->c_style_arrays)
1329 {
1330 val = allocate_value (arraytype);
1331 for (idx = 0; idx < nelem; idx++)
1332 {
1333 memcpy (value_contents_all_raw (val) + (idx * typelength),
1334 value_contents_all (elemvec[idx]),
1335 typelength);
1336 }
1337 return val;
1338 }
1339
1340 /* Allocate space to store the array, and then initialize it by
1341 copying in each element. */
1342
1343 val = allocate_value (arraytype);
1344 for (idx = 0; idx < nelem; idx++)
1345 memcpy (value_contents_writeable (val) + (idx * typelength),
1346 value_contents_all (elemvec[idx]),
1347 typelength);
1348 return val;
1349 }
1350
1351 struct value *
1352 value_cstring (char *ptr, int len, struct type *char_type)
1353 {
1354 struct value *val;
1355 int lowbound = current_language->string_lower_bound;
1356 int highbound = len / TYPE_LENGTH (char_type);
1357 struct type *rangetype = create_range_type ((struct type *) NULL,
1358 builtin_type_int32,
1359 lowbound,
1360 highbound + lowbound - 1);
1361 struct type *stringtype
1362 = create_array_type ((struct type *) NULL, char_type, rangetype);
1363
1364 val = allocate_value (stringtype);
1365 memcpy (value_contents_raw (val), ptr, len);
1366 return val;
1367 }
1368
1369 /* Create a value for a string constant by allocating space in the
1370 inferior, copying the data into that space, and returning the
1371 address with type TYPE_CODE_STRING. PTR points to the string
1372 constant data; LEN is number of characters.
1373
1374 Note that string types are like array of char types with a lower
1375 bound of zero and an upper bound of LEN - 1. Also note that the
1376 string may contain embedded null bytes. */
1377
1378 struct value *
1379 value_string (char *ptr, int len, struct type *char_type)
1380 {
1381 struct value *val;
1382 int lowbound = current_language->string_lower_bound;
1383 int highbound = len / TYPE_LENGTH (char_type);
1384 struct type *rangetype = create_range_type ((struct type *) NULL,
1385 builtin_type_int32,
1386 lowbound,
1387 highbound + lowbound - 1);
1388 struct type *stringtype
1389 = create_string_type ((struct type *) NULL, char_type, rangetype);
1390
1391 val = allocate_value (stringtype);
1392 memcpy (value_contents_raw (val), ptr, len);
1393 return val;
1394 }
1395
1396 struct value *
1397 value_bitstring (char *ptr, int len)
1398 {
1399 struct value *val;
1400 struct type *domain_type = create_range_type (NULL,
1401 builtin_type_int32,
1402 0, len - 1);
1403 struct type *type = create_set_type ((struct type *) NULL,
1404 domain_type);
1405 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1406 val = allocate_value (type);
1407 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1408 return val;
1409 }
1410 \f
1411 /* See if we can pass arguments in T2 to a function which takes
1412 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1413 a NULL-terminated vector. If some arguments need coercion of some
1414 sort, then the coerced values are written into T2. Return value is
1415 0 if the arguments could be matched, or the position at which they
1416 differ if not.
1417
1418 STATICP is nonzero if the T1 argument list came from a static
1419 member function. T2 will still include the ``this'' pointer, but
1420 it will be skipped.
1421
1422 For non-static member functions, we ignore the first argument,
1423 which is the type of the instance variable. This is because we
1424 want to handle calls with objects from derived classes. This is
1425 not entirely correct: we should actually check to make sure that a
1426 requested operation is type secure, shouldn't we? FIXME. */
1427
1428 static int
1429 typecmp (int staticp, int varargs, int nargs,
1430 struct field t1[], struct value *t2[])
1431 {
1432 int i;
1433
1434 if (t2 == 0)
1435 internal_error (__FILE__, __LINE__,
1436 _("typecmp: no argument list"));
1437
1438 /* Skip ``this'' argument if applicable. T2 will always include
1439 THIS. */
1440 if (staticp)
1441 t2 ++;
1442
1443 for (i = 0;
1444 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1445 i++)
1446 {
1447 struct type *tt1, *tt2;
1448
1449 if (!t2[i])
1450 return i + 1;
1451
1452 tt1 = check_typedef (t1[i].type);
1453 tt2 = check_typedef (value_type (t2[i]));
1454
1455 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1456 /* We should be doing hairy argument matching, as below. */
1457 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1458 {
1459 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1460 t2[i] = value_coerce_array (t2[i]);
1461 else
1462 t2[i] = value_ref (t2[i]);
1463 continue;
1464 }
1465
1466 /* djb - 20000715 - Until the new type structure is in the
1467 place, and we can attempt things like implicit conversions,
1468 we need to do this so you can take something like a map<const
1469 char *>, and properly access map["hello"], because the
1470 argument to [] will be a reference to a pointer to a char,
1471 and the argument will be a pointer to a char. */
1472 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1473 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1474 {
1475 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1476 }
1477 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1478 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1479 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1480 {
1481 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1482 }
1483 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1484 continue;
1485 /* Array to pointer is a `trivial conversion' according to the
1486 ARM. */
1487
1488 /* We should be doing much hairier argument matching (see
1489 section 13.2 of the ARM), but as a quick kludge, just check
1490 for the same type code. */
1491 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1492 return i + 1;
1493 }
1494 if (varargs || t2[i] == NULL)
1495 return 0;
1496 return i + 1;
1497 }
1498
1499 /* Helper function used by value_struct_elt to recurse through
1500 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1501 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1502 TYPE. If found, return value, else return NULL.
1503
1504 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1505 fields, look for a baseclass named NAME. */
1506
1507 static struct value *
1508 search_struct_field (char *name, struct value *arg1, int offset,
1509 struct type *type, int looking_for_baseclass)
1510 {
1511 int i;
1512 int nbases = TYPE_N_BASECLASSES (type);
1513
1514 CHECK_TYPEDEF (type);
1515
1516 if (!looking_for_baseclass)
1517 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1518 {
1519 char *t_field_name = TYPE_FIELD_NAME (type, i);
1520
1521 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1522 {
1523 struct value *v;
1524 if (field_is_static (&TYPE_FIELD (type, i)))
1525 {
1526 v = value_static_field (type, i);
1527 if (v == 0)
1528 error (_("field %s is nonexistent or has been optimised out"),
1529 name);
1530 }
1531 else
1532 {
1533 v = value_primitive_field (arg1, offset, i, type);
1534 if (v == 0)
1535 error (_("there is no field named %s"), name);
1536 }
1537 return v;
1538 }
1539
1540 if (t_field_name
1541 && (t_field_name[0] == '\0'
1542 || (TYPE_CODE (type) == TYPE_CODE_UNION
1543 && (strcmp_iw (t_field_name, "else") == 0))))
1544 {
1545 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1546 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1547 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1548 {
1549 /* Look for a match through the fields of an anonymous
1550 union, or anonymous struct. C++ provides anonymous
1551 unions.
