2002-04-25 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39
40 /* Flag indicating HP compilers were used; needed to correctly handle some
41 value operations with HP aCC code/runtime. */
42 extern int hp_som_som_object_present;
43
44 extern int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, struct type *t1[], struct value *t2[]);
48
49 static CORE_ADDR find_function_addr (struct value *, struct type **);
50 static struct value *value_arg_coerce (struct value *, struct type *, int);
51
52
53 static CORE_ADDR value_push (CORE_ADDR, struct value *);
54
55 static struct value *search_struct_field (char *, struct value *, int,
56 struct type *, int);
57
58 static struct value *search_struct_method (char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int check_field_in (struct type *, const char *);
63
64 static CORE_ADDR allocate_space_in_inferior (int);
65
66 static struct value *cast_into_complex (struct type *, struct value *);
67
68 static struct fn_field *find_method_list (struct value ** argp, char *method,
69 int offset, int *static_memfuncp,
70 struct type *type, int *num_fns,
71 struct type **basetype,
72 int *boffset);
73
74 void _initialize_valops (void);
75
76 /* Flag for whether we want to abandon failed expression evals by default. */
77
78 #if 0
79 static int auto_abandon = 0;
80 #endif
81
82 int overload_resolution = 0;
83
84 /* This boolean tells what gdb should do if a signal is received while in
85 a function called from gdb (call dummy). If set, gdb unwinds the stack
86 and restore the context to what as it was before the call.
87 The default is to stop in the frame where the signal was received. */
88
89 int unwind_on_signal_p = 0;
90 \f
91
92
93 /* Find the address of function name NAME in the inferior. */
94
95 struct value *
96 find_function_in_inferior (char *name)
97 {
98 register struct symbol *sym;
99 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
100 if (sym != NULL)
101 {
102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
103 {
104 error ("\"%s\" exists in this program but is not a function.",
105 name);
106 }
107 return value_of_variable (sym, NULL);
108 }
109 else
110 {
111 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
112 if (msymbol != NULL)
113 {
114 struct type *type;
115 CORE_ADDR maddr;
116 type = lookup_pointer_type (builtin_type_char);
117 type = lookup_function_type (type);
118 type = lookup_pointer_type (type);
119 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 return value_from_pointer (type, maddr);
121 }
122 else
123 {
124 if (!target_has_execution)
125 error ("evaluation of this expression requires the target program to be active");
126 else
127 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
128 }
129 }
130 }
131
132 /* Allocate NBYTES of space in the inferior using the inferior's malloc
133 and return a value that is a pointer to the allocated space. */
134
135 struct value *
136 value_allocate_space_in_inferior (int len)
137 {
138 struct value *blocklen;
139 struct value *val = find_function_in_inferior ("malloc");
140
141 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
142 val = call_function_by_hand (val, 1, &blocklen);
143 if (value_logical_not (val))
144 {
145 if (!target_has_execution)
146 error ("No memory available to program now: you need to start the target first");
147 else
148 error ("No memory available to program: call to malloc failed");
149 }
150 return val;
151 }
152
153 static CORE_ADDR
154 allocate_space_in_inferior (int len)
155 {
156 return value_as_long (value_allocate_space_in_inferior (len));
157 }
158
159 /* Cast value ARG2 to type TYPE and return as a value.
160 More general than a C cast: accepts any two types of the same length,
161 and if ARG2 is an lvalue it can be cast into anything at all. */
162 /* In C++, casts may change pointer or object representations. */
163
164 struct value *
165 value_cast (struct type *type, struct value *arg2)
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 struct value *v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 struct value *retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 /* force evaluation */
273 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
274 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
275 return retvalp;
276
277 /* While pointers to methods don't really point to a function */
278 case TYPE_CODE_METHOD:
279 error ("Pointers to methods not supported with HP aCC");
280
281 default:
282 break; /* fall out and go to normal handling */
283 }
284 }
285
286 /* When we cast pointers to integers, we mustn't use
287 POINTER_TO_ADDRESS to find the address the pointer
288 represents, as value_as_long would. GDB should evaluate
289 expressions just as the compiler would --- and the compiler
290 sees a cast as a simple reinterpretation of the pointer's
291 bits. */
292 if (code2 == TYPE_CODE_PTR)
293 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
294 TYPE_LENGTH (type2));
295 else
296 longest = value_as_long (arg2);
297 return value_from_longest (type, convert_to_boolean ?
