Remote non-stop mode support.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68 static
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202 }
203
204 static CORE_ADDR
205 allocate_space_in_inferior (int len)
206 {
207 return value_as_long (value_allocate_space_in_inferior (len));
208 }
209
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
217 {
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = VALUE_ADDRESS (v2);
258 addr2 -= (VALUE_ADDRESS (v)
259 + value_offset (v)
260 + value_embedded_offset (v));
261 return value_at (type, addr2);
262 }
263 }
264
265 return NULL;
266 }
267
268 /* Cast one pointer or reference type to another. Both TYPE and
269 the type of ARG2 should be pointer types, or else both should be
270 reference types. Returns the new pointer or reference. */
271
272 struct value *
273 value_cast_pointers (struct type *type, struct value *arg2)
274 {
275 struct type *type1 = check_typedef (type);
276 struct type *type2 = check_typedef (value_type (arg2));
277 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
278 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
279
280 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
281 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
282 && !value_logical_not (arg2))
283 {
284 struct value *v2;
285
286 if (TYPE_CODE (type2) == TYPE_CODE_REF)
287 v2 = coerce_ref (arg2);
288 else
289 v2 = value_ind (arg2);
290 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
291 && !!"Why did coercion fail?");
292 v2 = value_cast_structs (t1, v2);
293 /* At this point we have what we can have, un-dereference if needed. */
294 if (v2)
295 {
296 struct value *v = value_addr (v2);
297 deprecated_set_value_type (v, type);
298 return v;
299 }
300 }
301
302 /* No superclass found, just change the pointer type. */
303 arg2 = value_copy (arg2);
304 deprecated_set_value_type (arg2, type);
305 arg2 = value_change_enclosing_type (arg2, type);
306 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
307 return arg2;
308 }
309
310 /* Cast value ARG2 to type TYPE and return as a value.
311 More general than a C cast: accepts any two types of the same length,
312 and if ARG2 is an lvalue it can be cast into anything at all. */
313 /* In C++, casts may change pointer or object representations. */
314
315 struct value *
316 value_cast (struct type *type, struct value *arg2)
317 {
318 enum type_code code1;
319 enum type_code code2;
320 int scalar;
321 struct type *type2;
322
323 int convert_to_boolean = 0;
324
325 if (value_type (arg2) == type)
326 return arg2;
327
328 code1 = TYPE_CODE (check_typedef (type));
329
330 /* Check if we are casting struct reference to struct reference. */
331 if (code1 == TYPE_CODE_REF)
332 {
333 /* We dereference type; then we recurse and finally
334 we generate value of the given reference. Nothing wrong with
335 that. */
336 struct type *t1 = check_typedef (type);
337 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
338 struct value *val = value_cast (dereftype, arg2);
339 return value_ref (val);
340 }
341
342 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
343
344 if (code2 == TYPE_CODE_REF)
345 /* We deref the value and then do the cast. */
346 return value_cast (type, coerce_ref (arg2));
347
348 CHECK_TYPEDEF (type);
349 code1 = TYPE_CODE (type);
350 arg2 = coerce_ref (arg2);
351 type2 = check_typedef (value_type (arg2));
352
353 /* You can't cast to a reference type. See value_cast_pointers
354 instead. */
355 gdb_assert (code1 != TYPE_CODE_REF);
356
357 /* A cast to an undetermined-length array_type, such as
358 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
359 where N is sizeof(OBJECT)/sizeof(TYPE). */
360 if (code1 == TYPE_CODE_ARRAY)
361 {
362 struct type *element_type = TYPE_TARGET_TYPE (type);
363 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
364 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
365 {
366 struct type *range_type = TYPE_INDEX_TYPE (type);
367 int val_length = TYPE_LENGTH (type2);
368 LONGEST low_bound, high_bound, new_length;
369 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
370 low_bound = 0, high_bound = 0;
371 new_length = val_length / element_length;
372 if (val_length % element_length != 0)
373 warning (_("array element type size does not divide object size in cast"));
374 /* FIXME-type-allocation: need a way to free this type when
375 we are done with it. */
376 range_type = create_range_type ((struct type *) NULL,
377 TYPE_TARGET_TYPE (range_type),
378 low_bound,
379 new_length + low_bound - 1);
380 deprecated_set_value_type (arg2,
381 create_array_type ((struct type *) NULL,
382 element_type,
383 range_type));
384 return arg2;
385 }
386 }
387
388 if (current_language->c_style_arrays
389 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
390 arg2 = value_coerce_array (arg2);
391
392 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
393 arg2 = value_coerce_function (arg2);
394
395 type2 = check_typedef (value_type (arg2));
396 code2 = TYPE_CODE (type2);
397
398 if (code1 == TYPE_CODE_COMPLEX)
399 return cast_into_complex (type, arg2);
400 if (code1 == TYPE_CODE_BOOL)
401 {
402 code1 = TYPE_CODE_INT;
403 convert_to_boolean = 1;
404 }
405 if (code1 == TYPE_CODE_CHAR)
406 code1 = TYPE_CODE_INT;
407 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
408 code2 = TYPE_CODE_INT;
409
410 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
411 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
412 || code2 == TYPE_CODE_RANGE);
413
414 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
415 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
416 && TYPE_NAME (type) != 0)
417 {
418 struct value *v = value_cast_structs (type, arg2);
419 if (v)
420 return v;
421 }
422
423 if (code1 == TYPE_CODE_FLT && scalar)
424 return value_from_double (type, value_as_double (arg2));
425 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
426 {
427 int dec_len = TYPE_LENGTH (type);
428 gdb_byte dec[16];
429
430 if (code2 == TYPE_CODE_FLT)
431 decimal_from_floating (arg2, dec, dec_len);
432 else if (code2 == TYPE_CODE_DECFLOAT)
433 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
434 dec, dec_len);
435 else
436 /* The only option left is an integral type. */
437 decimal_from_integral (arg2, dec, dec_len);
438
439 return value_from_decfloat (type, dec);
440 }
441 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
442 || code1 == TYPE_CODE_RANGE)
443 && (scalar || code2 == TYPE_CODE_PTR
444 || code2 == TYPE_CODE_MEMBERPTR))
445 {
446 LONGEST longest;
447
448 /* When we cast pointers to integers, we mustn't use
449 gdbarch_pointer_to_address to find the address the pointer
450 represents, as value_as_long would. GDB should evaluate
451 expressions just as the compiler would --- and the compiler
452 sees a cast as a simple reinterpretation of the pointer's
453 bits. */
454 if (code2 == TYPE_CODE_PTR)
455 longest = extract_unsigned_integer (value_contents (arg2),
456 TYPE_LENGTH (type2));
457 else
458 longest = value_as_long (arg2);
459 return value_from_longest (type, convert_to_boolean ?
460 (LONGEST) (longest ? 1 : 0) : longest);
461 }
462 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
463 || code2 == TYPE_CODE_ENUM
464 || code2 == TYPE_CODE_RANGE))
465 {
466 /* TYPE_LENGTH (type) is the length of a pointer, but we really
467 want the length of an address! -- we are really dealing with
468 addresses (i.e., gdb representations) not pointers (i.e.,
469 target representations) here.
470
471 This allows things like "print *(int *)0x01000234" to work
472 without printing a misleading message -- which would
473 otherwise occur when dealing with a target having two byte
474 pointers and four byte addresses. */
475
476 int addr_bit = gdbarch_addr_bit (current_gdbarch);
477
478 LONGEST longest = value_as_long (arg2);
479 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
480 {
481 if (longest >= ((LONGEST) 1 << addr_bit)
482 || longest <= -((LONGEST) 1 << addr_bit))
483 warning (_("value truncated"));
484 }
485 return value_from_longest (type, longest);
486 }
487 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
488 && value_as_long (arg2) == 0)
489 {
490 struct value *result = allocate_value (type);
491 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
492 return result;
493 }
494 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
495 && value_as_long (arg2) == 0)
496 {
497 /* The Itanium C++ ABI represents NULL pointers to members as
498 minus one, instead of biasing the normal case. */
499 return value_from_longest (type, -1);
500 }
501 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
502 {
503 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
504 return value_cast_pointers (type, arg2);
505
506 arg2 = value_copy (arg2);
507 deprecated_set_value_type (arg2, type);
508 arg2 = value_change_enclosing_type (arg2, type);
509 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
510 return arg2;
511 }
512 else if (VALUE_LVAL (arg2) == lval_memory)
513 return value_at_lazy (type,
514 VALUE_ADDRESS (arg2) + value_offset (arg2));
515 else if (code1 == TYPE_CODE_VOID)
516 {
517 return value_zero (builtin_type_void, not_lval);
518 }
519 else
520 {
521 error (_("Invalid cast."));
522 return 0;
523 }
524 }
525
526 /* Create a value of type TYPE that is zero, and return it. */
527
528 struct value *
529 value_zero (struct type *type, enum lval_type lv)
530 {
531 struct value *val = allocate_value (type);
532 VALUE_LVAL (val) = lv;
533
534 return val;
535 }
536
537 /* Create a value of numeric type TYPE that is one, and return it. */
538
539 struct value *
540 value_one (struct type *type, enum lval_type lv)
541 {
542 struct type *type1 = check_typedef (type);
543 struct value *val = NULL; /* avoid -Wall warning */
544
545 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
546 {
547 struct value *int_one = value_from_longest (builtin_type_int32, 1);
548 struct value *val;
549 gdb_byte v[16];
550
551 decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int32));
552 val = value_from_decfloat (type, v);
553 }
554 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
555 {
556 val = value_from_double (type, (DOUBLEST) 1);
557 }
558 else if (is_integral_type (type1))
559 {
560 val = value_from_longest (type, (LONGEST) 1);
561 }
562 else
563 {
564 error (_("Not a numeric type."));
565 }
566
567 VALUE_LVAL (val) = lv;
568 return val;
569 }
570
571 /* Return a value with type TYPE located at ADDR.
572
573 Call value_at only if the data needs to be fetched immediately;
574 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
575 value_at_lazy instead. value_at_lazy simply records the address of
576 the data and sets the lazy-evaluation-required flag. The lazy flag
577 is tested in the value_contents macro, which is used if and when
578 the contents are actually required.