1552
1553 In the GNU Chill (now deleted from GDB)
1554 implementation of variant record types, each
1555 <alternative field> has an (anonymous) union type,
1556 each member of the union represents a <variant
1557 alternative>. Each <variant alternative> is
1558 represented as a struct, with a member for each
1559 <variant field>. */
1560
1561 struct value *v;
1562 int new_offset = offset;
1563
1564 /* This is pretty gross. In G++, the offset in an
1565 anonymous union is relative to the beginning of the
1566 enclosing struct. In the GNU Chill (now deleted
1567 from GDB) implementation of variant records, the
1568 bitpos is zero in an anonymous union field, so we
1569 have to add the offset of the union here. */
1570 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1571 || (TYPE_NFIELDS (field_type) > 0
1572 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1573 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1574
1575 v = search_struct_field (name, arg1, new_offset,
1576 field_type,
1577 looking_for_baseclass);
1578 if (v)
1579 return v;
1580 }
1581 }
1582 }
1583
1584 for (i = 0; i < nbases; i++)
1585 {
1586 struct value *v;
1587 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1588 /* If we are looking for baseclasses, this is what we get when
1589 we hit them. But it could happen that the base part's member
1590 name is not yet filled in. */
1591 int found_baseclass = (looking_for_baseclass
1592 && TYPE_BASECLASS_NAME (type, i) != NULL
1593 && (strcmp_iw (name,
1594 TYPE_BASECLASS_NAME (type,
1595 i)) == 0));
1596
1597 if (BASETYPE_VIA_VIRTUAL (type, i))
1598 {
1599 int boffset;
1600 struct value *v2;
1601
1602 boffset = baseclass_offset (type, i,
1603 value_contents (arg1) + offset,
1604 value_address (arg1) + offset);
1605 if (boffset == -1)
1606 error (_("virtual baseclass botch"));
1607
1608 /* The virtual base class pointer might have been clobbered
1609 by the user program. Make sure that it still points to a
1610 valid memory location. */
1611
1612 boffset += offset;
1613 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1614 {
1615 CORE_ADDR base_addr;
1616
1617 v2 = allocate_value (basetype);
1618 base_addr = value_address (arg1) + boffset;
1619 if (target_read_memory (base_addr,
1620 value_contents_raw (v2),
1621 TYPE_LENGTH (basetype)) != 0)
1622 error (_("virtual baseclass botch"));
1623 VALUE_LVAL (v2) = lval_memory;
1624 set_value_address (v2, base_addr);
1625 }
1626 else
1627 {
1628 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1629 v2 = allocate_value_lazy (basetype);
1630 else
1631 {
1632 v2 = allocate_value (basetype);
1633 memcpy (value_contents_raw (v2),
1634 value_contents_raw (arg1) + boffset,
1635 TYPE_LENGTH (basetype));
1636 }
1637 set_value_component_location (v2, arg1);
1638 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1639 set_value_offset (v2, value_offset (arg1) + boffset);
1640 }
1641
1642 if (found_baseclass)
1643 return v2;
1644 v = search_struct_field (name, v2, 0,
1645 TYPE_BASECLASS (type, i),
1646 looking_for_baseclass);
1647 }
1648 else if (found_baseclass)
1649 v = value_primitive_field (arg1, offset, i, type);
1650 else
1651 v = search_struct_field (name, arg1,
1652 offset + TYPE_BASECLASS_BITPOS (type,
1653 i) / 8,
1654 basetype, looking_for_baseclass);
1655 if (v)
1656 return v;
1657 }
1658 return NULL;
1659 }
1660
1661 /* Helper function used by value_struct_elt to recurse through
1662 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1663 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1664 TYPE.
1665
1666 If found, return value, else if name matched and args not return
1667 (value) -1, else return NULL. */
1668
1669 static struct value *
1670 search_struct_method (char *name, struct value **arg1p,
1671 struct value **args, int offset,
1672 int *static_memfuncp, struct type *type)
1673 {
1674 int i;
1675 struct value *v;
1676 int name_matched = 0;
1677 char dem_opname[64];
1678
1679 CHECK_TYPEDEF (type);
1680 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1681 {
1682 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1683 /* FIXME! May need to check for ARM demangling here */
1684 if (strncmp (t_field_name, "__", 2) == 0 ||
1685 strncmp (t_field_name, "op", 2) == 0 ||
1686 strncmp (t_field_name, "type", 4) == 0)
1687 {
1688 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1689 t_field_name = dem_opname;
1690 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1691 t_field_name = dem_opname;
1692 }
1693 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1694 {
1695 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1696 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1697 name_matched = 1;
1698
1699 check_stub_method_group (type, i);
1700 if (j > 0 && args == 0)
1701 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1702 else if (j == 0 && args == 0)
1703 {
1704 v = value_fn_field (arg1p, f, j, type, offset);
1705 if (v != NULL)
1706 return v;
1707 }
1708 else
1709 while (j >= 0)
1710 {
1711 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1712 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1713 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1714 TYPE_FN_FIELD_ARGS (f, j), args))
1715 {
1716 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1717 return value_virtual_fn_field (arg1p, f, j,
1718 type, offset);
1719 if (TYPE_FN_FIELD_STATIC_P (f, j)
1720 && static_memfuncp)
1721 *static_memfuncp = 1;
1722 v = value_fn_field (arg1p, f, j, type, offset);
1723 if (v != NULL)
1724 return v;
1725 }
1726 j--;
1727 }
1728 }
1729 }
1730
1731 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1732 {
1733 int base_offset;
1734
1735 if (BASETYPE_VIA_VIRTUAL (type, i))
1736 {
1737 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1738 const gdb_byte *base_valaddr;
1739
1740 /* The virtual base class pointer might have been
1741 clobbered by the user program. Make sure that it
1742 still points to a valid memory location. */
1743
1744 if (offset < 0 || offset >= TYPE_LENGTH (type))
1745 {
1746 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1747 if (target_read_memory (value_address (*arg1p) + offset,
1748 tmp, TYPE_LENGTH (baseclass)) != 0)
1749 error (_("virtual baseclass botch"));
1750 base_valaddr = tmp;
1751 }
1752 else
1753 base_valaddr = value_contents (*arg1p) + offset;
1754
1755 base_offset = baseclass_offset (type, i, base_valaddr,
1756 value_address (*arg1p) + offset);
1757 if (base_offset == -1)
1758 error (_("virtual baseclass botch"));
1759 }
1760 else
1761 {
1762 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1763 }
1764 v = search_struct_method (name, arg1p, args, base_offset + offset,
1765 static_memfuncp, TYPE_BASECLASS (type, i));
1766 if (v == (struct value *) - 1)
1767 {
1768 name_matched = 1;
1769 }
1770 else if (v)
1771 {
1772 /* FIXME-bothner: Why is this commented out? Why is it here? */
1773 /* *arg1p = arg1_tmp; */
1774 return v;
1775 }
1776 }
1777 if (name_matched)
1778 return (struct value *) - 1;
1779 else
1780 return NULL;
1781 }
1782
1783 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1784 extract the component named NAME from the ultimate target
1785 structure/union and return it as a value with its appropriate type.