298 (LONGEST) (longest ? 1 : 0) : longest);
299 }
300 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
301 code2 == TYPE_CODE_ENUM ||
302 code2 == TYPE_CODE_RANGE))
303 {
304 /* TYPE_LENGTH (type) is the length of a pointer, but we really
305 want the length of an address! -- we are really dealing with
306 addresses (i.e., gdb representations) not pointers (i.e.,
307 target representations) here.
308
309 This allows things like "print *(int *)0x01000234" to work
310 without printing a misleading message -- which would
311 otherwise occur when dealing with a target having two byte
312 pointers and four byte addresses. */
313
314 int addr_bit = TARGET_ADDR_BIT;
315
316 LONGEST longest = value_as_long (arg2);
317 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
318 {
319 if (longest >= ((LONGEST) 1 << addr_bit)
320 || longest <= -((LONGEST) 1 << addr_bit))
321 warning ("value truncated");
322 }
323 return value_from_longest (type, longest);
324 }
325 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
326 {
327 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
328 {
329 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
330 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
331 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
332 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
333 && !value_logical_not (arg2))
334 {
335 struct value *v;
336
337 /* Look in the type of the source to see if it contains the
338 type of the target as a superclass. If so, we'll need to
339 offset the pointer rather than just change its type. */
340 if (TYPE_NAME (t1) != NULL)
341 {
342 v = search_struct_field (type_name_no_tag (t1),
343 value_ind (arg2), 0, t2, 1);
344 if (v)
345 {
346 v = value_addr (v);
347 VALUE_TYPE (v) = type;
348 return v;
349 }
350 }
351
352 /* Look in the type of the target to see if it contains the
353 type of the source as a superclass. If so, we'll need to
354 offset the pointer rather than just change its type.
355 FIXME: This fails silently with virtual inheritance. */
356 if (TYPE_NAME (t2) != NULL)
357 {
358 v = search_struct_field (type_name_no_tag (t2),
359 value_zero (t1, not_lval), 0, t1, 1);
360 if (v)
361 {
362 struct value *v2 = value_ind (arg2);
363 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
364 + VALUE_OFFSET (v);
365
366 /* JYG: adjust the new pointer value and
367 embedded offset. */
368 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
369 VALUE_EMBEDDED_OFFSET (v2) = 0;
370
371 v2 = value_addr (v2);
372 VALUE_TYPE (v2) = type;
373 return v2;
374 }
375 }
376 }
377 /* No superclass found, just fall through to change ptr type. */
378 }
379 VALUE_TYPE (arg2) = type;
380 arg2 = value_change_enclosing_type (arg2, type);
381 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
382 return arg2;
383 }
384 else if (chill_varying_type (type))
385 {
386 struct type *range1, *range2, *eltype1, *eltype2;
387 struct value *val;
388 int count1, count2;
389 LONGEST low_bound, high_bound;
390 char *valaddr, *valaddr_data;
391 /* For lint warning about eltype2 possibly uninitialized: */
392 eltype2 = NULL;
393 if (code2 == TYPE_CODE_BITSTRING)
394 error ("not implemented: converting bitstring to varying type");
395 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
396 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
397 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
398 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
399 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
400 error ("Invalid conversion to varying type");
401 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
402 range2 = TYPE_FIELD_TYPE (type2, 0);
403 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
404 count1 = -1;
405 else
406 count1 = high_bound - low_bound + 1;
407 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
408 count1 = -1, count2 = 0; /* To force error before */
409 else
410 count2 = high_bound - low_bound + 1;
411 if (count2 > count1)
412 error ("target varying type is too small");
413 val = allocate_value (type);
414 valaddr = VALUE_CONTENTS_RAW (val);
415 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
416 /* Set val's __var_length field to count2. */
417 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
418 count2);
419 /* Set the __var_data field to count2 elements copied from arg2. */
420 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
421 count2 * TYPE_LENGTH (eltype2));
422 /* Zero the rest of the __var_data field of val. */
423 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
424 (count1 - count2) * TYPE_LENGTH (eltype2));
425 return val;
426 }
427 else if (VALUE_LVAL (arg2) == lval_memory)
428 {
429 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
430 VALUE_BFD_SECTION (arg2));
431 }
432 else if (code1 == TYPE_CODE_VOID)
433 {
434 return value_zero (builtin_type_void, not_lval);
435 }
436 else
437 {
438 error ("Invalid cast.");
439 return 0;
440 }
441 }
442
443 /* Create a value of type TYPE that is zero, and return it. */
444
445 struct value *
446 value_zero (struct type *type, enum lval_type lv)
447 {
448 struct value *val = allocate_value (type);
449
450 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
451 VALUE_LVAL (val) = lv;
452
453 return val;
454 }
455
456 /* Return a value with type TYPE located at ADDR.