579
580 Note: value_at does *NOT* handle embedded offsets; perform such
581 adjustments before or after calling it. */
582
583 struct value *
584 value_at (struct type *type, CORE_ADDR addr)
585 {
586 struct value *val;
587
588 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
589 error (_("Attempt to dereference a generic pointer."));
590
591 val = allocate_value (type);
592
593 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
594
595 VALUE_LVAL (val) = lval_memory;
596 VALUE_ADDRESS (val) = addr;
597
598 return val;
599 }
600
601 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
602
603 struct value *
604 value_at_lazy (struct type *type, CORE_ADDR addr)
605 {
606 struct value *val;
607
608 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
609 error (_("Attempt to dereference a generic pointer."));
610
611 val = allocate_value (type);
612
613 VALUE_LVAL (val) = lval_memory;
614 VALUE_ADDRESS (val) = addr;
615 set_value_lazy (val, 1);
616
617 return val;
618 }
619
620 /* Called only from the value_contents and value_contents_all()
621 macros, if the current data for a variable needs to be loaded into
622 value_contents(VAL). Fetches the data from the user's process, and
623 clears the lazy flag to indicate that the data in the buffer is
624 valid.
625
626 If the value is zero-length, we avoid calling read_memory, which
627 would abort. We mark the value as fetched anyway -- all 0 bytes of
628 it.
629
630 This function returns a value because it is used in the
631 value_contents macro as part of an expression, where a void would
632 not work. The value is ignored. */
633
634 int
635 value_fetch_lazy (struct value *val)
636 {
637 if (VALUE_LVAL (val) == lval_memory)
638 {
639 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
640 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
641
642 if (length)
643 read_memory (addr, value_contents_all_raw (val), length);
644 }
645 else if (VALUE_LVAL (val) == lval_register)
646 {
647 struct frame_info *frame;
648 int regnum;
649 struct type *type = check_typedef (value_type (val));
650 struct value *new_val = val, *mark = value_mark ();
651
652 /* Offsets are not supported here; lazy register values must
653 refer to the entire register. */
654 gdb_assert (value_offset (val) == 0);
655
656 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
657 {
658 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
659 regnum = VALUE_REGNUM (new_val);
660
661 gdb_assert (frame != NULL);
662
663 /* Convertible register routines are used for multi-register
664 values and for interpretation in different types
665 (e.g. float or int from a double register). Lazy
666 register values should have the register's natural type,
667 so they do not apply. */
668 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
669 regnum, type));
670
671 new_val = get_frame_register_value (frame, regnum);
672 }
673
674 /* If it's still lazy (for instance, a saved register on the
675 stack), fetch it. */
676 if (value_lazy (new_val))
677 value_fetch_lazy (new_val);
678
679 /* If the register was not saved, mark it unavailable. */
680 if (value_optimized_out (new_val))
681 set_value_optimized_out (val, 1);
682 else
683 memcpy (value_contents_raw (val), value_contents (new_val),
684 TYPE_LENGTH (type));
685
686 if (frame_debug)
687 {
688 struct gdbarch *gdbarch;
689 frame = frame_find_by_id (VALUE_FRAME_ID (val));
690 regnum = VALUE_REGNUM (val);
691 gdbarch = get_frame_arch (frame);
692
693 fprintf_unfiltered (gdb_stdlog, "\
694 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
695 frame_relative_level (frame), regnum,
696 user_reg_map_regnum_to_name (gdbarch, regnum));
697
698 fprintf_unfiltered (gdb_stdlog, "->");
699 if (value_optimized_out (new_val))
700 fprintf_unfiltered (gdb_stdlog, " optimized out");
701 else
702 {
703 int i;
704 const gdb_byte *buf = value_contents (new_val);
705
706 if (VALUE_LVAL (new_val) == lval_register)
707 fprintf_unfiltered (gdb_stdlog, " register=%d",
708 VALUE_REGNUM (new_val));
709 else if (VALUE_LVAL (new_val) == lval_memory)
710 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
711 paddr_nz (VALUE_ADDRESS (new_val)));
712 else
713 fprintf_unfiltered (gdb_stdlog, " computed");
714
715 fprintf_unfiltered (gdb_stdlog, " bytes=");
716 fprintf_unfiltered (gdb_stdlog, "[");
717 for (i = 0; i < register_size (gdbarch, regnum); i++)
718 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
719 fprintf_unfiltered (gdb_stdlog, "]");
720 }
721
722 fprintf_unfiltered (gdb_stdlog, " }\n");
723 }
724
725 /* Dispose of the intermediate values. This prevents
726 watchpoints from trying to watch the saved frame pointer. */
727 value_free_to_mark (mark);
728 }
729 else
730 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
731
732 set_value_lazy (val, 0);
733 return 0;
734 }
735
736
737 /* Store the contents of FROMVAL into the location of TOVAL.
738 Return a new value with the location of TOVAL and contents of FROMVAL. */
739
740 struct value *
741 value_assign (struct value *toval, struct value *fromval)
742 {
743 struct type *type;
744 struct value *val;
745 struct frame_id old_frame;
746
747 if (!deprecated_value_modifiable (toval))
748 error (_("Left operand of assignment is not a modifiable lvalue."));
749
750 toval = coerce_ref (toval);
751
752 type = value_type (toval);
753 if (VALUE_LVAL (toval) != lval_internalvar)
754 {
755 toval = value_coerce_to_target (toval);
756 fromval = value_cast (type, fromval);
757 }
758 else
759 {
760 /* Coerce arrays and functions to pointers, except for arrays
761 which only live in GDB's storage. */
762 if (!value_must_coerce_to_target (fromval))
763 fromval = coerce_array (fromval);
764 }
765
766 CHECK_TYPEDEF (type);
767
768 /* Since modifying a register can trash the frame chain, and
769 modifying memory can trash the frame cache, we save the old frame
770 and then restore the new frame afterwards. */
771 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
772
773 switch (VALUE_LVAL (toval))
774 {
775 case lval_internalvar:
776 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
777 val = value_copy (VALUE_INTERNALVAR (toval)->value);
778 val = value_change_enclosing_type (val,
779 value_enclosing_type (fromval));
780 set_value_embedded_offset (val, value_embedded_offset (fromval));
781 set_value_pointed_to_offset (val,
782 value_pointed_to_offset (fromval));
783 return val;
784
785 case lval_internalvar_component:
786 set_internalvar_component (VALUE_INTERNALVAR (toval),
787 value_offset (toval),
788 value_bitpos (toval),
789 value_bitsize (toval),
790 fromval);
791 break;
792
793 case lval_memory:
794 {
795 const gdb_byte *dest_buffer;
796 CORE_ADDR changed_addr;
797 int changed_len;
798 gdb_byte buffer[sizeof (LONGEST)];
799
800 if (value_bitsize (toval))
801 {
802 /* We assume that the argument to read_memory is in units
803 of host chars. FIXME: Is that correct? */
804 changed_len = (value_bitpos (toval)
805 + value_bitsize (toval)
806 + HOST_CHAR_BIT - 1)
807 / HOST_CHAR_BIT;
808
809 if (changed_len > (int) sizeof (LONGEST))
810 error (_("Can't handle bitfields which don't fit in a %d bit word."),
811 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
812
813 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
814 buffer, changed_len);
815 modify_field (buffer, value_as_long (fromval),
816 value_bitpos (toval), value_bitsize (toval));
817 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
818 dest_buffer = buffer;
819 }
820 else
821 {
822 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
823 changed_len = TYPE_LENGTH (type);
824 dest_buffer = value_contents (fromval);
825 }
826
827 write_memory (changed_addr, dest_buffer, changed_len);
828 if (deprecated_memory_changed_hook)
829 deprecated_memory_changed_hook (changed_addr, changed_len);
830 }
831 break;
832
833 case lval_register:
834 {
835 struct frame_info *frame;
836 int value_reg;
837
838 /* Figure out which frame this is in currently. */
839 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
840 value_reg = VALUE_REGNUM (toval);
841
842 if (!frame)
843 error (_("Value being assigned to is no longer active."));
844
845 if (gdbarch_convert_register_p
846 (current_gdbarch, VALUE_REGNUM (toval), type))
847 {
848 /* If TOVAL is a special machine register requiring
849 conversion of program values to a special raw
850 format. */
851 gdbarch_value_to_register (current_gdbarch, frame,
852 VALUE_REGNUM (toval), type,
853 value_contents (fromval));
854 }
855 else
856 {
857 if (value_bitsize (toval))
858 {
859 int changed_len;
860 gdb_byte buffer[sizeof (LONGEST)];
861
862 changed_len = (value_bitpos (toval)
863 + value_bitsize (toval)
864 + HOST_CHAR_BIT - 1)
865 / HOST_CHAR_BIT;
866
867 if (changed_len > (int) sizeof (LONGEST))
868 error (_("Can't handle bitfields which don't fit in a %d bit word."),
869 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
870
871 get_frame_register_bytes (frame, value_reg,
872 value_offset (toval),
873 changed_len, buffer);
874
875 modify_field (buffer, value_as_long (fromval),
876 value_bitpos (toval),
877 value_bitsize (toval));
878
879 put_frame_register_bytes (frame, value_reg,
880 value_offset (toval),
881 changed_len, buffer);
882 }
883 else
884 {
885 put_frame_register_bytes (frame, value_reg,
886 value_offset (toval),
887 TYPE_LENGTH (type),
888 value_contents (fromval));
889 }
890 }
891
892 if (deprecated_register_changed_hook)
893 deprecated_register_changed_hook (-1);
894 observer_notify_target_changed (&current_target);
895 break;
896 }
897
898 default:
899 error (_("Left operand of assignment is not an lvalue."));
900 }
901
902 /* Assigning to the stack pointer, frame pointer, and other
903 (architecture and calling convention specific) registers may
904 cause the frame cache to be out of date. Assigning to memory
905 also can. We just do this on all assignments to registers or
906 memory, for simplicity's sake; I doubt the slowdown matters. */
907 switch (VALUE_LVAL (toval))
908 {
909 case lval_memory:
910 case lval_register:
911
912 reinit_frame_cache ();
913
914 /* Having destroyed the frame cache, restore the selected
915 frame. */
916
917 /* FIXME: cagney/2002-11-02: There has to be a better way of
918 doing this. Instead of constantly saving/restoring the
919 frame. Why not create a get_selected_frame() function that,
920 having saved the selected frame's ID can automatically
921 re-find the previously selected frame automatically. */
922
923 {
924 struct frame_info *fi = frame_find_by_id (old_frame);
925 if (fi != NULL)
926 select_frame (fi);
927 }
928
929 break;
930 default:
931 break;
932 }
933
934 /* If the field does not entirely fill a LONGEST, then zero the sign
935 bits. If the field is signed, and is negative, then sign
936 extend. */
937 if ((value_bitsize (toval) > 0)
938 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
939 {
940 LONGEST fieldval = value_as_long (fromval);
941 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
942
943 fieldval &= valmask;
944 if (!TYPE_UNSIGNED (type)
945 && (fieldval & (valmask ^ (valmask >> 1))))
946 fieldval |= ~valmask;
947
948 fromval = value_from_longest (type, fieldval);
949 }
950
951 val = value_copy (toval);
