2011-02-25 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41 #include "tracepoint.h"
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50
51 extern int overload_debug;
52 /* Local functions. */
53
54 static int typecmp (int staticp, int varargs, int nargs,
55 struct field t1[], struct value *t2[]);
56
57 static struct value *search_struct_field (const char *, struct value *,
58 int, struct type *, int);
59
60 static struct value *search_struct_method (const char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int find_oload_champ_namespace (struct type **, int,
65 const char *, const char *,
66 struct symbol ***,
67 struct badness_vector **,
68 const int no_adl);
69
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 const char *, const char *,
73 int, struct symbol ***,
74 struct badness_vector **, int *,
75 const int no_adl);
76
77 static int find_oload_champ (struct type **, int, int, int,
78 struct fn_field *, struct symbol **,
79 struct badness_vector **);
80
81 static int oload_method_static (int, struct fn_field *, int);
82
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 int, int);
88
89 static struct value *value_struct_elt_for_reference (struct type *,
90 int, struct type *,
91 char *,
92 struct type *,
93 int, enum noside);
94
95 static struct value *value_namespace_elt (const struct type *,
96 char *, int , enum noside);
97
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 char *, int,
100 enum noside);
101
102 static CORE_ADDR allocate_space_in_inferior (int);
103
104 static struct value *cast_into_complex (struct type *, struct value *);
105
106 static struct fn_field *find_method_list (struct value **, const char *,
107 int, struct type *, int *,
108 struct type **, int *);
109
110 void _initialize_valops (void);
111
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114 default. */
115
116 static int auto_abandon = 0;
117 #endif
118
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("Overload resolution in evaluating "
126 "C++ functions is %s.\n"),
127 value);
128 }
129
130 /* Find the address of function name NAME in the inferior. If OBJF_P
131 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 is defined. */
133
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137 struct symbol *sym;
138
139 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (sym != NULL)
141 {
142 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 {
144 error (_("\"%s\" exists in this program but is not a function."),
145 name);
146 }
147
148 if (objf_p)
149 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150
151 return value_of_variable (sym, NULL);
152 }
153 else
154 {
155 struct minimal_symbol *msymbol =
156 lookup_minimal_symbol (name, NULL, NULL);
157
158 if (msymbol != NULL)
159 {
160 struct objfile *objfile = msymbol_objfile (msymbol);
161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162
163 struct type *type;
164 CORE_ADDR maddr;
165 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 type = lookup_function_type (type);
167 type = lookup_pointer_type (type);
168 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169
170 if (objf_p)
171 *objf_p = objfile;
172
173 return value_from_pointer (type, maddr);
174 }
175 else
176 {
177 if (!target_has_execution)
178 error (_("evaluation of this expression "
179 "requires the target program to be active"));
180 else
181 error (_("evaluation of this expression requires the "
182 "program to have a function \"%s\"."),
183 name);
184 }
185 }
186 }
187
188 /* Allocate NBYTES of space in the inferior using the inferior's
189 malloc and return a value that is a pointer to the allocated
190 space. */
191
192 struct value *
193 value_allocate_space_in_inferior (int len)
194 {
195 struct objfile *objf;
196 struct value *val = find_function_in_inferior ("malloc", &objf);
197 struct gdbarch *gdbarch = get_objfile_arch (objf);
198 struct value *blocklen;
199
200 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
201 val = call_function_by_hand (val, 1, &blocklen);
202 if (value_logical_not (val))
203 {
204 if (!target_has_execution)
205 error (_("No memory available to program now: "
206 "you need to start the target first"));
207 else
208 error (_("No memory available to program: call to malloc failed"));
209 }
210 return val;
211 }
212
213 static CORE_ADDR
214 allocate_space_in_inferior (int len)
215 {
216 return value_as_long (value_allocate_space_in_inferior (len));
217 }
218
219 /* Cast struct value VAL to type TYPE and return as a value.
220 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
221 for this to work. Typedef to one of the codes is permitted.
222 Returns NULL if the cast is neither an upcast nor a downcast. */
223
224 static struct value *
225 value_cast_structs (struct type *type, struct value *v2)
226 {
227 struct type *t1;
228 struct type *t2;
229 struct value *v;
230
231 gdb_assert (type != NULL && v2 != NULL);
232
233 t1 = check_typedef (type);
234 t2 = check_typedef (value_type (v2));
235
236 /* Check preconditions. */
237 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t1) == TYPE_CODE_UNION)
239 && !!"Precondition is that type is of STRUCT or UNION kind.");
240 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
241 || TYPE_CODE (t2) == TYPE_CODE_UNION)
242 && !!"Precondition is that value is of STRUCT or UNION kind");
243
244 if (TYPE_NAME (t1) != NULL
245 && TYPE_NAME (t2) != NULL
246 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
247 return NULL;
248
249 /* Upcasting: look in the type of the source to see if it contains the
250 type of the target as a superclass. If so, we'll need to
251 offset the pointer rather than just change its type. */
252 if (TYPE_NAME (t1) != NULL)
253 {
254 v = search_struct_field (type_name_no_tag (t1),
255 v2, 0, t2, 1);
256 if (v)
257 return v;
258 }
259
260 /* Downcasting: look in the type of the target to see if it contains the
261 type of the source as a superclass. If so, we'll need to
262 offset the pointer rather than just change its type. */
263 if (TYPE_NAME (t2) != NULL)
264 {
265 /* Try downcasting using the run-time type of the value. */
266 int full, top, using_enc;
267 struct type *real_type;
268
269 real_type = value_rtti_type (v2, &full, &top, &using_enc);
270 if (real_type)
271 {
272 v = value_full_object (v2, real_type, full, top, using_enc);
273 v = value_at_lazy (real_type, value_address (v));
274
275 /* We might be trying to cast to the outermost enclosing
276 type, in which case search_struct_field won't work. */
277 if (TYPE_NAME (real_type) != NULL
278 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
279 return v;
280
281 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
282 if (v)
283 return v;
284 }
285
286 /* Try downcasting using information from the destination type
287 T2. This wouldn't work properly for classes with virtual
288 bases, but those were handled above. */
289 v = search_struct_field (type_name_no_tag (t2),
290 value_zero (t1, not_lval), 0, t1, 1);
291 if (v)
292 {
293 /* Downcasting is possible (t1 is superclass of v2). */
294 CORE_ADDR addr2 = value_address (v2);
295
296 addr2 -= value_address (v) + value_embedded_offset (v);
297 return value_at (type, addr2);
298 }
299 }
300
301 return NULL;
302 }
303
304 /* Cast one pointer or reference type to another. Both TYPE and
305 the type of ARG2 should be pointer types, or else both should be
306 reference types. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2)
310 {
311 struct type *type1 = check_typedef (type);
312 struct type *type2 = check_typedef (value_type (arg2));
313 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315
316 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318 && !value_logical_not (arg2))
319 {
320 struct value *v2;
321
322 if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 v2 = coerce_ref (arg2);
324 else
325 v2 = value_ind (arg2);
326 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328 v2 = value_cast_structs (t1, v2);
329 /* At this point we have what we can have, un-dereference if needed. */
330 if (v2)
331 {
332 struct value *v = value_addr (v2);
333
334 deprecated_set_value_type (v, type);
335 return v;
336 }
337 }
338
339 /* No superclass found, just change the pointer type. */
340 arg2 = value_copy (arg2);
341 deprecated_set_value_type (arg2, type);
342 set_value_enclosing_type (arg2, type);
343 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
344 return arg2;
345 }
346
347 /* Cast value ARG2 to type TYPE and return as a value.
348 More general than a C cast: accepts any two types of the same length,
349 and if ARG2 is an lvalue it can be cast into anything at all. */
350 /* In C++, casts may change pointer or object representations. */
351
352 struct value *
353 value_cast (struct type *type, struct value *arg2)
354 {
355 enum type_code code1;
356 enum type_code code2;
357 int scalar;
358 struct type *type2;
359
360 int convert_to_boolean = 0;
361
362 if (value_type (arg2) == type)
363 return arg2;
364
365 code1 = TYPE_CODE (check_typedef (type));
366
367 /* Check if we are casting struct reference to struct reference. */
368 if (code1 == TYPE_CODE_REF)
369 {
370 /* We dereference type; then we recurse and finally
371 we generate value of the given reference. Nothing wrong with
372 that. */
373 struct type *t1 = check_typedef (type);
374 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375 struct value *val = value_cast (dereftype, arg2);
376
377 return value_ref (val);
378 }
379
380 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381
382 if (code2 == TYPE_CODE_REF)
383 /* We deref the value and then do the cast. */
384 return value_cast (type, coerce_ref (arg2));
385
386 CHECK_TYPEDEF (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (code1 != TYPE_CODE_REF);
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (code1 == TYPE_CODE_FLT && scalar)
467 return value_from_double (type, value_as_double (arg2));
468 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469 {
470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471 int dec_len = TYPE_LENGTH (type);
472 gdb_byte dec[16];
473
474 if (code2 == TYPE_CODE_FLT)
475 decimal_from_floating (arg2, dec, dec_len, byte_order);
476 else if (code2 == TYPE_CODE_DECFLOAT)
477 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 byte_order, dec, dec_len, byte_order);
479 else
480 /* The only option left is an integral type. */
481 decimal_from_integral (arg2, dec, dec_len, byte_order);
482
483 return value_from_decfloat (type, dec);
484 }
485 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 || code1 == TYPE_CODE_RANGE)
487 && (scalar || code2 == TYPE_CODE_PTR
488 || code2 == TYPE_CODE_MEMBERPTR))
489 {
490 LONGEST longest;
491
492 /* When we cast pointers to integers, we mustn't use
493 gdbarch_pointer_to_address to find the address the pointer
494 represents, as value_as_long would. GDB should evaluate
495 expressions just as the compiler would --- and the compiler
496 sees a cast as a simple reinterpretation of the pointer's
497 bits. */
498 if (code2 == TYPE_CODE_PTR)
499 longest = extract_unsigned_integer
500 (value_contents (arg2), TYPE_LENGTH (type2),
501 gdbarch_byte_order (get_type_arch (type2)));
502 else
503 longest = value_as_long (arg2);
504 return value_from_longest (type, convert_to_boolean ?
505 (LONGEST) (longest ? 1 : 0) : longest);
506 }
507 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 || code2 == TYPE_CODE_ENUM
509 || code2 == TYPE_CODE_RANGE))
510 {
511 /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 want the length of an address! -- we are really dealing with
513 addresses (i.e., gdb representations) not pointers (i.e.,
514 target representations) here.