457
458 Call value_at only if the data needs to be fetched immediately;
459 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
460 value_at_lazy instead. value_at_lazy simply records the address of
461 the data and sets the lazy-evaluation-required flag. The lazy flag
462 is tested in the VALUE_CONTENTS macro, which is used if and when
463 the contents are actually required.
464
465 Note: value_at does *NOT* handle embedded offsets; perform such
466 adjustments before or after calling it. */
467
468 struct value *
469 value_at (struct type *type, CORE_ADDR addr, asection *sect)
470 {
471 struct value *val;
472
473 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
474 error ("Attempt to dereference a generic pointer.");
475
476 val = allocate_value (type);
477
478 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_BFD_SECTION (val) = sect;
483
484 return val;
485 }
486
487 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
488
489 struct value *
490 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
491 {
492 struct value *val;
493
494 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
495 error ("Attempt to dereference a generic pointer.");
496
497 val = allocate_value (type);
498
499 VALUE_LVAL (val) = lval_memory;
500 VALUE_ADDRESS (val) = addr;
501 VALUE_LAZY (val) = 1;
502 VALUE_BFD_SECTION (val) = sect;
503
504 return val;
505 }
506
507 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
508 if the current data for a variable needs to be loaded into
509 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
510 clears the lazy flag to indicate that the data in the buffer is valid.
511
512 If the value is zero-length, we avoid calling read_memory, which would
513 abort. We mark the value as fetched anyway -- all 0 bytes of it.
514
515 This function returns a value because it is used in the VALUE_CONTENTS
516 macro as part of an expression, where a void would not work. The
517 value is ignored. */
518
519 int
520 value_fetch_lazy (struct value *val)
521 {
522 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
523 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
524
525 struct type *type = VALUE_TYPE (val);
526 if (length)
527 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
528
529 VALUE_LAZY (val) = 0;
530 return 0;
531 }
532
533
534 /* Store the contents of FROMVAL into the location of TOVAL.
535 Return a new value with the location of TOVAL and contents of FROMVAL. */
536
537 struct value *
538 value_assign (struct value *toval, struct value *fromval)
539 {
540 register struct type *type;
541 struct value *val;
542 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
543 int use_buffer = 0;
544
545 if (!toval->modifiable)
546 error ("Left operand of assignment is not a modifiable lvalue.");
547
548 COERCE_REF (toval);
549
550 type = VALUE_TYPE (toval);
551 if (VALUE_LVAL (toval) != lval_internalvar)
552 fromval = value_cast (type, fromval);
553 else
554 COERCE_ARRAY (fromval);
555 CHECK_TYPEDEF (type);
556
557 /* If TOVAL is a special machine register requiring conversion
558 of program values to a special raw format,
559 convert FROMVAL's contents now, with result in `raw_buffer',
560 and set USE_BUFFER to the number of bytes to write. */
561
562 if (VALUE_REGNO (toval) >= 0)
563 {
564 int regno = VALUE_REGNO (toval);
565 if (REGISTER_CONVERTIBLE (regno))
566 {
567 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
568 REGISTER_CONVERT_TO_RAW (fromtype, regno,
569 VALUE_CONTENTS (fromval), raw_buffer);
570 use_buffer = REGISTER_RAW_SIZE (regno);
571 }
572 }
573
574 switch (VALUE_LVAL (toval))
575 {
576 case lval_internalvar:
577 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
578 val = value_copy (VALUE_INTERNALVAR (toval)->value);
579 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
580 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
581 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
582 return val;
583
584 case lval_internalvar_component:
585 set_internalvar_component (VALUE_INTERNALVAR (toval),
586 VALUE_OFFSET (toval),
587 VALUE_BITPOS (toval),
588 VALUE_BITSIZE (toval),
589 fromval);
590 break;
591
592 case lval_memory:
593 {
594 char *dest_buffer;
595 CORE_ADDR changed_addr;
596 int changed_len;
597
598 if (VALUE_BITSIZE (toval))
599 {
600 char buffer[sizeof (LONGEST)];
601 /* We assume that the argument to read_memory is in units of
602 host chars. FIXME: Is that correct? */
603 changed_len = (VALUE_BITPOS (toval)
604 + VALUE_BITSIZE (toval)
605 + HOST_CHAR_BIT - 1)
606 / HOST_CHAR_BIT;
607
608 if (changed_len > (int) sizeof (LONGEST))
609 error ("Can't handle bitfields which don't fit in a %d bit word.",