952 memcpy (value_contents_raw (val), value_contents (fromval),
953 TYPE_LENGTH (type));
954 deprecated_set_value_type (val, type);
955 val = value_change_enclosing_type (val,
956 value_enclosing_type (fromval));
957 set_value_embedded_offset (val, value_embedded_offset (fromval));
958 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
959
960 return val;
961 }
962
963 /* Extend a value VAL to COUNT repetitions of its type. */
964
965 struct value *
966 value_repeat (struct value *arg1, int count)
967 {
968 struct value *val;
969
970 if (VALUE_LVAL (arg1) != lval_memory)
971 error (_("Only values in memory can be extended with '@'."));
972 if (count < 1)
973 error (_("Invalid number %d of repetitions."), count);
974
975 val = allocate_repeat_value (value_enclosing_type (arg1), count);
976
977 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
978 value_contents_all_raw (val),
979 TYPE_LENGTH (value_enclosing_type (val)));
980 VALUE_LVAL (val) = lval_memory;
981 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
982
983 return val;
984 }
985
986 struct value *
987 value_of_variable (struct symbol *var, struct block *b)
988 {
989 struct value *val;
990 struct frame_info *frame = NULL;
991
992 if (!b)
993 frame = NULL; /* Use selected frame. */
994 else if (symbol_read_needs_frame (var))
995 {
996 frame = block_innermost_frame (b);
997 if (!frame)
998 {
999 if (BLOCK_FUNCTION (b)
1000 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1001 error (_("No frame is currently executing in block %s."),
1002 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1003 else
1004 error (_("No frame is currently executing in specified block"));
1005 }
1006 }
1007
1008 val = read_var_value (var, frame);
1009 if (!val)
1010 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1011
1012 return val;
1013 }
1014
1015 /* Return one if VAL does not live in target memory, but should in order
1016 to operate on it. Otherwise return zero. */
1017
1018 int
1019 value_must_coerce_to_target (struct value *val)
1020 {
1021 struct type *valtype;
1022
1023 /* The only lval kinds which do not live in target memory. */
1024 if (VALUE_LVAL (val) != not_lval
1025 && VALUE_LVAL (val) != lval_internalvar)
1026 return 0;
1027
1028 valtype = check_typedef (value_type (val));
1029
1030 switch (TYPE_CODE (valtype))
1031 {
1032 case TYPE_CODE_ARRAY:
1033 case TYPE_CODE_STRING:
1034 return 1;
1035 default:
1036 return 0;
1037 }
1038 }
1039
1040 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1041 strings are constructed as character arrays in GDB's storage, and this
1042 function copies them to the target. */
1043
1044 struct value *
1045 value_coerce_to_target (struct value *val)
1046 {
1047 LONGEST length;
1048 CORE_ADDR addr;
1049
1050 if (!value_must_coerce_to_target (val))
1051 return val;
1052
1053 length = TYPE_LENGTH (check_typedef (value_type (val)));
1054 addr = allocate_space_in_inferior (length);
1055 write_memory (addr, value_contents (val), length);
1056 return value_at_lazy (value_type (val), addr);
1057 }
1058
1059 /* Given a value which is an array, return a value which is a pointer
1060 to its first element, regardless of whether or not the array has a
1061 nonzero lower bound.
1062
1063 FIXME: A previous comment here indicated that this routine should
1064 be substracting the array's lower bound. It's not clear to me that
1065 this is correct. Given an array subscripting operation, it would
1066 certainly work to do the adjustment here, essentially computing:
1067
1068 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1069
1070 However I believe a more appropriate and logical place to account
1071 for the lower bound is to do so in value_subscript, essentially
1072 computing:
1073
1074 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1075
1076 As further evidence consider what would happen with operations
1077 other than array subscripting, where the caller would get back a
1078 value that had an address somewhere before the actual first element
1079 of the array, and the information about the lower bound would be
1080 lost because of the coercion to pointer type.
1081 */
1082
1083 struct value *
1084 value_coerce_array (struct value *arg1)
1085 {
1086 struct type *type = check_typedef (value_type (arg1));
1087
1088 /* If the user tries to do something requiring a pointer with an
1089 array that has not yet been pushed to the target, then this would
1090 be a good time to do so. */
1091 arg1 = value_coerce_to_target (arg1);
1092
1093 if (VALUE_LVAL (arg1) != lval_memory)
1094 error (_("Attempt to take address of value not located in memory."));
1095
1096 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1097 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1098 }
1099
1100 /* Given a value which is a function, return a value which is a pointer
1101 to it. */
1102
1103 struct value *
1104 value_coerce_function (struct value *arg1)
1105 {
1106 struct value *retval;
1107
1108 if (VALUE_LVAL (arg1) != lval_memory)
1109 error (_("Attempt to take address of value not located in memory."));
1110
1111 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1112 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1113 return retval;
1114 }
1115
1116 /* Return a pointer value for the object for which ARG1 is the
1117 contents. */
1118
1119 struct value *
1120 value_addr (struct value *arg1)
1121 {
1122 struct value *arg2;
1123
1124 struct type *type = check_typedef (value_type (arg1));
1125 if (TYPE_CODE (type) == TYPE_CODE_REF)
1126 {
1127 /* Copy the value, but change the type from (T&) to (T*). We
1128 keep the same location information, which is efficient, and
1129 allows &(&X) to get the location containing the reference. */
1130 arg2 = value_copy (arg1);
1131 deprecated_set_value_type (arg2,
1132 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1133 return arg2;
1134 }
1135 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1136 return value_coerce_function (arg1);
1137
1138 /* If this is an array that has not yet been pushed to the target,
1139 then this would be a good time to force it to memory. */
1140 arg1 = value_coerce_to_target (arg1);
1141
1142 if (VALUE_LVAL (arg1) != lval_memory)
1143 error (_("Attempt to take address of value not located in memory."));
1144
1145 /* Get target memory address */
1146 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1147 (VALUE_ADDRESS (arg1)
1148 + value_offset (arg1)
1149 + value_embedded_offset (arg1)));
1150
1151 /* This may be a pointer to a base subobject; so remember the
1152 full derived object's type ... */
1153 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1154 /* ... and also the relative position of the subobject in the full
1155 object. */
1156 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1157 return arg2;
1158 }
1159
1160 /* Return a reference value for the object for which ARG1 is the
1161 contents. */
1162
1163 struct value *
1164 value_ref (struct value *arg1)
1165 {
1166 struct value *arg2;
1167
1168 struct type *type = check_typedef (value_type (arg1));
1169 if (TYPE_CODE (type) == TYPE_CODE_REF)
1170 return arg1;
1171
1172 arg2 = value_addr (arg1);
1173 deprecated_set_value_type (arg2, lookup_reference_type (type));
1174 return arg2;
1175 }
1176
1177 /* Given a value of a pointer type, apply the C unary * operator to
1178 it. */
1179
1180 struct value *
1181 value_ind (struct value *arg1)
1182 {
1183 struct type *base_type;
1184 struct value *arg2;
1185
1186 arg1 = coerce_array (arg1);
1187
1188 base_type = check_typedef (value_type (arg1));
1189
1190 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1191 {
1192 struct type *enc_type;
1193 /* We may be pointing to something embedded in a larger object.
1194 Get the real type of the enclosing object. */
1195 enc_type = check_typedef (value_enclosing_type (arg1));
1196 enc_type = TYPE_TARGET_TYPE (enc_type);
1197
1198 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1199 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1200 /* For functions, go through find_function_addr, which knows
1201 how to handle function descriptors. */
1202 arg2 = value_at_lazy (enc_type,
1203 find_function_addr (arg1, NULL));
1204 else
1205 /* Retrieve the enclosing object pointed to */
1206 arg2 = value_at_lazy (enc_type,
1207 (value_as_address (arg1)
1208 - value_pointed_to_offset (arg1)));
1209
1210 /* Re-adjust type. */
1211 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1212 /* Add embedding info. */
1213 arg2 = value_change_enclosing_type (arg2, enc_type);
1214 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1215
1216 /* We may be pointing to an object of some derived type. */
1217 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1218 return arg2;
1219 }
1220
1221 error (_("Attempt to take contents of a non-pointer value."));
1222 return 0; /* For lint -- never reached. */
1223 }
1224 \f
1225 /* Create a value for an array by allocating space in GDB, copying
1226 copying the data into that space, and then setting up an array
1227 value.
1228
1229 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1230 is populated from the values passed in ELEMVEC.
1231
1232 The element type of the array is inherited from the type of the
1233 first element, and all elements must have the same size (though we
1234 don't currently enforce any restriction on their types). */
1235
1236 struct value *
1237 value_array (int lowbound, int highbound, struct value **elemvec)
1238 {
1239 int nelem;
1240 int idx;
1241 unsigned int typelength;
1242 struct value *val;
1243 struct type *rangetype;
1244 struct type *arraytype;
1245 CORE_ADDR addr;
1246
1247 /* Validate that the bounds are reasonable and that each of the
1248 elements have the same size. */
1249
1250 nelem = highbound - lowbound + 1;
1251 if (nelem <= 0)
1252 {
1253 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1254 }
1255 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1256 for (idx = 1; idx < nelem; idx++)
1257 {
1258 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1259 {
1260 error (_("array elements must all be the same size"));
1261 }
1262 }
1263
1264 rangetype = create_range_type ((struct type *) NULL,
1265 builtin_type_int32,
1266 lowbound, highbound);
1267 arraytype = create_array_type ((struct type *) NULL,
1268 value_enclosing_type (elemvec[0]),
1269 rangetype);
1270
1271 if (!current_language->c_style_arrays)
1272 {
1273 val = allocate_value (arraytype);
1274 for (idx = 0; idx < nelem; idx++)
1275 {
1276 memcpy (value_contents_all_raw (val) + (idx * typelength),
1277 value_contents_all (elemvec[idx]),
1278 typelength);
1279 }
1280 return val;
1281 }
1282
1283 /* Allocate space to store the array, and then initialize it by
1284 copying in each element. */
1285
1286 val = allocate_value (arraytype);
1287 for (idx = 0; idx < nelem; idx++)
1288 memcpy (value_contents_writeable (val) + (idx * typelength),
1289 value_contents_all (elemvec[idx]),
1290 typelength);
1291 return val;
1292 }
1293
1294 /* Create a value for a string constant by allocating space in the
1295 inferior, copying the data into that space, and returning the
1296 address with type TYPE_CODE_STRING. PTR points to the string
1297 constant data; LEN is number of characters.