515
516 This allows things like "print *(int *)0x01000234" to work
517 without printing a misleading message -- which would
518 otherwise occur when dealing with a target having two byte
519 pointers and four byte addresses. */
520
521 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522 LONGEST longest = value_as_long (arg2);
523
524 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 {
526 if (longest >= ((LONGEST) 1 << addr_bit)
527 || longest <= -((LONGEST) 1 << addr_bit))
528 warning (_("value truncated"));
529 }
530 return value_from_longest (type, longest);
531 }
532 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 && value_as_long (arg2) == 0)
534 {
535 struct value *result = allocate_value (type);
536
537 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
538 return result;
539 }
540 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 && value_as_long (arg2) == 0)
542 {
543 /* The Itanium C++ ABI represents NULL pointers to members as
544 minus one, instead of biasing the normal case. */
545 return value_from_longest (type, -1);
546 }
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
548 {
549 /* Widen the scalar to a vector. */
550 struct type *eltype;
551 struct value *val;
552 LONGEST low_bound, high_bound;
553 int i;
554
555 if (!get_array_bounds (type, &low_bound, &high_bound))
556 error (_("Could not determine the vector bounds"));
557
558 eltype = check_typedef (TYPE_TARGET_TYPE (type));
559 arg2 = value_cast (eltype, arg2);
560 val = allocate_value (type);
561
562 for (i = 0; i < high_bound - low_bound + 1; i++)
563 {
564 /* Duplicate the contents of arg2 into the destination vector. */
565 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
566 value_contents_all (arg2), TYPE_LENGTH (eltype));
567 }
568 return val;
569 }
570 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
571 {
572 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
573 return value_cast_pointers (type, arg2);
574
575 arg2 = value_copy (arg2);
576 deprecated_set_value_type (arg2, type);
577 set_value_enclosing_type (arg2, type);
578 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
579 return arg2;
580 }
581 else if (VALUE_LVAL (arg2) == lval_memory)
582 return value_at_lazy (type, value_address (arg2));
583 else if (code1 == TYPE_CODE_VOID)
584 {
585 return value_zero (type, not_lval);
586 }
587 else
588 {
589 error (_("Invalid cast."));
590 return 0;
591 }
592 }
593
594 /* The C++ reinterpret_cast operator. */
595
596 struct value *
597 value_reinterpret_cast (struct type *type, struct value *arg)
598 {
599 struct value *result;
600 struct type *real_type = check_typedef (type);
601 struct type *arg_type, *dest_type;
602 int is_ref = 0;
603 enum type_code dest_code, arg_code;
604
605 /* Do reference, function, and array conversion. */
606 arg = coerce_array (arg);
607
608 /* Attempt to preserve the type the user asked for. */
609 dest_type = type;
610
611 /* If we are casting to a reference type, transform
612 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
613 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
614 {
615 is_ref = 1;
616 arg = value_addr (arg);
617 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
618 real_type = lookup_pointer_type (real_type);
619 }
620
621 arg_type = value_type (arg);
622
623 dest_code = TYPE_CODE (real_type);
624 arg_code = TYPE_CODE (arg_type);
625
626 /* We can convert pointer types, or any pointer type to int, or int
627 type to pointer. */
628 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
629 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
630 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
632 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
634 || (dest_code == arg_code
635 && (dest_code == TYPE_CODE_PTR
636 || dest_code == TYPE_CODE_METHODPTR
637 || dest_code == TYPE_CODE_MEMBERPTR)))
638 result = value_cast (dest_type, arg);
639 else
640 error (_("Invalid reinterpret_cast"));
641
642 if (is_ref)
643 result = value_cast (type, value_ref (value_ind (result)));
644
645 return result;
646 }
647
648 /* A helper for value_dynamic_cast. This implements the first of two
649 runtime checks: we iterate over all the base classes of the value's
650 class which are equal to the desired class; if only one of these
651 holds the value, then it is the answer. */
652
653 static int
654 dynamic_cast_check_1 (struct type *desired_type,
655 const gdb_byte *valaddr,
656 int embedded_offset,
657 CORE_ADDR address,
658 struct value *val,
659 struct type *search_type,
660 CORE_ADDR arg_addr,
661 struct type *arg_type,
662 struct value **result)
663 {
664 int i, result_count = 0;
665
666 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
667 {
668 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
669 address, val);
670
671 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
672 {
673 if (address + embedded_offset + offset >= arg_addr
674 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
675 {
676 ++result_count;
677 if (!*result)
678 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
679 address + embedded_offset + offset);
680 }
681 }
682 else
683 result_count += dynamic_cast_check_1 (desired_type,
684 valaddr,
685 embedded_offset + offset,
686 address, val,
687 TYPE_BASECLASS (search_type, i),
688 arg_addr,
689 arg_type,
690 result);
691 }
692
693 return result_count;
694 }
695
696 /* A helper for value_dynamic_cast. This implements the second of two
697 runtime checks: we look for a unique public sibling class of the
698 argument's declared class. */
699
700 static int
701 dynamic_cast_check_2 (struct type *desired_type,
702 const gdb_byte *valaddr,
703 int embedded_offset,
704 CORE_ADDR address,
705 struct value *val,
706 struct type *search_type,
707 struct value **result)
708 {
709 int i, result_count = 0;
710
711 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
712 {
713 int offset;
714
715 if (! BASETYPE_VIA_PUBLIC (search_type, i))
716 continue;
717
718 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
719 address, val);
720 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
721 {
722 ++result_count;
723 if (*result == NULL)
724 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
725 address + embedded_offset + offset);
726 }
727 else
728 result_count += dynamic_cast_check_2 (desired_type,
729 valaddr,
730 embedded_offset + offset,
731 address, val,
732 TYPE_BASECLASS (search_type, i),
733 result);
734 }
735
736 return result_count;
737 }
738
739 /* The C++ dynamic_cast operator. */
740
741 struct value *
742 value_dynamic_cast (struct type *type, struct value *arg)
743 {
744 int full, top, using_enc;
745 struct type *resolved_type = check_typedef (type);
746 struct type *arg_type = check_typedef (value_type (arg));
747 struct type *class_type, *rtti_type;
748 struct value *result, *tem, *original_arg = arg;
749 CORE_ADDR addr;
750 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
751
752 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
753 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
754 error (_("Argument to dynamic_cast must be a pointer or reference type"));
755 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
756 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
757 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
758
759 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
760 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
761 {
762 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
763 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
764 && value_as_long (arg) == 0))
765 error (_("Argument to dynamic_cast does not have pointer type"));
766 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
767 {
768 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
769 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
770 error (_("Argument to dynamic_cast does "
771 "not have pointer to class type"));
772 }
773
774 /* Handle NULL pointers. */
775 if (value_as_long (arg) == 0)
776 return value_zero (type, not_lval);
777
778 arg = value_ind (arg);
779 }
780 else
781 {
782 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
783 error (_("Argument to dynamic_cast does not have class type"));
784 }
785
786 /* If the classes are the same, just return the argument. */
787 if (class_types_same_p (class_type, arg_type))
788 return value_cast (type, arg);
789
790 /* If the target type is a unique base class of the argument's
791 declared type, just cast it. */
792 if (is_ancestor (class_type, arg_type))
793 {
794 if (is_unique_ancestor (class_type, arg))
795 return value_cast (type, original_arg);
796 error (_("Ambiguous dynamic_cast"));
797 }
798
799 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
800 if (! rtti_type)
801 error (_("Couldn't determine value's most derived type for dynamic_cast"));
802
803 /* Compute the most derived object's address. */
804 addr = value_address (arg);
805 if (full)
806 {
807 /* Done. */
808 }
809 else if (using_enc)
810 addr += top;
811 else
812 addr += top + value_embedded_offset (arg);
813
814 /* dynamic_cast<void *> means to return a pointer to the
815 most-derived object. */
816 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
817 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
818 return value_at_lazy (type, addr);
819
820 tem = value_at (type, addr);
821
822 /* The first dynamic check specified in 5.2.7. */
823 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
824 {
825 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
826 return tem;
827 result = NULL;
828 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, addr,
833 arg_type,
834 &result) == 1)
835 return value_cast (type,
836 is_ref ? value_ref (result) : value_addr (result));
837 }
838
839 /* The second dynamic check specified in 5.2.7. */
840 result = NULL;
841 if (is_public_ancestor (arg_type, rtti_type)
842 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
843 value_contents_for_printing (tem),
844 value_embedded_offset (tem),
845 value_address (tem), tem,
846 rtti_type, &result) == 1)
847 return value_cast (type,
848 is_ref ? value_ref (result) : value_addr (result));
849
850 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
851 return value_zero (type, not_lval);
852
853 error (_("dynamic_cast failed"));
854 }
855
856 /* Create a value of type TYPE that is zero, and return it. */
857
858 struct value *
859 value_zero (struct type *type, enum lval_type lv)
860 {
861 struct value *val = allocate_value (type);
862
863 VALUE_LVAL (val) = lv;
864 return val;
865 }
866
867 /* Create a value of numeric type TYPE that is one, and return it. */
868
869 struct value *
870 value_one (struct type *type, enum lval_type lv)
871 {
872 struct type *type1 = check_typedef (type);
873 struct value *val;
874
875 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
876 {
877 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
878 gdb_byte v[16];
879
880 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
881 val = value_from_decfloat (type, v);
882 }
883 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
884 {
885 val = value_from_double (type, (DOUBLEST) 1);
886 }
887 else if (is_integral_type (type1))
888 {
889 val = value_from_longest (type, (LONGEST) 1);
890 }
891 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
892 {
893 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
894 int i;
895 LONGEST low_bound, high_bound;
896 struct value *tmp;
897
898 if (!get_array_bounds (type1, &low_bound, &high_bound))
899 error (_("Could not determine the vector bounds"));
900
901 val = allocate_value (type);
902 for (i = 0; i < high_bound - low_bound + 1; i++)
903 {
904 tmp = value_one (eltype, lv);
905 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
906 value_contents_all (tmp), TYPE_LENGTH (eltype));
907 }
908 }
909 else
910 {
911 error (_("Not a numeric type."));
912 }
913
914 VALUE_LVAL (val) = lv;
915 return val;
916 }
917
918 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
919
920 static struct value *
921 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
922 {
923 struct value *val;
924
925 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
926 error (_("Attempt to dereference a generic pointer."));
927
928 val = value_from_contents_and_address (type, NULL, addr);
929
930 if (!lazy)
931 value_fetch_lazy (val);
932
933 return val;
934 }
935
936 /* Return a value with type TYPE located at ADDR.
937
938 Call value_at only if the data needs to be fetched immediately;
939 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
940 value_at_lazy instead. value_at_lazy simply records the address of
941 the data and sets the lazy-evaluation-required flag. The lazy flag
942 is tested in the value_contents macro, which is used if and when
943 the contents are actually required.
944
945 Note: value_at does *NOT* handle embedded offsets; perform such
946 adjustments before or after calling it. */
947
948 struct value *
949 value_at (struct type *type, CORE_ADDR addr)
950 {
951 return get_value_at (type, addr, 0);
952 }
953
954 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
955
956 struct value *
957 value_at_lazy (struct type *type, CORE_ADDR addr)
958 {
959 return get_value_at (type, addr, 1);
960 }
961
962 /* Called only from the value_contents and value_contents_all()
963 macros, if the current data for a variable needs to be loaded into
964 value_contents(VAL). Fetches the data from the user's process, and
965 clears the lazy flag to indicate that the data in the buffer is
966 valid.
967
968 If the value is zero-length, we avoid calling read_memory, which
969 would abort. We mark the value as fetched anyway -- all 0 bytes of
970 it.
971
972 This function returns a value because it is used in the
973 value_contents macro as part of an expression, where a void would
974 not work. The value is ignored. */
975
976 int
977 value_fetch_lazy (struct value *val)
978 {
979 gdb_assert (value_lazy (val));
980 allocate_value_contents (val);
981 if (value_bitsize (val))
982 {
983 /* To read a lazy bitfield, read the entire enclosing value. This
984 prevents reading the same block of (possibly volatile) memory once
985 per bitfield. It would be even better to read only the containing
986 word, but we have no way to record that just specific bits of a
987 value have been fetched. */
988 struct type *type = check_typedef (value_type (val));
989 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
990 struct value *parent = value_parent (val);
991 LONGEST offset = value_offset (val);
992 LONGEST num;
993 int length = TYPE_LENGTH (type);
994
995 if (!value_bits_valid (val,
996 TARGET_CHAR_BIT * offset + value_bitpos (val),
997 value_bitsize (val)))
998 error (_("value has been optimized out"));
999
1000 if (!unpack_value_bits_as_long (value_type (val),
1001 value_contents_for_printing (parent),
1002 offset,
1003 value_bitpos (val),
1004 value_bitsize (val), parent, &num))
1005 mark_value_bytes_unavailable (val,
1006 value_embedded_offset (val),
1007 length);
1008 else
1009 store_signed_integer (value_contents_raw (val), length,
1010 byte_order, num);
1011 }
1012 else if (VALUE_LVAL (val) == lval_memory)
1013 {
1014 CORE_ADDR addr = value_address (val);
1015 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1016
1017 if (length)
1018 read_value_memory (val, 0, value_stack (val),
1019 addr, value_contents_all_raw (val), length);
1020 }
1021 else if (VALUE_LVAL (val) == lval_register)
1022 {
1023 struct frame_info *frame;
1024 int regnum;
1025 struct type *type = check_typedef (value_type (val));
1026 struct value *new_val = val, *mark = value_mark ();
1027
1028 /* Offsets are not supported here; lazy register values must
1029 refer to the entire register. */
1030 gdb_assert (value_offset (val) == 0);
1031
1032 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1033 {
1034 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1035 regnum = VALUE_REGNUM (new_val);
1036
1037 gdb_assert (frame != NULL);
1038
1039 /* Convertible register routines are used for multi-register
1040 values and for interpretation in different types
1041 (e.g. float or int from a double register). Lazy
1042 register values should have the register's natural type,
1043 so they do not apply. */
1044 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1045 regnum, type));
1046
1047 new_val = get_frame_register_value (frame, regnum);
1048 }
1049
1050 /* If it's still lazy (for instance, a saved register on the
1051 stack), fetch it. */
1052 if (value_lazy (new_val))
1053 value_fetch_lazy (new_val);
1054
1055 /* If the register was not saved, mark it optimized out. */
1056 if (value_optimized_out (new_val))
1057 set_value_optimized_out (val, 1);
1058 else
1059 {
1060 set_value_lazy (val, 0);
1061 value_contents_copy (val, value_embedded_offset (val),
1062 new_val, value_embedded_offset (new_val),
1063 TYPE_LENGTH (type));
1064 }
1065
1066 if (frame_debug)
1067 {
1068 struct gdbarch *gdbarch;
1069 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1070 regnum = VALUE_REGNUM (val);
1071 gdbarch = get_frame_arch (frame);
1072
1073 fprintf_unfiltered (gdb_stdlog,
1074 "{ value_fetch_lazy "
1075 "(frame=%d,regnum=%d(%s),...) ",
1076 frame_relative_level (frame), regnum,
1077 user_reg_map_regnum_to_name (gdbarch, regnum));
1078
1079 fprintf_unfiltered (gdb_stdlog, "->");
1080 if (value_optimized_out (new_val))
1081 fprintf_unfiltered (gdb_stdlog, " optimized out");
1082 else
1083 {
1084 int i;
1085 const gdb_byte *buf = value_contents (new_val);
1086
1087 if (VALUE_LVAL (new_val) == lval_register)
1088 fprintf_unfiltered (gdb_stdlog, " register=%d",
1089 VALUE_REGNUM (new_val));
1090 else if (VALUE_LVAL (new_val) == lval_memory)
1091 fprintf_unfiltered (gdb_stdlog, " address=%s",
1092 paddress (gdbarch,
1093 value_address (new_val)));
1094 else
1095 fprintf_unfiltered (gdb_stdlog, " computed");
1096
1097 fprintf_unfiltered (gdb_stdlog, " bytes=");
1098 fprintf_unfiltered (gdb_stdlog, "[");
1099 for (i = 0; i < register_size (gdbarch, regnum); i++)
1100 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1101 fprintf_unfiltered (gdb_stdlog, "]");
1102 }
1103
1104 fprintf_unfiltered (gdb_stdlog, " }\n");
1105 }
1106
1107 /* Dispose of the intermediate values. This prevents
1108 watchpoints from trying to watch the saved frame pointer. */
1109 value_free_to_mark (mark);
1110 }
1111 else if (VALUE_LVAL (val) == lval_computed)
1112 value_computed_funcs (val)->read (val);
1113 else if (value_optimized_out (val))
1114 /* Keep it optimized out. */;
1115 else
1116 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1117
1118 set_value_lazy (val, 0);
1119 return 0;
1120 }
1121
1122 void
1123 read_value_memory (struct value *val, int embedded_offset,
1124 int stack, CORE_ADDR memaddr,
1125 gdb_byte *buffer, size_t length)
1126 {
1127 if (length)
1128 {
1129 VEC(mem_range_s) *available_memory;
1130
1131 if (get_traceframe_number () < 0
1132 || !traceframe_available_memory (&available_memory, memaddr, length))
1133 {
1134 if (stack)
1135 read_stack (memaddr, buffer, length);
1136 else
1137 read_memory (memaddr, buffer, length);
1138 }
1139 else
1140 {
1141 struct target_section_table *table;
1142 struct cleanup *old_chain;
1143 CORE_ADDR unavail;
1144 mem_range_s *r;
1145 int i;
1146
1147 /* Fallback to reading from read-only sections. */
1148 table = target_get_section_table (&exec_ops);
1149 available_memory =
1150 section_table_available_memory (available_memory,
1151 memaddr, length,
1152 table->sections,
1153 table->sections_end);
1154
1155 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1156 &available_memory);
1157
1158 normalize_mem_ranges (available_memory);
1159
1160 /* Mark which bytes are unavailable, and read those which
1161 are available. */
1162
1163 unavail = memaddr;
1164
1165 for (i = 0;
1166 VEC_iterate (mem_range_s, available_memory, i, r);
1167 i++)
1168 {
1169 if (mem_ranges_overlap (r->start, r->length,
1170 memaddr, length))
1171 {
1172 CORE_ADDR lo1, hi1, lo2, hi2;
1173 CORE_ADDR start, end;
1174
1175 /* Get the intersection window. */
1176 lo1 = memaddr;
1177 hi1 = memaddr + length;
1178 lo2 = r->start;
1179 hi2 = r->start + r->length;
1180 start = max (lo1, lo2);
1181 end = min (hi1, hi2);
1182
1183 gdb_assert (end - memaddr <= length);
1184
1185 if (start > unavail)
1186 mark_value_bytes_unavailable (val,
1187 (embedded_offset
1188 + unavail - memaddr),
1189 start - unavail);
1190 unavail = end;
1191
1192 read_memory (start, buffer + start - memaddr, end - start);
1193 }
1194 }
1195
1196 if (unavail != memaddr + length)
1197 mark_value_bytes_unavailable (val,
1198 embedded_offset + unavail - memaddr,
1199 (memaddr + length) - unavail);
1200
1201 do_cleanups (old_chain);
1202 }
1203 }
1204 }
1205
1206 /* Store the contents of FROMVAL into the location of TOVAL.