1786 ERR is used in the error message if *ARGP's type is wrong.
1787
1788 C++: ARGS is a list of argument types to aid in the selection of
1789 an appropriate method. Also, handle derived types.
1790
1791 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1792 where the truthvalue of whether the function that was resolved was
1793 a static member function or not is stored.
1794
1795 ERR is an error message to be printed in case the field is not
1796 found. */
1797
1798 struct value *
1799 value_struct_elt (struct value **argp, struct value **args,
1800 char *name, int *static_memfuncp, char *err)
1801 {
1802 struct type *t;
1803 struct value *v;
1804
1805 *argp = coerce_array (*argp);
1806
1807 t = check_typedef (value_type (*argp));
1808
1809 /* Follow pointers until we get to a non-pointer. */
1810
1811 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1812 {
1813 *argp = value_ind (*argp);
1814 /* Don't coerce fn pointer to fn and then back again! */
1815 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1816 *argp = coerce_array (*argp);
1817 t = check_typedef (value_type (*argp));
1818 }
1819
1820 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1821 && TYPE_CODE (t) != TYPE_CODE_UNION)
1822 error (_("Attempt to extract a component of a value that is not a %s."), err);
1823
1824 /* Assume it's not, unless we see that it is. */
1825 if (static_memfuncp)
1826 *static_memfuncp = 0;
1827
1828 if (!args)
1829 {
1830 /* if there are no arguments ...do this... */
1831
1832 /* Try as a field first, because if we succeed, there is less
1833 work to be done. */
1834 v = search_struct_field (name, *argp, 0, t, 0);
1835 if (v)
1836 return v;
1837
1838 /* C++: If it was not found as a data field, then try to
1839 return it as a pointer to a method. */
1840 v = search_struct_method (name, argp, args, 0,
1841 static_memfuncp, t);
1842
1843 if (v == (struct value *) - 1)
1844 error (_("Cannot take address of method %s."), name);
1845 else if (v == 0)
1846 {
1847 if (TYPE_NFN_FIELDS (t))
1848 error (_("There is no member or method named %s."), name);
1849 else
1850 error (_("There is no member named %s."), name);
1851 }
1852 return v;
1853 }
1854
1855 v = search_struct_method (name, argp, args, 0,
1856 static_memfuncp, t);
1857
1858 if (v == (struct value *) - 1)
1859 {
1860 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1861 }
1862 else if (v == 0)
1863 {
1864 /* See if user tried to invoke data as function. If so, hand it
1865 back. If it's not callable (i.e., a pointer to function),
1866 gdb should give an error. */
1867 v = search_struct_field (name, *argp, 0, t, 0);
1868 /* If we found an ordinary field, then it is not a method call.
1869 So, treat it as if it were a static member function. */
1870 if (v && static_memfuncp)
1871 *static_memfuncp = 1;
1872 }
1873
1874 if (!v)
1875 error (_("Structure has no component named %s."), name);
1876 return v;
1877 }
1878
1879 /* Search through the methods of an object (and its bases) to find a
1880 specified method. Return the pointer to the fn_field list of
1881 overloaded instances.
1882
1883 Helper function for value_find_oload_list.
1884 ARGP is a pointer to a pointer to a value (the object).
1885 METHOD is a string containing the method name.
1886 OFFSET is the offset within the value.
1887 TYPE is the assumed type of the object.
1888 NUM_FNS is the number of overloaded instances.
1889 BASETYPE is set to the actual type of the subobject where the
1890 method is found.
1891 BOFFSET is the offset of the base subobject where the method is found.
1892 */
1893
1894 static struct fn_field *
1895 find_method_list (struct value **argp, char *method,
1896 int offset, struct type *type, int *num_fns,
1897 struct type **basetype, int *boffset)
1898 {
1899 int i;
1900 struct fn_field *f;
1901 CHECK_TYPEDEF (type);
1902
1903 *num_fns = 0;
1904
1905 /* First check in object itself. */
1906 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1907 {
1908 /* pai: FIXME What about operators and type conversions? */
1909 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1910 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1911 {
1912 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1913 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1914
1915 *num_fns = len;
1916 *basetype = type;
1917 *boffset = offset;
1918
1919 /* Resolve any stub methods. */
1920 check_stub_method_group (type, i);
1921
1922 return f;
1923 }
1924 }
1925
1926 /* Not found in object, check in base subobjects. */
1927 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1928 {
1929 int base_offset;
1930 if (BASETYPE_VIA_VIRTUAL (type, i))
1931 {
1932 base_offset = value_offset (*argp) + offset;
1933 base_offset = baseclass_offset (type, i,
1934 value_contents (*argp) + base_offset,
1935 value_address (*argp) + base_offset);
1936 if (base_offset == -1)
1937 error (_("virtual baseclass botch"));
1938 }
1939 else /* Non-virtual base, simply use bit position from debug
1940 info. */
1941 {
1942 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1943 }
1944 f = find_method_list (argp, method, base_offset + offset,
1945 TYPE_BASECLASS (type, i), num_fns,
1946 basetype, boffset);
1947 if (f)
1948 return f;
1949 }
1950 return NULL;
1951 }
1952
1953 /* Return the list of overloaded methods of a specified name.
1954
1955 ARGP is a pointer to a pointer to a value (the object).
1956 METHOD is the method name.
1957 OFFSET is the offset within the value contents.
1958 NUM_FNS is the number of overloaded instances.
1959 BASETYPE is set to the type of the base subobject that defines the
1960 method.
1961 BOFFSET is the offset of the base subobject which defines the method.
1962 */
1963
1964 struct fn_field *
1965 value_find_oload_method_list (struct value **argp, char *method,
1966 int offset, int *num_fns,
1967 struct type **basetype, int *boffset)
1968 {
1969 struct type *t;
1970
1971 t = check_typedef (value_type (*argp));
1972
1973 /* Code snarfed from value_struct_elt. */
1974 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1975 {
1976 *argp = value_ind (*argp);
1977 /* Don't coerce fn pointer to fn and then back again! */
1978 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1979 *argp = coerce_array (*argp);
1980 t = check_typedef (value_type (*argp));
1981 }
1982
1983 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1984 && TYPE_CODE (t) != TYPE_CODE_UNION)
1985 error (_("Attempt to extract a component of a value that is not a struct or union"));
1986
1987 return find_method_list (argp, method, 0, t, num_fns,
1988 basetype, boffset);
1989 }
1990
1991 /* Given an array of argument types (ARGTYPES) (which includes an
1992 entry for "this" in the case of C++ methods), the number of
1993 arguments NARGS, the NAME of a function whether it's a method or
1994 not (METHOD), and the degree of laxness (LAX) in conforming to
1995 overload resolution rules in ANSI C++, find the best function that
1996 matches on the argument types according to the overload resolution
1997 rules.