1298
1299 Note that string types are like array of char types with a lower
1300 bound of zero and an upper bound of LEN - 1. Also note that the
1301 string may contain embedded null bytes. */
1302
1303 struct value *
1304 value_string (char *ptr, int len)
1305 {
1306 struct value *val;
1307 int lowbound = current_language->string_lower_bound;
1308 struct type *rangetype = create_range_type ((struct type *) NULL,
1309 builtin_type_int32,
1310 lowbound,
1311 len + lowbound - 1);
1312 struct type *stringtype
1313 = create_string_type ((struct type *) NULL, rangetype);
1314 CORE_ADDR addr;
1315
1316 if (current_language->c_style_arrays == 0)
1317 {
1318 val = allocate_value (stringtype);
1319 memcpy (value_contents_raw (val), ptr, len);
1320 return val;
1321 }
1322
1323
1324 /* Allocate space to store the string in the inferior, and then copy
1325 LEN bytes from PTR in gdb to that address in the inferior. */
1326
1327 addr = allocate_space_in_inferior (len);
1328 write_memory (addr, (gdb_byte *) ptr, len);
1329
1330 val = value_at_lazy (stringtype, addr);
1331 return (val);
1332 }
1333
1334 struct value *
1335 value_bitstring (char *ptr, int len)
1336 {
1337 struct value *val;
1338 struct type *domain_type = create_range_type (NULL,
1339 builtin_type_int32,
1340 0, len - 1);
1341 struct type *type = create_set_type ((struct type *) NULL,
1342 domain_type);
1343 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1344 val = allocate_value (type);
1345 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1346 return val;
1347 }
1348 \f
1349 /* See if we can pass arguments in T2 to a function which takes
1350 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1351 a NULL-terminated vector. If some arguments need coercion of some
1352 sort, then the coerced values are written into T2. Return value is
1353 0 if the arguments could be matched, or the position at which they
1354 differ if not.
1355
1356 STATICP is nonzero if the T1 argument list came from a static
1357 member function. T2 will still include the ``this'' pointer, but
1358 it will be skipped.
1359
1360 For non-static member functions, we ignore the first argument,
1361 which is the type of the instance variable. This is because we
1362 want to handle calls with objects from derived classes. This is
1363 not entirely correct: we should actually check to make sure that a
1364 requested operation is type secure, shouldn't we? FIXME. */
1365
1366 static int
1367 typecmp (int staticp, int varargs, int nargs,
1368 struct field t1[], struct value *t2[])
1369 {
1370 int i;
1371
1372 if (t2 == 0)
1373 internal_error (__FILE__, __LINE__,
1374 _("typecmp: no argument list"));
1375
1376 /* Skip ``this'' argument if applicable. T2 will always include
1377 THIS. */
1378 if (staticp)
1379 t2 ++;
1380
1381 for (i = 0;
1382 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1383 i++)
1384 {
1385 struct type *tt1, *tt2;
1386
1387 if (!t2[i])
1388 return i + 1;
1389
1390 tt1 = check_typedef (t1[i].type);
1391 tt2 = check_typedef (value_type (t2[i]));
1392
1393 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1394 /* We should be doing hairy argument matching, as below. */
1395 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1396 {
1397 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1398 t2[i] = value_coerce_array (t2[i]);
1399 else
1400 t2[i] = value_ref (t2[i]);
1401 continue;
1402 }
1403
1404 /* djb - 20000715 - Until the new type structure is in the
1405 place, and we can attempt things like implicit conversions,
1406 we need to do this so you can take something like a map<const
1407 char *>, and properly access map["hello"], because the
1408 argument to [] will be a reference to a pointer to a char,
1409 and the argument will be a pointer to a char. */
1410 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1411 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1412 {
1413 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1414 }
1415 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1416 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1417 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1418 {
1419 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1420 }
1421 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1422 continue;
1423 /* Array to pointer is a `trivial conversion' according to the
1424 ARM. */
1425
1426 /* We should be doing much hairier argument matching (see
1427 section 13.2 of the ARM), but as a quick kludge, just check
1428 for the same type code. */
1429 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1430 return i + 1;
1431 }
1432 if (varargs || t2[i] == NULL)
1433 return 0;
1434 return i + 1;
1435 }
1436
1437 /* Helper function used by value_struct_elt to recurse through
1438 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1439 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1440 TYPE. If found, return value, else return NULL.
1441
1442 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1443 fields, look for a baseclass named NAME. */
1444
1445 static struct value *
1446 search_struct_field (char *name, struct value *arg1, int offset,
1447 struct type *type, int looking_for_baseclass)
1448 {
1449 int i;
1450 int nbases = TYPE_N_BASECLASSES (type);
1451
1452 CHECK_TYPEDEF (type);
1453
1454 if (!looking_for_baseclass)
1455 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1456 {
1457 char *t_field_name = TYPE_FIELD_NAME (type, i);
1458
1459 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1460 {
1461 struct value *v;
1462 if (field_is_static (&TYPE_FIELD (type, i)))
1463 {
1464 v = value_static_field (type, i);
1465 if (v == 0)
1466 error (_("field %s is nonexistent or has been optimised out"),
1467 name);
1468 }
1469 else
1470 {
1471 v = value_primitive_field (arg1, offset, i, type);
1472 if (v == 0)
1473 error (_("there is no field named %s"), name);
1474 }
1475 return v;
1476 }
1477
1478 if (t_field_name
1479 && (t_field_name[0] == '\0'
1480 || (TYPE_CODE (type) == TYPE_CODE_UNION
1481 && (strcmp_iw (t_field_name, "else") == 0))))
1482 {
1483 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1484 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1485 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1486 {
1487 /* Look for a match through the fields of an anonymous
1488 union, or anonymous struct. C++ provides anonymous
1489 unions.
1490
1491 In the GNU Chill (now deleted from GDB)
1492 implementation of variant record types, each
1493 <alternative field> has an (anonymous) union type,
1494 each member of the union represents a <variant
1495 alternative>. Each <variant alternative> is
1496 represented as a struct, with a member for each
1497 <variant field>. */
1498
1499 struct value *v;
1500 int new_offset = offset;
1501
1502 /* This is pretty gross. In G++, the offset in an
1503 anonymous union is relative to the beginning of the
1504 enclosing struct. In the GNU Chill (now deleted
1505 from GDB) implementation of variant records, the
1506 bitpos is zero in an anonymous union field, so we
1507 have to add the offset of the union here. */
1508 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1509 || (TYPE_NFIELDS (field_type) > 0
1510 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1511 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1512
1513 v = search_struct_field (name, arg1, new_offset,
1514 field_type,
1515 looking_for_baseclass);
1516 if (v)
1517 return v;
1518 }
1519 }
1520 }
1521
1522 for (i = 0; i < nbases; i++)
1523 {
1524 struct value *v;
1525 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1526 /* If we are looking for baseclasses, this is what we get when
1527 we hit them. But it could happen that the base part's member
1528 name is not yet filled in. */
1529 int found_baseclass = (looking_for_baseclass
1530 && TYPE_BASECLASS_NAME (type, i) != NULL
1531 && (strcmp_iw (name,
1532 TYPE_BASECLASS_NAME (type,
1533 i)) == 0));
1534
1535 if (BASETYPE_VIA_VIRTUAL (type, i))
1536 {
1537 int boffset;
1538 struct value *v2 = allocate_value (basetype);
1539
1540 boffset = baseclass_offset (type, i,
1541 value_contents (arg1) + offset,
1542 VALUE_ADDRESS (arg1)
1543 + value_offset (arg1) + offset);
1544 if (boffset == -1)
1545 error (_("virtual baseclass botch"));
1546
1547 /* The virtual base class pointer might have been clobbered
1548 by the user program. Make sure that it still points to a
1549 valid memory location. */
1550
1551 boffset += offset;
1552 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1553 {
1554 CORE_ADDR base_addr;
1555
1556 base_addr =
1557 VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1558 if (target_read_memory (base_addr,
1559 value_contents_raw (v2),
1560 TYPE_LENGTH (basetype)) != 0)
1561 error (_("virtual baseclass botch"));
1562 VALUE_LVAL (v2) = lval_memory;
1563 VALUE_ADDRESS (v2) = base_addr;
1564 }
1565 else
1566 {
1567 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1568 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1569 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1570 set_value_offset (v2, value_offset (arg1) + boffset);
1571 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1572 set_value_lazy (v2, 1);
1573 else
1574 memcpy (value_contents_raw (v2),
1575 value_contents_raw (arg1) + boffset,
1576 TYPE_LENGTH (basetype));
1577 }
1578
1579 if (found_baseclass)
1580 return v2;
1581 v = search_struct_field (name, v2, 0,
1582 TYPE_BASECLASS (type, i),
1583 looking_for_baseclass);
1584 }
1585 else if (found_baseclass)
1586 v = value_primitive_field (arg1, offset, i, type);
1587 else
1588 v = search_struct_field (name, arg1,
1589 offset + TYPE_BASECLASS_BITPOS (type,
1590 i) / 8,
1591 basetype, looking_for_baseclass);
1592 if (v)
1593 return v;
1594 }
1595 return NULL;
1596 }
1597
1598 /* Helper function used by value_struct_elt to recurse through
1599 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1600 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1601 TYPE.
