1163756cd9ae7d60c7a322f9badf7691e8483404
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "demangle.h"
33 #include "language.h"
34 #include "gdbcmd.h"
35 #include "regcache.h"
36 #include "cp-abi.h"
37 #include "block.h"
38 #include "infcall.h"
39 #include "dictionary.h"
40 #include "cp-support.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47
48 extern int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (char *, struct value *, int,
55 struct type *, int);
56
57 static struct value *search_struct_method (char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct type **arg_types, int nargs,
62 const char *func_name,
63 const char *qualified_name,
64 struct symbol ***oload_syms,
65 struct badness_vector **oload_champ_bv);
66
67 static
68 int find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
69 const char *func_name,
70 const char *qualified_name,
71 int namespace_len,
72 struct symbol ***oload_syms,
73 struct badness_vector **oload_champ_bv,
74 int *oload_champ);
75
76 static int find_oload_champ (struct type **arg_types, int nargs, int method,
77 int num_fns,
78 struct fn_field *fns_ptr,
79 struct symbol **oload_syms,
80 struct badness_vector **oload_champ_bv);
81
82 static int oload_method_static (int method, struct fn_field *fns_ptr,
83 int index);
84
85 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
86
87 static enum
88 oload_classification classify_oload_match (struct badness_vector
89 * oload_champ_bv,
90 int nargs,
91 int static_offset);
92
93 static int check_field_in (struct type *, const char *);
94
95 static struct value *value_struct_elt_for_reference (struct type *domain,
96 int offset,
97 struct type *curtype,
98 char *name,
99 struct type *intype,
100 int want_address,
101 enum noside noside);
102
103 static struct value *value_namespace_elt (const struct type *curtype,
104 char *name, int want_address,
105 enum noside noside);
106
107 static struct value *value_maybe_namespace_elt (const struct type *curtype,
108 char *name, int want_address,
109 enum noside noside);
110
111 static CORE_ADDR allocate_space_in_inferior (int);
112
113 static struct value *cast_into_complex (struct type *, struct value *);
114
115 static struct fn_field *find_method_list (struct value ** argp, char *method,
116 int offset,
117 struct type *type, int *num_fns,
118 struct type **basetype,
119 int *boffset);
120
121 void _initialize_valops (void);
122
123 /* Flag for whether we want to abandon failed expression evals by default. */
124
125 #if 0
126 static int auto_abandon = 0;
127 #endif
128
129 int overload_resolution = 0;
130 static void
131 show_overload_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file, _("\
135 Overload resolution in evaluating C++ functions is %s.\n"),
136 value);
137 }
138
139 /* Find the address of function name NAME in the inferior. */
140
141 struct value *
142 find_function_in_inferior (const char *name)
143 {
144 struct symbol *sym;
145 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
146 if (sym != NULL)
147 {
148 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
149 {
150 error (_("\"%s\" exists in this program but is not a function."),
151 name);
152 }
153 return value_of_variable (sym, NULL);
154 }
155 else
156 {
157 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
158 if (msymbol != NULL)
159 {
160 struct type *type;
161 CORE_ADDR maddr;
162 type = lookup_pointer_type (builtin_type_char);
163 type = lookup_function_type (type);
164 type = lookup_pointer_type (type);
165 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression requires the target program to be active"));
172 else
173 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
174 }
175 }
176 }
177
178 /* Allocate NBYTES of space in the inferior using the inferior's malloc
179 and return a value that is a pointer to the allocated space. */
180
181 struct value *
182 value_allocate_space_in_inferior (int len)
183 {
184 struct value *blocklen;
185 struct value *val = find_function_in_inferior
186 (gdbarch_name_of_malloc (current_gdbarch));
187
188 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
189 val = call_function_by_hand (val, 1, &blocklen);
190 if (value_logical_not (val))
191 {
192 if (!target_has_execution)
193 error (_("No memory available to program now: you need to start the target first"));
194 else
195 error (_("No memory available to program: call to malloc failed"));
196 }
197 return val;
198 }
199
200 static CORE_ADDR
201 allocate_space_in_inferior (int len)
202 {
203 return value_as_long (value_allocate_space_in_inferior (len));
204 }
205
206 /* Cast one pointer or reference type to another. Both TYPE and
207 the type of ARG2 should be pointer types, or else both should be
208 reference types. Returns the new pointer or reference. */
209
210 struct value *
211 value_cast_pointers (struct type *type, struct value *arg2)
212 {
213 struct type *type2 = check_typedef (value_type (arg2));
214 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
215 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
216
217 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
218 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
219 && !value_logical_not (arg2))
220 {
221 struct value *v;
222
223 /* Look in the type of the source to see if it contains the
224 type of the target as a superclass. If so, we'll need to
225 offset the pointer rather than just change its type. */
226 if (TYPE_NAME (t1) != NULL)
227 {
228 struct value *v2;
229
230 if (TYPE_CODE (type2) == TYPE_CODE_REF)
231 v2 = coerce_ref (arg2);
232 else
233 v2 = value_ind (arg2);
234 v = search_struct_field (type_name_no_tag (t1),
235 v2, 0, t2, 1);
236 if (v)
237 {
238 v = value_addr (v);
239 deprecated_set_value_type (v, type);
240 return v;
241 }
242 }
243
244 /* Look in the type of the target to see if it contains the
245 type of the source as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type.
247 FIXME: This fails silently with virtual inheritance. */
248 if (TYPE_NAME (t2) != NULL)
249 {
250 v = search_struct_field (type_name_no_tag (t2),
251 value_zero (t1, not_lval), 0, t1, 1);
252 if (v)
253 {
254 CORE_ADDR addr2 = value_as_address (arg2);
255 addr2 -= (VALUE_ADDRESS (v)
256 + value_offset (v)
257 + value_embedded_offset (v));
258 return value_from_pointer (type, addr2);
259 }
260 }
261 }
262
263 /* No superclass found, just change the pointer type. */
264 arg2 = value_copy (arg2);
265 deprecated_set_value_type (arg2, type);
266 arg2 = value_change_enclosing_type (arg2, type);
267 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
268 return arg2;
269 }
270
271 /* Cast value ARG2 to type TYPE and return as a value.
272 More general than a C cast: accepts any two types of the same length,
273 and if ARG2 is an lvalue it can be cast into anything at all. */
274 /* In C++, casts may change pointer or object representations. */
275
276 struct value *
277 value_cast (struct type *type, struct value *arg2)
278 {
279 enum type_code code1;
280 enum type_code code2;
281 int scalar;
282 struct type *type2;
283
284 int convert_to_boolean = 0;
285
286 if (value_type (arg2) == type)
287 return arg2;
288
289 CHECK_TYPEDEF (type);
290 code1 = TYPE_CODE (type);
291 arg2 = coerce_ref (arg2);
292 type2 = check_typedef (value_type (arg2));
293
294 /* You can't cast to a reference type. See value_cast_pointers
295 instead. */
296 gdb_assert (code1 != TYPE_CODE_REF);
297
298 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
299 is treated like a cast to (TYPE [N])OBJECT,
300 where N is sizeof(OBJECT)/sizeof(TYPE). */
301 if (code1 == TYPE_CODE_ARRAY)
302 {
303 struct type *element_type = TYPE_TARGET_TYPE (type);
304 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
305 if (element_length > 0
306 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
307 {
308 struct type *range_type = TYPE_INDEX_TYPE (type);
309 int val_length = TYPE_LENGTH (type2);
310 LONGEST low_bound, high_bound, new_length;
311 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
312 low_bound = 0, high_bound = 0;
313 new_length = val_length / element_length;
314 if (val_length % element_length != 0)
315 warning (_("array element type size does not divide object size in cast"));
316 /* FIXME-type-allocation: need a way to free this type when we are
317 done with it. */
318 range_type = create_range_type ((struct type *) NULL,
319 TYPE_TARGET_TYPE (range_type),
320 low_bound,
321 new_length + low_bound - 1);
322 deprecated_set_value_type (arg2, create_array_type ((struct type *) NULL,
323 element_type, range_type));
324 return arg2;
325 }
326 }
327
328 if (current_language->c_style_arrays
329 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
330 arg2 = value_coerce_array (arg2);
331
332 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
333 arg2 = value_coerce_function (arg2);
334
335 type2 = check_typedef (value_type (arg2));
336 code2 = TYPE_CODE (type2);
337
338 if (code1 == TYPE_CODE_COMPLEX)
339 return cast_into_complex (type, arg2);
340 if (code1 == TYPE_CODE_BOOL)
341 {
342 code1 = TYPE_CODE_INT;
343 convert_to_boolean = 1;
344 }
345 if (code1 == TYPE_CODE_CHAR)
346 code1 = TYPE_CODE_INT;
347 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
348 code2 = TYPE_CODE_INT;
349
350 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
351 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
352
353 if (code1 == TYPE_CODE_STRUCT
354 && code2 == TYPE_CODE_STRUCT
355 && TYPE_NAME (type) != 0)
356 {
357 /* Look in the type of the source to see if it contains the
358 type of the target as a superclass. If so, we'll need to
359 offset the object in addition to changing its type. */
360 struct value *v = search_struct_field (type_name_no_tag (type),
361 arg2, 0, type2, 1);
362 if (v)
363 {
364 deprecated_set_value_type (v, type);
365 return v;
366 }
367 }
368 if (code1 == TYPE_CODE_FLT && scalar)
369 return value_from_double (type, value_as_double (arg2));
370 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
371 || code1 == TYPE_CODE_RANGE)
372 && (scalar || code2 == TYPE_CODE_PTR
373 || code2 == TYPE_CODE_MEMBERPTR))
374 {
375 LONGEST longest;
376
377 /* When we cast pointers to integers, we mustn't use
378 gdbarch_pointer_to_address to find the address the pointer
379 represents, as value_as_long would. GDB should evaluate
380 expressions just as the compiler would --- and the compiler
381 sees a cast as a simple reinterpretation of the pointer's
382 bits. */
383 if (code2 == TYPE_CODE_PTR)
384 longest = extract_unsigned_integer (value_contents (arg2),
385 TYPE_LENGTH (type2));
386 else
387 longest = value_as_long (arg2);
388 return value_from_longest (type, convert_to_boolean ?
389 (LONGEST) (longest ? 1 : 0) : longest);
390 }
391 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
392 code2 == TYPE_CODE_ENUM ||
393 code2 == TYPE_CODE_RANGE))
394 {
395 /* TYPE_LENGTH (type) is the length of a pointer, but we really
396 want the length of an address! -- we are really dealing with
397 addresses (i.e., gdb representations) not pointers (i.e.,
398 target representations) here.