610 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
611
612 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
613 buffer, changed_len);
614 modify_field (buffer, value_as_long (fromval),
615 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
616 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
617 dest_buffer = buffer;
618 }
619 else if (use_buffer)
620 {
621 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
622 changed_len = use_buffer;
623 dest_buffer = raw_buffer;
624 }
625 else
626 {
627 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
628 changed_len = TYPE_LENGTH (type);
629 dest_buffer = VALUE_CONTENTS (fromval);
630 }
631
632 write_memory (changed_addr, dest_buffer, changed_len);
633 if (memory_changed_hook)
634 memory_changed_hook (changed_addr, changed_len);
635 }
636 break;
637
638 case lval_register:
639 if (VALUE_BITSIZE (toval))
640 {
641 char buffer[sizeof (LONGEST)];
642 int len =
643 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
644
645 if (len > (int) sizeof (LONGEST))
646 error ("Can't handle bitfields in registers larger than %d bits.",
647 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
648
649 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
650 > len * HOST_CHAR_BIT)
651 /* Getting this right would involve being very careful about
652 byte order. */
653 error ("Can't assign to bitfields that cross register "
654 "boundaries.");
655
656 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
657 buffer, len);
658 modify_field (buffer, value_as_long (fromval),
659 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
660 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
661 buffer, len);
662 }
663 else if (use_buffer)
664 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
665 raw_buffer, use_buffer);
666 else
667 {
668 /* Do any conversion necessary when storing this type to more
669 than one register. */
670 #ifdef REGISTER_CONVERT_FROM_TYPE
671 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
672 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
673 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
674 raw_buffer, TYPE_LENGTH (type));
675 #else
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
678 #endif
679 }
680 /* Assigning to the stack pointer, frame pointer, and other
681 (architecture and calling convention specific) registers may
682 cause the frame cache to be out of date. We just do this
683 on all assignments to registers for simplicity; I doubt the slowdown
684 matters. */
685 reinit_frame_cache ();
686 break;
687
688 case lval_reg_frame_relative:
689 {
690 /* value is stored in a series of registers in the frame
691 specified by the structure. Copy that value out, modify
692 it, and copy it back in. */
693 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
694 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
695 int byte_offset = VALUE_OFFSET (toval) % reg_size;
696 int reg_offset = VALUE_OFFSET (toval) / reg_size;
697 int amount_copied;
698
699 /* Make the buffer large enough in all cases. */
700 /* FIXME (alloca): Not safe for very large data types. */
701 char *buffer = (char *) alloca (amount_to_copy
702 + sizeof (LONGEST)
703 + MAX_REGISTER_RAW_SIZE);
704
705 int regno;
706 struct frame_info *frame;
707
708 /* Figure out which frame this is in currently. */
709 for (frame = get_current_frame ();
710 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
711 frame = get_prev_frame (frame))
712 ;
713
714 if (!frame)
715 error ("Value being assigned to is no longer active.");
716
717 amount_to_copy += (reg_size - amount_to_copy % reg_size);
718
719 /* Copy it out. */
720 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
721 amount_copied = 0);
722 amount_copied < amount_to_copy;
723 amount_copied += reg_size, regno++)
724 {
725 get_saved_register (buffer + amount_copied,
726 (int *) NULL, (CORE_ADDR *) NULL,
727 frame, regno, (enum lval_type *) NULL);
728 }
729
730 /* Modify what needs to be modified. */
731 if (VALUE_BITSIZE (toval))
732 modify_field (buffer + byte_offset,
733 value_as_long (fromval),
734 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
735 else if (use_buffer)
736 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
737 else
738 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
739 TYPE_LENGTH (type));
740
741 /* Copy it back. */
742 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
743 amount_copied = 0);
744 amount_copied < amount_to_copy;
745 amount_copied += reg_size, regno++)
746 {
747 enum lval_type lval;
748 CORE_ADDR addr;
749 int optim;
750
751 /* Just find out where to put it. */
752 get_saved_register ((char *) NULL,