1602
1603 If found, return value, else if name matched and args not return
1604 (value) -1, else return NULL. */
1605
1606 static struct value *
1607 search_struct_method (char *name, struct value **arg1p,
1608 struct value **args, int offset,
1609 int *static_memfuncp, struct type *type)
1610 {
1611 int i;
1612 struct value *v;
1613 int name_matched = 0;
1614 char dem_opname[64];
1615
1616 CHECK_TYPEDEF (type);
1617 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1618 {
1619 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1620 /* FIXME! May need to check for ARM demangling here */
1621 if (strncmp (t_field_name, "__", 2) == 0 ||
1622 strncmp (t_field_name, "op", 2) == 0 ||
1623 strncmp (t_field_name, "type", 4) == 0)
1624 {
1625 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1626 t_field_name = dem_opname;
1627 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1628 t_field_name = dem_opname;
1629 }
1630 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1631 {
1632 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1633 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1634 name_matched = 1;
1635
1636 check_stub_method_group (type, i);
1637 if (j > 0 && args == 0)
1638 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1639 else if (j == 0 && args == 0)
1640 {
1641 v = value_fn_field (arg1p, f, j, type, offset);
1642 if (v != NULL)
1643 return v;
1644 }
1645 else
1646 while (j >= 0)
1647 {
1648 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1649 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1650 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1651 TYPE_FN_FIELD_ARGS (f, j), args))
1652 {
1653 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1654 return value_virtual_fn_field (arg1p, f, j,
1655 type, offset);
1656 if (TYPE_FN_FIELD_STATIC_P (f, j)
1657 && static_memfuncp)
1658 *static_memfuncp = 1;
1659 v = value_fn_field (arg1p, f, j, type, offset);
1660 if (v != NULL)
1661 return v;
1662 }
1663 j--;
1664 }
1665 }
1666 }
1667
1668 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1669 {
1670 int base_offset;
1671
1672 if (BASETYPE_VIA_VIRTUAL (type, i))
1673 {
1674 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1675 const gdb_byte *base_valaddr;
1676
1677 /* The virtual base class pointer might have been
1678 clobbered by the user program. Make sure that it
1679 still points to a valid memory location. */
1680
1681 if (offset < 0 || offset >= TYPE_LENGTH (type))
1682 {
1683 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1684 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1685 + value_offset (*arg1p) + offset,
1686 tmp, TYPE_LENGTH (baseclass)) != 0)
1687 error (_("virtual baseclass botch"));
1688 base_valaddr = tmp;
1689 }
1690 else
1691 base_valaddr = value_contents (*arg1p) + offset;
1692
1693 base_offset = baseclass_offset (type, i, base_valaddr,
1694 VALUE_ADDRESS (*arg1p)
1695 + value_offset (*arg1p) + offset);
1696 if (base_offset == -1)
1697 error (_("virtual baseclass botch"));
1698 }
1699 else
1700 {
1701 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1702 }
1703 v = search_struct_method (name, arg1p, args, base_offset + offset,
1704 static_memfuncp, TYPE_BASECLASS (type, i));
1705 if (v == (struct value *) - 1)
1706 {
1707 name_matched = 1;
1708 }
1709 else if (v)
1710 {
1711 /* FIXME-bothner: Why is this commented out? Why is it here? */
1712 /* *arg1p = arg1_tmp; */
1713 return v;
1714 }
1715 }
1716 if (name_matched)
1717 return (struct value *) - 1;
1718 else
1719 return NULL;
1720 }
1721
1722 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1723 extract the component named NAME from the ultimate target
1724 structure/union and return it as a value with its appropriate type.
1725 ERR is used in the error message if *ARGP's type is wrong.
1726
1727 C++: ARGS is a list of argument types to aid in the selection of
1728 an appropriate method. Also, handle derived types.
1729
1730 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1731 where the truthvalue of whether the function that was resolved was
1732 a static member function or not is stored.
1733
1734 ERR is an error message to be printed in case the field is not
1735 found. */
1736
1737 struct value *
1738 value_struct_elt (struct value **argp, struct value **args,
1739 char *name, int *static_memfuncp, char *err)
1740 {
1741 struct type *t;
1742 struct value *v;
1743
1744 *argp = coerce_array (*argp);
1745
1746 t = check_typedef (value_type (*argp));
1747
1748 /* Follow pointers until we get to a non-pointer. */
1749
1750 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1751 {
1752 *argp = value_ind (*argp);
1753 /* Don't coerce fn pointer to fn and then back again! */
1754 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1755 *argp = coerce_array (*argp);
1756 t = check_typedef (value_type (*argp));
1757 }
1758
1759 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1760 && TYPE_CODE (t) != TYPE_CODE_UNION)
1761 error (_("Attempt to extract a component of a value that is not a %s."), err);
1762
1763 /* Assume it's not, unless we see that it is. */
1764 if (static_memfuncp)
1765 *static_memfuncp = 0;
1766
1767 if (!args)
1768 {
1769 /* if there are no arguments ...do this... */
1770
1771 /* Try as a field first, because if we succeed, there is less
1772 work to be done. */
1773 v = search_struct_field (name, *argp, 0, t, 0);
1774 if (v)
1775 return v;
1776
1777 /* C++: If it was not found as a data field, then try to
1778 return it as a pointer to a method. */
1779
1780 if (destructor_name_p (name, t))
1781 error (_("Cannot get value of destructor"));
1782
1783 v = search_struct_method (name, argp, args, 0,
1784 static_memfuncp, t);
1785
1786 if (v == (struct value *) - 1)
1787 error (_("Cannot take address of method %s."), name);
1788 else if (v == 0)
1789 {
1790 if (TYPE_NFN_FIELDS (t))
1791 error (_("There is no member or method named %s."), name);
1792 else
1793 error (_("There is no member named %s."), name);
1794 }
1795 return v;
1796 }
1797
1798 if (destructor_name_p (name, t))
1799 {
1800 if (!args[1])
1801 {
1802 /* Destructors are a special case. */
1803 int m_index, f_index;
1804
1805 v = NULL;
1806 if (get_destructor_fn_field (t, &m_index, &f_index))
1807 {
1808 v = value_fn_field (NULL,
1809 TYPE_FN_FIELDLIST1 (t, m_index),
1810 f_index, NULL, 0);
1811 }
1812 if (v == NULL)
1813 error (_("could not find destructor function named %s."),
1814 name);
1815 else
1816 return v;
1817 }
1818 else
1819 {
1820 error (_("destructor should not have any argument"));
1821 }
1822 }
1823 else
1824 v = search_struct_method (name, argp, args, 0,
1825 static_memfuncp, t);
1826
1827 if (v == (struct value *) - 1)
1828 {
1829 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1830 }
1831 else if (v == 0)
1832 {
1833 /* See if user tried to invoke data as function. If so, hand it
1834 back. If it's not callable (i.e., a pointer to function),
1835 gdb should give an error. */
1836 v = search_struct_field (name, *argp, 0, t, 0);
1837 /* If we found an ordinary field, then it is not a method call.
1838 So, treat it as if it were a static member function. */
1839 if (v && static_memfuncp)
1840 *static_memfuncp = 1;
1841 }
1842
1843 if (!v)
1844 error (_("Structure has no component named %s."), name);
1845 return v;
1846 }
1847
1848 /* Search through the methods of an object (and its bases) to find a
1849 specified method. Return the pointer to the fn_field list of
1850 overloaded instances.
1851
1852 Helper function for value_find_oload_list.
1853 ARGP is a pointer to a pointer to a value (the object).
1854 METHOD is a string containing the method name.
1855 OFFSET is the offset within the value.
1856 TYPE is the assumed type of the object.
1857 NUM_FNS is the number of overloaded instances.
1858 BASETYPE is set to the actual type of the subobject where the
1859 method is found.
1860 BOFFSET is the offset of the base subobject where the method is found.
1861 */
1862
1863 static struct fn_field *
1864 find_method_list (struct value **argp, char *method,
1865 int offset, struct type *type, int *num_fns,
1866 struct type **basetype, int *boffset)
1867 {
1868 int i;
1869 struct fn_field *f;
1870 CHECK_TYPEDEF (type);
1871
1872 *num_fns = 0;
1873
1874 /* First check in object itself. */
1875 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1876 {
1877 /* pai: FIXME What about operators and type conversions? */
1878 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1879 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1880 {
1881 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1882 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1883
1884 *num_fns = len;
1885 *basetype = type;
1886 *boffset = offset;
1887
1888 /* Resolve any stub methods. */
1889 check_stub_method_group (type, i);
1890
1891 return f;
1892 }
1893 }
1894
1895 /* Not found in object, check in base subobjects. */
1896 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1897 {
1898 int base_offset;
1899 if (BASETYPE_VIA_VIRTUAL (type, i))
1900 {
1901 base_offset = value_offset (*argp) + offset;
1902 base_offset = baseclass_offset (type, i,
1903 value_contents (*argp) + base_offset,
1904 VALUE_ADDRESS (*argp) + base_offset);
1905 if (base_offset == -1)
1906 error (_("virtual baseclass botch"));
1907 }
1908 else /* Non-virtual base, simply use bit position from debug
1909 info. */
1910 {
1911 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1912 }
1913 f = find_method_list (argp, method, base_offset + offset,
1914 TYPE_BASECLASS (type, i), num_fns,
1915 basetype, boffset);
1916 if (f)
1917 return f;
1918 }
1919 return NULL;
1920 }
1921
1922 /* Return the list of overloaded methods of a specified name.
1923
1924 ARGP is a pointer to a pointer to a value (the object).
1925 METHOD is the method name.
1926 OFFSET is the offset within the value contents.
1927 NUM_FNS is the number of overloaded instances.
1928 BASETYPE is set to the type of the base subobject that defines the
1929 method.
1930 BOFFSET is the offset of the base subobject which defines the method.
1931 */
1932
1933 struct fn_field *
1934 value_find_oload_method_list (struct value **argp, char *method,
1935 int offset, int *num_fns,
1936 struct type **basetype, int *boffset)
1937 {
1938 struct type *t;
1939
1940 t = check_typedef (value_type (*argp));
1941
1942 /* Code snarfed from value_struct_elt. */
1943 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1944 {
1945 *argp = value_ind (*argp);
1946 /* Don't coerce fn pointer to fn and then back again! */
1947 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1948 *argp = coerce_array (*argp);
1949 t = check_typedef (value_type (*argp));
1950 }
1951
1952 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1953 && TYPE_CODE (t) != TYPE_CODE_UNION)
1954 error (_("Attempt to extract a component of a value that is not a struct or union"));
1955
1956 return find_method_list (argp, method, 0, t, num_fns,
1957 basetype, boffset);
1958 }
1959
1960 /* Given an array of argument types (ARGTYPES) (which includes an
1961 entry for "this" in the case of C++ methods), the number of
1962 arguments NARGS, the NAME of a function whether it's a method or
1963 not (METHOD), and the degree of laxness (LAX) in conforming to
1964 overload resolution rules in ANSI C++, find the best function that
1965 matches on the argument types according to the overload resolution
1966 rules.
1967
1968 In the case of class methods, the parameter OBJ is an object value
1969 in which to search for overloaded methods.
1970
1971 In the case of non-method functions, the parameter FSYM is a symbol
1972 corresponding to one of the overloaded functions.
1973
1974 Return value is an integer: 0 -> good match, 10 -> debugger applied
1975 non-standard coercions, 100 -> incompatible.
1976
1977 If a method is being searched for, VALP will hold the value.
1978 If a non-method is being searched for, SYMP will hold the symbol
1979 for it.
1980
1981 If a method is being searched for, and it is a static method,
1982 then STATICP will point to a non-zero value.
1983
1984 Note: This function does *not* check the value of
1985 overload_resolution. Caller must check it to see whether overload
1986 resolution is permitted.