399
400 This allows things like "print *(int *)0x01000234" to work
401 without printing a misleading message -- which would
402 otherwise occur when dealing with a target having two byte
403 pointers and four byte addresses. */
404
405 int addr_bit = TARGET_ADDR_BIT;
406
407 LONGEST longest = value_as_long (arg2);
408 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
409 {
410 if (longest >= ((LONGEST) 1 << addr_bit)
411 || longest <= -((LONGEST) 1 << addr_bit))
412 warning (_("value truncated"));
413 }
414 return value_from_longest (type, longest);
415 }
416 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
417 && value_as_long (arg2) == 0)
418 {
419 struct value *result = allocate_value (type);
420 cplus_make_method_ptr (value_contents_writeable (result), 0, 0);
421 return result;
422 }
423 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
424 && value_as_long (arg2) == 0)
425 {
426 /* The Itanium C++ ABI represents NULL pointers to members as
427 minus one, instead of biasing the normal case. */
428 return value_from_longest (type, -1);
429 }
430 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
431 {
432 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
433 return value_cast_pointers (type, arg2);
434
435 arg2 = value_copy (arg2);
436 deprecated_set_value_type (arg2, type);
437 arg2 = value_change_enclosing_type (arg2, type);
438 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
439 return arg2;
440 }
441 else if (VALUE_LVAL (arg2) == lval_memory)
442 return value_at_lazy (type, VALUE_ADDRESS (arg2) + value_offset (arg2));
443 else if (code1 == TYPE_CODE_VOID)
444 {
445 return value_zero (builtin_type_void, not_lval);
446 }
447 else
448 {
449 error (_("Invalid cast."));
450 return 0;
451 }
452 }
453
454 /* Create a value of type TYPE that is zero, and return it. */
455
456 struct value *
457 value_zero (struct type *type, enum lval_type lv)
458 {
459 struct value *val = allocate_value (type);
460 VALUE_LVAL (val) = lv;
461
462 return val;
463 }
464
465 /* Return a value with type TYPE located at ADDR.
466
467 Call value_at only if the data needs to be fetched immediately;
468 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
469 value_at_lazy instead. value_at_lazy simply records the address of
470 the data and sets the lazy-evaluation-required flag. The lazy flag
471 is tested in the value_contents macro, which is used if and when
472 the contents are actually required.
473
474 Note: value_at does *NOT* handle embedded offsets; perform such
475 adjustments before or after calling it. */
476
477 struct value *
478 value_at (struct type *type, CORE_ADDR addr)
479 {
480 struct value *val;
481
482 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
483 error (_("Attempt to dereference a generic pointer."));
484
485 val = allocate_value (type);
486
487 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
488
489 VALUE_LVAL (val) = lval_memory;
490 VALUE_ADDRESS (val) = addr;
491
492 return val;
493 }
494
495 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
496
497 struct value *
498 value_at_lazy (struct type *type, CORE_ADDR addr)
499 {
500 struct value *val;
501
502 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
503 error (_("Attempt to dereference a generic pointer."));
504
505 val = allocate_value (type);
506
507 VALUE_LVAL (val) = lval_memory;
508 VALUE_ADDRESS (val) = addr;
509 set_value_lazy (val, 1);
510
511 return val;
512 }
513
514 /* Called only from the value_contents and value_contents_all()
515 macros, if the current data for a variable needs to be loaded into
516 value_contents(VAL). Fetches the data from the user's process, and
517 clears the lazy flag to indicate that the data in the buffer is
518 valid.
519
520 If the value is zero-length, we avoid calling read_memory, which would
521 abort. We mark the value as fetched anyway -- all 0 bytes of it.
522
523 This function returns a value because it is used in the value_contents
524 macro as part of an expression, where a void would not work. The
525 value is ignored. */
526
527 int
528 value_fetch_lazy (struct value *val)
529 {
530 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
531 int length = TYPE_LENGTH (value_enclosing_type (val));
532
533 struct type *type = value_type (val);
534 if (length)
535 read_memory (addr, value_contents_all_raw (val), length);
536
537 set_value_lazy (val, 0);
538 return 0;
539 }
540
541
542 /* Store the contents of FROMVAL into the location of TOVAL.
543 Return a new value with the location of TOVAL and contents of FROMVAL. */
544
545 struct value *
546 value_assign (struct value *toval, struct value *fromval)
547 {
548 struct type *type;
549 struct value *val;
550 struct frame_id old_frame;
551
552 if (!deprecated_value_modifiable (toval))
553 error (_("Left operand of assignment is not a modifiable lvalue."));
554
555 toval = coerce_ref (toval);
556
557 type = value_type (toval);
558 if (VALUE_LVAL (toval) != lval_internalvar)
559 fromval = value_cast (type, fromval);
560 else
561 fromval = coerce_array (fromval);
562 CHECK_TYPEDEF (type);
563
564 /* Since modifying a register can trash the frame chain, and modifying memory
565 can trash the frame cache, we save the old frame and then restore the new
566 frame afterwards. */
567 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
568
569 switch (VALUE_LVAL (toval))
570 {
571 case lval_internalvar:
572 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
573 val = value_copy (VALUE_INTERNALVAR (toval)->value);
574 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
575 set_value_embedded_offset (val, value_embedded_offset (fromval));
576 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
577 return val;
578
579 case lval_internalvar_component:
580 set_internalvar_component (VALUE_INTERNALVAR (toval),
581 value_offset (toval),
582 value_bitpos (toval),
583 value_bitsize (toval),
584 fromval);
585 break;
586
587 case lval_memory:
588 {
589 const gdb_byte *dest_buffer;
590 CORE_ADDR changed_addr;
591 int changed_len;
592 gdb_byte buffer[sizeof (LONGEST)];
593
594 if (value_bitsize (toval))
595 {
596 /* We assume that the argument to read_memory is in units of
597 host chars. FIXME: Is that correct? */
598 changed_len = (value_bitpos (toval)
599 + value_bitsize (toval)
600 + HOST_CHAR_BIT - 1)
601 / HOST_CHAR_BIT;
602
603 if (changed_len > (int) sizeof (LONGEST))
604 error (_("Can't handle bitfields which don't fit in a %d bit word."),
605 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
606
607 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
608 buffer, changed_len);
609 modify_field (buffer, value_as_long (fromval),
610 value_bitpos (toval), value_bitsize (toval));
611 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
612 dest_buffer = buffer;
613 }
614 else
615 {
616 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
617 changed_len = TYPE_LENGTH (type);
618 dest_buffer = value_contents (fromval);
619 }
620
621 write_memory (changed_addr, dest_buffer, changed_len);
622 if (deprecated_memory_changed_hook)
623 deprecated_memory_changed_hook (changed_addr, changed_len);
624 }
625 break;
626
627 case lval_register:
628 {
629 struct frame_info *frame;
630 int value_reg;
631
632 /* Figure out which frame this is in currently. */
633 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
634 value_reg = VALUE_REGNUM (toval);
635
636 if (!frame)
637 error (_("Value being assigned to is no longer active."));
638
639 if (gdbarch_convert_register_p
640 (current_gdbarch, VALUE_REGNUM (toval), type))
641 {
642 /* If TOVAL is a special machine register requiring
643 conversion of program values to a special raw format. */
644 gdbarch_value_to_register (current_gdbarch,
645 frame, VALUE_REGNUM (toval),
646 type, value_contents (fromval));
647 }
648 else
649 {
650 if (value_bitsize (toval))
651 {
652 int changed_len;
653 gdb_byte buffer[sizeof (LONGEST)];
654
655 changed_len = (value_bitpos (toval)
656 + value_bitsize (toval)
657 + HOST_CHAR_BIT - 1)
658 / HOST_CHAR_BIT;
659
660 if (changed_len > (int) sizeof (LONGEST))
661 error (_("Can't handle bitfields which don't fit in a %d bit word."),
662 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
663
664 get_frame_register_bytes (frame, value_reg,
665 value_offset (toval),
666 changed_len, buffer);
667
668 modify_field (buffer, value_as_long (fromval),
669 value_bitpos (toval), value_bitsize (toval));
670
671 put_frame_register_bytes (frame, value_reg,
672 value_offset (toval),
673 changed_len, buffer);
674 }
675 else
676 {
677 put_frame_register_bytes (frame, value_reg,
678 value_offset (toval),
679 TYPE_LENGTH (type),
680 value_contents (fromval));
681 }
682 }
683
684 if (deprecated_register_changed_hook)
685 deprecated_register_changed_hook (-1);
686 observer_notify_target_changed (&current_target);
687 break;
688 }
689
690 default:
691 error (_("Left operand of assignment is not an lvalue."));
692 }
693
694 /* Assigning to the stack pointer, frame pointer, and other
695 (architecture and calling convention specific) registers may
696 cause the frame cache to be out of date. Assigning to memory
697 also can. We just do this on all assignments to registers or
698 memory, for simplicity's sake; I doubt the slowdown matters. */
699 switch (VALUE_LVAL (toval))
700 {
701 case lval_memory:
702 case lval_register:
703
704 reinit_frame_cache ();
705
706 /* Having destoroyed the frame cache, restore the selected frame. */
707
708 /* FIXME: cagney/2002-11-02: There has to be a better way of
709 doing this. Instead of constantly saving/restoring the
710 frame. Why not create a get_selected_frame() function that,
711 having saved the selected frame's ID can automatically
712 re-find the previously selected frame automatically. */
713
714 {
715 struct frame_info *fi = frame_find_by_id (old_frame);
716 if (fi != NULL)
717 select_frame (fi);
718 }
719
720 break;
721 default:
722 break;
723 }
724
725 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
726 If the field is signed, and is negative, then sign extend. */
727 if ((value_bitsize (toval) > 0)
728 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
729 {
730 LONGEST fieldval = value_as_long (fromval);
731 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
732
733 fieldval &= valmask;
734 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
735 fieldval |= ~valmask;
736
737 fromval = value_from_longest (type, fieldval);
738 }
739
740 val = value_copy (toval);
741 memcpy (value_contents_raw (val), value_contents (fromval),
742 TYPE_LENGTH (type));
743 deprecated_set_value_type (val, type);
744 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
745 set_value_embedded_offset (val, value_embedded_offset (fromval));
746 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
747
748 return val;
749 }
750
751 /* Extend a value VAL to COUNT repetitions of its type. */
752
753 struct value *
754 value_repeat (struct value *arg1, int count)
755 {
756 struct value *val;
757
758 if (VALUE_LVAL (arg1) != lval_memory)
759 error (_("Only values in memory can be extended with '@'."));
760 if (count < 1)
761 error (_("Invalid number %d of repetitions."), count);
762
763 val = allocate_repeat_value (value_enclosing_type (arg1), count);
764
765 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
766 value_contents_all_raw (val),
767 TYPE_LENGTH (value_enclosing_type (val)));
768 VALUE_LVAL (val) = lval_memory;
769 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
770
771 return val;
772 }
773
774 struct value *
775 value_of_variable (struct symbol *var, struct block *b)
776 {
777 struct value *val;
778 struct frame_info *frame = NULL;
779
780 if (!b)
781 frame = NULL; /* Use selected frame. */
782 else if (symbol_read_needs_frame (var))
783 {
784 frame = block_innermost_frame (b);
785 if (!frame)
786 {
787 if (BLOCK_FUNCTION (b)
788 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
789 error (_("No frame is currently executing in block %s."),
790 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
791 else
792 error (_("No frame is currently executing in specified block"));
793 }
794 }
795
796 val = read_var_value (var, frame);
797 if (!val)
798 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
799
800 return val;
801 }
802
803 /* Given a value which is an array, return a value which is a pointer to its
804 first element, regardless of whether or not the array has a nonzero lower
805 bound.