1207 Return a new value with the location of TOVAL and contents of FROMVAL. */
1208
1209 struct value *
1210 value_assign (struct value *toval, struct value *fromval)
1211 {
1212 struct type *type;
1213 struct value *val;
1214 struct frame_id old_frame;
1215
1216 if (!deprecated_value_modifiable (toval))
1217 error (_("Left operand of assignment is not a modifiable lvalue."));
1218
1219 toval = coerce_ref (toval);
1220
1221 type = value_type (toval);
1222 if (VALUE_LVAL (toval) != lval_internalvar)
1223 fromval = value_cast (type, fromval);
1224 else
1225 {
1226 /* Coerce arrays and functions to pointers, except for arrays
1227 which only live in GDB's storage. */
1228 if (!value_must_coerce_to_target (fromval))
1229 fromval = coerce_array (fromval);
1230 }
1231
1232 CHECK_TYPEDEF (type);
1233
1234 /* Since modifying a register can trash the frame chain, and
1235 modifying memory can trash the frame cache, we save the old frame
1236 and then restore the new frame afterwards. */
1237 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1238
1239 switch (VALUE_LVAL (toval))
1240 {
1241 case lval_internalvar:
1242 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1243 return value_of_internalvar (get_type_arch (type),
1244 VALUE_INTERNALVAR (toval));
1245
1246 case lval_internalvar_component:
1247 set_internalvar_component (VALUE_INTERNALVAR (toval),
1248 value_offset (toval),
1249 value_bitpos (toval),
1250 value_bitsize (toval),
1251 fromval);
1252 break;
1253
1254 case lval_memory:
1255 {
1256 const gdb_byte *dest_buffer;
1257 CORE_ADDR changed_addr;
1258 int changed_len;
1259 gdb_byte buffer[sizeof (LONGEST)];
1260
1261 if (value_bitsize (toval))
1262 {
1263 struct value *parent = value_parent (toval);
1264
1265 changed_addr = value_address (parent) + value_offset (toval);
1266 changed_len = (value_bitpos (toval)
1267 + value_bitsize (toval)
1268 + HOST_CHAR_BIT - 1)
1269 / HOST_CHAR_BIT;
1270
1271 /* If we can read-modify-write exactly the size of the
1272 containing type (e.g. short or int) then do so. This
1273 is safer for volatile bitfields mapped to hardware
1274 registers. */
1275 if (changed_len < TYPE_LENGTH (type)
1276 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1277 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1278 changed_len = TYPE_LENGTH (type);
1279
1280 if (changed_len > (int) sizeof (LONGEST))
1281 error (_("Can't handle bitfields which "
1282 "don't fit in a %d bit word."),
1283 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1284
1285 read_memory (changed_addr, buffer, changed_len);
1286 modify_field (type, buffer, value_as_long (fromval),
1287 value_bitpos (toval), value_bitsize (toval));
1288 dest_buffer = buffer;
1289 }
1290 else
1291 {
1292 changed_addr = value_address (toval);
1293 changed_len = TYPE_LENGTH (type);
1294 dest_buffer = value_contents (fromval);
1295 }
1296
1297 write_memory (changed_addr, dest_buffer, changed_len);
1298 observer_notify_memory_changed (changed_addr, changed_len,
1299 dest_buffer);
1300 }
1301 break;
1302
1303 case lval_register:
1304 {
1305 struct frame_info *frame;
1306 struct gdbarch *gdbarch;
1307 int value_reg;
1308
1309 /* Figure out which frame this is in currently. */
1310 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1311 value_reg = VALUE_REGNUM (toval);
1312
1313 if (!frame)
1314 error (_("Value being assigned to is no longer active."));
1315
1316 gdbarch = get_frame_arch (frame);
1317 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1318 {
1319 /* If TOVAL is a special machine register requiring
1320 conversion of program values to a special raw
1321 format. */
1322 gdbarch_value_to_register (gdbarch, frame,
1323 VALUE_REGNUM (toval), type,
1324 value_contents (fromval));
1325 }
1326 else
1327 {
1328 if (value_bitsize (toval))
1329 {
1330 struct value *parent = value_parent (toval);
1331 int offset = value_offset (parent) + value_offset (toval);
1332 int changed_len;
1333 gdb_byte buffer[sizeof (LONGEST)];
1334 int optim, unavail;
1335
1336 changed_len = (value_bitpos (toval)
1337 + value_bitsize (toval)
1338 + HOST_CHAR_BIT - 1)
1339 / HOST_CHAR_BIT;
1340
1341 if (changed_len > (int) sizeof (LONGEST))
1342 error (_("Can't handle bitfields which "
1343 "don't fit in a %d bit word."),
1344 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1345
1346 get_frame_register_bytes (frame, value_reg, offset,
1347 changed_len, buffer);
1348
1349 modify_field (type, buffer, value_as_long (fromval),
1350 value_bitpos (toval), value_bitsize (toval));
1351
1352 put_frame_register_bytes (frame, value_reg, offset,
1353 changed_len, buffer);
1354 }
1355 else
1356 {
1357 put_frame_register_bytes (frame, value_reg,
1358 value_offset (toval),
1359 TYPE_LENGTH (type),
1360 value_contents (fromval));
1361 }
1362 }
1363
1364 if (deprecated_register_changed_hook)
1365 deprecated_register_changed_hook (-1);
1366 observer_notify_target_changed (&current_target);
1367 break;
1368 }
1369
1370 case lval_computed:
1371 {
1372 struct lval_funcs *funcs = value_computed_funcs (toval);
1373
1374 funcs->write (toval, fromval);
1375 }
1376 break;
1377
1378 default:
1379 error (_("Left operand of assignment is not an lvalue."));
1380 }
1381
1382 /* Assigning to the stack pointer, frame pointer, and other
1383 (architecture and calling convention specific) registers may
1384 cause the frame cache to be out of date. Assigning to memory
1385 also can. We just do this on all assignments to registers or
1386 memory, for simplicity's sake; I doubt the slowdown matters. */
1387 switch (VALUE_LVAL (toval))
1388 {
1389 case lval_memory:
1390 case lval_register:
1391 case lval_computed:
1392
1393 reinit_frame_cache ();
1394
1395 /* Having destroyed the frame cache, restore the selected
1396 frame. */
1397
1398 /* FIXME: cagney/2002-11-02: There has to be a better way of
1399 doing this. Instead of constantly saving/restoring the
1400 frame. Why not create a get_selected_frame() function that,
1401 having saved the selected frame's ID can automatically
1402 re-find the previously selected frame automatically. */
1403
1404 {
1405 struct frame_info *fi = frame_find_by_id (old_frame);
1406
1407 if (fi != NULL)
1408 select_frame (fi);
1409 }
1410
1411 break;
1412 default:
1413 break;
1414 }
1415
1416 /* If the field does not entirely fill a LONGEST, then zero the sign
1417 bits. If the field is signed, and is negative, then sign
1418 extend. */
1419 if ((value_bitsize (toval) > 0)
1420 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1421 {
1422 LONGEST fieldval = value_as_long (fromval);
1423 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1424
1425 fieldval &= valmask;
1426 if (!TYPE_UNSIGNED (type)
1427 && (fieldval & (valmask ^ (valmask >> 1))))
1428 fieldval |= ~valmask;
1429
1430 fromval = value_from_longest (type, fieldval);
1431 }
1432
1433 /* The return value is a copy of TOVAL so it shares its location
1434 information, but its contents are updated from FROMVAL. This
1435 implies the returned value is not lazy, even if TOVAL was. */
1436 val = value_copy (toval);
1437 set_value_lazy (val, 0);
1438 memcpy (value_contents_raw (val), value_contents (fromval),
1439 TYPE_LENGTH (type));
1440
1441 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1442 in the case of pointer types. For object types, the enclosing type
1443 and embedded offset must *not* be copied: the target object refered
1444 to by TOVAL retains its original dynamic type after assignment. */
1445 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1446 {
1447 set_value_enclosing_type (val, value_enclosing_type (fromval));
1448 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1449 }
1450
1451 return val;
1452 }
1453
1454 /* Extend a value VAL to COUNT repetitions of its type. */
1455
1456 struct value *
1457 value_repeat (struct value *arg1, int count)
1458 {
1459 struct value *val;
1460
1461 if (VALUE_LVAL (arg1) != lval_memory)
1462 error (_("Only values in memory can be extended with '@'."));
1463 if (count < 1)
1464 error (_("Invalid number %d of repetitions."), count);
1465
1466 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1467
1468 VALUE_LVAL (val) = lval_memory;
1469 set_value_address (val, value_address (arg1));
1470
1471 read_value_memory (val, 0, value_stack (val), value_address (val),
1472 value_contents_all_raw (val),
1473 TYPE_LENGTH (value_enclosing_type (val)));
1474
1475 return val;
1476 }
1477
1478 struct value *
1479 value_of_variable (struct symbol *var, struct block *b)
1480 {
1481 struct value *val;
1482 struct frame_info *frame;
1483
1484 if (!symbol_read_needs_frame (var))
1485 frame = NULL;
1486 else if (!b)
1487 frame = get_selected_frame (_("No frame selected."));
1488 else
1489 {
1490 frame = block_innermost_frame (b);
1491 if (!frame)
1492 {
1493 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1494 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1495 error (_("No frame is currently executing in block %s."),
1496 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1497 else
1498 error (_("No frame is currently executing in specified block"));
1499 }
1500 }
1501
1502 val = read_var_value (var, frame);
1503 if (!val)
1504 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1505
1506 return val;
1507 }
1508
1509 struct value *
1510 address_of_variable (struct symbol *var, struct block *b)
1511 {
1512 struct type *type = SYMBOL_TYPE (var);
1513 struct value *val;
1514
1515 /* Evaluate it first; if the result is a memory address, we're fine.