1987 */
1988
1989 int
1990 find_overload_match (struct type **arg_types, int nargs,
1991 char *name, int method, int lax,
1992 struct value **objp, struct symbol *fsym,
1993 struct value **valp, struct symbol **symp,
1994 int *staticp)
1995 {
1996 struct value *obj = (objp ? *objp : NULL);
1997 /* Index of best overloaded function. */
1998 int oload_champ;
1999 /* The measure for the current best match. */
2000 struct badness_vector *oload_champ_bv = NULL;
2001 struct value *temp = obj;
2002 /* For methods, the list of overloaded methods. */
2003 struct fn_field *fns_ptr = NULL;
2004 /* For non-methods, the list of overloaded function symbols. */
2005 struct symbol **oload_syms = NULL;
2006 /* Number of overloaded instances being considered. */
2007 int num_fns = 0;
2008 struct type *basetype = NULL;
2009 int boffset;
2010 int ix;
2011 int static_offset;
2012 struct cleanup *old_cleanups = NULL;
2013
2014 const char *obj_type_name = NULL;
2015 char *func_name = NULL;
2016 enum oload_classification match_quality;
2017
2018 /* Get the list of overloaded methods or functions. */
2019 if (method)
2020 {
2021 gdb_assert (obj);
2022 obj_type_name = TYPE_NAME (value_type (obj));
2023 /* Hack: evaluate_subexp_standard often passes in a pointer
2024 value rather than the object itself, so try again. */
2025 if ((!obj_type_name || !*obj_type_name)
2026 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2027 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2028
2029 fns_ptr = value_find_oload_method_list (&temp, name,
2030 0, &num_fns,
2031 &basetype, &boffset);
2032 if (!fns_ptr || !num_fns)
2033 error (_("Couldn't find method %s%s%s"),
2034 obj_type_name,
2035 (obj_type_name && *obj_type_name) ? "::" : "",
2036 name);
2037 /* If we are dealing with stub method types, they should have
2038 been resolved by find_method_list via
2039 value_find_oload_method_list above. */
2040 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2041 oload_champ = find_oload_champ (arg_types, nargs, method,
2042 num_fns, fns_ptr,
2043 oload_syms, &oload_champ_bv);
2044 }
2045 else
2046 {
2047 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2048
2049 /* If we have a C++ name, try to extract just the function
2050 part. */
2051 if (qualified_name)
2052 func_name = cp_func_name (qualified_name);
2053
2054 /* If there was no C++ name, this must be a C-style function.
2055 Just return the same symbol. Do the same if cp_func_name
2056 fails for some reason. */
2057 if (func_name == NULL)
2058 {
2059 *symp = fsym;
2060 return 0;
2061 }
2062
2063 old_cleanups = make_cleanup (xfree, func_name);
2064 make_cleanup (xfree, oload_syms);
2065 make_cleanup (xfree, oload_champ_bv);
2066
2067 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2068 func_name,
2069 qualified_name,
2070 &oload_syms,
2071 &oload_champ_bv);
2072 }
2073
2074 /* Check how bad the best match is. */
2075
2076 match_quality =
2077 classify_oload_match (oload_champ_bv, nargs,
2078 oload_method_static (method, fns_ptr,
2079 oload_champ));
2080
2081 if (match_quality == INCOMPATIBLE)
2082 {
2083 if (method)
2084 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2085 obj_type_name,
2086 (obj_type_name && *obj_type_name) ? "::" : "",
2087 name);
2088 else
2089 error (_("Cannot resolve function %s to any overloaded instance"),
2090 func_name);
2091 }
2092 else if (match_quality == NON_STANDARD)
2093 {
2094 if (method)
2095 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2096 obj_type_name,
2097 (obj_type_name && *obj_type_name) ? "::" : "",
2098 name);
2099 else
2100 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2101 func_name);
2102 }
2103
2104 if (method)
2105 {
2106 if (staticp != NULL)
2107 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2108 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2109 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2110 basetype, boffset);
2111 else
2112 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2113 basetype, boffset);
2114 }
2115 else
2116 {
2117 *symp = oload_syms[oload_champ];
2118 }
2119
2120 if (objp)
2121 {
2122 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
2123 && (TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR
2124 || TYPE_CODE (value_type (*objp)) == TYPE_CODE_REF))
2125 {
2126 temp = value_addr (temp);
2127 }
2128 *objp = temp;
2129 }
2130 if (old_cleanups != NULL)
2131 do_cleanups (old_cleanups);
2132
2133 switch (match_quality)
2134 {
2135 case INCOMPATIBLE:
2136 return 100;
2137 case NON_STANDARD:
2138 return 10;
2139 default: /* STANDARD */
2140 return 0;
2141 }
2142 }
2143
2144 /* Find the best overload match, searching for FUNC_NAME in namespaces
2145 contained in QUALIFIED_NAME until it either finds a good match or
2146 runs out of namespaces. It stores the overloaded functions in
2147 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2148 calling function is responsible for freeing *OLOAD_SYMS and
2149 *OLOAD_CHAMP_BV. */
2150
2151 static int
2152 find_oload_champ_namespace (struct type **arg_types, int nargs,
2153 const char *func_name,
2154 const char *qualified_name,
2155 struct symbol ***oload_syms,
2156 struct badness_vector **oload_champ_bv)
2157 {
2158 int oload_champ;
2159
2160 find_oload_champ_namespace_loop (arg_types, nargs,
2161 func_name,
2162 qualified_name, 0,
2163 oload_syms, oload_champ_bv,
2164 &oload_champ);
2165
2166 return oload_champ;
2167 }
2168
2169 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2170 how deep we've looked for namespaces, and the champ is stored in
2171 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2172 if it isn't.
2173
2174 It is the caller's responsibility to free *OLOAD_SYMS and
2175 *OLOAD_CHAMP_BV. */
2176
2177 static int
2178 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2179 const char *func_name,
2180 const char *qualified_name,
2181 int namespace_len,
2182 struct symbol ***oload_syms,
2183 struct badness_vector **oload_champ_bv,
2184 int *oload_champ)
2185 {
2186 int next_namespace_len = namespace_len;
2187 int searched_deeper = 0;
2188 int num_fns = 0;
2189 struct cleanup *old_cleanups;
2190 int new_oload_champ;
2191 struct symbol **new_oload_syms;
2192 struct badness_vector *new_oload_champ_bv;
2193 char *new_namespace;
2194
2195 if (next_namespace_len != 0)
2196 {
2197 gdb_assert (qualified_name[next_namespace_len] == ':');
2198 next_namespace_len += 2;
2199 }
2200 next_namespace_len +=
2201 cp_find_first_component (qualified_name + next_namespace_len);
2202
2203 /* Initialize these to values that can safely be xfree'd. */
2204 *oload_syms = NULL;
2205 *oload_champ_bv = NULL;
2206
2207 /* First, see if we have a deeper namespace we can search in.
2208 If we get a good match there, use it. */
2209
2210 if (qualified_name[next_namespace_len] == ':')
2211 {
2212 searched_deeper = 1;
2213
2214 if (find_oload_champ_namespace_loop (arg_types, nargs,
2215 func_name, qualified_name,
2216 next_namespace_len,
2217 oload_syms, oload_champ_bv,
2218 oload_champ))
2219 {
2220 return 1;
2221 }
2222 };
2223
2224 /* If we reach here, either we're in the deepest namespace or we
2225 didn't find a good match in a deeper namespace. But, in the
2226 latter case, we still have a bad match in a deeper namespace;
2227 note that we might not find any match at all in the current
2228 namespace. (There's always a match in the deepest namespace,
2229 because this overload mechanism only gets called if there's a
2230 function symbol to start off with.) */
2231
2232 old_cleanups = make_cleanup (xfree, *oload_syms);
2233 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2234 new_namespace = alloca (namespace_len + 1);
2235 strncpy (new_namespace, qualified_name, namespace_len);
2236 new_namespace[namespace_len] = '\0';
2237 new_oload_syms = make_symbol_overload_list (func_name,
2238 new_namespace);
2239 while (new_oload_syms[num_fns])
2240 ++num_fns;
2241
2242 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2243 NULL, new_oload_syms,
2244 &new_oload_champ_bv);
2245
2246 /* Case 1: We found a good match. Free earlier matches (if any),
2247 and return it. Case 2: We didn't find a good match, but we're
2248 not the deepest function. Then go with the bad match that the
2249 deeper function found. Case 3: We found a bad match, and we're
2250 the deepest function. Then return what we found, even though
2251 it's a bad match. */
2252
2253 if (new_oload_champ != -1
2254 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2255 {
2256 *oload_syms = new_oload_syms;
2257 *oload_champ = new_oload_champ;
2258 *oload_champ_bv = new_oload_champ_bv;
2259 do_cleanups (old_cleanups);
2260 return 1;
2261 }
2262 else if (searched_deeper)
2263 {
2264 xfree (new_oload_syms);
2265 xfree (new_oload_champ_bv);
2266 discard_cleanups (old_cleanups);
2267 return 0;
2268 }
2269 else
2270 {
2271 gdb_assert (new_oload_champ != -1);
2272 *oload_syms = new_oload_syms;
2273 *oload_champ = new_oload_champ;
2274 *oload_champ_bv = new_oload_champ_bv;
2275 discard_cleanups (old_cleanups);
2276 return 0;
2277 }
2278 }
2279
2280 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2281 the best match from among the overloaded methods or functions
2282 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2283 The number of methods/functions in the list is given by NUM_FNS.
2284 Return the index of the best match; store an indication of the
2285 quality of the match in OLOAD_CHAMP_BV.