806
807 FIXME: A previous comment here indicated that this routine should be
808 substracting the array's lower bound. It's not clear to me that this
809 is correct. Given an array subscripting operation, it would certainly
810 work to do the adjustment here, essentially computing:
811
812 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
813
814 However I believe a more appropriate and logical place to account for
815 the lower bound is to do so in value_subscript, essentially computing:
816
817 (&array[0] + ((index - lowerbound) * sizeof array[0]))
818
819 As further evidence consider what would happen with operations other
820 than array subscripting, where the caller would get back a value that
821 had an address somewhere before the actual first element of the array,
822 and the information about the lower bound would be lost because of
823 the coercion to pointer type.
824 */
825
826 struct value *
827 value_coerce_array (struct value *arg1)
828 {
829 struct type *type = check_typedef (value_type (arg1));
830
831 if (VALUE_LVAL (arg1) != lval_memory)
832 error (_("Attempt to take address of value not located in memory."));
833
834 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
835 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
836 }
837
838 /* Given a value which is a function, return a value which is a pointer
839 to it. */
840
841 struct value *
842 value_coerce_function (struct value *arg1)
843 {
844 struct value *retval;
845
846 if (VALUE_LVAL (arg1) != lval_memory)
847 error (_("Attempt to take address of value not located in memory."));
848
849 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
850 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
851 return retval;
852 }
853
854 /* Return a pointer value for the object for which ARG1 is the contents. */
855
856 struct value *
857 value_addr (struct value *arg1)
858 {
859 struct value *arg2;
860
861 struct type *type = check_typedef (value_type (arg1));
862 if (TYPE_CODE (type) == TYPE_CODE_REF)
863 {
864 /* Copy the value, but change the type from (T&) to (T*).
865 We keep the same location information, which is efficient,
866 and allows &(&X) to get the location containing the reference. */
867 arg2 = value_copy (arg1);
868 deprecated_set_value_type (arg2, lookup_pointer_type (TYPE_TARGET_TYPE (type)));
869 return arg2;
870 }
871 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
872 return value_coerce_function (arg1);
873
874 if (VALUE_LVAL (arg1) != lval_memory)
875 error (_("Attempt to take address of value not located in memory."));
876
877 /* Get target memory address */
878 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
879 (VALUE_ADDRESS (arg1)
880 + value_offset (arg1)
881 + value_embedded_offset (arg1)));
882
883 /* This may be a pointer to a base subobject; so remember the
884 full derived object's type ... */
885 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
886 /* ... and also the relative position of the subobject in the full object */
887 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
888 return arg2;
889 }
890
891 /* Return a reference value for the object for which ARG1 is the contents. */
892
893 struct value *
894 value_ref (struct value *arg1)
895 {
896 struct value *arg2;
897
898 struct type *type = check_typedef (value_type (arg1));
899 if (TYPE_CODE (type) == TYPE_CODE_REF)
900 return arg1;
901
902 arg2 = value_addr (arg1);
903 deprecated_set_value_type (arg2, lookup_reference_type (type));
904 return arg2;
905 }
906
907 /* Given a value of a pointer type, apply the C unary * operator to it. */
908
909 struct value *
910 value_ind (struct value *arg1)
911 {
912 struct type *base_type;
913 struct value *arg2;
914
915 arg1 = coerce_array (arg1);
916
917 base_type = check_typedef (value_type (arg1));
918
919 /* Allow * on an integer so we can cast it to whatever we want.
920 This returns an int, which seems like the most C-like thing
921 to do. "long long" variables are rare enough that
922 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
923 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
924 return value_at_lazy (builtin_type_int,
925 (CORE_ADDR) value_as_address (arg1));
926 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
927 {
928 struct type *enc_type;
929 /* We may be pointing to something embedded in a larger object */
930 /* Get the real type of the enclosing object */
931 enc_type = check_typedef (value_enclosing_type (arg1));
932 enc_type = TYPE_TARGET_TYPE (enc_type);
933
934 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
935 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
936 /* For functions, go through find_function_addr, which knows
937 how to handle function descriptors. */
938 arg2 = value_at_lazy (enc_type, find_function_addr (arg1, NULL));
939 else
940 /* Retrieve the enclosing object pointed to */
941 arg2 = value_at_lazy (enc_type, (value_as_address (arg1)
942 - value_pointed_to_offset (arg1)));
943
944 /* Re-adjust type */
945 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
946 /* Add embedding info */
947 arg2 = value_change_enclosing_type (arg2, enc_type);
948 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
949
950 /* We may be pointing to an object of some derived type */
951 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
952 return arg2;
953 }
954
955 error (_("Attempt to take contents of a non-pointer value."));
956 return 0; /* For lint -- never reached */
957 }
958 \f
959 /* Create a value for an array by allocating space in the inferior, copying
960 the data into that space, and then setting up an array value.
961
962 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
963 populated from the values passed in ELEMVEC.
964
965 The element type of the array is inherited from the type of the
966 first element, and all elements must have the same size (though we
967 don't currently enforce any restriction on their types). */
968
969 struct value *
970 value_array (int lowbound, int highbound, struct value **elemvec)
971 {
972 int nelem;
973 int idx;
974 unsigned int typelength;
975 struct value *val;
976 struct type *rangetype;
977 struct type *arraytype;
978 CORE_ADDR addr;
979
980 /* Validate that the bounds are reasonable and that each of the elements
981 have the same size. */
982
983 nelem = highbound - lowbound + 1;
984 if (nelem <= 0)
985 {
986 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
987 }
988 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
989 for (idx = 1; idx < nelem; idx++)
990 {
991 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
992 {
993 error (_("array elements must all be the same size"));
994 }
995 }
996
997 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
998 lowbound, highbound);
999 arraytype = create_array_type ((struct type *) NULL,
1000 value_enclosing_type (elemvec[0]), rangetype);
1001
1002 if (!current_language->c_style_arrays)
1003 {
1004 val = allocate_value (arraytype);
1005 for (idx = 0; idx < nelem; idx++)
1006 {
1007 memcpy (value_contents_all_raw (val) + (idx * typelength),
1008 value_contents_all (elemvec[idx]),
1009 typelength);
1010 }
1011 return val;
1012 }
1013
1014 /* Allocate space to store the array in the inferior, and then initialize
1015 it by copying in each element. FIXME: Is it worth it to create a
1016 local buffer in which to collect each value and then write all the
1017 bytes in one operation? */
1018
1019 addr = allocate_space_in_inferior (nelem * typelength);
1020 for (idx = 0; idx < nelem; idx++)
1021 {
1022 write_memory (addr + (idx * typelength),
1023 value_contents_all (elemvec[idx]),
1024 typelength);
1025 }
1026
1027 /* Create the array type and set up an array value to be evaluated lazily. */
1028
1029 val = value_at_lazy (arraytype, addr);
1030 return (val);
1031 }
1032
1033 /* Create a value for a string constant by allocating space in the inferior,
1034 copying the data into that space, and returning the address with type
1035 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1036 of characters.
1037 Note that string types are like array of char types with a lower bound of
1038 zero and an upper bound of LEN - 1. Also note that the string may contain
1039 embedded null bytes. */
1040
1041 struct value *
1042 value_string (char *ptr, int len)
1043 {
1044 struct value *val;
1045 int lowbound = current_language->string_lower_bound;
1046 struct type *rangetype = create_range_type ((struct type *) NULL,
1047 builtin_type_int,
1048 lowbound, len + lowbound - 1);
1049 struct type *stringtype
1050 = create_string_type ((struct type *) NULL, rangetype);
1051 CORE_ADDR addr;
1052
1053 if (current_language->c_style_arrays == 0)
1054 {
1055 val = allocate_value (stringtype);
1056 memcpy (value_contents_raw (val), ptr, len);
1057 return val;
1058 }
1059
1060
1061 /* Allocate space to store the string in the inferior, and then
1062 copy LEN bytes from PTR in gdb to that address in the inferior. */
1063
1064 addr = allocate_space_in_inferior (len);
1065 write_memory (addr, (gdb_byte *) ptr, len);
1066
1067 val = value_at_lazy (stringtype, addr);
1068 return (val);
1069 }
1070
1071 struct value *
1072 value_bitstring (char *ptr, int len)
1073 {
1074 struct value *val;
1075 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1076 0, len - 1);
1077 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1078 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1079 val = allocate_value (type);
1080 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1081 return val;
1082 }
1083 \f
1084 /* See if we can pass arguments in T2 to a function which takes arguments
1085 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1086 vector. If some arguments need coercion of some sort, then the coerced
1087 values are written into T2. Return value is 0 if the arguments could be
1088 matched, or the position at which they differ if not.
1089
1090 STATICP is nonzero if the T1 argument list came from a
1091 static member function. T2 will still include the ``this'' pointer,
1092 but it will be skipped.