1998
1999 In the case of class methods, the parameter OBJ is an object value
2000 in which to search for overloaded methods.
2001
2002 In the case of non-method functions, the parameter FSYM is a symbol
2003 corresponding to one of the overloaded functions.
2004
2005 Return value is an integer: 0 -> good match, 10 -> debugger applied
2006 non-standard coercions, 100 -> incompatible.
2007
2008 If a method is being searched for, VALP will hold the value.
2009 If a non-method is being searched for, SYMP will hold the symbol
2010 for it.
2011
2012 If a method is being searched for, and it is a static method,
2013 then STATICP will point to a non-zero value.
2014
2015 Note: This function does *not* check the value of
2016 overload_resolution. Caller must check it to see whether overload
2017 resolution is permitted.
2018 */
2019
2020 int
2021 find_overload_match (struct type **arg_types, int nargs,
2022 char *name, int method, int lax,
2023 struct value **objp, struct symbol *fsym,
2024 struct value **valp, struct symbol **symp,
2025 int *staticp)
2026 {
2027 struct value *obj = (objp ? *objp : NULL);
2028 /* Index of best overloaded function. */
2029 int oload_champ;
2030 /* The measure for the current best match. */
2031 struct badness_vector *oload_champ_bv = NULL;
2032 struct value *temp = obj;
2033 /* For methods, the list of overloaded methods. */
2034 struct fn_field *fns_ptr = NULL;
2035 /* For non-methods, the list of overloaded function symbols. */
2036 struct symbol **oload_syms = NULL;
2037 /* Number of overloaded instances being considered. */
2038 int num_fns = 0;
2039 struct type *basetype = NULL;
2040 int boffset;
2041 int ix;
2042 int static_offset;
2043 struct cleanup *old_cleanups = NULL;
2044
2045 const char *obj_type_name = NULL;
2046 char *func_name = NULL;
2047 enum oload_classification match_quality;
2048
2049 /* Get the list of overloaded methods or functions. */
2050 if (method)
2051 {
2052 gdb_assert (obj);
2053 obj_type_name = TYPE_NAME (value_type (obj));
2054 /* Hack: evaluate_subexp_standard often passes in a pointer
2055 value rather than the object itself, so try again. */
2056 if ((!obj_type_name || !*obj_type_name)
2057 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2058 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2059
2060 fns_ptr = value_find_oload_method_list (&temp, name,
2061 0, &num_fns,
2062 &basetype, &boffset);
2063 if (!fns_ptr || !num_fns)
2064 error (_("Couldn't find method %s%s%s"),
2065 obj_type_name,
2066 (obj_type_name && *obj_type_name) ? "::" : "",
2067 name);
2068 /* If we are dealing with stub method types, they should have
2069 been resolved by find_method_list via
2070 value_find_oload_method_list above. */
2071 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2072 oload_champ = find_oload_champ (arg_types, nargs, method,
2073 num_fns, fns_ptr,
2074 oload_syms, &oload_champ_bv);
2075 }
2076 else
2077 {
2078 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2079
2080 /* If we have a C++ name, try to extract just the function
2081 part. */
2082 if (qualified_name)
2083 func_name = cp_func_name (qualified_name);
2084
2085 /* If there was no C++ name, this must be a C-style function.
2086 Just return the same symbol. Do the same if cp_func_name
2087 fails for some reason. */
2088 if (func_name == NULL)
2089 {
2090 *symp = fsym;
2091 return 0;
2092 }
2093
2094 old_cleanups = make_cleanup (xfree, func_name);
2095 make_cleanup (xfree, oload_syms);
2096 make_cleanup (xfree, oload_champ_bv);
2097
2098 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2099 func_name,
2100 qualified_name,
2101 &oload_syms,
2102 &oload_champ_bv);
2103 }
2104
2105 /* Check how bad the best match is. */
2106
2107 match_quality =
2108 classify_oload_match (oload_champ_bv, nargs,
2109 oload_method_static (method, fns_ptr,
2110 oload_champ));
2111
2112 if (match_quality == INCOMPATIBLE)
2113 {
2114 if (method)
2115 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2116 obj_type_name,
2117 (obj_type_name && *obj_type_name) ? "::" : "",
2118 name);
2119 else
2120 error (_("Cannot resolve function %s to any overloaded instance"),
2121 func_name);
2122 }
2123 else if (match_quality == NON_STANDARD)
2124 {
2125 if (method)
2126 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2127 obj_type_name,
2128 (obj_type_name && *obj_type_name) ? "::" : "",
2129 name);
2130 else
2131 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2132 func_name);
2133 }
2134
2135 if (method)
2136 {
2137 if (staticp != NULL)
2138 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2139 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2140 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2141 basetype, boffset);
2142 else
2143 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2144 basetype, boffset);
2145 }
2146 else
2147 {
2148 *symp = oload_syms[oload_champ];
2149 }
2150
2151 if (objp)
2152 {
2153 struct type *temp_type = check_typedef (value_type (temp));
2154 struct type *obj_type = check_typedef (value_type (*objp));
2155 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2156 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2157 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2158 {
2159 temp = value_addr (temp);
2160 }
2161 *objp = temp;
2162 }
2163 if (old_cleanups != NULL)
2164 do_cleanups (old_cleanups);
2165
2166 switch (match_quality)
2167 {
2168 case INCOMPATIBLE:
2169 return 100;
2170 case NON_STANDARD:
2171 return 10;
2172 default: /* STANDARD */
2173 return 0;
2174 }
2175 }
2176
2177 /* Find the best overload match, searching for FUNC_NAME in namespaces
2178 contained in QUALIFIED_NAME until it either finds a good match or
2179 runs out of namespaces. It stores the overloaded functions in
2180 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2181 calling function is responsible for freeing *OLOAD_SYMS and
2182 *OLOAD_CHAMP_BV. */
2183
2184 static int
2185 find_oload_champ_namespace (struct type **arg_types, int nargs,
2186 const char *func_name,
2187 const char *qualified_name,
2188 struct symbol ***oload_syms,
2189 struct badness_vector **oload_champ_bv)
2190 {
2191 int oload_champ;
2192
2193 find_oload_champ_namespace_loop (arg_types, nargs,
2194 func_name,
2195 qualified_name, 0,
2196 oload_syms, oload_champ_bv,
2197 &oload_champ);
2198
2199 return oload_champ;
2200 }
2201
2202 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2203 how deep we've looked for namespaces, and the champ is stored in
2204 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2205 if it isn't.