2286
2287 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2288
2289 static int
2290 find_oload_champ (struct type **arg_types, int nargs, int method,
2291 int num_fns, struct fn_field *fns_ptr,
2292 struct symbol **oload_syms,
2293 struct badness_vector **oload_champ_bv)
2294 {
2295 int ix;
2296 /* A measure of how good an overloaded instance is. */
2297 struct badness_vector *bv;
2298 /* Index of best overloaded function. */
2299 int oload_champ = -1;
2300 /* Current ambiguity state for overload resolution. */
2301 int oload_ambiguous = 0;
2302 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2303
2304 *oload_champ_bv = NULL;
2305
2306 /* Consider each candidate in turn. */
2307 for (ix = 0; ix < num_fns; ix++)
2308 {
2309 int jj;
2310 int static_offset = oload_method_static (method, fns_ptr, ix);
2311 int nparms;
2312 struct type **parm_types;
2313
2314 if (method)
2315 {
2316 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2317 }
2318 else
2319 {
2320 /* If it's not a method, this is the proper place. */
2321 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2322 }
2323
2324 /* Prepare array of parameter types. */
2325 parm_types = (struct type **)
2326 xmalloc (nparms * (sizeof (struct type *)));
2327 for (jj = 0; jj < nparms; jj++)
2328 parm_types[jj] = (method
2329 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2330 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2331 jj));
2332
2333 /* Compare parameter types to supplied argument types. Skip
2334 THIS for static methods. */
2335 bv = rank_function (parm_types, nparms,
2336 arg_types + static_offset,
2337 nargs - static_offset);
2338
2339 if (!*oload_champ_bv)
2340 {
2341 *oload_champ_bv = bv;
2342 oload_champ = 0;
2343 }
2344 else /* See whether current candidate is better or worse than
2345 previous best. */
2346 switch (compare_badness (bv, *oload_champ_bv))
2347 {
2348 case 0: /* Top two contenders are equally good. */
2349 oload_ambiguous = 1;
2350 break;
2351 case 1: /* Incomparable top contenders. */
2352 oload_ambiguous = 2;
2353 break;
2354 case 2: /* New champion, record details. */
2355 *oload_champ_bv = bv;
2356 oload_ambiguous = 0;
2357 oload_champ = ix;
2358 break;
2359 case 3:
2360 default:
2361 break;
2362 }
2363 xfree (parm_types);
2364 if (overload_debug)
2365 {
2366 if (method)
2367 fprintf_filtered (gdb_stderr,
2368 "Overloaded method instance %s, # of parms %d\n",
2369 fns_ptr[ix].physname, nparms);
2370 else
2371 fprintf_filtered (gdb_stderr,
2372 "Overloaded function instance %s # of parms %d\n",
2373 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2374 nparms);
2375 for (jj = 0; jj < nargs - static_offset; jj++)
2376 fprintf_filtered (gdb_stderr,
2377 "...Badness @ %d : %d\n",
2378 jj, bv->rank[jj]);
2379 fprintf_filtered (gdb_stderr,
2380 "Overload resolution champion is %d, ambiguous? %d\n",
2381 oload_champ, oload_ambiguous);
2382 }
2383 }
2384
2385 return oload_champ;
2386 }
2387
2388 /* Return 1 if we're looking at a static method, 0 if we're looking at
2389 a non-static method or a function that isn't a method. */
2390
2391 static int
2392 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2393 {
2394 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2395 return 1;
2396 else
2397 return 0;
2398 }
2399
2400 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2401
2402 static enum oload_classification
2403 classify_oload_match (struct badness_vector *oload_champ_bv,
2404 int nargs,
2405 int static_offset)
2406 {
2407 int ix;
2408
2409 for (ix = 1; ix <= nargs - static_offset; ix++)
2410 {
2411 if (oload_champ_bv->rank[ix] >= 100)
2412 return INCOMPATIBLE; /* Truly mismatched types. */
2413 else if (oload_champ_bv->rank[ix] >= 10)
2414 return NON_STANDARD; /* Non-standard type conversions
2415 needed. */
2416 }
2417
2418 return STANDARD; /* Only standard conversions needed. */
2419 }
2420
2421 /* C++: return 1 is NAME is a legitimate name for the destructor of
2422 type TYPE. If TYPE does not have a destructor, or if NAME is
2423 inappropriate for TYPE, an error is signaled. */
2424 int
2425 destructor_name_p (const char *name, const struct type *type)
2426 {
2427 /* Destructors are a special case. */
2428
2429 if (name[0] == '~')
2430 {
2431 char *dname = type_name_no_tag (type);
2432 char *cp = strchr (dname, '<');
2433 unsigned int len;
2434
2435 /* Do not compare the template part for template classes. */
2436 if (cp == NULL)
2437 len = strlen (dname);
2438 else
2439 len = cp - dname;
2440 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2441 error (_("name of destructor must equal name of class"));
2442 else
2443 return 1;
2444 }
2445 return 0;
2446 }
2447
2448 /* Given TYPE, a structure/union,
2449 return 1 if the component named NAME from the ultimate target
2450 structure/union is defined, otherwise, return 0. */
2451
2452 int
2453 check_field (struct type *type, const char *name)
2454 {
2455 int i;
2456
2457 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2458 {
2459 char *t_field_name = TYPE_FIELD_NAME (type, i);
2460 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2461 return 1;
2462 }
2463
2464 /* C++: If it was not found as a data field, then try to return it
2465 as a pointer to a method. */
2466
2467 /* Destructors are a special case. */
2468 if (destructor_name_p (name, type))
2469 {
2470 int m_index, f_index;
2471
2472 return get_destructor_fn_field (type, &m_index, &f_index);
2473 }
2474
2475 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2476 {
2477 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2478 return 1;
2479 }
2480
2481 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2482 if (check_field (TYPE_BASECLASS (type, i), name))
2483 return 1;
2484
2485 return 0;
2486 }
2487
2488 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2489 return the appropriate member (or the address of the member, if
2490 WANT_ADDRESS). This function is used to resolve user expressions
2491 of the form "DOMAIN::NAME". For more details on what happens, see
2492 the comment before value_struct_elt_for_reference. */
2493
2494 struct value *
2495 value_aggregate_elt (struct type *curtype,
2496 char *name, int want_address,
2497 enum noside noside)
2498 {
2499 switch (TYPE_CODE (curtype))
2500 {
2501 case TYPE_CODE_STRUCT:
2502 case TYPE_CODE_UNION:
2503 return value_struct_elt_for_reference (curtype, 0, curtype,
2504 name, NULL,
2505 want_address, noside);
2506 case TYPE_CODE_NAMESPACE:
2507 return value_namespace_elt (curtype, name,
2508 want_address, noside);
2509 default:
2510 internal_error (__FILE__, __LINE__,
2511 _("non-aggregate type in value_aggregate_elt"));
2512 }
2513 }
2514
2515 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2516 return the address of this member as a "pointer to member" type.
2517 If INTYPE is non-null, then it will be the type of the member we
2518 are looking for. This will help us resolve "pointers to member
2519 functions". This function is used to resolve user expressions of
2520 the form "DOMAIN::NAME". */
2521
2522 static struct value *
2523 value_struct_elt_for_reference (struct type *domain, int offset,
2524 struct type *curtype, char *name,
2525 struct type *intype,
2526 int want_address,
2527 enum noside noside)
2528 {
2529 struct type *t = curtype;
2530 int i;
2531 struct value *v, *result;
2532
2533 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2534 && TYPE_CODE (t) != TYPE_CODE_UNION)
2535 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2536
2537 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2538 {
2539 char *t_field_name = TYPE_FIELD_NAME (t, i);
2540
2541 if (t_field_name && strcmp (t_field_name, name) == 0)
2542 {
2543 if (field_is_static (&TYPE_FIELD (t, i)))
2544 {
2545 v = value_static_field (t, i);
2546 if (v == NULL)
2547 error (_("static field %s has been optimized out"),
2548 name);
2549 if (want_address)
2550 v = value_addr (v);
2551 return v;
2552 }
2553 if (TYPE_FIELD_PACKED (t, i))
2554 error (_("pointers to bitfield members not allowed"));
2555
2556 if (want_address)
2557 return value_from_longest
2558 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2559 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2560 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2561 return allocate_value (TYPE_FIELD_TYPE (t, i));
2562 else
2563 error (_("Cannot reference non-static field \"%s\""), name);
2564 }
2565 }
2566
2567 /* C++: If it was not found as a data field, then try to return it
2568 as a pointer to a method. */
2569
2570 /* Destructors are a special case. */
2571 if (destructor_name_p (name, t))
2572 {
2573 error (_("member pointers to destructors not implemented yet"));
2574 }
2575
2576 /* Perform all necessary dereferencing. */
2577 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2578 intype = TYPE_TARGET_TYPE (intype);
2579
2580 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2581 {
2582 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2583 char dem_opname[64];
2584
2585 if (strncmp (t_field_name, "__", 2) == 0
2586 || strncmp (t_field_name, "op", 2) == 0
2587 || strncmp (t_field_name, "type", 4) == 0)
2588 {
2589 if (cplus_demangle_opname (t_field_name,
2590 dem_opname, DMGL_ANSI))
2591 t_field_name = dem_opname;
2592 else if (cplus_demangle_opname (t_field_name,
2593 dem_opname, 0))
2594 t_field_name = dem_opname;
2595 }
2596 if (t_field_name && strcmp (t_field_name, name) == 0)
2597 {
2598 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2599 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2600
2601 check_stub_method_group (t, i);
2602
2603 if (intype == 0 && j > 1)
2604 error (_("non-unique member `%s' requires type instantiation"), name);
2605 if (intype)
2606 {
2607 while (j--)
2608 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2609 break;
2610 if (j < 0)
2611 error (_("no member function matches that type instantiation"));
2612 }
2613 else
2614 j = 0;
2615
2616 if (TYPE_FN_FIELD_STATIC_P (f, j))
2617 {
2618 struct symbol *s =
2619 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2620 0, VAR_DOMAIN, 0);
2621 if (s == NULL)
2622 return NULL;
2623
2624 if (want_address)
2625 return value_addr (read_var_value (s, 0));
2626 else
2627 return read_var_value (s, 0);
2628 }
2629
2630 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2631 {
2632 if (want_address)
2633 {
2634 result = allocate_value
2635 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2636 cplus_make_method_ptr (value_type (result),
2637 value_contents_writeable (result),
2638 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2639 }
2640 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2641 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2642 else
2643 error (_("Cannot reference virtual member function \"%s\""),
2644 name);
2645 }
2646 else
2647 {
2648 struct symbol *s =
2649 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2650 0, VAR_DOMAIN, 0);
2651 if (s == NULL)
2652 return NULL;
2653
2654 v = read_var_value (s, 0);
2655 if (!want_address)
2656 result = v;
2657 else
2658 {
2659 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2660 cplus_make_method_ptr (value_type (result),
2661 value_contents_writeable (result),
2662 VALUE_ADDRESS (v), 0);
2663 }
2664 }
2665 return result;
2666 }
2667 }
2668 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2669 {
2670 struct value *v;
2671 int base_offset;
2672
2673 if (BASETYPE_VIA_VIRTUAL (t, i))
2674 base_offset = 0;
2675 else
2676 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2677 v = value_struct_elt_for_reference (domain,
2678 offset + base_offset,
2679 TYPE_BASECLASS (t, i),
2680 name, intype,
2681 want_address, noside);
2682 if (v)
2683 return v;
2684 }
2685
2686 /* As a last chance, pretend that CURTYPE is a namespace, and look
2687 it up that way; this (frequently) works for types nested inside
2688 classes. */
2689
2690 return value_maybe_namespace_elt (curtype, name,
2691 want_address, noside);
2692 }
2693
2694 /* C++: Return the member NAME of the namespace given by the type
2695 CURTYPE. */
2696
2697 static struct value *
2698 value_namespace_elt (const struct type *curtype,
2699 char *name, int want_address,
2700 enum noside noside)
2701 {
2702 struct value *retval = value_maybe_namespace_elt (curtype, name,
2703 want_address,
2704 noside);
2705
2706 if (retval == NULL)
2707 error (_("No symbol \"%s\" in namespace \"%s\"."),
2708 name, TYPE_TAG_NAME (curtype));
2709
2710 return retval;
2711 }
2712
2713 /* A helper function used by value_namespace_elt and
2714 value_struct_elt_for_reference. It looks up NAME inside the
2715 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2716 is a class and NAME refers to a type in CURTYPE itself (as opposed
2717 to, say, some base class of CURTYPE). */
2718
2719 static struct value *
2720 value_maybe_namespace_elt (const struct type *curtype,
2721 char *name, int want_address,
2722 enum noside noside)
2723 {
2724 const char *namespace_name = TYPE_TAG_NAME (curtype);
2725 struct symbol *sym;
2726 struct value *result;
2727
2728 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2729 get_selected_block (0),
2730 VAR_DOMAIN);
2731
2732 if (sym == NULL)
2733 return NULL;
2734 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2735 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2736 result = allocate_value (SYMBOL_TYPE (sym));
2737 else
2738 result = value_of_variable (sym, get_selected_block (0));
2739
2740 if (result && want_address)
2741 result = value_addr (result);
2742
2743 return result;
2744 }
2745
2746 /* Given a pointer value V, find the real (RTTI) type of the object it
2747 points to.