753 &optim, &addr, frame, regno, &lval);
754
755 if (optim)
756 error ("Attempt to assign to a value that was optimized out.");
757 if (lval == lval_memory)
758 write_memory (addr, buffer + amount_copied, reg_size);
759 else if (lval == lval_register)
760 write_register_bytes (addr, buffer + amount_copied, reg_size);
761 else
762 error ("Attempt to assign to an unmodifiable value.");
763 }
764
765 if (register_changed_hook)
766 register_changed_hook (-1);
767 }
768 break;
769
770
771 default:
772 error ("Left operand of assignment is not an lvalue.");
773 }
774
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
797
798 return val;
799 }
800
801 /* Extend a value VAL to COUNT repetitions of its type. */
802
803 struct value *
804 value_repeat (struct value *arg1, int count)
805 {
806 struct value *val;
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822 }
823
824 struct value *
825 value_of_variable (struct symbol *var, struct block *b)
826 {
827 struct value *val;
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
836 {
837 if (BLOCK_FUNCTION (b)
838 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
839 error ("No frame is currently executing in block %s.",
840 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
841 else
842 error ("No frame is currently executing in specified block");
843 }
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
849
850 return val;
851 }
852
853 /* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
874 */
875
876 struct value *
877 value_coerce_array (struct value *arg1)
878 {
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
886 }
887
888 /* Given a value which is a function, return a value which is a pointer
889 to it. */
890
891 struct value *
892 value_coerce_function (struct value *arg1)
893 {
894 struct value *retval;
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
903 }
904
905 /* Return a pointer value for the object for which ARG1 is the contents. */
906
907 struct value *
908 value_addr (struct value *arg1)
909 {
910 struct value *arg2;
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
928 /* Get target memory address */
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
933
934 /* This may be a pointer to a base subobject; so remember the
935 full derived object's type ... */
936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941 }
942
943 /* Given a value of a pointer type, apply the C unary * operator to it. */
944
945 struct value *
946 value_ind (struct value *arg1)
947 {
948 struct type *base_type;
949 struct value *arg2;
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
963 return value_at (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
970 /* Get the real type of the enclosing object */
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
980 arg2 = value_change_enclosing_type (arg2, enc_type);
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
989 return 0; /* For lint -- never reached */
990 }
991 \f
992 /* Pushing small parts of stack frames. */
993
994 /* Push one word (the size of object that a register holds). */
995
996 CORE_ADDR
997 push_word (CORE_ADDR sp, ULONGEST word)
998 {
999 register int len = REGISTER_SIZE;
1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017 }
1018
1019 /* Push LEN bytes with data at BUFFER. */
1020
1021 CORE_ADDR
1022 push_bytes (CORE_ADDR sp, char *buffer, int len)
1023 {
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038 }
1039
1040 #ifndef PARM_BOUNDARY
1041 #define PARM_BOUNDARY (0)
1042 #endif
1043
1044 /* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
1046
1047 static CORE_ADDR
1048 value_push (register CORE_ADDR sp, struct value *arg)
1049 {
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1051 register int container_len = len;
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1061 offset = container_len - len;
1062 else
1063 offset = 0;
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1070 }
1071 else
1072 {
1073 /* stack grows upward */
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
1076 }
1077
1078 return sp;
1079 }
1080
1081 CORE_ADDR
1082 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
1084 {
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090 }
1091
1092
1093 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1094
1095 How you should pass arguments to a function depends on whether it
1096 was defined in K&R style or prototype style. If you define a
1097 function using the K&R syntax that takes a `float' argument, then
1098 callers must pass that argument as a `double'. If you define the
1099 function using the prototype syntax, then you must pass the
1100 argument as a `float', with no promotion.