1516 Lazy evaluation pays off here. */
1517
1518 val = value_of_variable (var, b);
1519
1520 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1521 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1522 {
1523 CORE_ADDR addr = value_address (val);
1524
1525 return value_from_pointer (lookup_pointer_type (type), addr);
1526 }
1527
1528 /* Not a memory address; check what the problem was. */
1529 switch (VALUE_LVAL (val))
1530 {
1531 case lval_register:
1532 {
1533 struct frame_info *frame;
1534 const char *regname;
1535
1536 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1537 gdb_assert (frame);
1538
1539 regname = gdbarch_register_name (get_frame_arch (frame),
1540 VALUE_REGNUM (val));
1541 gdb_assert (regname && *regname);
1542
1543 error (_("Address requested for identifier "
1544 "\"%s\" which is in register $%s"),
1545 SYMBOL_PRINT_NAME (var), regname);
1546 break;
1547 }
1548
1549 default:
1550 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1551 SYMBOL_PRINT_NAME (var));
1552 break;
1553 }
1554
1555 return val;
1556 }
1557
1558 /* Return one if VAL does not live in target memory, but should in order
1559 to operate on it. Otherwise return zero. */
1560
1561 int
1562 value_must_coerce_to_target (struct value *val)
1563 {
1564 struct type *valtype;
1565
1566 /* The only lval kinds which do not live in target memory. */
1567 if (VALUE_LVAL (val) != not_lval
1568 && VALUE_LVAL (val) != lval_internalvar)
1569 return 0;
1570
1571 valtype = check_typedef (value_type (val));
1572
1573 switch (TYPE_CODE (valtype))
1574 {
1575 case TYPE_CODE_ARRAY:
1576 return TYPE_VECTOR (valtype) ? 0 : 1;
1577 case TYPE_CODE_STRING:
1578 return 1;
1579 default:
1580 return 0;
1581 }
1582 }
1583
1584 /* Make sure that VAL lives in target memory if it's supposed to. For
1585 instance, strings are constructed as character arrays in GDB's
1586 storage, and this function copies them to the target. */
1587
1588 struct value *
1589 value_coerce_to_target (struct value *val)
1590 {
1591 LONGEST length;
1592 CORE_ADDR addr;
1593
1594 if (!value_must_coerce_to_target (val))
1595 return val;
1596
1597 length = TYPE_LENGTH (check_typedef (value_type (val)));
1598 addr = allocate_space_in_inferior (length);
1599 write_memory (addr, value_contents (val), length);
1600 return value_at_lazy (value_type (val), addr);
1601 }
1602
1603 /* Given a value which is an array, return a value which is a pointer
1604 to its first element, regardless of whether or not the array has a
1605 nonzero lower bound.
1606
1607 FIXME: A previous comment here indicated that this routine should
1608 be substracting the array's lower bound. It's not clear to me that
1609 this is correct. Given an array subscripting operation, it would
1610 certainly work to do the adjustment here, essentially computing:
1611
1612 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1613
1614 However I believe a more appropriate and logical place to account
1615 for the lower bound is to do so in value_subscript, essentially
1616 computing:
1617
1618 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1619
1620 As further evidence consider what would happen with operations
1621 other than array subscripting, where the caller would get back a
1622 value that had an address somewhere before the actual first element
1623 of the array, and the information about the lower bound would be
1624 lost because of the coercion to pointer type. */
1625
1626 struct value *
1627 value_coerce_array (struct value *arg1)
1628 {
1629 struct type *type = check_typedef (value_type (arg1));
1630
1631 /* If the user tries to do something requiring a pointer with an
1632 array that has not yet been pushed to the target, then this would
1633 be a good time to do so. */
1634 arg1 = value_coerce_to_target (arg1);
1635
1636 if (VALUE_LVAL (arg1) != lval_memory)
1637 error (_("Attempt to take address of value not located in memory."));
1638
1639 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1640 value_address (arg1));
1641 }
1642
1643 /* Given a value which is a function, return a value which is a pointer
1644 to it. */
1645
1646 struct value *
1647 value_coerce_function (struct value *arg1)
1648 {
1649 struct value *retval;
1650
1651 if (VALUE_LVAL (arg1) != lval_memory)
1652 error (_("Attempt to take address of value not located in memory."));
1653
1654 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1655 value_address (arg1));
1656 return retval;
1657 }
1658
1659 /* Return a pointer value for the object for which ARG1 is the
1660 contents. */
1661
1662 struct value *
1663 value_addr (struct value *arg1)
1664 {
1665 struct value *arg2;
1666 struct type *type = check_typedef (value_type (arg1));
1667
1668 if (TYPE_CODE (type) == TYPE_CODE_REF)
1669 {
1670 /* Copy the value, but change the type from (T&) to (T*). We
1671 keep the same location information, which is efficient, and
1672 allows &(&X) to get the location containing the reference. */
1673 arg2 = value_copy (arg1);
1674 deprecated_set_value_type (arg2,
1675 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1676 return arg2;
1677 }
1678 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1679 return value_coerce_function (arg1);
1680
1681 /* If this is an array that has not yet been pushed to the target,
1682 then this would be a good time to force it to memory. */
1683 arg1 = value_coerce_to_target (arg1);
1684
1685 if (VALUE_LVAL (arg1) != lval_memory)
1686 error (_("Attempt to take address of value not located in memory."));
1687
1688 /* Get target memory address. */
1689 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1690 (value_address (arg1)
1691 + value_embedded_offset (arg1)));
1692
1693 /* This may be a pointer to a base subobject; so remember the
1694 full derived object's type ... */
1695 set_value_enclosing_type (arg2,
1696 lookup_pointer_type (value_enclosing_type (arg1)));
1697 /* ... and also the relative position of the subobject in the full
1698 object. */
1699 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1700 return arg2;
1701 }
1702
1703 /* Return a reference value for the object for which ARG1 is the
1704 contents. */
1705
1706 struct value *
1707 value_ref (struct value *arg1)
1708 {
1709 struct value *arg2;
1710 struct type *type = check_typedef (value_type (arg1));
1711
1712 if (TYPE_CODE (type) == TYPE_CODE_REF)
1713 return arg1;
1714
1715 arg2 = value_addr (arg1);
1716 deprecated_set_value_type (arg2, lookup_reference_type (type));
1717 return arg2;
1718 }
1719
1720 /* Given a value of a pointer type, apply the C unary * operator to
1721 it. */
1722
1723 struct value *
1724 value_ind (struct value *arg1)
1725 {
1726 struct type *base_type;
1727 struct value *arg2;
1728
1729 arg1 = coerce_array (arg1);
1730
1731 base_type = check_typedef (value_type (arg1));
1732
1733 if (VALUE_LVAL (arg1) == lval_computed)
1734 {
1735 struct lval_funcs *funcs = value_computed_funcs (arg1);
1736
1737 if (funcs->indirect)
1738 {
1739 struct value *result = funcs->indirect (arg1);
1740
1741 if (result)
1742 return result;
1743 }
1744 }
1745
1746 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1747 {
1748 struct type *enc_type;
1749
1750 /* We may be pointing to something embedded in a larger object.
1751 Get the real type of the enclosing object. */
1752 enc_type = check_typedef (value_enclosing_type (arg1));
1753 enc_type = TYPE_TARGET_TYPE (enc_type);
1754
1755 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1756 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1757 /* For functions, go through find_function_addr, which knows
1758 how to handle function descriptors. */
1759 arg2 = value_at_lazy (enc_type,
1760 find_function_addr (arg1, NULL));
1761 else
1762 /* Retrieve the enclosing object pointed to. */
1763 arg2 = value_at_lazy (enc_type,
1764 (value_as_address (arg1)
1765 - value_pointed_to_offset (arg1)));
1766
1767 /* Re-adjust type. */
1768 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1769 /* Add embedding info. */
1770 set_value_enclosing_type (arg2, enc_type);
1771 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1772
1773 /* We may be pointing to an object of some derived type. */
1774 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1775 return arg2;
1776 }
1777
1778 error (_("Attempt to take contents of a non-pointer value."));
1779 return 0; /* For lint -- never reached. */
1780 }
1781 \f
1782 /* Create a value for an array by allocating space in GDB, copying the
1783 data into that space, and then setting up an array value.
1784
1785 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1786 is populated from the values passed in ELEMVEC.
1787
1788 The element type of the array is inherited from the type of the
1789 first element, and all elements must have the same size (though we
1790 don't currently enforce any restriction on their types). */
1791
1792 struct value *
1793 value_array (int lowbound, int highbound, struct value **elemvec)
1794 {
1795 int nelem;
1796 int idx;
1797 unsigned int typelength;
1798 struct value *val;
1799 struct type *arraytype;
1800
1801 /* Validate that the bounds are reasonable and that each of the
1802 elements have the same size. */
1803
1804 nelem = highbound - lowbound + 1;
1805 if (nelem <= 0)
1806 {
1807 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1808 }
1809 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1810 for (idx = 1; idx < nelem; idx++)
1811 {
1812 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1813 {
1814 error (_("array elements must all be the same size"));
1815 }
1816 }
1817
1818 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1819 lowbound, highbound);
1820
1821 if (!current_language->c_style_arrays)
1822 {
1823 val = allocate_value (arraytype);
1824 for (idx = 0; idx < nelem; idx++)
1825 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1826 typelength);
1827 return val;
1828 }
1829
1830 /* Allocate space to store the array, and then initialize it by
1831 copying in each element. */
1832
1833 val = allocate_value (arraytype);
1834 for (idx = 0; idx < nelem; idx++)
1835 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1836 return val;
1837 }
1838
1839 struct value *
1840 value_cstring (char *ptr, int len, struct type *char_type)
1841 {
1842 struct value *val;
1843 int lowbound = current_language->string_lower_bound;
1844 int highbound = len / TYPE_LENGTH (char_type);
1845 struct type *stringtype
1846 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1847
1848 val = allocate_value (stringtype);
1849 memcpy (value_contents_raw (val), ptr, len);
1850 return val;
1851 }
1852
1853 /* Create a value for a string constant by allocating space in the
1854 inferior, copying the data into that space, and returning the
1855 address with type TYPE_CODE_STRING. PTR points to the string
1856 constant data; LEN is number of characters.
1857
1858 Note that string types are like array of char types with a lower
1859 bound of zero and an upper bound of LEN - 1. Also note that the
1860 string may contain embedded null bytes. */
1861
1862 struct value *
1863 value_string (char *ptr, int len, struct type *char_type)
1864 {
1865 struct value *val;
1866 int lowbound = current_language->string_lower_bound;
1867 int highbound = len / TYPE_LENGTH (char_type);
1868 struct type *stringtype
1869 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1870
1871 val = allocate_value (stringtype);
1872 memcpy (value_contents_raw (val), ptr, len);
1873 return val;
1874 }
1875
1876 struct value *
1877 value_bitstring (char *ptr, int len, struct type *index_type)
1878 {
1879 struct value *val;
1880 struct type *domain_type
1881 = create_range_type (NULL, index_type, 0, len - 1);
1882 struct type *type = create_set_type (NULL, domain_type);
1883
1884 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1885 val = allocate_value (type);
1886 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1887 return val;
1888 }
1889 \f
1890 /* See if we can pass arguments in T2 to a function which takes
1891 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1892 a NULL-terminated vector. If some arguments need coercion of some
1893 sort, then the coerced values are written into T2. Return value is
1894 0 if the arguments could be matched, or the position at which they
1895 differ if not.
1896
1897 STATICP is nonzero if the T1 argument list came from a static
1898 member function. T2 will still include the ``this'' pointer, but
1899 it will be skipped.
1900
1901 For non-static member functions, we ignore the first argument,
1902 which is the type of the instance variable. This is because we
1903 want to handle calls with objects from derived classes. This is
1904 not entirely correct: we should actually check to make sure that a
1905 requested operation is type secure, shouldn't we? FIXME. */
1906
1907 static int
1908 typecmp (int staticp, int varargs, int nargs,
1909 struct field t1[], struct value *t2[])
1910 {
1911 int i;
1912
1913 if (t2 == 0)
1914 internal_error (__FILE__, __LINE__,
1915 _("typecmp: no argument list"));
1916
1917 /* Skip ``this'' argument if applicable. T2 will always include
1918 THIS. */
1919 if (staticp)
1920 t2 ++;
1921
1922 for (i = 0;
1923 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1924 i++)
1925 {
1926 struct type *tt1, *tt2;
1927
1928 if (!t2[i])
1929 return i + 1;
1930
1931 tt1 = check_typedef (t1[i].type);
1932 tt2 = check_typedef (value_type (t2[i]));
1933
1934 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1935 /* We should be doing hairy argument matching, as below. */
1936 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1937 == TYPE_CODE (tt2)))
1938 {
1939 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1940 t2[i] = value_coerce_array (t2[i]);
1941 else
1942 t2[i] = value_ref (t2[i]);
1943 continue;
1944 }
1945
1946 /* djb - 20000715 - Until the new type structure is in the
1947 place, and we can attempt things like implicit conversions,
1948 we need to do this so you can take something like a map<const
1949 char *>, and properly access map["hello"], because the
1950 argument to [] will be a reference to a pointer to a char,
1951 and the argument will be a pointer to a char. */
1952 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1953 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1954 {
1955 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1956 }
1957 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1958 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1959 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1960 {
1961 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1962 }
1963 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1964 continue;
1965 /* Array to pointer is a `trivial conversion' according to the
1966 ARM. */
1967
1968 /* We should be doing much hairier argument matching (see
1969 section 13.2 of the ARM), but as a quick kludge, just check
1970 for the same type code. */
1971 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1972 return i + 1;
1973 }
1974 if (varargs || t2[i] == NULL)
1975 return 0;
1976 return i + 1;
1977 }
1978
1979 /* Helper function used by value_struct_elt to recurse through
1980 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1981 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1982 TYPE. If found, return value, else return NULL.