2748
2749 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2750 and refer to the values computed for the object pointed to. */
2751
2752 struct type *
2753 value_rtti_target_type (struct value *v, int *full,
2754 int *top, int *using_enc)
2755 {
2756 struct value *target;
2757
2758 target = value_ind (v);
2759
2760 return value_rtti_type (target, full, top, using_enc);
2761 }
2762
2763 /* Given a value pointed to by ARGP, check its real run-time type, and
2764 if that is different from the enclosing type, create a new value
2765 using the real run-time type as the enclosing type (and of the same
2766 type as ARGP) and return it, with the embedded offset adjusted to
2767 be the correct offset to the enclosed object. RTYPE is the type,
2768 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2769 by value_rtti_type(). If these are available, they can be supplied
2770 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2771 NULL if they're not available. */
2772
2773 struct value *
2774 value_full_object (struct value *argp,
2775 struct type *rtype,
2776 int xfull, int xtop,
2777 int xusing_enc)
2778 {
2779 struct type *real_type;
2780 int full = 0;
2781 int top = -1;
2782 int using_enc = 0;
2783 struct value *new_val;
2784
2785 if (rtype)
2786 {
2787 real_type = rtype;
2788 full = xfull;
2789 top = xtop;
2790 using_enc = xusing_enc;
2791 }
2792 else
2793 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2794
2795 /* If no RTTI data, or if object is already complete, do nothing. */
2796 if (!real_type || real_type == value_enclosing_type (argp))
2797 return argp;
2798
2799 /* If we have the full object, but for some reason the enclosing
2800 type is wrong, set it. */
2801 /* pai: FIXME -- sounds iffy */
2802 if (full)
2803 {
2804 argp = value_change_enclosing_type (argp, real_type);
2805 return argp;
2806 }
2807
2808 /* Check if object is in memory */
2809 if (VALUE_LVAL (argp) != lval_memory)
2810 {
2811 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2812 TYPE_NAME (real_type));
2813
2814 return argp;
2815 }
2816
2817 /* All other cases -- retrieve the complete object. */
2818 /* Go back by the computed top_offset from the beginning of the
2819 object, adjusting for the embedded offset of argp if that's what
2820 value_rtti_type used for its computation. */
2821 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2822 (using_enc ? 0 : value_embedded_offset (argp)));
2823 deprecated_set_value_type (new_val, value_type (argp));
2824 set_value_embedded_offset (new_val, (using_enc
2825 ? top + value_embedded_offset (argp)
2826 : top));
2827 return new_val;
2828 }
2829
2830
2831 /* Return the value of the local variable, if one exists.
2832 Flag COMPLAIN signals an error if the request is made in an
2833 inappropriate context. */
2834
2835 struct value *
2836 value_of_local (const char *name, int complain)
2837 {
2838 struct symbol *func, *sym;
2839 struct block *b;
2840 struct value * ret;
2841 struct frame_info *frame;
2842
2843 if (complain)
2844 frame = get_selected_frame (_("no frame selected"));
2845 else
2846 {
2847 frame = deprecated_safe_get_selected_frame ();
2848 if (frame == 0)
2849 return 0;
2850 }
2851
2852 func = get_frame_function (frame);
2853 if (!func)
2854 {
2855 if (complain)
2856 error (_("no `%s' in nameless context"), name);
2857 else
2858 return 0;
2859 }
2860
2861 b = SYMBOL_BLOCK_VALUE (func);
2862 if (dict_empty (BLOCK_DICT (b)))
2863 {
2864 if (complain)
2865 error (_("no args, no `%s'"), name);
2866 else
2867 return 0;
2868 }
2869
2870 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2871 symbol instead of the LOC_ARG one (if both exist). */
2872 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2873 if (sym == NULL)
2874 {
2875 if (complain)
2876 error (_("current stack frame does not contain a variable named `%s'"),
2877 name);
2878 else
2879 return NULL;
2880 }
2881
2882 ret = read_var_value (sym, frame);
2883 if (ret == 0 && complain)
2884 error (_("`%s' argument unreadable"), name);
2885 return ret;
2886 }
2887
2888 /* C++/Objective-C: return the value of the class instance variable,
2889 if one exists. Flag COMPLAIN signals an error if the request is
2890 made in an inappropriate context. */
2891
2892 struct value *
2893 value_of_this (int complain)
2894 {
2895 if (!current_language->la_name_of_this)
2896 return 0;
2897 return value_of_local (current_language->la_name_of_this, complain);
2898 }
2899
2900 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2901 elements long, starting at LOWBOUND. The result has the same lower
2902 bound as the original ARRAY. */
2903
2904 struct value *
2905 value_slice (struct value *array, int lowbound, int length)
2906 {
2907 struct type *slice_range_type, *slice_type, *range_type;
2908 LONGEST lowerbound, upperbound;
2909 struct value *slice;
2910 struct type *array_type;
2911
2912 array_type = check_typedef (value_type (array));
2913 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2914 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2915 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2916 error (_("cannot take slice of non-array"));
2917
2918 range_type = TYPE_INDEX_TYPE (array_type);
2919 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2920 error (_("slice from bad array or bitstring"));
2921
2922 if (lowbound < lowerbound || length < 0
2923 || lowbound + length - 1 > upperbound)
2924 error (_("slice out of range"));
2925
2926 /* FIXME-type-allocation: need a way to free this type when we are
2927 done with it. */
2928 slice_range_type = create_range_type ((struct type *) NULL,
2929 TYPE_TARGET_TYPE (range_type),
2930 lowbound,
2931 lowbound + length - 1);
2932 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2933 {
2934 int i;
2935
2936 slice_type = create_set_type ((struct type *) NULL,
2937 slice_range_type);
2938 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2939 slice = value_zero (slice_type, not_lval);
2940
2941 for (i = 0; i < length; i++)
2942 {
2943 int element = value_bit_index (array_type,
2944 value_contents (array),
2945 lowbound + i);
2946 if (element < 0)
2947 error (_("internal error accessing bitstring"));
2948 else if (element > 0)
2949 {
2950 int j = i % TARGET_CHAR_BIT;
2951 if (gdbarch_bits_big_endian (current_gdbarch))
2952 j = TARGET_CHAR_BIT - 1 - j;
2953 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2954 }
2955 }
2956 /* We should set the address, bitssize, and bitspos, so the
2957 slice can be used on the LHS, but that may require extensions
2958 to value_assign. For now, just leave as a non_lval.
2959 FIXME. */
2960 }
2961 else
2962 {
2963 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2964 LONGEST offset =
2965 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2966
2967 slice_type = create_array_type ((struct type *) NULL,
2968 element_type,
2969 slice_range_type);
2970 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2971
2972 slice = allocate_value (slice_type);
2973 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2974 set_value_lazy (slice, 1);
2975 else
2976 memcpy (value_contents_writeable (slice),
2977 value_contents (array) + offset,
2978 TYPE_LENGTH (slice_type));
2979
2980 if (VALUE_LVAL (array) == lval_internalvar)
2981 VALUE_LVAL (slice) = lval_internalvar_component;
2982 else
2983 VALUE_LVAL (slice) = VALUE_LVAL (array);
2984
2985 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2986 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2987 set_value_offset (slice, value_offset (array) + offset);
2988 }
2989 return slice;
2990 }
2991
2992 /* Create a value for a FORTRAN complex number. Currently most of the
2993 time values are coerced to COMPLEX*16 (i.e. a complex number
2994 composed of 2 doubles. This really should be a smarter routine
2995 that figures out precision inteligently as opposed to assuming
2996 doubles. FIXME: fmb */
2997
2998 struct value *
2999 value_literal_complex (struct value *arg1,
3000 struct value *arg2,
3001 struct type *type)
3002 {
3003 struct value *val;
3004 struct type *real_type = TYPE_TARGET_TYPE (type);
3005
3006 val = allocate_value (type);
3007 arg1 = value_cast (real_type, arg1);
3008 arg2 = value_cast (real_type, arg2);
3009
3010 memcpy (value_contents_raw (val),
3011 value_contents (arg1), TYPE_LENGTH (real_type));
3012 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3013 value_contents (arg2), TYPE_LENGTH (real_type));
3014 return val;
3015 }
3016
3017 /* Cast a value into the appropriate complex data type. */
3018
3019 static struct value *
3020 cast_into_complex (struct type *type, struct value *val)
3021 {
3022 struct type *real_type = TYPE_TARGET_TYPE (type);
3023
3024 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3025 {
3026 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3027 struct value *re_val = allocate_value (val_real_type);
3028 struct value *im_val = allocate_value (val_real_type);
3029
3030 memcpy (value_contents_raw (re_val),
3031 value_contents (val), TYPE_LENGTH (val_real_type));
3032 memcpy (value_contents_raw (im_val),
3033 value_contents (val) + TYPE_LENGTH (val_real_type),
3034 TYPE_LENGTH (val_real_type));
3035
3036 return value_literal_complex (re_val, im_val, type);
3037 }
3038 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3039 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3040 return value_literal_complex (val,
3041 value_zero (real_type, not_lval),
3042 type);
3043 else
3044 error (_("cannot cast non-number to complex"));
3045 }
3046
3047 void
3048 _initialize_valops (void)
3049 {
3050 add_setshow_boolean_cmd ("overload-resolution", class_support,
3051 &overload_resolution, _("\
3052 Set overload resolution in evaluating C++ functions."), _("\
3053 Show overload resolution in evaluating C++ functions."),
3054 NULL, NULL,
3055 show_overload_resolution,
3056 &setlist, &showlist);
3057 overload_resolution = 1;
3058 }
This page took 0.09229 seconds and 4 git commands to generate.