1093
1094 For non-static member functions, we ignore the first argument,
1095 which is the type of the instance variable. This is because we want
1096 to handle calls with objects from derived classes. This is not
1097 entirely correct: we should actually check to make sure that a
1098 requested operation is type secure, shouldn't we? FIXME. */
1099
1100 static int
1101 typecmp (int staticp, int varargs, int nargs,
1102 struct field t1[], struct value *t2[])
1103 {
1104 int i;
1105
1106 if (t2 == 0)
1107 internal_error (__FILE__, __LINE__, _("typecmp: no argument list"));
1108
1109 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1110 if (staticp)
1111 t2 ++;
1112
1113 for (i = 0;
1114 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1115 i++)
1116 {
1117 struct type *tt1, *tt2;
1118
1119 if (!t2[i])
1120 return i + 1;
1121
1122 tt1 = check_typedef (t1[i].type);
1123 tt2 = check_typedef (value_type (t2[i]));
1124
1125 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1126 /* We should be doing hairy argument matching, as below. */
1127 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1128 {
1129 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1130 t2[i] = value_coerce_array (t2[i]);
1131 else
1132 t2[i] = value_ref (t2[i]);
1133 continue;
1134 }
1135
1136 /* djb - 20000715 - Until the new type structure is in the
1137 place, and we can attempt things like implicit conversions,
1138 we need to do this so you can take something like a map<const
1139 char *>, and properly access map["hello"], because the
1140 argument to [] will be a reference to a pointer to a char,
1141 and the argument will be a pointer to a char. */
1142 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1143 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1144 {
1145 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1146 }
1147 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1148 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1149 TYPE_CODE(tt2) == TYPE_CODE_REF)
1150 {
1151 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1152 }
1153 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1154 continue;
1155 /* Array to pointer is a `trivial conversion' according to the ARM. */
1156
1157 /* We should be doing much hairier argument matching (see section 13.2
1158 of the ARM), but as a quick kludge, just check for the same type
1159 code. */
1160 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1161 return i + 1;
1162 }
1163 if (varargs || t2[i] == NULL)
1164 return 0;
1165 return i + 1;
1166 }
1167
1168 /* Helper function used by value_struct_elt to recurse through baseclasses.
1169 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1170 and search in it assuming it has (class) type TYPE.
1171 If found, return value, else return NULL.
1172
1173 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1174 look for a baseclass named NAME. */
1175
1176 static struct value *
1177 search_struct_field (char *name, struct value *arg1, int offset,
1178 struct type *type, int looking_for_baseclass)
1179 {
1180 int i;
1181 int nbases = TYPE_N_BASECLASSES (type);
1182
1183 CHECK_TYPEDEF (type);
1184
1185 if (!looking_for_baseclass)
1186 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1187 {
1188 char *t_field_name = TYPE_FIELD_NAME (type, i);
1189
1190 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1191 {
1192 struct value *v;
1193 if (TYPE_FIELD_STATIC (type, i))
1194 {
1195 v = value_static_field (type, i);
1196 if (v == 0)
1197 error (_("field %s is nonexistent or has been optimised out"),
1198 name);
1199 }
1200 else
1201 {
1202 v = value_primitive_field (arg1, offset, i, type);
1203 if (v == 0)
1204 error (_("there is no field named %s"), name);
1205 }
1206 return v;
1207 }
1208
1209 if (t_field_name
1210 && (t_field_name[0] == '\0'
1211 || (TYPE_CODE (type) == TYPE_CODE_UNION
1212 && (strcmp_iw (t_field_name, "else") == 0))))
1213 {
1214 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1215 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1216 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1217 {
1218 /* Look for a match through the fields of an anonymous union,
1219 or anonymous struct. C++ provides anonymous unions.
1220
1221 In the GNU Chill (now deleted from GDB)
1222 implementation of variant record types, each
1223 <alternative field> has an (anonymous) union type,
1224 each member of the union represents a <variant
1225 alternative>. Each <variant alternative> is
1226 represented as a struct, with a member for each
1227 <variant field>. */
1228
1229 struct value *v;
1230 int new_offset = offset;
1231
1232 /* This is pretty gross. In G++, the offset in an
1233 anonymous union is relative to the beginning of the
1234 enclosing struct. In the GNU Chill (now deleted
1235 from GDB) implementation of variant records, the
1236 bitpos is zero in an anonymous union field, so we
1237 have to add the offset of the union here. */
1238 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1239 || (TYPE_NFIELDS (field_type) > 0
1240 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1241 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1242
1243 v = search_struct_field (name, arg1, new_offset, field_type,
1244 looking_for_baseclass);
1245 if (v)
1246 return v;
1247 }
1248 }
1249 }
1250
1251 for (i = 0; i < nbases; i++)
1252 {
1253 struct value *v;
1254 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1255 /* If we are looking for baseclasses, this is what we get when we
1256 hit them. But it could happen that the base part's member name
1257 is not yet filled in. */
1258 int found_baseclass = (looking_for_baseclass
1259 && TYPE_BASECLASS_NAME (type, i) != NULL
1260 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
1261
1262 if (BASETYPE_VIA_VIRTUAL (type, i))
1263 {
1264 int boffset;
1265 struct value *v2 = allocate_value (basetype);
1266
1267 boffset = baseclass_offset (type, i,
1268 value_contents (arg1) + offset,
1269 VALUE_ADDRESS (arg1)
1270 + value_offset (arg1) + offset);
1271 if (boffset == -1)
1272 error (_("virtual baseclass botch"));
1273
1274 /* The virtual base class pointer might have been clobbered by the
1275 user program. Make sure that it still points to a valid memory
1276 location. */
1277
1278 boffset += offset;
1279 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1280 {
1281 CORE_ADDR base_addr;
1282
1283 base_addr = VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1284 if (target_read_memory (base_addr, value_contents_raw (v2),
1285 TYPE_LENGTH (basetype)) != 0)
1286 error (_("virtual baseclass botch"));
1287 VALUE_LVAL (v2) = lval_memory;
1288 VALUE_ADDRESS (v2) = base_addr;
1289 }
1290 else
1291 {
1292 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1293 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1294 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1295 set_value_offset (v2, value_offset (arg1) + boffset);
1296 if (value_lazy (arg1))
1297 set_value_lazy (v2, 1);
1298 else
1299 memcpy (value_contents_raw (v2),
1300 value_contents_raw (arg1) + boffset,
1301 TYPE_LENGTH (basetype));
1302 }
1303
1304 if (found_baseclass)
1305 return v2;
1306 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1307 looking_for_baseclass);
1308 }
1309 else if (found_baseclass)
1310 v = value_primitive_field (arg1, offset, i, type);
1311 else
1312 v = search_struct_field (name, arg1,
1313 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1314 basetype, looking_for_baseclass);
1315 if (v)
1316 return v;
1317 }
1318 return NULL;
1319 }
1320
1321
1322 /* Return the offset (in bytes) of the virtual base of type BASETYPE
1323 * in an object pointed to by VALADDR (on the host), assumed to be of
1324 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
1325 * looking (in case VALADDR is the contents of an enclosing object).
1326 *
1327 * This routine recurses on the primary base of the derived class because
1328 * the virtual base entries of the primary base appear before the other
1329 * virtual base entries.
1330 *
1331 * If the virtual base is not found, a negative integer is returned.
1332 * The magnitude of the negative integer is the number of entries in
1333 * the virtual table to skip over (entries corresponding to various
1334 * ancestral classes in the chain of primary bases).
1335 *
1336 * Important: This assumes the HP / Taligent C++ runtime
1337 * conventions. Use baseclass_offset() instead to deal with g++
1338 * conventions. */
1339
1340 void
1341 find_rt_vbase_offset (struct type *type, struct type *basetype,
1342 const gdb_byte *valaddr, int offset, int *boffset_p,
1343 int *skip_p)
1344 {
1345 int boffset; /* offset of virtual base */
1346 int index; /* displacement to use in virtual table */
1347 int skip;
1348
1349 struct value *vp;
1350 CORE_ADDR vtbl; /* the virtual table pointer */
1351 struct type *pbc; /* the primary base class */
1352
1353 /* Look for the virtual base recursively in the primary base, first.
1354 * This is because the derived class object and its primary base
1355 * subobject share the primary virtual table. */
1356
1357 boffset = 0;
1358 pbc = TYPE_PRIMARY_BASE (type);
1359 if (pbc)
1360 {
1361 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
1362 if (skip < 0)
1363 {
1364 *boffset_p = boffset;
1365 *skip_p = -1;
1366 return;
1367 }
1368 }
1369 else
1370 skip = 0;
1371
1372
1373 /* Find the index of the virtual base according to HP/Taligent
1374 runtime spec. (Depth-first, left-to-right.) */
1375 index = virtual_base_index_skip_primaries (basetype, type);
1376
1377 if (index < 0)
1378 {
1379 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
1380 *boffset_p = 0;
1381 return;
1382 }
1383
1384 /* pai: FIXME -- 32x64 possible problem */
1385 /* First word (4 bytes) in object layout is the vtable pointer */
1386 vtbl = *(CORE_ADDR *) (valaddr + offset);
1387
1388 /* Before the constructor is invoked, things are usually zero'd out. */
1389 if (vtbl == 0)
1390 error (_("Couldn't find virtual table -- object may not be constructed yet."));
1391
1392
1393 /* Find virtual base's offset -- jump over entries for primary base
1394 * ancestors, then use the index computed above. But also adjust by
1395 * HP_ACC_VBASE_START for the vtable slots before the start of the
1396 * virtual base entries. Offset is negative -- virtual base entries
1397 * appear _before_ the address point of the virtual table. */
1398
1399 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
1400 & use long type */
1401
1402 /* epstein : FIXME -- added param for overlay section. May not be correct */
1403 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START));
1404 boffset = value_as_long (vp);
1405 *skip_p = -1;
1406 *boffset_p = boffset;
1407 return;
1408 }
1409
1410
1411 /* Helper function used by value_struct_elt to recurse through baseclasses.
1412 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1413 and search in it assuming it has (class) type TYPE.