1983
1984 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1985 fields, look for a baseclass named NAME. */
1986
1987 static struct value *
1988 search_struct_field (const char *name, struct value *arg1, int offset,
1989 struct type *type, int looking_for_baseclass)
1990 {
1991 int i;
1992 int nbases;
1993
1994 CHECK_TYPEDEF (type);
1995 nbases = TYPE_N_BASECLASSES (type);
1996
1997 if (!looking_for_baseclass)
1998 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1999 {
2000 char *t_field_name = TYPE_FIELD_NAME (type, i);
2001
2002 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2003 {
2004 struct value *v;
2005
2006 if (field_is_static (&TYPE_FIELD (type, i)))
2007 {
2008 v = value_static_field (type, i);
2009 if (v == 0)
2010 error (_("field %s is nonexistent or "
2011 "has been optimized out"),
2012 name);
2013 }
2014 else
2015 {
2016 v = value_primitive_field (arg1, offset, i, type);
2017 if (v == 0)
2018 error (_("there is no field named %s"), name);
2019 }
2020 return v;
2021 }
2022
2023 if (t_field_name
2024 && (t_field_name[0] == '\0'
2025 || (TYPE_CODE (type) == TYPE_CODE_UNION
2026 && (strcmp_iw (t_field_name, "else") == 0))))
2027 {
2028 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2029
2030 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2031 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2032 {
2033 /* Look for a match through the fields of an anonymous
2034 union, or anonymous struct. C++ provides anonymous
2035 unions.
2036
2037 In the GNU Chill (now deleted from GDB)
2038 implementation of variant record types, each
2039 <alternative field> has an (anonymous) union type,
2040 each member of the union represents a <variant
2041 alternative>. Each <variant alternative> is
2042 represented as a struct, with a member for each
2043 <variant field>. */
2044
2045 struct value *v;
2046 int new_offset = offset;
2047
2048 /* This is pretty gross. In G++, the offset in an
2049 anonymous union is relative to the beginning of the
2050 enclosing struct. In the GNU Chill (now deleted
2051 from GDB) implementation of variant records, the
2052 bitpos is zero in an anonymous union field, so we
2053 have to add the offset of the union here. */
2054 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2055 || (TYPE_NFIELDS (field_type) > 0
2056 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2057 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2058
2059 v = search_struct_field (name, arg1, new_offset,
2060 field_type,
2061 looking_for_baseclass);
2062 if (v)
2063 return v;
2064 }
2065 }
2066 }
2067
2068 for (i = 0; i < nbases; i++)
2069 {
2070 struct value *v;
2071 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2072 /* If we are looking for baseclasses, this is what we get when
2073 we hit them. But it could happen that the base part's member
2074 name is not yet filled in. */
2075 int found_baseclass = (looking_for_baseclass
2076 && TYPE_BASECLASS_NAME (type, i) != NULL
2077 && (strcmp_iw (name,
2078 TYPE_BASECLASS_NAME (type,
2079 i)) == 0));
2080
2081 if (BASETYPE_VIA_VIRTUAL (type, i))
2082 {
2083 int boffset;
2084 struct value *v2;
2085
2086 boffset = baseclass_offset (type, i,
2087 value_contents_for_printing (arg1),
2088 value_embedded_offset (arg1) + offset,
2089 value_address (arg1),
2090 arg1);
2091
2092 /* The virtual base class pointer might have been clobbered
2093 by the user program. Make sure that it still points to a
2094 valid memory location. */
2095
2096 boffset += value_embedded_offset (arg1) + offset;
2097 if (boffset < 0
2098 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2099 {
2100 CORE_ADDR base_addr;
2101
2102 v2 = allocate_value (basetype);
2103 base_addr = value_address (arg1) + boffset;
2104 if (target_read_memory (base_addr,
2105 value_contents_raw (v2),
2106 TYPE_LENGTH (basetype)) != 0)
2107 error (_("virtual baseclass botch"));
2108 VALUE_LVAL (v2) = lval_memory;
2109 set_value_address (v2, base_addr);
2110 }
2111 else
2112 {
2113 v2 = value_copy (arg1);
2114 deprecated_set_value_type (v2, basetype);
2115 set_value_embedded_offset (v2, boffset);
2116 }
2117
2118 if (found_baseclass)
2119 return v2;
2120 v = search_struct_field (name, v2, 0,
2121 TYPE_BASECLASS (type, i),
2122 looking_for_baseclass);
2123 }
2124 else if (found_baseclass)
2125 v = value_primitive_field (arg1, offset, i, type);
2126 else
2127 v = search_struct_field (name, arg1,
2128 offset + TYPE_BASECLASS_BITPOS (type,
2129 i) / 8,
2130 basetype, looking_for_baseclass);
2131 if (v)
2132 return v;
2133 }
2134 return NULL;
2135 }
2136
2137 /* Helper function used by value_struct_elt to recurse through
2138 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2139 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2140 TYPE.
2141
2142 If found, return value, else if name matched and args not return
2143 (value) -1, else return NULL. */
2144
2145 static struct value *
2146 search_struct_method (const char *name, struct value **arg1p,
2147 struct value **args, int offset,
2148 int *static_memfuncp, struct type *type)
2149 {
2150 int i;
2151 struct value *v;
2152 int name_matched = 0;
2153 char dem_opname[64];
2154
2155 CHECK_TYPEDEF (type);
2156 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2157 {
2158 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2159
2160 /* FIXME! May need to check for ARM demangling here. */
2161 if (strncmp (t_field_name, "__", 2) == 0 ||
2162 strncmp (t_field_name, "op", 2) == 0 ||
2163 strncmp (t_field_name, "type", 4) == 0)
2164 {
2165 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2166 t_field_name = dem_opname;
2167 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2168 t_field_name = dem_opname;
2169 }
2170 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2171 {
2172 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2173 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2174
2175 name_matched = 1;
2176 check_stub_method_group (type, i);
2177 if (j > 0 && args == 0)
2178 error (_("cannot resolve overloaded method "
2179 "`%s': no arguments supplied"), name);
2180 else if (j == 0 && args == 0)
2181 {
2182 v = value_fn_field (arg1p, f, j, type, offset);
2183 if (v != NULL)
2184 return v;
2185 }
2186 else
2187 while (j >= 0)
2188 {
2189 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2190 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2191 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2192 TYPE_FN_FIELD_ARGS (f, j), args))
2193 {
2194 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2195 return value_virtual_fn_field (arg1p, f, j,
2196 type, offset);
2197 if (TYPE_FN_FIELD_STATIC_P (f, j)
2198 && static_memfuncp)
2199 *static_memfuncp = 1;
2200 v = value_fn_field (arg1p, f, j, type, offset);
2201 if (v != NULL)
2202 return v;
2203 }
2204 j--;
2205 }
2206 }
2207 }
2208
2209 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2210 {
2211 int base_offset;
2212 int skip = 0;
2213 int this_offset;
2214
2215 if (BASETYPE_VIA_VIRTUAL (type, i))
2216 {
2217 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2218 struct value *base_val;
2219 const gdb_byte *base_valaddr;
2220
2221 /* The virtual base class pointer might have been
2222 clobbered by the user program. Make sure that it
2223 still points to a valid memory location. */
2224
2225 if (offset < 0 || offset >= TYPE_LENGTH (type))
2226 {
2227 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2228 CORE_ADDR address = value_address (*arg1p);
2229
2230 if (target_read_memory (address + offset,
2231 tmp, TYPE_LENGTH (baseclass)) != 0)
2232 error (_("virtual baseclass botch"));
2233
2234 base_val = value_from_contents_and_address (baseclass,
2235 tmp,
2236 address + offset);
2237 base_valaddr = value_contents_for_printing (base_val);
2238 this_offset = 0;
2239 }
2240 else
2241 {
2242 base_val = *arg1p;
2243 base_valaddr = value_contents_for_printing (*arg1p);
2244 this_offset = offset;
2245 }
2246
2247 base_offset = baseclass_offset (type, i, base_valaddr,
2248 this_offset, value_address (base_val),
2249 base_val);
2250 }
2251 else
2252 {
2253 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2254 }
2255 v = search_struct_method (name, arg1p, args, base_offset + offset,
2256 static_memfuncp, TYPE_BASECLASS (type, i));
2257 if (v == (struct value *) - 1)
2258 {
2259 name_matched = 1;
2260 }
2261 else if (v)
2262 {
2263 /* FIXME-bothner: Why is this commented out? Why is it here? */
2264 /* *arg1p = arg1_tmp; */
2265 return v;
2266 }
2267 }
2268 if (name_matched)
2269 return (struct value *) - 1;
2270 else
2271 return NULL;
2272 }
2273
2274 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2275 extract the component named NAME from the ultimate target
2276 structure/union and return it as a value with its appropriate type.
2277 ERR is used in the error message if *ARGP's type is wrong.
2278
2279 C++: ARGS is a list of argument types to aid in the selection of
2280 an appropriate method. Also, handle derived types.
2281
2282 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2283 where the truthvalue of whether the function that was resolved was
2284 a static member function or not is stored.
2285
2286 ERR is an error message to be printed in case the field is not
2287 found. */
2288
2289 struct value *
2290 value_struct_elt (struct value **argp, struct value **args,
2291 const char *name, int *static_memfuncp, const char *err)
2292 {
2293 struct type *t;
2294 struct value *v;
2295
2296 *argp = coerce_array (*argp);
2297
2298 t = check_typedef (value_type (*argp));
2299
2300 /* Follow pointers until we get to a non-pointer. */
2301
2302 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2303 {
2304 *argp = value_ind (*argp);
2305 /* Don't coerce fn pointer to fn and then back again! */
2306 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2307 *argp = coerce_array (*argp);
2308 t = check_typedef (value_type (*argp));
2309 }
2310
2311 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2312 && TYPE_CODE (t) != TYPE_CODE_UNION)
2313 error (_("Attempt to extract a component of a value that is not a %s."),
2314 err);
2315
2316 /* Assume it's not, unless we see that it is. */
2317 if (static_memfuncp)
2318 *static_memfuncp = 0;
2319
2320 if (!args)
2321 {
2322 /* if there are no arguments ...do this... */
2323
2324 /* Try as a field first, because if we succeed, there is less
2325 work to be done. */
2326 v = search_struct_field (name, *argp, 0, t, 0);
2327 if (v)
2328 return v;
2329
2330 /* C++: If it was not found as a data field, then try to
2331 return it as a pointer to a method. */
2332 v = search_struct_method (name, argp, args, 0,
2333 static_memfuncp, t);
2334
2335 if (v == (struct value *) - 1)
2336 error (_("Cannot take address of method %s."), name);
2337 else if (v == 0)
2338 {
2339 if (TYPE_NFN_FIELDS (t))
2340 error (_("There is no member or method named %s."), name);
2341 else
2342 error (_("There is no member named %s."), name);
2343 }
2344 return v;
2345 }
2346
2347 v = search_struct_method (name, argp, args, 0,
2348 static_memfuncp, t);
2349
2350 if (v == (struct value *) - 1)
2351 {
2352 error (_("One of the arguments you tried to pass to %s could not "
2353 "be converted to what the function wants."), name);
2354 }
2355 else if (v == 0)
2356 {
2357 /* See if user tried to invoke data as function. If so, hand it
2358 back. If it's not callable (i.e., a pointer to function),
2359 gdb should give an error. */
2360 v = search_struct_field (name, *argp, 0, t, 0);
2361 /* If we found an ordinary field, then it is not a method call.
2362 So, treat it as if it were a static member function. */
2363 if (v && static_memfuncp)
2364 *static_memfuncp = 1;
2365 }
2366
2367 if (!v)
2368 throw_error (NOT_FOUND_ERROR,
2369 _("Structure has no component named %s."), name);
2370 return v;
2371 }
2372
2373 /* Search through the methods of an object (and its bases) to find a
2374 specified method. Return the pointer to the fn_field list of
2375 overloaded instances.
2376
2377 Helper function for value_find_oload_list.
2378 ARGP is a pointer to a pointer to a value (the object).
2379 METHOD is a string containing the method name.
2380 OFFSET is the offset within the value.
2381 TYPE is the assumed type of the object.
2382 NUM_FNS is the number of overloaded instances.
2383 BASETYPE is set to the actual type of the subobject where the
2384 method is found.
2385 BOFFSET is the offset of the base subobject where the method is found. */
2386
2387 static struct fn_field *
2388 find_method_list (struct value **argp, const char *method,
2389 int offset, struct type *type, int *num_fns,
2390 struct type **basetype, int *boffset)
2391 {
2392 int i;
2393 struct fn_field *f;
2394 CHECK_TYPEDEF (type);
2395
2396 *num_fns = 0;
2397
2398 /* First check in object itself. */
2399 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2400 {
2401 /* pai: FIXME What about operators and type conversions? */
2402 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2403
2404 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2405 {
2406 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2407 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2408
2409 *num_fns = len;
2410 *basetype = type;
2411 *boffset = offset;
2412
2413 /* Resolve any stub methods. */
2414 check_stub_method_group (type, i);
2415
2416 return f;
2417 }
2418 }
2419
2420 /* Not found in object, check in base subobjects. */
2421 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2422 {
2423 int base_offset;
2424
2425 if (BASETYPE_VIA_VIRTUAL (type, i))
2426 {
2427 base_offset = baseclass_offset (type, i,
2428 value_contents_for_printing (*argp),
2429 value_offset (*argp) + offset,
2430 value_address (*argp), *argp);
2431 }
2432 else /* Non-virtual base, simply use bit position from debug
2433 info. */
2434 {
2435 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2436 }
2437 f = find_method_list (argp, method, base_offset + offset,
2438 TYPE_BASECLASS (type, i), num_fns,
2439 basetype, boffset);
2440 if (f)
2441 return f;
2442 }
2443 return NULL;
2444 }
2445
2446 /* Return the list of overloaded methods of a specified name.
2447
2448 ARGP is a pointer to a pointer to a value (the object).
2449 METHOD is the method name.
2450 OFFSET is the offset within the value contents.
2451 NUM_FNS is the number of overloaded instances.
2452 BASETYPE is set to the type of the base subobject that defines the
2453 method.