1101
1102 Unfortunately, on certain older platforms, the debug info doesn't
1103 indicate reliably how each function was defined. A function type's
1104 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1105 defined in prototype style. When calling a function whose
1106 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1107 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1108
1109 For modern targets, it is proper to assume that, if the prototype
1110 flag is clear, that can be trusted: `float' arguments should be
1111 promoted to `double'. You should register the function
1112 `standard_coerce_float_to_double' to get this behavior.
1113
1114 For some older targets, if the prototype flag is clear, that
1115 doesn't tell us anything. So we guess that, if we don't have a
1116 type for the formal parameter (i.e., the first argument to
1117 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1118 otherwise, we should leave it alone. The function
1119 `default_coerce_float_to_double' provides this behavior; it is the
1120 default value, for compatibility with older configurations. */
1121 int
1122 default_coerce_float_to_double (struct type *formal, struct type *actual)
1123 {
1124 return formal == NULL;
1125 }
1126
1127
1128 int
1129 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1130 {
1131 return 1;
1132 }
1133
1134
1135 /* Perform the standard coercions that are specified
1136 for arguments to be passed to C functions.
1137
1138 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1139 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1140
1141 static struct value *
1142 value_arg_coerce (struct value *arg, struct type *param_type,
1143 int is_prototyped)
1144 {
1145 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1146 register struct type *type
1147 = param_type ? check_typedef (param_type) : arg_type;
1148
1149 switch (TYPE_CODE (type))
1150 {
1151 case TYPE_CODE_REF:
1152 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1153 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1154 {
1155 arg = value_addr (arg);
1156 VALUE_TYPE (arg) = param_type;
1157 return arg;
1158 }
1159 break;
1160 case TYPE_CODE_INT:
1161 case TYPE_CODE_CHAR:
1162 case TYPE_CODE_BOOL:
1163 case TYPE_CODE_ENUM:
1164 /* If we don't have a prototype, coerce to integer type if necessary. */
1165 if (!is_prototyped)
1166 {
1167 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1168 type = builtin_type_int;
1169 }
1170 /* Currently all target ABIs require at least the width of an integer
1171 type for an argument. We may have to conditionalize the following
1172 type coercion for future targets. */
1173 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1174 type = builtin_type_int;
1175 break;
1176 case TYPE_CODE_FLT:
1177 /* FIXME: We should always convert floats to doubles in the
1178 non-prototyped case. As many debugging formats include
1179 no information about prototyping, we have to live with
1180 COERCE_FLOAT_TO_DOUBLE for now. */
1181 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1182 {
1183 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1184 type = builtin_type_double;
1185 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1186 type = builtin_type_long_double;
1187 }
1188 break;
1189 case TYPE_CODE_FUNC:
1190 type = lookup_pointer_type (type);
1191 break;
1192 case TYPE_CODE_ARRAY:
1193 if (current_language->c_style_arrays)
1194 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1195 break;
1196 case TYPE_CODE_UNDEF:
1197 case TYPE_CODE_PTR:
1198 case TYPE_CODE_STRUCT:
1199 case TYPE_CODE_UNION:
1200 case TYPE_CODE_VOID:
1201 case TYPE_CODE_SET:
1202 case TYPE_CODE_RANGE:
1203 case TYPE_CODE_STRING:
1204 case TYPE_CODE_BITSTRING:
1205 case TYPE_CODE_ERROR:
1206 case TYPE_CODE_MEMBER:
1207 case TYPE_CODE_METHOD:
1208 case TYPE_CODE_COMPLEX:
1209 default:
1210 break;
1211 }
1212
1213 return value_cast (type, arg);
1214 }
1215
1216 /* Determine a function's address and its return type from its value.