1414 If found, return value, else if name matched and args not return (value)-1,
1415 else return NULL. */
1416
1417 static struct value *
1418 search_struct_method (char *name, struct value **arg1p,
1419 struct value **args, int offset,
1420 int *static_memfuncp, struct type *type)
1421 {
1422 int i;
1423 struct value *v;
1424 int name_matched = 0;
1425 char dem_opname[64];
1426
1427 CHECK_TYPEDEF (type);
1428 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1429 {
1430 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1431 /* FIXME! May need to check for ARM demangling here */
1432 if (strncmp (t_field_name, "__", 2) == 0 ||
1433 strncmp (t_field_name, "op", 2) == 0 ||
1434 strncmp (t_field_name, "type", 4) == 0)
1435 {
1436 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1437 t_field_name = dem_opname;
1438 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1439 t_field_name = dem_opname;
1440 }
1441 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1442 {
1443 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1444 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1445 name_matched = 1;
1446
1447 check_stub_method_group (type, i);
1448 if (j > 0 && args == 0)
1449 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1450 else if (j == 0 && args == 0)
1451 {
1452 v = value_fn_field (arg1p, f, j, type, offset);
1453 if (v != NULL)
1454 return v;
1455 }
1456 else
1457 while (j >= 0)
1458 {
1459 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1460 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1461 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1462 TYPE_FN_FIELD_ARGS (f, j), args))
1463 {
1464 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1465 return value_virtual_fn_field (arg1p, f, j, type, offset);
1466 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1467 *static_memfuncp = 1;
1468 v = value_fn_field (arg1p, f, j, type, offset);
1469 if (v != NULL)
1470 return v;
1471 }
1472 j--;
1473 }
1474 }
1475 }
1476
1477 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1478 {
1479 int base_offset;
1480
1481 if (BASETYPE_VIA_VIRTUAL (type, i))
1482 {
1483 if (TYPE_HAS_VTABLE (type))
1484 {
1485 /* HP aCC compiled type, search for virtual base offset
1486 according to HP/Taligent runtime spec. */
1487 int skip;
1488 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1489 value_contents_all (*arg1p),
1490 offset + value_embedded_offset (*arg1p),
1491 &base_offset, &skip);
1492 if (skip >= 0)
1493 error (_("Virtual base class offset not found in vtable"));
1494 }
1495 else
1496 {
1497 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1498 const gdb_byte *base_valaddr;
1499
1500 /* The virtual base class pointer might have been clobbered by the
1501 user program. Make sure that it still points to a valid memory
1502 location. */
1503
1504 if (offset < 0 || offset >= TYPE_LENGTH (type))
1505 {
1506 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1507 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1508 + value_offset (*arg1p) + offset,
1509 tmp, TYPE_LENGTH (baseclass)) != 0)
1510 error (_("virtual baseclass botch"));
1511 base_valaddr = tmp;
1512 }
1513 else
1514 base_valaddr = value_contents (*arg1p) + offset;
1515
1516 base_offset =
1517 baseclass_offset (type, i, base_valaddr,
1518 VALUE_ADDRESS (*arg1p)
1519 + value_offset (*arg1p) + offset);
1520 if (base_offset == -1)
1521 error (_("virtual baseclass botch"));
1522 }
1523 }
1524 else
1525 {
1526 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1527 }
1528 v = search_struct_method (name, arg1p, args, base_offset + offset,
1529 static_memfuncp, TYPE_BASECLASS (type, i));
1530 if (v == (struct value *) - 1)
1531 {
1532 name_matched = 1;
1533 }
1534 else if (v)
1535 {
1536 /* FIXME-bothner: Why is this commented out? Why is it here? */
1537 /* *arg1p = arg1_tmp; */
1538 return v;
1539 }
1540 }
1541 if (name_matched)
1542 return (struct value *) - 1;
1543 else
1544 return NULL;
1545 }
1546
1547 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1548 extract the component named NAME from the ultimate target structure/union
1549 and return it as a value with its appropriate type.
1550 ERR is used in the error message if *ARGP's type is wrong.
1551
1552 C++: ARGS is a list of argument types to aid in the selection of
1553 an appropriate method. Also, handle derived types.
1554
1555 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1556 where the truthvalue of whether the function that was resolved was
1557 a static member function or not is stored.
1558
1559 ERR is an error message to be printed in case the field is not found. */
1560
1561 struct value *
1562 value_struct_elt (struct value **argp, struct value **args,
1563 char *name, int *static_memfuncp, char *err)
1564 {
1565 struct type *t;
1566 struct value *v;
1567
1568 *argp = coerce_array (*argp);
1569
1570 t = check_typedef (value_type (*argp));
1571
1572 /* Follow pointers until we get to a non-pointer. */
1573
1574 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1575 {
1576 *argp = value_ind (*argp);
1577 /* Don't coerce fn pointer to fn and then back again! */
1578 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1579 *argp = coerce_array (*argp);
1580 t = check_typedef (value_type (*argp));
1581 }
1582
1583 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1584 && TYPE_CODE (t) != TYPE_CODE_UNION)
1585 error (_("Attempt to extract a component of a value that is not a %s."), err);
1586
1587 /* Assume it's not, unless we see that it is. */
1588 if (static_memfuncp)
1589 *static_memfuncp = 0;
1590
1591 if (!args)
1592 {
1593 /* if there are no arguments ...do this... */
1594
1595 /* Try as a field first, because if we succeed, there
1596 is less work to be done. */
1597 v = search_struct_field (name, *argp, 0, t, 0);
1598 if (v)
1599 return v;
1600
1601 /* C++: If it was not found as a data field, then try to
1602 return it as a pointer to a method. */
1603
1604 if (destructor_name_p (name, t))
1605 error (_("Cannot get value of destructor"));
1606
1607 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1608
1609 if (v == (struct value *) - 1)
1610 error (_("Cannot take address of method %s."), name);
1611 else if (v == 0)
1612 {
1613 if (TYPE_NFN_FIELDS (t))
1614 error (_("There is no member or method named %s."), name);
1615 else
1616 error (_("There is no member named %s."), name);
1617 }
1618 return v;
1619 }
1620
1621 if (destructor_name_p (name, t))
1622 {
1623 if (!args[1])
1624 {
1625 /* Destructors are a special case. */
1626 int m_index, f_index;
1627
1628 v = NULL;
1629 if (get_destructor_fn_field (t, &m_index, &f_index))
1630 {
1631 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
1632 f_index, NULL, 0);
1633 }
1634 if (v == NULL)
1635 error (_("could not find destructor function named %s."), name);
1636 else
1637 return v;
1638 }
1639 else
1640 {
1641 error (_("destructor should not have any argument"));
1642 }
1643 }
1644 else
1645 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1646
1647 if (v == (struct value *) - 1)
1648 {
1649 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1650 }
1651 else if (v == 0)
1652 {
1653 /* See if user tried to invoke data as function. If so,
1654 hand it back. If it's not callable (i.e., a pointer to function),
1655 gdb should give an error. */
1656 v = search_struct_field (name, *argp, 0, t, 0);
1657 }
1658
1659 if (!v)
1660 error (_("Structure has no component named %s."), name);
1661 return v;
1662 }
1663
1664 /* Search through the methods of an object (and its bases)
1665 * to find a specified method. Return the pointer to the
1666 * fn_field list of overloaded instances.
1667 * Helper function for value_find_oload_list.
1668 * ARGP is a pointer to a pointer to a value (the object)
1669 * METHOD is a string containing the method name
1670 * OFFSET is the offset within the value
1671 * TYPE is the assumed type of the object
1672 * NUM_FNS is the number of overloaded instances
1673 * BASETYPE is set to the actual type of the subobject where the method is found
1674 * BOFFSET is the offset of the base subobject where the method is found */
1675
1676 static struct fn_field *
1677 find_method_list (struct value **argp, char *method, int offset,
1678 struct type *type, int *num_fns,
1679 struct type **basetype, int *boffset)
1680 {
1681 int i;
1682 struct fn_field *f;
1683 CHECK_TYPEDEF (type);
1684
1685 *num_fns = 0;
1686
1687 /* First check in object itself */
1688 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1689 {
1690 /* pai: FIXME What about operators and type conversions? */
1691 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1692 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1693 {
1694 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1695 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1696
1697 *num_fns = len;
1698 *basetype = type;
1699 *boffset = offset;
1700
1701 /* Resolve any stub methods. */
1702 check_stub_method_group (type, i);
1703
1704 return f;
1705 }
1706 }
1707
1708 /* Not found in object, check in base subobjects */
1709 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1710 {
1711 int base_offset;
1712 if (BASETYPE_VIA_VIRTUAL (type, i))
1713 {
1714 if (TYPE_HAS_VTABLE (type))
1715 {
1716 /* HP aCC compiled type, search for virtual base offset
1717 * according to HP/Taligent runtime spec. */
1718 int skip;
1719 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1720 value_contents_all (*argp),
1721 offset + value_embedded_offset (*argp),
1722 &base_offset, &skip);
1723 if (skip >= 0)
1724 error (_("Virtual base class offset not found in vtable"));
1725 }
1726 else
1727 {
1728 /* probably g++ runtime model */
1729 base_offset = value_offset (*argp) + offset;
1730 base_offset =
1731 baseclass_offset (type, i,
1732 value_contents (*argp) + base_offset,
1733 VALUE_ADDRESS (*argp) + base_offset);
1734 if (base_offset == -1)
1735 error (_("virtual baseclass botch"));
1736 }
1737 }
1738 else
1739 /* non-virtual base, simply use bit position from debug info */
1740 {
1741 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1742 }
1743 f = find_method_list (argp, method, base_offset + offset,
1744 TYPE_BASECLASS (type, i), num_fns, basetype,
1745 boffset);
1746 if (f)
1747 return f;
1748 }
1749 return NULL;
1750 }
1751
1752 /* Return the list of overloaded methods of a specified name.
1753 * ARGP is a pointer to a pointer to a value (the object)
1754 * METHOD is the method name
1755 * OFFSET is the offset within the value contents
1756 * NUM_FNS is the number of overloaded instances
1757 * BASETYPE is set to the type of the base subobject that defines the method
1758 * BOFFSET is the offset of the base subobject which defines the method */
1759
1760 struct fn_field *
1761 value_find_oload_method_list (struct value **argp, char *method, int offset,
1762 int *num_fns, struct type **basetype,
1763 int *boffset)
1764 {
1765 struct type *t;
1766
1767 t = check_typedef (value_type (*argp));
1768
1769 /* code snarfed from value_struct_elt */
1770 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1771 {
1772 *argp = value_ind (*argp);
1773 /* Don't coerce fn pointer to fn and then back again! */
1774 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1775 *argp = coerce_array (*argp);
1776 t = check_typedef (value_type (*argp));
1777 }
1778
1779 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1780 && TYPE_CODE (t) != TYPE_CODE_UNION)
1781 error (_("Attempt to extract a component of a value that is not a struct or union"));
1782
1783 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
1784 }
1785
1786 /* Given an array of argument types (ARGTYPES) (which includes an
1787 entry for "this" in the case of C++ methods), the number of
1788 arguments NARGS, the NAME of a function whether it's a method or
1789 not (METHOD), and the degree of laxness (LAX) in conforming to
1790 overload resolution rules in ANSI C++, find the best function that
1791 matches on the argument types according to the overload resolution
1792 rules.
1793
1794 In the case of class methods, the parameter OBJ is an object value
1795 in which to search for overloaded methods.