2454 BOFFSET is the offset of the base subobject which defines the method. */
2455
2456 struct fn_field *
2457 value_find_oload_method_list (struct value **argp, const char *method,
2458 int offset, int *num_fns,
2459 struct type **basetype, int *boffset)
2460 {
2461 struct type *t;
2462
2463 t = check_typedef (value_type (*argp));
2464
2465 /* Code snarfed from value_struct_elt. */
2466 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2467 {
2468 *argp = value_ind (*argp);
2469 /* Don't coerce fn pointer to fn and then back again! */
2470 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2471 *argp = coerce_array (*argp);
2472 t = check_typedef (value_type (*argp));
2473 }
2474
2475 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2476 && TYPE_CODE (t) != TYPE_CODE_UNION)
2477 error (_("Attempt to extract a component of a "
2478 "value that is not a struct or union"));
2479
2480 return find_method_list (argp, method, 0, t, num_fns,
2481 basetype, boffset);
2482 }
2483
2484 /* Given an array of argument types (ARGTYPES) (which includes an
2485 entry for "this" in the case of C++ methods), the number of
2486 arguments NARGS, the NAME of a function whether it's a method or
2487 not (METHOD), and the degree of laxness (LAX) in conforming to
2488 overload resolution rules in ANSI C++, find the best function that
2489 matches on the argument types according to the overload resolution
2490 rules.
2491
2492 METHOD can be one of three values:
2493 NON_METHOD for non-member functions.
2494 METHOD: for member functions.
2495 BOTH: used for overload resolution of operators where the
2496 candidates are expected to be either member or non member
2497 functions. In this case the first argument ARGTYPES
2498 (representing 'this') is expected to be a reference to the
2499 target object, and will be dereferenced when attempting the
2500 non-member search.
2501
2502 In the case of class methods, the parameter OBJ is an object value
2503 in which to search for overloaded methods.
2504
2505 In the case of non-method functions, the parameter FSYM is a symbol
2506 corresponding to one of the overloaded functions.
2507
2508 Return value is an integer: 0 -> good match, 10 -> debugger applied
2509 non-standard coercions, 100 -> incompatible.
2510
2511 If a method is being searched for, VALP will hold the value.
2512 If a non-method is being searched for, SYMP will hold the symbol
2513 for it.
2514
2515 If a method is being searched for, and it is a static method,
2516 then STATICP will point to a non-zero value.
2517
2518 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2519 ADL overload candidates when performing overload resolution for a fully
2520 qualified name.
2521
2522 Note: This function does *not* check the value of
2523 overload_resolution. Caller must check it to see whether overload
2524 resolution is permitted. */
2525
2526 int
2527 find_overload_match (struct type **arg_types, int nargs,
2528 const char *name, enum oload_search_type method,
2529 int lax, struct value **objp, struct symbol *fsym,
2530 struct value **valp, struct symbol **symp,
2531 int *staticp, const int no_adl)
2532 {
2533 struct value *obj = (objp ? *objp : NULL);
2534 /* Index of best overloaded function. */
2535 int func_oload_champ = -1;
2536 int method_oload_champ = -1;
2537
2538 /* The measure for the current best match. */
2539 struct badness_vector *method_badness = NULL;
2540 struct badness_vector *func_badness = NULL;
2541
2542 struct value *temp = obj;
2543 /* For methods, the list of overloaded methods. */
2544 struct fn_field *fns_ptr = NULL;
2545 /* For non-methods, the list of overloaded function symbols. */
2546 struct symbol **oload_syms = NULL;
2547 /* Number of overloaded instances being considered. */
2548 int num_fns = 0;
2549 struct type *basetype = NULL;
2550 int boffset;
2551
2552 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2553
2554 const char *obj_type_name = NULL;
2555 const char *func_name = NULL;
2556 enum oload_classification match_quality;
2557 enum oload_classification method_match_quality = INCOMPATIBLE;
2558 enum oload_classification func_match_quality = INCOMPATIBLE;
2559
2560 /* Get the list of overloaded methods or functions. */
2561 if (method == METHOD || method == BOTH)
2562 {
2563 gdb_assert (obj);
2564
2565 /* OBJ may be a pointer value rather than the object itself. */
2566 obj = coerce_ref (obj);
2567 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2568 obj = coerce_ref (value_ind (obj));
2569 obj_type_name = TYPE_NAME (value_type (obj));
2570
2571 /* First check whether this is a data member, e.g. a pointer to
2572 a function. */
2573 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2574 {
2575 *valp = search_struct_field (name, obj, 0,
2576 check_typedef (value_type (obj)), 0);
2577 if (*valp)
2578 {
2579 *staticp = 1;
2580 return 0;
2581 }
2582 }
2583
2584 /* Retrieve the list of methods with the name NAME. */
2585 fns_ptr = value_find_oload_method_list (&temp, name,
2586 0, &num_fns,
2587 &basetype, &boffset);
2588 /* If this is a method only search, and no methods were found
2589 the search has faild. */
2590 if (method == METHOD && (!fns_ptr || !num_fns))
2591 error (_("Couldn't find method %s%s%s"),
2592 obj_type_name,
2593 (obj_type_name && *obj_type_name) ? "::" : "",
2594 name);
2595 /* If we are dealing with stub method types, they should have
2596 been resolved by find_method_list via
2597 value_find_oload_method_list above. */
2598 if (fns_ptr)
2599 {
2600 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2601 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2602 num_fns, fns_ptr,
2603 oload_syms, &method_badness);
2604
2605 method_match_quality =
2606 classify_oload_match (method_badness, nargs,
2607 oload_method_static (method, fns_ptr,
2608 method_oload_champ));
2609
2610 make_cleanup (xfree, method_badness);
2611 }
2612
2613 }
2614
2615 if (method == NON_METHOD || method == BOTH)
2616 {
2617 const char *qualified_name = NULL;
2618
2619 /* If the overload match is being search for both as a method
2620 and non member function, the first argument must now be
2621 dereferenced. */
2622 if (method == BOTH)
2623 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2624
2625 if (fsym)
2626 {
2627 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2628
2629 /* If we have a function with a C++ name, try to extract just
2630 the function part. Do not try this for non-functions (e.g.
2631 function pointers). */
2632 if (qualified_name
2633 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2634 == TYPE_CODE_FUNC)
2635 {
2636 char *temp;
2637
2638 temp = cp_func_name (qualified_name);
2639
2640 /* If cp_func_name did not remove anything, the name of the
2641 symbol did not include scope or argument types - it was
2642 probably a C-style function. */
2643 if (temp)
2644 {
2645 make_cleanup (xfree, temp);
2646 if (strcmp (temp, qualified_name) == 0)
2647 func_name = NULL;
2648 else
2649 func_name = temp;
2650 }
2651 }
2652 }
2653 else
2654 {
2655 func_name = name;
2656 qualified_name = name;
2657 }
2658
2659 /* If there was no C++ name, this must be a C-style function or
2660 not a function at all. Just return the same symbol. Do the
2661 same if cp_func_name fails for some reason. */
2662 if (func_name == NULL)
2663 {
2664 *symp = fsym;
2665 return 0;
2666 }
2667
2668 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2669 func_name,
2670 qualified_name,
2671 &oload_syms,
2672 &func_badness,
2673 no_adl);
2674
2675 if (func_oload_champ >= 0)
2676 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2677
2678 make_cleanup (xfree, oload_syms);
2679 make_cleanup (xfree, func_badness);
2680 }
2681
2682 /* Did we find a match ? */
2683 if (method_oload_champ == -1 && func_oload_champ == -1)
2684 throw_error (NOT_FOUND_ERROR,
2685 _("No symbol \"%s\" in current context."),
2686 name);
2687
2688 /* If we have found both a method match and a function
2689 match, find out which one is better, and calculate match
2690 quality. */
2691 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2692 {
2693 switch (compare_badness (func_badness, method_badness))
2694 {
2695 case 0: /* Top two contenders are equally good. */
2696 /* FIXME: GDB does not support the general ambiguous case.
2697 All candidates should be collected and presented the
2698 user. */
2699 error (_("Ambiguous overload resolution"));
2700 break;
2701 case 1: /* Incomparable top contenders. */
2702 /* This is an error incompatible candidates
2703 should not have been proposed. */
2704 error (_("Internal error: incompatible "
2705 "overload candidates proposed"));
2706 break;
2707 case 2: /* Function champion. */
2708 method_oload_champ = -1;
2709 match_quality = func_match_quality;
2710 break;
2711 case 3: /* Method champion. */
2712 func_oload_champ = -1;
2713 match_quality = method_match_quality;
2714 break;
2715 default:
2716 error (_("Internal error: unexpected overload comparison result"));
2717 break;
2718 }
2719 }
2720 else
2721 {
2722 /* We have either a method match or a function match. */
2723 if (method_oload_champ >= 0)
2724 match_quality = method_match_quality;
2725 else
2726 match_quality = func_match_quality;
2727 }
2728
2729 if (match_quality == INCOMPATIBLE)
2730 {
2731 if (method == METHOD)
2732 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2733 obj_type_name,
2734 (obj_type_name && *obj_type_name) ? "::" : "",
2735 name);
2736 else
2737 error (_("Cannot resolve function %s to any overloaded instance"),
2738 func_name);
2739 }
2740 else if (match_quality == NON_STANDARD)
2741 {
2742 if (method == METHOD)
2743 warning (_("Using non-standard conversion to match "
2744 "method %s%s%s to supplied arguments"),
2745 obj_type_name,
2746 (obj_type_name && *obj_type_name) ? "::" : "",
2747 name);
2748 else
2749 warning (_("Using non-standard conversion to match "
2750 "function %s to supplied arguments"),
2751 func_name);
2752 }
2753
2754 if (staticp != NULL)
2755 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2756
2757 if (method_oload_champ >= 0)
2758 {
2759 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2760 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2761 basetype, boffset);
2762 else
2763 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2764 basetype, boffset);
2765 }
2766 else
2767 *symp = oload_syms[func_oload_champ];
2768
2769 if (objp)
2770 {
2771 struct type *temp_type = check_typedef (value_type (temp));
2772 struct type *obj_type = check_typedef (value_type (*objp));
2773
2774 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2775 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2776 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2777 {
2778 temp = value_addr (temp);
2779 }
2780 *objp = temp;
2781 }
2782
2783 do_cleanups (all_cleanups);
2784
2785 switch (match_quality)
2786 {
2787 case INCOMPATIBLE:
2788 return 100;
2789 case NON_STANDARD:
2790 return 10;
2791 default: /* STANDARD */
2792 return 0;
2793 }
2794 }
2795
2796 /* Find the best overload match, searching for FUNC_NAME in namespaces
2797 contained in QUALIFIED_NAME until it either finds a good match or
2798 runs out of namespaces. It stores the overloaded functions in
2799 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2800 calling function is responsible for freeing *OLOAD_SYMS and
2801 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2802 performned. */
2803
2804 static int
2805 find_oload_champ_namespace (struct type **arg_types, int nargs,
2806 const char *func_name,
2807 const char *qualified_name,
2808 struct symbol ***oload_syms,
2809 struct badness_vector **oload_champ_bv,
2810 const int no_adl)
2811 {
2812 int oload_champ;
2813
2814 find_oload_champ_namespace_loop (arg_types, nargs,
2815 func_name,
2816 qualified_name, 0,
2817 oload_syms, oload_champ_bv,
2818 &oload_champ,
2819 no_adl);
2820
2821 return oload_champ;
2822 }
2823
2824 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2825 how deep we've looked for namespaces, and the champ is stored in
2826 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2827 if it isn't. Other arguments are the same as in
2828 find_oload_champ_namespace
2829
2830 It is the caller's responsibility to free *OLOAD_SYMS and
2831 *OLOAD_CHAMP_BV. */
2832
2833 static int
2834 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2835 const char *func_name,
2836 const char *qualified_name,
2837 int namespace_len,
2838 struct symbol ***oload_syms,
2839 struct badness_vector **oload_champ_bv,
2840 int *oload_champ,
2841 const int no_adl)
2842 {
2843 int next_namespace_len = namespace_len;
2844 int searched_deeper = 0;
2845 int num_fns = 0;
2846 struct cleanup *old_cleanups;
2847 int new_oload_champ;
2848 struct symbol **new_oload_syms;
2849 struct badness_vector *new_oload_champ_bv;
2850 char *new_namespace;
2851
2852 if (next_namespace_len != 0)
2853 {
2854 gdb_assert (qualified_name[next_namespace_len] == ':');
2855 next_namespace_len += 2;
2856 }
2857 next_namespace_len +=
2858 cp_find_first_component (qualified_name + next_namespace_len);
2859
2860 /* Initialize these to values that can safely be xfree'd. */
2861 *oload_syms = NULL;
2862 *oload_champ_bv = NULL;
2863
2864 /* First, see if we have a deeper namespace we can search in.