2206
2207 It is the caller's responsibility to free *OLOAD_SYMS and
2208 *OLOAD_CHAMP_BV. */
2209
2210 static int
2211 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2212 const char *func_name,
2213 const char *qualified_name,
2214 int namespace_len,
2215 struct symbol ***oload_syms,
2216 struct badness_vector **oload_champ_bv,
2217 int *oload_champ)
2218 {
2219 int next_namespace_len = namespace_len;
2220 int searched_deeper = 0;
2221 int num_fns = 0;
2222 struct cleanup *old_cleanups;
2223 int new_oload_champ;
2224 struct symbol **new_oload_syms;
2225 struct badness_vector *new_oload_champ_bv;
2226 char *new_namespace;
2227
2228 if (next_namespace_len != 0)
2229 {
2230 gdb_assert (qualified_name[next_namespace_len] == ':');
2231 next_namespace_len += 2;
2232 }
2233 next_namespace_len +=
2234 cp_find_first_component (qualified_name + next_namespace_len);
2235
2236 /* Initialize these to values that can safely be xfree'd. */
2237 *oload_syms = NULL;
2238 *oload_champ_bv = NULL;
2239
2240 /* First, see if we have a deeper namespace we can search in.
2241 If we get a good match there, use it. */
2242
2243 if (qualified_name[next_namespace_len] == ':')
2244 {
2245 searched_deeper = 1;
2246
2247 if (find_oload_champ_namespace_loop (arg_types, nargs,
2248 func_name, qualified_name,
2249 next_namespace_len,
2250 oload_syms, oload_champ_bv,
2251 oload_champ))
2252 {
2253 return 1;
2254 }
2255 };
2256
2257 /* If we reach here, either we're in the deepest namespace or we
2258 didn't find a good match in a deeper namespace. But, in the
2259 latter case, we still have a bad match in a deeper namespace;
2260 note that we might not find any match at all in the current
2261 namespace. (There's always a match in the deepest namespace,
2262 because this overload mechanism only gets called if there's a
2263 function symbol to start off with.) */
2264
2265 old_cleanups = make_cleanup (xfree, *oload_syms);
2266 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2267 new_namespace = alloca (namespace_len + 1);
2268 strncpy (new_namespace, qualified_name, namespace_len);
2269 new_namespace[namespace_len] = '\0';
2270 new_oload_syms = make_symbol_overload_list (func_name,
2271 new_namespace);
2272 while (new_oload_syms[num_fns])
2273 ++num_fns;
2274
2275 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2276 NULL, new_oload_syms,
2277 &new_oload_champ_bv);
2278
2279 /* Case 1: We found a good match. Free earlier matches (if any),
2280 and return it. Case 2: We didn't find a good match, but we're
2281 not the deepest function. Then go with the bad match that the
2282 deeper function found. Case 3: We found a bad match, and we're
2283 the deepest function. Then return what we found, even though
2284 it's a bad match. */
2285
2286 if (new_oload_champ != -1
2287 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2288 {
2289 *oload_syms = new_oload_syms;
2290 *oload_champ = new_oload_champ;
2291 *oload_champ_bv = new_oload_champ_bv;
2292 do_cleanups (old_cleanups);
2293 return 1;
2294 }
2295 else if (searched_deeper)
2296 {
2297 xfree (new_oload_syms);
2298 xfree (new_oload_champ_bv);
2299 discard_cleanups (old_cleanups);
2300 return 0;
2301 }
2302 else
2303 {
2304 gdb_assert (new_oload_champ != -1);
2305 *oload_syms = new_oload_syms;
2306 *oload_champ = new_oload_champ;
2307 *oload_champ_bv = new_oload_champ_bv;
2308 discard_cleanups (old_cleanups);
2309 return 0;
2310 }
2311 }
2312
2313 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2314 the best match from among the overloaded methods or functions
2315 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2316 The number of methods/functions in the list is given by NUM_FNS.
2317 Return the index of the best match; store an indication of the
2318 quality of the match in OLOAD_CHAMP_BV.
2319
2320 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2321
2322 static int
2323 find_oload_champ (struct type **arg_types, int nargs, int method,
2324 int num_fns, struct fn_field *fns_ptr,
2325 struct symbol **oload_syms,
2326 struct badness_vector **oload_champ_bv)
2327 {
2328 int ix;
2329 /* A measure of how good an overloaded instance is. */
2330 struct badness_vector *bv;
2331 /* Index of best overloaded function. */
2332 int oload_champ = -1;
2333 /* Current ambiguity state for overload resolution. */
2334 int oload_ambiguous = 0;
2335 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2336
2337 *oload_champ_bv = NULL;
2338
2339 /* Consider each candidate in turn. */
2340 for (ix = 0; ix < num_fns; ix++)
2341 {
2342 int jj;
2343 int static_offset = oload_method_static (method, fns_ptr, ix);
2344 int nparms;
2345 struct type **parm_types;
2346
2347 if (method)
2348 {
2349 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2350 }
2351 else
2352 {
2353 /* If it's not a method, this is the proper place. */
2354 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2355 }
2356
2357 /* Prepare array of parameter types. */
2358 parm_types = (struct type **)
2359 xmalloc (nparms * (sizeof (struct type *)));
2360 for (jj = 0; jj < nparms; jj++)
2361 parm_types[jj] = (method
2362 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2363 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2364 jj));
2365
2366 /* Compare parameter types to supplied argument types. Skip
2367 THIS for static methods. */
2368 bv = rank_function (parm_types, nparms,
2369 arg_types + static_offset,
2370 nargs - static_offset);
2371
2372 if (!*oload_champ_bv)
2373 {
2374 *oload_champ_bv = bv;
2375 oload_champ = 0;
2376 }
2377 else /* See whether current candidate is better or worse than
2378 previous best. */
2379 switch (compare_badness (bv, *oload_champ_bv))
2380 {
2381 case 0: /* Top two contenders are equally good. */
2382 oload_ambiguous = 1;
2383 break;
2384 case 1: /* Incomparable top contenders. */
2385 oload_ambiguous = 2;
2386 break;
2387 case 2: /* New champion, record details. */
2388 *oload_champ_bv = bv;
2389 oload_ambiguous = 0;
2390 oload_champ = ix;
2391 break;
2392 case 3:
2393 default:
2394 break;
2395 }
2396 xfree (parm_types);
2397 if (overload_debug)
2398 {
2399 if (method)
2400 fprintf_filtered (gdb_stderr,
2401 "Overloaded method instance %s, # of parms %d\n",
2402 fns_ptr[ix].physname, nparms);
2403 else
2404 fprintf_filtered (gdb_stderr,
2405 "Overloaded function instance %s # of parms %d\n",
2406 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2407 nparms);
2408 for (jj = 0; jj < nargs - static_offset; jj++)
2409 fprintf_filtered (gdb_stderr,
2410 "...Badness @ %d : %d\n",
2411 jj, bv->rank[jj]);