1796
1797 In the case of non-method functions, the parameter FSYM is a symbol
1798 corresponding to one of the overloaded functions.
1799
1800 Return value is an integer: 0 -> good match, 10 -> debugger applied
1801 non-standard coercions, 100 -> incompatible.
1802
1803 If a method is being searched for, VALP will hold the value.
1804 If a non-method is being searched for, SYMP will hold the symbol for it.
1805
1806 If a method is being searched for, and it is a static method,
1807 then STATICP will point to a non-zero value.
1808
1809 Note: This function does *not* check the value of
1810 overload_resolution. Caller must check it to see whether overload
1811 resolution is permitted.
1812 */
1813
1814 int
1815 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
1816 int lax, struct value **objp, struct symbol *fsym,
1817 struct value **valp, struct symbol **symp, int *staticp)
1818 {
1819 struct value *obj = (objp ? *objp : NULL);
1820
1821 int oload_champ; /* Index of best overloaded function */
1822
1823 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
1824
1825 struct value *temp = obj;
1826 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
1827 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
1828 int num_fns = 0; /* Number of overloaded instances being considered */
1829 struct type *basetype = NULL;
1830 int boffset;
1831 int ix;
1832 int static_offset;
1833 struct cleanup *old_cleanups = NULL;
1834
1835 const char *obj_type_name = NULL;
1836 char *func_name = NULL;
1837 enum oload_classification match_quality;
1838
1839 /* Get the list of overloaded methods or functions */
1840 if (method)
1841 {
1842 obj_type_name = TYPE_NAME (value_type (obj));
1843 /* Hack: evaluate_subexp_standard often passes in a pointer
1844 value rather than the object itself, so try again */
1845 if ((!obj_type_name || !*obj_type_name) &&
1846 (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
1847 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
1848
1849 fns_ptr = value_find_oload_method_list (&temp, name, 0,
1850 &num_fns,
1851 &basetype, &boffset);
1852 if (!fns_ptr || !num_fns)
1853 error (_("Couldn't find method %s%s%s"),
1854 obj_type_name,
1855 (obj_type_name && *obj_type_name) ? "::" : "",
1856 name);
1857 /* If we are dealing with stub method types, they should have
1858 been resolved by find_method_list via value_find_oload_method_list
1859 above. */
1860 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1861 oload_champ = find_oload_champ (arg_types, nargs, method, num_fns,
1862 fns_ptr, oload_syms, &oload_champ_bv);
1863 }
1864 else
1865 {
1866 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1867
1868 /* If we have a C++ name, try to extract just the function
1869 part. */
1870 if (qualified_name)
1871 func_name = cp_func_name (qualified_name);
1872
1873 /* If there was no C++ name, this must be a C-style function.
1874 Just return the same symbol. Do the same if cp_func_name
1875 fails for some reason. */
1876 if (func_name == NULL)
1877 {
1878 *symp = fsym;
1879 return 0;
1880 }
1881
1882 old_cleanups = make_cleanup (xfree, func_name);
1883 make_cleanup (xfree, oload_syms);
1884 make_cleanup (xfree, oload_champ_bv);
1885
1886 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1887 func_name,
1888 qualified_name,
1889 &oload_syms,
1890 &oload_champ_bv);
1891 }
1892
1893 /* Check how bad the best match is. */
1894
1895 match_quality
1896 = classify_oload_match (oload_champ_bv, nargs,
1897 oload_method_static (method, fns_ptr,
1898 oload_champ));
1899
1900 if (match_quality == INCOMPATIBLE)
1901 {
1902 if (method)
1903 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
1904 obj_type_name,
1905 (obj_type_name && *obj_type_name) ? "::" : "",
1906 name);
1907 else
1908 error (_("Cannot resolve function %s to any overloaded instance"),
1909 func_name);
1910 }
1911 else if (match_quality == NON_STANDARD)
1912 {
1913 if (method)
1914 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
1915 obj_type_name,
1916 (obj_type_name && *obj_type_name) ? "::" : "",
1917 name);
1918 else
1919 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
1920 func_name);
1921 }
1922
1923 if (method)
1924 {
1925 if (staticp != NULL)
1926 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1927 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1928 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1929 else
1930 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1931 }
1932 else
1933 {
1934 *symp = oload_syms[oload_champ];
1935 }
1936
1937 if (objp)
1938 {
1939 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
1940 && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR)
1941 {
1942 temp = value_addr (temp);
1943 }
1944 *objp = temp;
1945 }
1946 if (old_cleanups != NULL)
1947 do_cleanups (old_cleanups);
1948
1949 switch (match_quality)
1950 {
1951 case INCOMPATIBLE:
1952 return 100;
1953 case NON_STANDARD:
1954 return 10;
1955 default: /* STANDARD */
1956 return 0;
1957 }
1958 }
1959
1960 /* Find the best overload match, searching for FUNC_NAME in namespaces
1961 contained in QUALIFIED_NAME until it either finds a good match or
1962 runs out of namespaces. It stores the overloaded functions in
1963 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1964 calling function is responsible for freeing *OLOAD_SYMS and
1965 *OLOAD_CHAMP_BV. */
1966
1967 static int
1968 find_oload_champ_namespace (struct type **arg_types, int nargs,
1969 const char *func_name,
1970 const char *qualified_name,
1971 struct symbol ***oload_syms,
1972 struct badness_vector **oload_champ_bv)
1973 {
1974 int oload_champ;
1975
1976 find_oload_champ_namespace_loop (arg_types, nargs,
1977 func_name,
1978 qualified_name, 0,
1979 oload_syms, oload_champ_bv,
1980 &oload_champ);
1981
1982 return oload_champ;
1983 }
1984
1985 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
1986 how deep we've looked for namespaces, and the champ is stored in
1987 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
1988 if it isn't.
1989
1990 It is the caller's responsibility to free *OLOAD_SYMS and
1991 *OLOAD_CHAMP_BV. */
1992
1993 static int
1994 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
1995 const char *func_name,
1996 const char *qualified_name,
1997 int namespace_len,
1998 struct symbol ***oload_syms,
1999 struct badness_vector **oload_champ_bv,
2000 int *oload_champ)
2001 {
2002 int next_namespace_len = namespace_len;
2003 int searched_deeper = 0;
2004 int num_fns = 0;
2005 struct cleanup *old_cleanups;
2006 int new_oload_champ;
2007 struct symbol **new_oload_syms;
2008 struct badness_vector *new_oload_champ_bv;
2009 char *new_namespace;
2010
2011 if (next_namespace_len != 0)
2012 {
2013 gdb_assert (qualified_name[next_namespace_len] == ':');
2014 next_namespace_len += 2;
2015 }
2016 next_namespace_len
2017 += cp_find_first_component (qualified_name + next_namespace_len);
2018
2019 /* Initialize these to values that can safely be xfree'd. */
2020 *oload_syms = NULL;
2021 *oload_champ_bv = NULL;
2022
2023 /* First, see if we have a deeper namespace we can search in. If we
2024 get a good match there, use it. */
2025
2026 if (qualified_name[next_namespace_len] == ':')
2027 {
2028 searched_deeper = 1;
2029
2030 if (find_oload_champ_namespace_loop (arg_types, nargs,
2031 func_name, qualified_name,
2032 next_namespace_len,
2033 oload_syms, oload_champ_bv,
2034 oload_champ))
2035 {
2036 return 1;
2037 }
2038 };
2039
2040 /* If we reach here, either we're in the deepest namespace or we
2041 didn't find a good match in a deeper namespace. But, in the
2042 latter case, we still have a bad match in a deeper namespace;
2043 note that we might not find any match at all in the current
2044 namespace. (There's always a match in the deepest namespace,
2045 because this overload mechanism only gets called if there's a
2046 function symbol to start off with.) */
2047
2048 old_cleanups = make_cleanup (xfree, *oload_syms);
2049 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2050 new_namespace = alloca (namespace_len + 1);
2051 strncpy (new_namespace, qualified_name, namespace_len);
2052 new_namespace[namespace_len] = '\0';
2053 new_oload_syms = make_symbol_overload_list (func_name,
2054 new_namespace);
2055 while (new_oload_syms[num_fns])
2056 ++num_fns;
2057
2058 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2059 NULL, new_oload_syms,
2060 &new_oload_champ_bv);
2061
2062 /* Case 1: We found a good match. Free earlier matches (if any),
2063 and return it. Case 2: We didn't find a good match, but we're
2064 not the deepest function. Then go with the bad match that the
2065 deeper function found. Case 3: We found a bad match, and we're
2066 the deepest function. Then return what we found, even though
2067 it's a bad match. */
2068
2069 if (new_oload_champ != -1
2070 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2071 {
2072 *oload_syms = new_oload_syms;
2073 *oload_champ = new_oload_champ;
2074 *oload_champ_bv = new_oload_champ_bv;
2075 do_cleanups (old_cleanups);
2076 return 1;
2077 }
2078 else if (searched_deeper)
2079 {
2080 xfree (new_oload_syms);
2081 xfree (new_oload_champ_bv);
2082 discard_cleanups (old_cleanups);
2083 return 0;
2084 }
2085 else
2086 {
2087 gdb_assert (new_oload_champ != -1);
2088 *oload_syms = new_oload_syms;
2089 *oload_champ = new_oload_champ;
2090 *oload_champ_bv = new_oload_champ_bv;
2091 discard_cleanups (old_cleanups);
2092 return 0;
2093 }
2094 }
2095
2096 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2097 the best match from among the overloaded methods or functions
2098 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2099 The number of methods/functions in the list is given by NUM_FNS.
2100 Return the index of the best match; store an indication of the
2101 quality of the match in OLOAD_CHAMP_BV.