1217 Calls error() if the function is not valid for calling. */
1218
1219 static CORE_ADDR
1220 find_function_addr (struct value *function, struct type **retval_type)
1221 {
1222 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1223 register enum type_code code = TYPE_CODE (ftype);
1224 struct type *value_type;
1225 CORE_ADDR funaddr;
1226
1227 /* If it's a member function, just look at the function
1228 part of it. */
1229
1230 /* Determine address to call. */
1231 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1232 {
1233 funaddr = VALUE_ADDRESS (function);
1234 value_type = TYPE_TARGET_TYPE (ftype);
1235 }
1236 else if (code == TYPE_CODE_PTR)
1237 {
1238 funaddr = value_as_address (function);
1239 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1240 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1241 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1242 {
1243 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1244 value_type = TYPE_TARGET_TYPE (ftype);
1245 }
1246 else
1247 value_type = builtin_type_int;
1248 }
1249 else if (code == TYPE_CODE_INT)
1250 {
1251 /* Handle the case of functions lacking debugging info.
1252 Their values are characters since their addresses are char */
1253 if (TYPE_LENGTH (ftype) == 1)
1254 funaddr = value_as_address (value_addr (function));
1255 else
1256 /* Handle integer used as address of a function. */
1257 funaddr = (CORE_ADDR) value_as_long (function);
1258
1259 value_type = builtin_type_int;
1260 }
1261 else
1262 error ("Invalid data type for function to be called.");
1263
1264 *retval_type = value_type;
1265 return funaddr;
1266 }
1267
1268 /* All this stuff with a dummy frame may seem unnecessarily complicated
1269 (why not just save registers in GDB?). The purpose of pushing a dummy
1270 frame which looks just like a real frame is so that if you call a
1271 function and then hit a breakpoint (get a signal, etc), "backtrace"
1272 will look right. Whether the backtrace needs to actually show the
1273 stack at the time the inferior function was called is debatable, but
1274 it certainly needs to not display garbage. So if you are contemplating
1275 making dummy frames be different from normal frames, consider that. */
1276
1277 /* Perform a function call in the inferior.
1278 ARGS is a vector of values of arguments (NARGS of them).
1279 FUNCTION is a value, the function to be called.
1280 Returns a value representing what the function returned.
1281 May fail to return, if a breakpoint or signal is hit
1282 during the execution of the function.
1283
1284 ARGS is modified to contain coerced values. */
1285
1286 static struct value *
1287 hand_function_call (struct value *function, int nargs, struct value **args)
1288 {
1289 register CORE_ADDR sp;
1290 register int i;
1291 int rc;
1292 CORE_ADDR start_sp;
1293 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1294 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1295 and remove any extra bytes which might exist because ULONGEST is
1296 bigger than REGISTER_SIZE.
1297
1298 NOTE: This is pretty wierd, as the call dummy is actually a
1299 sequence of instructions. But CISC machines will have
1300 to pack the instructions into REGISTER_SIZE units (and
1301 so will RISC machines for which INSTRUCTION_SIZE is not
1302 REGISTER_SIZE).
1303
1304 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1305 target byte order. */
1306
1307 static ULONGEST *dummy;
1308 int sizeof_dummy1;
1309 char *dummy1;
1310 CORE_ADDR old_sp;
1311 struct type *value_type;
1312 unsigned char struct_return;
1313 CORE_ADDR struct_addr = 0;
1314 struct inferior_status *inf_status;
1315 struct cleanup *old_chain;
1316 CORE_ADDR funaddr;
1317 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1318 CORE_ADDR real_pc;
1319 struct type *param_type = NULL;
1320 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1321 int n_method_args = 0;
1322
1323 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1324 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1325 dummy1 = alloca (sizeof_dummy1);
1326 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1327
1328 if (!target_has_execution)
1329 noprocess ();
1330
1331 inf_status = save_inferior_status (1);
1332 old_chain = make_cleanup_restore_inferior_status (inf_status);
1333
1334 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1335 (and POP_FRAME for restoring them). (At least on most machines)
1336 they are saved on the stack in the inferior. */
1337 PUSH_DUMMY_FRAME;
1338
1339 old_sp = sp = read_sp ();
1340
1341 if (INNER_THAN (1, 2))
1342 {
1343 /* Stack grows down */
1344 sp -= sizeof_dummy1;
1345 start_sp = sp;
1346 }
1347 else
1348 {