2865 If we get a good match there, use it. */
2866
2867 if (qualified_name[next_namespace_len] == ':')
2868 {
2869 searched_deeper = 1;
2870
2871 if (find_oload_champ_namespace_loop (arg_types, nargs,
2872 func_name, qualified_name,
2873 next_namespace_len,
2874 oload_syms, oload_champ_bv,
2875 oload_champ, no_adl))
2876 {
2877 return 1;
2878 }
2879 };
2880
2881 /* If we reach here, either we're in the deepest namespace or we
2882 didn't find a good match in a deeper namespace. But, in the
2883 latter case, we still have a bad match in a deeper namespace;
2884 note that we might not find any match at all in the current
2885 namespace. (There's always a match in the deepest namespace,
2886 because this overload mechanism only gets called if there's a
2887 function symbol to start off with.) */
2888
2889 old_cleanups = make_cleanup (xfree, *oload_syms);
2890 make_cleanup (xfree, *oload_champ_bv);
2891 new_namespace = alloca (namespace_len + 1);
2892 strncpy (new_namespace, qualified_name, namespace_len);
2893 new_namespace[namespace_len] = '\0';
2894 new_oload_syms = make_symbol_overload_list (func_name,
2895 new_namespace);
2896
2897 /* If we have reached the deepest level perform argument
2898 determined lookup. */
2899 if (!searched_deeper && !no_adl)
2900 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2901
2902 while (new_oload_syms[num_fns])
2903 ++num_fns;
2904
2905 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2906 NULL, new_oload_syms,
2907 &new_oload_champ_bv);
2908
2909 /* Case 1: We found a good match. Free earlier matches (if any),
2910 and return it. Case 2: We didn't find a good match, but we're
2911 not the deepest function. Then go with the bad match that the
2912 deeper function found. Case 3: We found a bad match, and we're
2913 the deepest function. Then return what we found, even though
2914 it's a bad match. */
2915
2916 if (new_oload_champ != -1
2917 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2918 {
2919 *oload_syms = new_oload_syms;
2920 *oload_champ = new_oload_champ;
2921 *oload_champ_bv = new_oload_champ_bv;
2922 do_cleanups (old_cleanups);
2923 return 1;
2924 }
2925 else if (searched_deeper)
2926 {
2927 xfree (new_oload_syms);
2928 xfree (new_oload_champ_bv);
2929 discard_cleanups (old_cleanups);
2930 return 0;
2931 }
2932 else
2933 {
2934 *oload_syms = new_oload_syms;
2935 *oload_champ = new_oload_champ;
2936 *oload_champ_bv = new_oload_champ_bv;
2937 do_cleanups (old_cleanups);
2938 return 0;
2939 }
2940 }
2941
2942 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2943 the best match from among the overloaded methods or functions
2944 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2945 The number of methods/functions in the list is given by NUM_FNS.
2946 Return the index of the best match; store an indication of the
2947 quality of the match in OLOAD_CHAMP_BV.
2948
2949 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2950
2951 static int
2952 find_oload_champ (struct type **arg_types, int nargs, int method,
2953 int num_fns, struct fn_field *fns_ptr,
2954 struct symbol **oload_syms,
2955 struct badness_vector **oload_champ_bv)
2956 {
2957 int ix;
2958 /* A measure of how good an overloaded instance is. */
2959 struct badness_vector *bv;
2960 /* Index of best overloaded function. */
2961 int oload_champ = -1;
2962 /* Current ambiguity state for overload resolution. */
2963 int oload_ambiguous = 0;
2964 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2965
2966 *oload_champ_bv = NULL;
2967
2968 /* Consider each candidate in turn. */
2969 for (ix = 0; ix < num_fns; ix++)
2970 {
2971 int jj;
2972 int static_offset = oload_method_static (method, fns_ptr, ix);
2973 int nparms;
2974 struct type **parm_types;
2975
2976 if (method)
2977 {
2978 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2979 }
2980 else
2981 {
2982 /* If it's not a method, this is the proper place. */
2983 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2984 }
2985
2986 /* Prepare array of parameter types. */
2987 parm_types = (struct type **)
2988 xmalloc (nparms * (sizeof (struct type *)));
2989 for (jj = 0; jj < nparms; jj++)
2990 parm_types[jj] = (method
2991 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2992 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2993 jj));
2994
2995 /* Compare parameter types to supplied argument types. Skip
2996 THIS for static methods. */
2997 bv = rank_function (parm_types, nparms,
2998 arg_types + static_offset,
2999 nargs - static_offset);
3000
3001 if (!*oload_champ_bv)
3002 {
3003 *oload_champ_bv = bv;
3004 oload_champ = 0;
3005 }
3006 else /* See whether current candidate is better or worse than
3007 previous best. */
3008 switch (compare_badness (bv, *oload_champ_bv))
3009 {
3010 case 0: /* Top two contenders are equally good. */
3011 oload_ambiguous = 1;
3012 break;
3013 case 1: /* Incomparable top contenders. */
3014 oload_ambiguous = 2;
3015 break;
3016 case 2: /* New champion, record details. */
3017 *oload_champ_bv = bv;
3018 oload_ambiguous = 0;
3019 oload_champ = ix;
3020 break;
3021 case 3:
3022 default:
3023 break;
3024 }
3025 xfree (parm_types);
3026 if (overload_debug)
3027 {
3028 if (method)
3029 fprintf_filtered (gdb_stderr,
3030 "Overloaded method instance %s, # of parms %d\n",
3031 fns_ptr[ix].physname, nparms);
3032 else
3033 fprintf_filtered (gdb_stderr,
3034 "Overloaded function instance "
3035 "%s # of parms %d\n",
3036 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3037 nparms);
3038 for (jj = 0; jj < nargs - static_offset; jj++)
3039 fprintf_filtered (gdb_stderr,
3040 "...Badness @ %d : %d\n",
3041 jj, bv->rank[jj].rank);
3042 fprintf_filtered (gdb_stderr, "Overload resolution "
3043 "champion is %d, ambiguous? %d\n",
3044 oload_champ, oload_ambiguous);
3045 }
3046 }
3047
3048 return oload_champ;
3049 }
3050
3051 /* Return 1 if we're looking at a static method, 0 if we're looking at
3052 a non-static method or a function that isn't a method. */
3053
3054 static int
3055 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3056 {
3057 if (method && fns_ptr && index >= 0
3058 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3059 return 1;
3060 else
3061 return 0;
3062 }
3063
3064 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3065
3066 static enum oload_classification
3067 classify_oload_match (struct badness_vector *oload_champ_bv,
3068 int nargs,
3069 int static_offset)
3070 {
3071 int ix;
3072
3073 for (ix = 1; ix <= nargs - static_offset; ix++)
3074 {
3075 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3076 or worse return INCOMPATIBLE. */
3077 if (compare_ranks (oload_champ_bv->rank[ix],
3078 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3079 return INCOMPATIBLE; /* Truly mismatched types. */
3080 /* Otherwise If this conversion is as bad as
3081 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3082 else if (compare_ranks (oload_champ_bv->rank[ix],
3083 NS_POINTER_CONVERSION_BADNESS) <= 0)
3084 return NON_STANDARD; /* Non-standard type conversions
3085 needed. */
3086 }
3087
3088 return STANDARD; /* Only standard conversions needed. */
3089 }
3090
3091 /* C++: return 1 is NAME is a legitimate name for the destructor of
3092 type TYPE. If TYPE does not have a destructor, or if NAME is
3093 inappropriate for TYPE, an error is signaled. */
3094 int
3095 destructor_name_p (const char *name, const struct type *type)
3096 {
3097 if (name[0] == '~')
3098 {
3099 char *dname = type_name_no_tag (type);
3100 char *cp = strchr (dname, '<');
3101 unsigned int len;
3102
3103 /* Do not compare the template part for template classes. */
3104 if (cp == NULL)
3105 len = strlen (dname);
3106 else
3107 len = cp - dname;
3108 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3109 error (_("name of destructor must equal name of class"));
3110 else
3111 return 1;
3112 }
3113 return 0;
3114 }
3115
3116 /* Given TYPE, a structure/union,
3117 return 1 if the component named NAME from the ultimate target
3118 structure/union is defined, otherwise, return 0. */
3119
3120 int
3121 check_field (struct type *type, const char *name)
3122 {
3123 int i;
3124
3125 /* The type may be a stub. */
3126 CHECK_TYPEDEF (type);
3127
3128 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3129 {
3130 char *t_field_name = TYPE_FIELD_NAME (type, i);
3131
3132 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3133 return 1;
3134 }
3135
3136 /* C++: If it was not found as a data field, then try to return it
3137 as a pointer to a method. */
3138
3139 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3140 {
3141 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3142 return 1;
3143 }
3144
3145 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3146 if (check_field (TYPE_BASECLASS (type, i), name))
3147 return 1;
3148
3149 return 0;
3150 }
3151
3152 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3153 return the appropriate member (or the address of the member, if
3154 WANT_ADDRESS). This function is used to resolve user expressions
3155 of the form "DOMAIN::NAME". For more details on what happens, see
3156 the comment before value_struct_elt_for_reference. */
3157
3158 struct value *
3159 value_aggregate_elt (struct type *curtype, char *name,
3160 struct type *expect_type, int want_address,
3161 enum noside noside)
3162 {
3163 switch (TYPE_CODE (curtype))
3164 {
3165 case TYPE_CODE_STRUCT:
3166 case TYPE_CODE_UNION:
3167 return value_struct_elt_for_reference (curtype, 0, curtype,
3168 name, expect_type,
3169 want_address, noside);
3170 case TYPE_CODE_NAMESPACE:
3171 return value_namespace_elt (curtype, name,
3172 want_address, noside);
3173 default:
3174 internal_error (__FILE__, __LINE__,
3175 _("non-aggregate type in value_aggregate_elt"));
3176 }
3177 }
3178
3179 /* Compares the two method/function types T1 and T2 for "equality"
3180 with respect to the methods' parameters. If the types of the
3181 two parameter lists are the same, returns 1; 0 otherwise. This
3182 comparison may ignore any artificial parameters in T1 if
3183 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3184 the first artificial parameter in T1, assumed to be a 'this' pointer.
3185
3186 The type T2 is expected to have come from make_params (in eval.c). */
3187
3188 static int
3189 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3190 {
3191 int start = 0;
3192
3193 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3194 ++start;
3195
3196 /* If skipping artificial fields, find the first real field
3197 in T1. */
3198 if (skip_artificial)
3199 {
3200 while (start < TYPE_NFIELDS (t1)
3201 && TYPE_FIELD_ARTIFICIAL (t1, start))
3202 ++start;
3203 }
3204
3205 /* Now compare parameters. */
3206
3207 /* Special case: a method taking void. T1 will contain no
3208 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3209 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3210 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3211 return 1;
3212
3213 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3214 {
3215 int i;
3216
3217 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3218 {
3219 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3220 TYPE_FIELD_TYPE (t2, i)),
3221 EXACT_MATCH_BADNESS) != 0)
3222 return 0;
3223 }
3224
3225 return 1;
3226 }
3227
3228 return 0;
3229 }
3230
3231 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3232 return the address of this member as a "pointer to member" type.