2102
2103 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2104
2105 static int
2106 find_oload_champ (struct type **arg_types, int nargs, int method,
2107 int num_fns, struct fn_field *fns_ptr,
2108 struct symbol **oload_syms,
2109 struct badness_vector **oload_champ_bv)
2110 {
2111 int ix;
2112 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2113 int oload_champ = -1; /* Index of best overloaded function */
2114 int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2115 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2116
2117 *oload_champ_bv = NULL;
2118
2119 /* Consider each candidate in turn */
2120 for (ix = 0; ix < num_fns; ix++)
2121 {
2122 int jj;
2123 int static_offset = oload_method_static (method, fns_ptr, ix);
2124 int nparms;
2125 struct type **parm_types;
2126
2127 if (method)
2128 {
2129 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2130 }
2131 else
2132 {
2133 /* If it's not a method, this is the proper place */
2134 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2135 }
2136
2137 /* Prepare array of parameter types */
2138 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2139 for (jj = 0; jj < nparms; jj++)
2140 parm_types[jj] = (method
2141 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2142 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2143
2144 /* Compare parameter types to supplied argument types. Skip THIS for
2145 static methods. */
2146 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2147 nargs - static_offset);
2148
2149 if (!*oload_champ_bv)
2150 {
2151 *oload_champ_bv = bv;
2152 oload_champ = 0;
2153 }
2154 else
2155 /* See whether current candidate is better or worse than previous best */
2156 switch (compare_badness (bv, *oload_champ_bv))
2157 {
2158 case 0:
2159 oload_ambiguous = 1; /* top two contenders are equally good */
2160 break;
2161 case 1:
2162 oload_ambiguous = 2; /* incomparable top contenders */
2163 break;
2164 case 2:
2165 *oload_champ_bv = bv; /* new champion, record details */
2166 oload_ambiguous = 0;
2167 oload_champ = ix;
2168 break;
2169 case 3:
2170 default:
2171 break;
2172 }
2173 xfree (parm_types);
2174 if (overload_debug)
2175 {
2176 if (method)
2177 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2178 else
2179 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2180 for (jj = 0; jj < nargs - static_offset; jj++)
2181 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2182 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2183 }
2184 }
2185
2186 return oload_champ;
2187 }
2188
2189 /* Return 1 if we're looking at a static method, 0 if we're looking at
2190 a non-static method or a function that isn't a method. */
2191
2192 static int
2193 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2194 {
2195 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2196 return 1;
2197 else
2198 return 0;
2199 }
2200
2201 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2202
2203 static enum oload_classification
2204 classify_oload_match (struct badness_vector *oload_champ_bv,
2205 int nargs,
2206 int static_offset)
2207 {
2208 int ix;
2209
2210 for (ix = 1; ix <= nargs - static_offset; ix++)
2211 {
2212 if (oload_champ_bv->rank[ix] >= 100)
2213 return INCOMPATIBLE; /* truly mismatched types */
2214 else if (oload_champ_bv->rank[ix] >= 10)
2215 return NON_STANDARD; /* non-standard type conversions needed */
2216 }
2217
2218 return STANDARD; /* Only standard conversions needed. */
2219 }
2220
2221 /* C++: return 1 is NAME is a legitimate name for the destructor
2222 of type TYPE. If TYPE does not have a destructor, or
2223 if NAME is inappropriate for TYPE, an error is signaled. */
2224 int
2225 destructor_name_p (const char *name, const struct type *type)
2226 {
2227 /* destructors are a special case. */
2228
2229 if (name[0] == '~')
2230 {
2231 char *dname = type_name_no_tag (type);
2232 char *cp = strchr (dname, '<');
2233 unsigned int len;
2234
2235 /* Do not compare the template part for template classes. */
2236 if (cp == NULL)
2237 len = strlen (dname);
2238 else
2239 len = cp - dname;
2240 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2241 error (_("name of destructor must equal name of class"));
2242 else
2243 return 1;
2244 }
2245 return 0;
2246 }
2247
2248 /* Helper function for check_field: Given TYPE, a structure/union,
2249 return 1 if the component named NAME from the ultimate
2250 target structure/union is defined, otherwise, return 0. */
2251
2252 static int
2253 check_field_in (struct type *type, const char *name)
2254 {
2255 int i;
2256
2257 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2258 {
2259 char *t_field_name = TYPE_FIELD_NAME (type, i);
2260 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2261 return 1;
2262 }
2263
2264 /* C++: If it was not found as a data field, then try to
2265 return it as a pointer to a method. */
2266
2267 /* Destructors are a special case. */
2268 if (destructor_name_p (name, type))
2269 {
2270 int m_index, f_index;
2271
2272 return get_destructor_fn_field (type, &m_index, &f_index);
2273 }
2274
2275 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2276 {
2277 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2278 return 1;
2279 }
2280
2281 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2282 if (check_field_in (TYPE_BASECLASS (type, i), name))
2283 return 1;
2284
2285 return 0;
2286 }
2287
2288
2289 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2290 return 1 if the component named NAME from the ultimate
2291 target structure/union is defined, otherwise, return 0. */
2292
2293 int
2294 check_field (struct value *arg1, const char *name)
2295 {
2296 struct type *t;
2297
2298 arg1 = coerce_array (arg1);
2299
2300 t = value_type (arg1);
2301
2302 /* Follow pointers until we get to a non-pointer. */
2303
2304 for (;;)
2305 {
2306 CHECK_TYPEDEF (t);
2307 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2308 break;
2309 t = TYPE_TARGET_TYPE (t);
2310 }
2311
2312 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2313 && TYPE_CODE (t) != TYPE_CODE_UNION)
2314 error (_("Internal error: `this' is not an aggregate"));
2315
2316 return check_field_in (t, name);
2317 }
2318
2319 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2320 return the appropriate member (or the address of the member, if
2321 WANT_ADDRESS). This function is used to resolve user expressions
2322 of the form "DOMAIN::NAME". For more details on what happens, see
2323 the comment before value_struct_elt_for_reference. */
2324
2325 struct value *
2326 value_aggregate_elt (struct type *curtype,
2327 char *name, int want_address,
2328 enum noside noside)
2329 {
2330 switch (TYPE_CODE (curtype))
2331 {
2332 case TYPE_CODE_STRUCT:
2333 case TYPE_CODE_UNION:
2334 return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL,
2335 want_address, noside);
2336 case TYPE_CODE_NAMESPACE:
2337 return value_namespace_elt (curtype, name, want_address, noside);
2338 default:
2339 internal_error (__FILE__, __LINE__,
2340 _("non-aggregate type in value_aggregate_elt"));
2341 }
2342 }
2343
2344 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2345 return the address of this member as a "pointer to member"
2346 type. If INTYPE is non-null, then it will be the type
2347 of the member we are looking for. This will help us resolve
2348 "pointers to member functions". This function is used
2349 to resolve user expressions of the form "DOMAIN::NAME". */
2350
2351 static struct value *
2352 value_struct_elt_for_reference (struct type *domain, int offset,
2353 struct type *curtype, char *name,
2354 struct type *intype, int want_address,
2355 enum noside noside)
2356 {
2357 struct type *t = curtype;
2358 int i;
2359 struct value *v, *result;
2360
2361 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2362 && TYPE_CODE (t) != TYPE_CODE_UNION)
2363 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2364
2365 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2366 {
2367 char *t_field_name = TYPE_FIELD_NAME (t, i);
2368
2369 if (t_field_name && strcmp (t_field_name, name) == 0)
2370 {
2371 if (TYPE_FIELD_STATIC (t, i))
2372 {
2373 v = value_static_field (t, i);
2374 if (v == NULL)
2375 error (_("static field %s has been optimized out"),
2376 name);
2377 if (want_address)
2378 v = value_addr (v);
2379 return v;
2380 }
2381 if (TYPE_FIELD_PACKED (t, i))
2382 error (_("pointers to bitfield members not allowed"));
2383
2384 if (want_address)
2385 return value_from_longest
2386 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2387 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2388 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2389 return allocate_value (TYPE_FIELD_TYPE (t, i));
2390 else
2391 error (_("Cannot reference non-static field \"%s\""), name);
2392 }
2393 }
2394
2395 /* C++: If it was not found as a data field, then try to
2396 return it as a pointer to a method. */
2397
2398 /* Destructors are a special case. */
2399 if (destructor_name_p (name, t))
2400 {
2401 error (_("member pointers to destructors not implemented yet"));
2402 }
2403
2404 /* Perform all necessary dereferencing. */
2405 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2406 intype = TYPE_TARGET_TYPE (intype);
2407
2408 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2409 {
2410 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2411 char dem_opname[64];
2412
2413 if (strncmp (t_field_name, "__", 2) == 0 ||
2414 strncmp (t_field_name, "op", 2) == 0 ||
2415 strncmp (t_field_name, "type", 4) == 0)
2416 {
2417 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2418 t_field_name = dem_opname;
2419 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2420 t_field_name = dem_opname;
2421 }
2422 if (t_field_name && strcmp (t_field_name, name) == 0)
2423 {
2424 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2425 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2426
2427 check_stub_method_group (t, i);
2428
2429 if (intype == 0 && j > 1)
2430 error (_("non-unique member `%s' requires type instantiation"), name);
2431 if (intype)
2432 {
2433 while (j--)
2434 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2435 break;
2436 if (j < 0)
2437 error (_("no member function matches that type instantiation"));
2438 }
2439 else
2440 j = 0;
2441
2442 if (TYPE_FN_FIELD_STATIC_P (f, j))
2443 {
2444 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2445 0, VAR_DOMAIN, 0, NULL);
2446 if (s == NULL)
2447 return NULL;
2448
2449 if (want_address)
2450 return value_addr (read_var_value (s, 0));
2451 else
2452 return read_var_value (s, 0);
2453 }
2454
2455 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2456 {
2457 if (want_address)
2458 {
2459 result = allocate_value
2460 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2461 cplus_make_method_ptr (value_contents_writeable (result),
2462 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2463 }
2464 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2465 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2466 else
2467 error (_("Cannot reference virtual member function \"%s\""),
2468 name);
2469 }
2470 else
2471 {
2472 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2473 0, VAR_DOMAIN, 0, NULL);
2474 if (s == NULL)
2475 return NULL;
2476
2477 v = read_var_value (s, 0);
2478 if (!want_address)
2479 result = v;
2480 else
2481 {
2482 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2483 cplus_make_method_ptr (value_contents_writeable (result),
2484 VALUE_ADDRESS (v), 0);
2485 }
2486 }
2487 return result;
2488 }
2489 }
2490 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2491 {
2492 struct value *v;
2493 int base_offset;
2494
2495 if (BASETYPE_VIA_VIRTUAL (t, i))
2496 base_offset = 0;
2497 else
2498 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2499 v = value_struct_elt_for_reference (domain,
2500 offset + base_offset,
2501 TYPE_BASECLASS (t, i),
2502 name,
2503 intype, want_address,
2504 noside);
2505 if (v)
2506 return v;
2507 }
2508
2509 /* As a last chance, pretend that CURTYPE is a namespace, and look
2510 it up that way; this (frequently) works for types nested inside
2511 classes. */
2512
2513 return value_maybe_namespace_elt (curtype, name, want_address, noside);
2514 }
2515
2516 /* C++: Return the member NAME of the namespace given by the type
2517 CURTYPE. */
2518
2519 static struct value *
2520 value_namespace_elt (const struct type *curtype,
2521 char *name, int want_address,
2522 enum noside noside)
2523 {
2524 struct value *retval = value_maybe_namespace_elt (curtype, name,
2525 want_address, noside);
2526
2527 if (retval == NULL)
2528 error (_("No symbol \"%s\" in namespace \"%s\"."), name,
2529 TYPE_TAG_NAME (curtype));
2530
2531 return retval;
2532 }
2533
2534 /* A helper function used by value_namespace_elt and
2535 value_struct_elt_for_reference. It looks up NAME inside the
2536 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2537 is a class and NAME refers to a type in CURTYPE itself (as opposed
2538 to, say, some base class of CURTYPE). */
2539
2540 static struct value *
2541 value_maybe_namespace_elt (const struct type *curtype,
2542 char *name, int want_address,
2543 enum noside noside)
2544 {
2545 const char *namespace_name = TYPE_TAG_NAME (curtype);
2546 struct symbol *sym;
2547 struct value *result;
2548
2549 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2550 get_selected_block (0), VAR_DOMAIN,
2551 NULL);
2552
2553 if (sym == NULL)
2554 return NULL;
2555 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2556 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2557 result = allocate_value (SYMBOL_TYPE (sym));
2558 else
2559 result = value_of_variable (sym, get_selected_block (0));
2560
2561 if (result && want_address)
2562 result = value_addr (result);
2563
2564 return result;
2565 }
2566
2567 /* Given a pointer value V, find the real (RTTI) type
2568 of the object it points to.