2412 fprintf_filtered (gdb_stderr,
2413 "Overload resolution champion is %d, ambiguous? %d\n",
2414 oload_champ, oload_ambiguous);
2415 }
2416 }
2417
2418 return oload_champ;
2419 }
2420
2421 /* Return 1 if we're looking at a static method, 0 if we're looking at
2422 a non-static method or a function that isn't a method. */
2423
2424 static int
2425 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2426 {
2427 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2428 return 1;
2429 else
2430 return 0;
2431 }
2432
2433 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2434
2435 static enum oload_classification
2436 classify_oload_match (struct badness_vector *oload_champ_bv,
2437 int nargs,
2438 int static_offset)
2439 {
2440 int ix;
2441
2442 for (ix = 1; ix <= nargs - static_offset; ix++)
2443 {
2444 if (oload_champ_bv->rank[ix] >= 100)
2445 return INCOMPATIBLE; /* Truly mismatched types. */
2446 else if (oload_champ_bv->rank[ix] >= 10)
2447 return NON_STANDARD; /* Non-standard type conversions
2448 needed. */
2449 }
2450
2451 return STANDARD; /* Only standard conversions needed. */
2452 }
2453
2454 /* C++: return 1 is NAME is a legitimate name for the destructor of
2455 type TYPE. If TYPE does not have a destructor, or if NAME is
2456 inappropriate for TYPE, an error is signaled. */
2457 int
2458 destructor_name_p (const char *name, const struct type *type)
2459 {
2460 if (name[0] == '~')
2461 {
2462 char *dname = type_name_no_tag (type);
2463 char *cp = strchr (dname, '<');
2464 unsigned int len;
2465
2466 /* Do not compare the template part for template classes. */
2467 if (cp == NULL)
2468 len = strlen (dname);
2469 else
2470 len = cp - dname;
2471 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2472 error (_("name of destructor must equal name of class"));
2473 else
2474 return 1;
2475 }
2476 return 0;
2477 }
2478
2479 /* Given TYPE, a structure/union,
2480 return 1 if the component named NAME from the ultimate target
2481 structure/union is defined, otherwise, return 0. */
2482
2483 int
2484 check_field (struct type *type, const char *name)
2485 {
2486 int i;
2487
2488 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2489 {
2490 char *t_field_name = TYPE_FIELD_NAME (type, i);
2491 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2492 return 1;
2493 }
2494
2495 /* C++: If it was not found as a data field, then try to return it
2496 as a pointer to a method. */
2497
2498 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2499 {
2500 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2501 return 1;
2502 }
2503
2504 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2505 if (check_field (TYPE_BASECLASS (type, i), name))
2506 return 1;
2507
2508 return 0;
2509 }
2510
2511 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2512 return the appropriate member (or the address of the member, if
2513 WANT_ADDRESS). This function is used to resolve user expressions
2514 of the form "DOMAIN::NAME". For more details on what happens, see
2515 the comment before value_struct_elt_for_reference. */
2516
2517 struct value *
2518 value_aggregate_elt (struct type *curtype,
2519 char *name, int want_address,
2520 enum noside noside)
2521 {
2522 switch (TYPE_CODE (curtype))
2523 {
2524 case TYPE_CODE_STRUCT:
2525 case TYPE_CODE_UNION:
2526 return value_struct_elt_for_reference (curtype, 0, curtype,
2527 name, NULL,
2528 want_address, noside);
2529 case TYPE_CODE_NAMESPACE:
2530 return value_namespace_elt (curtype, name,
2531 want_address, noside);
2532 default:
2533 internal_error (__FILE__, __LINE__,
2534 _("non-aggregate type in value_aggregate_elt"));
2535 }
2536 }
2537
2538 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2539 return the address of this member as a "pointer to member" type.
2540 If INTYPE is non-null, then it will be the type of the member we
2541 are looking for. This will help us resolve "pointers to member
2542 functions". This function is used to resolve user expressions of
2543 the form "DOMAIN::NAME". */
2544
2545 static struct value *
2546 value_struct_elt_for_reference (struct type *domain, int offset,
2547 struct type *curtype, char *name,
2548 struct type *intype,
2549 int want_address,
2550 enum noside noside)
2551 {
2552 struct type *t = curtype;
2553 int i;
2554 struct value *v, *result;
2555
2556 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2557 && TYPE_CODE (t) != TYPE_CODE_UNION)
2558 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2559
2560 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2561 {
2562 char *t_field_name = TYPE_FIELD_NAME (t, i);
2563
2564 if (t_field_name && strcmp (t_field_name, name) == 0)
2565 {
2566 if (field_is_static (&TYPE_FIELD (t, i)))
2567 {
2568 v = value_static_field (t, i);
2569 if (v == NULL)
2570 error (_("static field %s has been optimized out"),
2571 name);
2572 if (want_address)
2573 v = value_addr (v);
2574 return v;
2575 }
2576 if (TYPE_FIELD_PACKED (t, i))
2577 error (_("pointers to bitfield members not allowed"));
2578
2579 if (want_address)
2580 return value_from_longest
2581 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2582 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2583 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2584 return allocate_value (TYPE_FIELD_TYPE (t, i));
2585 else
2586 error (_("Cannot reference non-static field \"%s\""), name);
2587 }
2588 }
2589
2590 /* C++: If it was not found as a data field, then try to return it
2591 as a pointer to a method. */
2592
2593 /* Perform all necessary dereferencing. */
2594 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2595 intype = TYPE_TARGET_TYPE (intype);
2596
2597 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2598 {
2599 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2600 char dem_opname[64];
2601
2602 if (strncmp (t_field_name, "__", 2) == 0
2603 || strncmp (t_field_name, "op", 2) == 0
2604 || strncmp (t_field_name, "type", 4) == 0)
2605 {
2606 if (cplus_demangle_opname (t_field_name,
2607 dem_opname, DMGL_ANSI))
2608 t_field_name = dem_opname;
2609 else if (cplus_demangle_opname (t_field_name,
2610 dem_opname, 0))
2611 t_field_name = dem_opname;
2612 }
2613 if (t_field_name && strcmp (t_field_name, name) == 0)
2614 {
2615 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2616 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2617
2618 check_stub_method_group (t, i);
2619
2620 if (intype == 0 && j > 1)
2621 error (_("non-unique member `%s' requires type instantiation"), name);
2622 if (intype)
2623 {
2624 while (j--)