3233 If INTYPE is non-null, then it will be the type of the member we
3234 are looking for. This will help us resolve "pointers to member
3235 functions". This function is used to resolve user expressions of
3236 the form "DOMAIN::NAME". */
3237
3238 static struct value *
3239 value_struct_elt_for_reference (struct type *domain, int offset,
3240 struct type *curtype, char *name,
3241 struct type *intype,
3242 int want_address,
3243 enum noside noside)
3244 {
3245 struct type *t = curtype;
3246 int i;
3247 struct value *v, *result;
3248
3249 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3250 && TYPE_CODE (t) != TYPE_CODE_UNION)
3251 error (_("Internal error: non-aggregate type "
3252 "to value_struct_elt_for_reference"));
3253
3254 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3255 {
3256 char *t_field_name = TYPE_FIELD_NAME (t, i);
3257
3258 if (t_field_name && strcmp (t_field_name, name) == 0)
3259 {
3260 if (field_is_static (&TYPE_FIELD (t, i)))
3261 {
3262 v = value_static_field (t, i);
3263 if (v == NULL)
3264 error (_("static field %s has been optimized out"),
3265 name);
3266 if (want_address)
3267 v = value_addr (v);
3268 return v;
3269 }
3270 if (TYPE_FIELD_PACKED (t, i))
3271 error (_("pointers to bitfield members not allowed"));
3272
3273 if (want_address)
3274 return value_from_longest
3275 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3276 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3277 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3278 return allocate_value (TYPE_FIELD_TYPE (t, i));
3279 else
3280 error (_("Cannot reference non-static field \"%s\""), name);
3281 }
3282 }
3283
3284 /* C++: If it was not found as a data field, then try to return it
3285 as a pointer to a method. */
3286
3287 /* Perform all necessary dereferencing. */
3288 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3289 intype = TYPE_TARGET_TYPE (intype);
3290
3291 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3292 {
3293 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3294 char dem_opname[64];
3295
3296 if (strncmp (t_field_name, "__", 2) == 0
3297 || strncmp (t_field_name, "op", 2) == 0
3298 || strncmp (t_field_name, "type", 4) == 0)
3299 {
3300 if (cplus_demangle_opname (t_field_name,
3301 dem_opname, DMGL_ANSI))
3302 t_field_name = dem_opname;
3303 else if (cplus_demangle_opname (t_field_name,
3304 dem_opname, 0))
3305 t_field_name = dem_opname;
3306 }
3307 if (t_field_name && strcmp (t_field_name, name) == 0)
3308 {
3309 int j;
3310 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3311 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3312
3313 check_stub_method_group (t, i);
3314
3315 if (intype)
3316 {
3317 for (j = 0; j < len; ++j)
3318 {
3319 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3320 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3321 intype, 1))
3322 break;
3323 }
3324
3325 if (j == len)
3326 error (_("no member function matches "
3327 "that type instantiation"));
3328 }
3329 else
3330 {
3331 int ii;
3332
3333 j = -1;
3334 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3335 ++ii)
3336 {
3337 /* Skip artificial methods. This is necessary if,
3338 for example, the user wants to "print
3339 subclass::subclass" with only one user-defined
3340 constructor. There is no ambiguity in this
3341 case. */
3342 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3343 continue;
3344
3345 /* Desired method is ambiguous if more than one
3346 method is defined. */
3347 if (j != -1)
3348 error (_("non-unique member `%s' requires "
3349 "type instantiation"), name);
3350
3351 j = ii;
3352 }
3353 }
3354
3355 if (TYPE_FN_FIELD_STATIC_P (f, j))
3356 {
3357 struct symbol *s =
3358 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3359 0, VAR_DOMAIN, 0);
3360
3361 if (s == NULL)
3362 return NULL;
3363
3364 if (want_address)
3365 return value_addr (read_var_value (s, 0));
3366 else
3367 return read_var_value (s, 0);
3368 }
3369
3370 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3371 {
3372 if (want_address)
3373 {
3374 result = allocate_value
3375 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3376 cplus_make_method_ptr (value_type (result),
3377 value_contents_writeable (result),
3378 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3379 }
3380 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3381 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3382 else
3383 error (_("Cannot reference virtual member function \"%s\""),
3384 name);
3385 }
3386 else
3387 {
3388 struct symbol *s =
3389 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3390 0, VAR_DOMAIN, 0);
3391
3392 if (s == NULL)
3393 return NULL;
3394
3395 v = read_var_value (s, 0);
3396 if (!want_address)
3397 result = v;
3398 else
3399 {
3400 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3401 cplus_make_method_ptr (value_type (result),
3402 value_contents_writeable (result),
3403 value_address (v), 0);
3404 }
3405 }
3406 return result;
3407 }
3408 }
3409 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3410 {
3411 struct value *v;
3412 int base_offset;
3413
3414 if (BASETYPE_VIA_VIRTUAL (t, i))
3415 base_offset = 0;
3416 else
3417 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3418 v = value_struct_elt_for_reference (domain,
3419 offset + base_offset,
3420 TYPE_BASECLASS (t, i),
3421 name, intype,
3422 want_address, noside);
3423 if (v)
3424 return v;
3425 }
3426
3427 /* As a last chance, pretend that CURTYPE is a namespace, and look
3428 it up that way; this (frequently) works for types nested inside
3429 classes. */
3430
3431 return value_maybe_namespace_elt (curtype, name,
3432 want_address, noside);
3433 }
3434
3435 /* C++: Return the member NAME of the namespace given by the type
3436 CURTYPE. */
3437
3438 static struct value *
3439 value_namespace_elt (const struct type *curtype,
3440 char *name, int want_address,
3441 enum noside noside)
3442 {
3443 struct value *retval = value_maybe_namespace_elt (curtype, name,
3444 want_address,
3445 noside);
3446
3447 if (retval == NULL)
3448 error (_("No symbol \"%s\" in namespace \"%s\"."),
3449 name, TYPE_TAG_NAME (curtype));
3450
3451 return retval;
3452 }
3453
3454 /* A helper function used by value_namespace_elt and
3455 value_struct_elt_for_reference. It looks up NAME inside the
3456 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3457 is a class and NAME refers to a type in CURTYPE itself (as opposed
3458 to, say, some base class of CURTYPE). */
3459
3460 static struct value *
3461 value_maybe_namespace_elt (const struct type *curtype,
3462 char *name, int want_address,
3463 enum noside noside)
3464 {
3465 const char *namespace_name = TYPE_TAG_NAME (curtype);
3466 struct symbol *sym;
3467 struct value *result;
3468
3469 sym = cp_lookup_symbol_namespace (namespace_name, name,
3470 get_selected_block (0), VAR_DOMAIN);
3471
3472 if (sym == NULL)
3473 {
3474 char *concatenated_name = alloca (strlen (namespace_name) + 2
3475 + strlen (name) + 1);
3476
3477 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3478 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3479 }
3480
3481 if (sym == NULL)
3482 return NULL;
3483 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3484 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3485 result = allocate_value (SYMBOL_TYPE (sym));
3486 else
3487 result = value_of_variable (sym, get_selected_block (0));
3488
3489 if (result && want_address)
3490 result = value_addr (result);
3491
3492 return result;
3493 }
3494
3495 /* Given a pointer value V, find the real (RTTI) type of the object it
3496 points to.
3497
3498 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3499 and refer to the values computed for the object pointed to. */
3500
3501 struct type *
3502 value_rtti_target_type (struct value *v, int *full,
3503 int *top, int *using_enc)
3504 {
3505 struct value *target;
3506
3507 target = value_ind (v);
3508
3509 return value_rtti_type (target, full, top, using_enc);
3510 }
3511
3512 /* Given a value pointed to by ARGP, check its real run-time type, and
3513 if that is different from the enclosing type, create a new value
3514 using the real run-time type as the enclosing type (and of the same
3515 type as ARGP) and return it, with the embedded offset adjusted to
3516 be the correct offset to the enclosed object. RTYPE is the type,
3517 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3518 by value_rtti_type(). If these are available, they can be supplied
3519 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3520 NULL if they're not available. */
3521
3522 struct value *
3523 value_full_object (struct value *argp,
3524 struct type *rtype,
3525 int xfull, int xtop,
3526 int xusing_enc)
3527 {
3528 struct type *real_type;
3529 int full = 0;
3530 int top = -1;
3531 int using_enc = 0;
3532 struct value *new_val;
3533
3534 if (rtype)
3535 {
3536 real_type = rtype;
3537 full = xfull;
3538 top = xtop;
3539 using_enc = xusing_enc;
3540 }
3541 else
3542 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3543
3544 /* If no RTTI data, or if object is already complete, do nothing. */
3545 if (!real_type || real_type == value_enclosing_type (argp))
3546 return argp;
3547
3548 /* If we have the full object, but for some reason the enclosing
3549 type is wrong, set it. */
3550 /* pai: FIXME -- sounds iffy */
3551 if (full)
3552 {
3553 argp = value_copy (argp);
3554 set_value_enclosing_type (argp, real_type);
3555 return argp;
3556 }
3557
3558 /* Check if object is in memory. */
3559 if (VALUE_LVAL (argp) != lval_memory)
3560 {
3561 warning (_("Couldn't retrieve complete object of RTTI "
3562 "type %s; object may be in register(s)."),
3563 TYPE_NAME (real_type));
3564
3565 return argp;
3566 }
3567
3568 /* All other cases -- retrieve the complete object. */
3569 /* Go back by the computed top_offset from the beginning of the
3570 object, adjusting for the embedded offset of argp if that's what
3571 value_rtti_type used for its computation. */
3572 new_val = value_at_lazy (real_type, value_address (argp) - top +
3573 (using_enc ? 0 : value_embedded_offset (argp)));
3574 deprecated_set_value_type (new_val, value_type (argp));
3575 set_value_embedded_offset (new_val, (using_enc
3576 ? top + value_embedded_offset (argp)
3577 : top));
3578 return new_val;
3579 }
3580
3581
3582 /* Return the value of the local variable, if one exists.
3583 Flag COMPLAIN signals an error if the request is made in an
3584 inappropriate context. */
3585
3586 struct value *
3587 value_of_local (const char *name, int complain)
3588 {
3589 struct symbol *func, *sym;
3590 struct block *b;
3591 struct value * ret;
3592 struct frame_info *frame;
3593
3594 if (complain)
3595 frame = get_selected_frame (_("no frame selected"));
3596 else
3597 {
3598 frame = deprecated_safe_get_selected_frame ();
3599 if (frame == 0)
3600 return 0;
3601 }
3602
3603 func = get_frame_function (frame);
3604 if (!func)
3605 {
3606 if (complain)
3607 error (_("no `%s' in nameless context"), name);
3608 else
3609 return 0;
3610 }
3611
3612 b = SYMBOL_BLOCK_VALUE (func);
3613 if (dict_empty (BLOCK_DICT (b)))
3614 {
3615 if (complain)
3616 error (_("no args, no `%s'"), name);
3617 else
3618 return 0;
3619 }
3620
3621 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3622 symbol instead of the LOC_ARG one (if both exist). */
3623 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3624 if (sym == NULL)
3625 {
3626 if (complain)
3627 error (_("current stack frame does not contain a variable named `%s'"),
3628 name);
3629 else
3630 return NULL;
3631 }
3632
3633 ret = read_var_value (sym, frame);
3634 if (ret == 0 && complain)
3635 error (_("`%s' argument unreadable"), name);
3636 return ret;
3637 }
3638
3639 /* C++/Objective-C: return the value of the class instance variable,
3640 if one exists. Flag COMPLAIN signals an error if the request is
3641 made in an inappropriate context. */
3642
3643 struct value *
3644 value_of_this (int complain)
3645 {
3646 if (!current_language->la_name_of_this)
3647 return 0;
3648 return value_of_local (current_language->la_name_of_this, complain);
3649 }
3650
3651 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3652 elements long, starting at LOWBOUND. The result has the same lower
3653 bound as the original ARRAY. */
3654
3655 struct value *
3656 value_slice (struct value *array, int lowbound, int length)
3657 {
3658 struct type *slice_range_type, *slice_type, *range_type;
3659 LONGEST lowerbound, upperbound;
3660 struct value *slice;
3661 struct type *array_type;
3662
3663 array_type = check_typedef (value_type (array));
3664 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3665 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3666 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3667 error (_("cannot take slice of non-array"));
3668
3669 range_type = TYPE_INDEX_TYPE (array_type);
3670 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3671 error (_("slice from bad array or bitstring"));
3672
3673 if (lowbound < lowerbound || length < 0
3674 || lowbound + length - 1 > upperbound)
3675 error (_("slice out of range"));
3676
3677 /* FIXME-type-allocation: need a way to free this type when we are
3678 done with it. */
3679 slice_range_type = create_range_type ((struct type *) NULL,
3680 TYPE_TARGET_TYPE (range_type),
3681 lowbound,
3682 lowbound + length - 1);
3683 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3684 {
3685 int i;
3686
3687 slice_type = create_set_type ((struct type *) NULL,
3688 slice_range_type);
3689 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3690 slice = value_zero (slice_type, not_lval);
3691
3692 for (i = 0; i < length; i++)
3693 {
3694 int element = value_bit_index (array_type,
3695 value_contents (array),
3696 lowbound + i);
3697
3698 if (element < 0)
3699 error (_("internal error accessing bitstring"));
3700 else if (element > 0)
3701 {
3702 int j = i % TARGET_CHAR_BIT;
3703
3704 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3705 j = TARGET_CHAR_BIT - 1 - j;
3706 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3707 }
3708 }
3709 /* We should set the address, bitssize, and bitspos, so the
3710 slice can be used on the LHS, but that may require extensions
3711 to value_assign. For now, just leave as a non_lval.
3712 FIXME. */
3713 }
3714 else
3715 {
3716 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3717 LONGEST offset =
3718 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3719
3720 slice_type = create_array_type ((struct type *) NULL,
3721 element_type,
3722 slice_range_type);
3723 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3724
3725 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3726 slice = allocate_value_lazy (slice_type);
3727 else
3728 {
3729 slice = allocate_value (slice_type);
3730 value_contents_copy (slice, 0, array, offset,
3731 TYPE_LENGTH (slice_type));
3732 }
3733
3734 set_value_component_location (slice, array);
3735 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3736 set_value_offset (slice, value_offset (array) + offset);
3737 }
3738 return slice;
3739 }
3740
3741 /* Create a value for a FORTRAN complex number. Currently most of the
3742 time values are coerced to COMPLEX*16 (i.e. a complex number
3743 composed of 2 doubles. This really should be a smarter routine
3744 that figures out precision inteligently as opposed to assuming
3745 doubles. FIXME: fmb */
3746
3747 struct value *
3748 value_literal_complex (struct value *arg1,
3749 struct value *arg2,
3750 struct type *type)
3751 {
3752 struct value *val;
3753 struct type *real_type = TYPE_TARGET_TYPE (type);
3754
3755 val = allocate_value (type);
3756 arg1 = value_cast (real_type, arg1);
3757 arg2 = value_cast (real_type, arg2);
3758
3759 memcpy (value_contents_raw (val),
3760 value_contents (arg1), TYPE_LENGTH (real_type));
3761 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3762 value_contents (arg2), TYPE_LENGTH (real_type));
3763 return val;
3764 }
3765
3766 /* Cast a value into the appropriate complex data type. */
3767
3768 static struct value *
3769 cast_into_complex (struct type *type, struct value *val)
3770 {
3771 struct type *real_type = TYPE_TARGET_TYPE (type);
3772
3773 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3774 {
3775 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3776 struct value *re_val = allocate_value (val_real_type);
3777 struct value *im_val = allocate_value (val_real_type);
3778
3779 memcpy (value_contents_raw (re_val),
3780 value_contents (val), TYPE_LENGTH (val_real_type));
3781 memcpy (value_contents_raw (im_val),
3782 value_contents (val) + TYPE_LENGTH (val_real_type),
3783 TYPE_LENGTH (val_real_type));
3784
3785 return value_literal_complex (re_val, im_val, type);
3786 }
3787 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3788 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3789 return value_literal_complex (val,
3790 value_zero (real_type, not_lval),
3791 type);
3792 else
3793 error (_("cannot cast non-number to complex"));
3794 }
3795
3796 void
3797 _initialize_valops (void)
3798 {
3799 add_setshow_boolean_cmd ("overload-resolution", class_support,
3800 &overload_resolution, _("\
3801 Set overload resolution in evaluating C++ functions."), _("\
3802 Show overload resolution in evaluating C++ functions."),
3803 NULL, NULL,
3804 show_overload_resolution,
3805 &setlist, &showlist);
3806 overload_resolution = 1;
3807 }
This page took 0.1832 seconds and 4 git commands to generate.