2569 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2570 and refer to the values computed for the object pointed to. */
2571
2572 struct type *
2573 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
2574 {
2575 struct value *target;
2576
2577 target = value_ind (v);
2578
2579 return value_rtti_type (target, full, top, using_enc);
2580 }
2581
2582 /* Given a value pointed to by ARGP, check its real run-time type, and
2583 if that is different from the enclosing type, create a new value
2584 using the real run-time type as the enclosing type (and of the same
2585 type as ARGP) and return it, with the embedded offset adjusted to
2586 be the correct offset to the enclosed object
2587 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
2588 parameters, computed by value_rtti_type(). If these are available,
2589 they can be supplied and a second call to value_rtti_type() is avoided.
2590 (Pass RTYPE == NULL if they're not available */
2591
2592 struct value *
2593 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
2594 int xusing_enc)
2595 {
2596 struct type *real_type;
2597 int full = 0;
2598 int top = -1;
2599 int using_enc = 0;
2600 struct value *new_val;
2601
2602 if (rtype)
2603 {
2604 real_type = rtype;
2605 full = xfull;
2606 top = xtop;
2607 using_enc = xusing_enc;
2608 }
2609 else
2610 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2611
2612 /* If no RTTI data, or if object is already complete, do nothing */
2613 if (!real_type || real_type == value_enclosing_type (argp))
2614 return argp;
2615
2616 /* If we have the full object, but for some reason the enclosing
2617 type is wrong, set it *//* pai: FIXME -- sounds iffy */
2618 if (full)
2619 {
2620 argp = value_change_enclosing_type (argp, real_type);
2621 return argp;
2622 }
2623
2624 /* Check if object is in memory */
2625 if (VALUE_LVAL (argp) != lval_memory)
2626 {
2627 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), TYPE_NAME (real_type));
2628
2629 return argp;
2630 }
2631
2632 /* All other cases -- retrieve the complete object */
2633 /* Go back by the computed top_offset from the beginning of the object,
2634 adjusting for the embedded offset of argp if that's what value_rtti_type
2635 used for its computation. */
2636 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2637 (using_enc ? 0 : value_embedded_offset (argp)));
2638 deprecated_set_value_type (new_val, value_type (argp));
2639 set_value_embedded_offset (new_val, (using_enc
2640 ? top + value_embedded_offset (argp)
2641 : top));
2642 return new_val;
2643 }
2644
2645
2646
2647
2648 /* Return the value of the local variable, if one exists.
2649 Flag COMPLAIN signals an error if the request is made in an
2650 inappropriate context. */
2651
2652 struct value *
2653 value_of_local (const char *name, int complain)
2654 {
2655 struct symbol *func, *sym;
2656 struct block *b;
2657 struct value * ret;
2658 struct frame_info *frame;
2659
2660 if (complain)
2661 frame = get_selected_frame (_("no frame selected"));
2662 else
2663 {
2664 frame = deprecated_safe_get_selected_frame ();
2665 if (frame == 0)
2666 return 0;
2667 }
2668
2669 func = get_frame_function (frame);
2670 if (!func)
2671 {
2672 if (complain)
2673 error (_("no `%s' in nameless context"), name);
2674 else
2675 return 0;
2676 }
2677
2678 b = SYMBOL_BLOCK_VALUE (func);
2679 if (dict_empty (BLOCK_DICT (b)))
2680 {
2681 if (complain)
2682 error (_("no args, no `%s'"), name);
2683 else
2684 return 0;
2685 }
2686
2687 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2688 symbol instead of the LOC_ARG one (if both exist). */
2689 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2690 if (sym == NULL)
2691 {
2692 if (complain)
2693 error (_("current stack frame does not contain a variable named `%s'"), name);
2694 else
2695 return NULL;
2696 }
2697
2698 ret = read_var_value (sym, frame);
2699 if (ret == 0 && complain)
2700 error (_("`%s' argument unreadable"), name);
2701 return ret;
2702 }
2703
2704 /* C++/Objective-C: return the value of the class instance variable,
2705 if one exists. Flag COMPLAIN signals an error if the request is
2706 made in an inappropriate context. */
2707
2708 struct value *
2709 value_of_this (int complain)
2710 {
2711 if (current_language->la_language == language_objc)
2712 return value_of_local ("self", complain);
2713 else
2714 return value_of_local ("this", complain);
2715 }
2716
2717 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2718 long, starting at LOWBOUND. The result has the same lower bound as
2719 the original ARRAY. */
2720
2721 struct value *
2722 value_slice (struct value *array, int lowbound, int length)
2723 {
2724 struct type *slice_range_type, *slice_type, *range_type;
2725 LONGEST lowerbound, upperbound;
2726 struct value *slice;
2727 struct type *array_type;
2728 array_type = check_typedef (value_type (array));
2729 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2730 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2731 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2732 error (_("cannot take slice of non-array"));
2733 range_type = TYPE_INDEX_TYPE (array_type);
2734 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2735 error (_("slice from bad array or bitstring"));
2736 if (lowbound < lowerbound || length < 0
2737 || lowbound + length - 1 > upperbound)
2738 error (_("slice out of range"));
2739 /* FIXME-type-allocation: need a way to free this type when we are
2740 done with it. */
2741 slice_range_type = create_range_type ((struct type *) NULL,
2742 TYPE_TARGET_TYPE (range_type),
2743 lowbound, lowbound + length - 1);
2744 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2745 {
2746 int i;
2747 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
2748 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2749 slice = value_zero (slice_type, not_lval);
2750 for (i = 0; i < length; i++)
2751 {
2752 int element = value_bit_index (array_type,
2753 value_contents (array),
2754 lowbound + i);
2755 if (element < 0)
2756 error (_("internal error accessing bitstring"));
2757 else if (element > 0)
2758 {
2759 int j = i % TARGET_CHAR_BIT;
2760 if (BITS_BIG_ENDIAN)
2761 j = TARGET_CHAR_BIT - 1 - j;
2762 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2763 }
2764 }
2765 /* We should set the address, bitssize, and bitspos, so the clice
2766 can be used on the LHS, but that may require extensions to
2767 value_assign. For now, just leave as a non_lval. FIXME. */
2768 }
2769 else
2770 {
2771 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2772 LONGEST offset
2773 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2774 slice_type = create_array_type ((struct type *) NULL, element_type,
2775 slice_range_type);
2776 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2777 slice = allocate_value (slice_type);
2778 if (value_lazy (array))
2779 set_value_lazy (slice, 1);
2780 else
2781 memcpy (value_contents_writeable (slice),
2782 value_contents (array) + offset,
2783 TYPE_LENGTH (slice_type));
2784 if (VALUE_LVAL (array) == lval_internalvar)
2785 VALUE_LVAL (slice) = lval_internalvar_component;
2786 else
2787 VALUE_LVAL (slice) = VALUE_LVAL (array);
2788 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2789 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2790 set_value_offset (slice, value_offset (array) + offset);
2791 }
2792 return slice;
2793 }
2794
2795 /* Create a value for a FORTRAN complex number. Currently most of
2796 the time values are coerced to COMPLEX*16 (i.e. a complex number
2797 composed of 2 doubles. This really should be a smarter routine
2798 that figures out precision inteligently as opposed to assuming
2799 doubles. FIXME: fmb */
2800
2801 struct value *
2802 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
2803 {
2804 struct value *val;
2805 struct type *real_type = TYPE_TARGET_TYPE (type);
2806
2807 val = allocate_value (type);
2808 arg1 = value_cast (real_type, arg1);
2809 arg2 = value_cast (real_type, arg2);
2810
2811 memcpy (value_contents_raw (val),
2812 value_contents (arg1), TYPE_LENGTH (real_type));
2813 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
2814 value_contents (arg2), TYPE_LENGTH (real_type));
2815 return val;
2816 }
2817
2818 /* Cast a value into the appropriate complex data type. */
2819
2820 static struct value *
2821 cast_into_complex (struct type *type, struct value *val)
2822 {
2823 struct type *real_type = TYPE_TARGET_TYPE (type);
2824 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
2825 {
2826 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
2827 struct value *re_val = allocate_value (val_real_type);
2828 struct value *im_val = allocate_value (val_real_type);
2829
2830 memcpy (value_contents_raw (re_val),
2831 value_contents (val), TYPE_LENGTH (val_real_type));
2832 memcpy (value_contents_raw (im_val),
2833 value_contents (val) + TYPE_LENGTH (val_real_type),
2834 TYPE_LENGTH (val_real_type));
2835
2836 return value_literal_complex (re_val, im_val, type);
2837 }
2838 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
2839 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
2840 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2841 else
2842 error (_("cannot cast non-number to complex"));
2843 }
2844
2845 void
2846 _initialize_valops (void)
2847 {
2848 add_setshow_boolean_cmd ("overload-resolution", class_support,
2849 &overload_resolution, _("\
2850 Set overload resolution in evaluating C++ functions."), _("\
2851 Show overload resolution in evaluating C++ functions."), NULL,
2852 NULL,
2853 show_overload_resolution,
2854 &setlist, &showlist);
2855 overload_resolution = 1;
2856 }
This page took 0.127911 seconds and 3 git commands to generate.