2625 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2626 break;
2627 if (j < 0)
2628 error (_("no member function matches that type instantiation"));
2629 }
2630 else
2631 j = 0;
2632
2633 if (TYPE_FN_FIELD_STATIC_P (f, j))
2634 {
2635 struct symbol *s =
2636 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2637 0, VAR_DOMAIN, 0);
2638 if (s == NULL)
2639 return NULL;
2640
2641 if (want_address)
2642 return value_addr (read_var_value (s, 0));
2643 else
2644 return read_var_value (s, 0);
2645 }
2646
2647 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2648 {
2649 if (want_address)
2650 {
2651 result = allocate_value
2652 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2653 cplus_make_method_ptr (value_type (result),
2654 value_contents_writeable (result),
2655 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2656 }
2657 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2658 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2659 else
2660 error (_("Cannot reference virtual member function \"%s\""),
2661 name);
2662 }
2663 else
2664 {
2665 struct symbol *s =
2666 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2667 0, VAR_DOMAIN, 0);
2668 if (s == NULL)
2669 return NULL;
2670
2671 v = read_var_value (s, 0);
2672 if (!want_address)
2673 result = v;
2674 else
2675 {
2676 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2677 cplus_make_method_ptr (value_type (result),
2678 value_contents_writeable (result),
2679 value_address (v), 0);
2680 }
2681 }
2682 return result;
2683 }
2684 }
2685 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2686 {
2687 struct value *v;
2688 int base_offset;
2689
2690 if (BASETYPE_VIA_VIRTUAL (t, i))
2691 base_offset = 0;
2692 else
2693 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2694 v = value_struct_elt_for_reference (domain,
2695 offset + base_offset,
2696 TYPE_BASECLASS (t, i),
2697 name, intype,
2698 want_address, noside);
2699 if (v)
2700 return v;
2701 }
2702
2703 /* As a last chance, pretend that CURTYPE is a namespace, and look
2704 it up that way; this (frequently) works for types nested inside
2705 classes. */
2706
2707 return value_maybe_namespace_elt (curtype, name,
2708 want_address, noside);
2709 }
2710
2711 /* C++: Return the member NAME of the namespace given by the type
2712 CURTYPE. */
2713
2714 static struct value *
2715 value_namespace_elt (const struct type *curtype,
2716 char *name, int want_address,
2717 enum noside noside)
2718 {
2719 struct value *retval = value_maybe_namespace_elt (curtype, name,
2720 want_address,
2721 noside);
2722
2723 if (retval == NULL)
2724 error (_("No symbol \"%s\" in namespace \"%s\"."),
2725 name, TYPE_TAG_NAME (curtype));
2726
2727 return retval;
2728 }
2729
2730 /* A helper function used by value_namespace_elt and
2731 value_struct_elt_for_reference. It looks up NAME inside the
2732 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2733 is a class and NAME refers to a type in CURTYPE itself (as opposed
2734 to, say, some base class of CURTYPE). */
2735
2736 static struct value *
2737 value_maybe_namespace_elt (const struct type *curtype,
2738 char *name, int want_address,
2739 enum noside noside)
2740 {
2741 const char *namespace_name = TYPE_TAG_NAME (curtype);
2742 struct symbol *sym;
2743 struct value *result;
2744
2745 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2746 get_selected_block (0),
2747 VAR_DOMAIN);
2748
2749 if (sym == NULL)
2750 return NULL;
2751 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2752 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2753 result = allocate_value (SYMBOL_TYPE (sym));
2754 else
2755 result = value_of_variable (sym, get_selected_block (0));
2756
2757 if (result && want_address)
2758 result = value_addr (result);
2759
2760 return result;
2761 }
2762
2763 /* Given a pointer value V, find the real (RTTI) type of the object it
2764 points to.
2765
2766 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2767 and refer to the values computed for the object pointed to. */
2768
2769 struct type *
2770 value_rtti_target_type (struct value *v, int *full,
2771 int *top, int *using_enc)
2772 {
2773 struct value *target;
2774
2775 target = value_ind (v);
2776
2777 return value_rtti_type (target, full, top, using_enc);
2778 }
2779
2780 /* Given a value pointed to by ARGP, check its real run-time type, and
2781 if that is different from the enclosing type, create a new value
2782 using the real run-time type as the enclosing type (and of the same
2783 type as ARGP) and return it, with the embedded offset adjusted to
2784 be the correct offset to the enclosed object. RTYPE is the type,
2785 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2786 by value_rtti_type(). If these are available, they can be supplied
2787 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2788 NULL if they're not available. */
2789
2790 struct value *
2791 value_full_object (struct value *argp,
2792 struct type *rtype,
2793 int xfull, int xtop,
2794 int xusing_enc)
2795 {
2796 struct type *real_type;
2797 int full = 0;
2798 int top = -1;
2799 int using_enc = 0;
2800 struct value *new_val;
2801
2802 if (rtype)
2803 {
2804 real_type = rtype;
2805 full = xfull;
2806 top = xtop;
2807 using_enc = xusing_enc;
2808 }
2809 else
2810 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2811
2812 /* If no RTTI data, or if object is already complete, do nothing. */
2813 if (!real_type || real_type == value_enclosing_type (argp))
2814 return argp;
2815
2816 /* If we have the full object, but for some reason the enclosing
2817 type is wrong, set it. */
2818 /* pai: FIXME -- sounds iffy */
2819 if (full)
2820 {
2821 argp = value_change_enclosing_type (argp, real_type);
2822 return argp;
2823 }
2824
2825 /* Check if object is in memory */
2826 if (VALUE_LVAL (argp) != lval_memory)
2827 {
2828 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2829 TYPE_NAME (real_type));
2830
2831 return argp;
2832 }
2833
2834 /* All other cases -- retrieve the complete object. */
2835 /* Go back by the computed top_offset from the beginning of the
2836 object, adjusting for the embedded offset of argp if that's what
2837 value_rtti_type used for its computation. */
2838 new_val = value_at_lazy (real_type, value_address (argp) - top +
2839 (using_enc ? 0 : value_embedded_offset (argp)));
2840 deprecated_set_value_type (new_val, value_type (argp));
2841 set_value_embedded_offset (new_val, (using_enc
2842 ? top + value_embedded_offset (argp)
2843 : top));
2844 return new_val;
2845 }
2846
2847
2848 /* Return the value of the local variable, if one exists.
2849 Flag COMPLAIN signals an error if the request is made in an
2850 inappropriate context. */
2851
2852 struct value *
2853 value_of_local (const char *name, int complain)
2854 {
2855 struct symbol *func, *sym;
2856 struct block *b;
2857 struct value * ret;
2858 struct frame_info *frame;
2859
2860 if (complain)
2861 frame = get_selected_frame (_("no frame selected"));
2862 else
2863 {
2864 frame = deprecated_safe_get_selected_frame ();
2865 if (frame == 0)
2866 return 0;
2867 }
2868
2869 func = get_frame_function (frame);
2870 if (!func)
2871 {
2872 if (complain)
2873 error (_("no `%s' in nameless context"), name);
2874 else
2875 return 0;
2876 }
2877
2878 b = SYMBOL_BLOCK_VALUE (func);
2879 if (dict_empty (BLOCK_DICT (b)))
2880 {
2881 if (complain)
2882 error (_("no args, no `%s'"), name);
2883 else
2884 return 0;
2885 }
2886
2887 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2888 symbol instead of the LOC_ARG one (if both exist). */
2889 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2890 if (sym == NULL)
2891 {
2892 if (complain)
2893 error (_("current stack frame does not contain a variable named `%s'"),
2894 name);
2895 else
2896 return NULL;
2897 }
2898
2899 ret = read_var_value (sym, frame);
2900 if (ret == 0 && complain)
2901 error (_("`%s' argument unreadable"), name);
2902 return ret;
2903 }
2904
2905 /* C++/Objective-C: return the value of the class instance variable,
2906 if one exists. Flag COMPLAIN signals an error if the request is
2907 made in an inappropriate context. */
2908
2909 struct value *
2910 value_of_this (int complain)
2911 {
2912 if (!current_language->la_name_of_this)
2913 return 0;
2914 return value_of_local (current_language->la_name_of_this, complain);
2915 }
2916
2917 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2918 elements long, starting at LOWBOUND. The result has the same lower
2919 bound as the original ARRAY. */
2920
2921 struct value *
2922 value_slice (struct value *array, int lowbound, int length)
2923 {
2924 struct type *slice_range_type, *slice_type, *range_type;
2925 LONGEST lowerbound, upperbound;
2926 struct value *slice;
2927 struct type *array_type;
2928
2929 array_type = check_typedef (value_type (array));
2930 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2931 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2932 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2933 error (_("cannot take slice of non-array"));
2934
2935 range_type = TYPE_INDEX_TYPE (array_type);
2936 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2937 error (_("slice from bad array or bitstring"));
2938
2939 if (lowbound < lowerbound || length < 0
2940 || lowbound + length - 1 > upperbound)
2941 error (_("slice out of range"));
2942
2943 /* FIXME-type-allocation: need a way to free this type when we are
2944 done with it. */
2945 slice_range_type = create_range_type ((struct type *) NULL,
2946 TYPE_TARGET_TYPE (range_type),
2947 lowbound,
2948 lowbound + length - 1);
2949 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2950 {
2951 int i;
2952
2953 slice_type = create_set_type ((struct type *) NULL,
2954 slice_range_type);
2955 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2956 slice = value_zero (slice_type, not_lval);
2957
2958 for (i = 0; i < length; i++)
2959 {
2960 int element = value_bit_index (array_type,
2961 value_contents (array),
2962 lowbound + i);
2963 if (element < 0)
2964 error (_("internal error accessing bitstring"));
2965 else if (element > 0)
2966 {
2967 int j = i % TARGET_CHAR_BIT;
2968 if (gdbarch_bits_big_endian (current_gdbarch))
2969 j = TARGET_CHAR_BIT - 1 - j;
2970 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2971 }
2972 }
2973 /* We should set the address, bitssize, and bitspos, so the
2974 slice can be used on the LHS, but that may require extensions
2975 to value_assign. For now, just leave as a non_lval.
2976 FIXME. */
2977 }
2978 else
2979 {
2980 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2981 LONGEST offset =
2982 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2983
2984 slice_type = create_array_type ((struct type *) NULL,
2985 element_type,
2986 slice_range_type);
2987 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2988
2989 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2990 slice = allocate_value_lazy (slice_type);
2991 else
2992 {
2993 slice = allocate_value (slice_type);
2994 memcpy (value_contents_writeable (slice),
2995 value_contents (array) + offset,
2996 TYPE_LENGTH (slice_type));
2997 }
2998
2999 set_value_component_location (slice, array);
3000 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3001 set_value_offset (slice, value_offset (array) + offset);
3002 }
3003 return slice;
3004 }
3005
3006 /* Create a value for a FORTRAN complex number. Currently most of the
3007 time values are coerced to COMPLEX*16 (i.e. a complex number
3008 composed of 2 doubles. This really should be a smarter routine
3009 that figures out precision inteligently as opposed to assuming
3010 doubles. FIXME: fmb */
3011
3012 struct value *
3013 value_literal_complex (struct value *arg1,
3014 struct value *arg2,
3015 struct type *type)
3016 {
3017 struct value *val;
3018 struct type *real_type = TYPE_TARGET_TYPE (type);
3019
3020 val = allocate_value (type);
3021 arg1 = value_cast (real_type, arg1);
3022 arg2 = value_cast (real_type, arg2);
3023
3024 memcpy (value_contents_raw (val),
3025 value_contents (arg1), TYPE_LENGTH (real_type));
3026 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3027 value_contents (arg2), TYPE_LENGTH (real_type));
3028 return val;
3029 }
3030
3031 /* Cast a value into the appropriate complex data type. */
3032
3033 static struct value *
3034 cast_into_complex (struct type *type, struct value *val)
3035 {
3036 struct type *real_type = TYPE_TARGET_TYPE (type);
3037
3038 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3039 {
3040 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3041 struct value *re_val = allocate_value (val_real_type);
3042 struct value *im_val = allocate_value (val_real_type);
3043
3044 memcpy (value_contents_raw (re_val),
3045 value_contents (val), TYPE_LENGTH (val_real_type));
3046 memcpy (value_contents_raw (im_val),
3047 value_contents (val) + TYPE_LENGTH (val_real_type),
3048 TYPE_LENGTH (val_real_type));
3049
3050 return value_literal_complex (re_val, im_val, type);
3051 }
3052 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3053 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3054 return value_literal_complex (val,
3055 value_zero (real_type, not_lval),
3056 type);
3057 else
3058 error (_("cannot cast non-number to complex"));
3059 }
3060
3061 void
3062 _initialize_valops (void)
3063 {
3064 add_setshow_boolean_cmd ("overload-resolution", class_support,
3065 &overload_resolution, _("\
3066 Set overload resolution in evaluating C++ functions."), _("\
3067 Show overload resolution in evaluating C++ functions."),
3068 NULL, NULL,
3069 show_overload_resolution,
3070 &setlist, &showlist);
3071 overload_resolution = 1;
3072 }
This page took 0.145422 seconds and 4 git commands to generate.