1349 /* Stack grows up */
1350 start_sp = sp;
1351 sp += sizeof_dummy1;
1352 }
1353
1354 funaddr = find_function_addr (function, &value_type);
1355 CHECK_TYPEDEF (value_type);
1356
1357 {
1358 struct block *b = block_for_pc (funaddr);
1359 /* If compiled without -g, assume GCC 2. */
1360 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1361 }
1362
1363 /* Are we returning a value using a structure return or a normal
1364 value return? */
1365
1366 struct_return = using_struct_return (function, funaddr, value_type,
1367 using_gcc);
1368
1369 /* Create a call sequence customized for this function
1370 and the number of arguments for it. */
1371 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1372 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1373 REGISTER_SIZE,
1374 (ULONGEST) dummy[i]);
1375
1376 #ifdef GDB_TARGET_IS_HPPA
1377 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1378 value_type, using_gcc);
1379 #else
1380 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1381 value_type, using_gcc);
1382 real_pc = start_sp;
1383 #endif
1384
1385 if (CALL_DUMMY_LOCATION == ON_STACK)
1386 {
1387 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1388 }
1389
1390 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1391 {
1392 /* Convex Unix prohibits executing in the stack segment. */
1393 /* Hope there is empty room at the top of the text segment. */
1394 extern CORE_ADDR text_end;
1395 static int checked = 0;
1396 if (!checked)
1397 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1398 if (read_memory_integer (start_sp, 1) != 0)
1399 error ("text segment full -- no place to put call");
1400 checked = 1;
1401 sp = old_sp;
1402 real_pc = text_end - sizeof_dummy1;
1403 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1404 }
1405
1406 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1407 {
1408 extern CORE_ADDR text_end;
1409 int errcode;
1410 sp = old_sp;
1411 real_pc = text_end;
1412 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1413 if (errcode != 0)
1414 error ("Cannot write text segment -- call_function failed");
1415 }
1416
1417 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1418 {
1419 real_pc = funaddr;
1420 }
1421
1422 #ifdef lint
1423 sp = old_sp; /* It really is used, for some ifdef's... */
1424 #endif
1425
1426 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1427 {
1428 i = 0;
1429 while (TYPE_CODE (TYPE_ARG_TYPES (ftype)[i]) != TYPE_CODE_VOID)
1430 i++;
1431 n_method_args = i;
1432 if (nargs < i)
1433 error ("too few arguments in method call");
1434 }
1435 else if (nargs < TYPE_NFIELDS (ftype))
1436 error ("too few arguments in function call");
1437
1438 for (i = nargs - 1; i >= 0; i--)
1439 {
1440 /* Assume that methods are always prototyped, unless they are off the
1441 end (which we should only be allowing if there is a ``...'').
1442 FIXME. */
1443 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1444 {
1445 if (i < n_method_args)
1446 args[i] = value_arg_coerce (args[i], TYPE_ARG_TYPES (ftype)[i], 1);
1447 else
1448 args[i] = value_arg_coerce (args[i], NULL, 0);
1449 }
1450
1451 /* If we're off the end of the known arguments, do the standard
1452 promotions. FIXME: if we had a prototype, this should only
1453 be allowed if ... were present. */
1454 if (i >= TYPE_NFIELDS (ftype))
1455 args[i] = value_arg_coerce (args[i], NULL, 0);
1456
1457 else
1458 {
1459 param_type = TYPE_FIELD_TYPE (ftype, i);
1460 args[i] = value_arg_coerce (args[i], param_type, TYPE_PROTOTYPED (ftype));
1461 }
1462
1463 /*elz: this code is to handle the case in which the function to be called
1464 has a pointer to function as parameter and the corresponding actual argument
1465 is the address of a function and not a pointer to function variable.
1466 In aCC compiled code, the calls through pointers to functions (in the body
1467 of the function called by hand) are made via $$dyncall_external which
1468 requires some registers setting, this is taken care of if we call
1469 via a function pointer variable, but not via a function address.
1470 In cc this is not a problem. */
1471
1472 if (using_gcc == 0)
1473 if (param_type)
1474 /* if this parameter is a pointer to function */
1475 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1476 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1477 /* elz: FIXME here should go the test about the compiler used
1478 to compile the target. We want to issue the error
1479 message only if the compiler used was HP's aCC.
1480 If we used HP's cc, then there is no problem and no need
1481 to return at this point */
1482 if (using_gcc == 0) /* && compiler == aCC */
1483 /* go see if the actual parameter is a variable of type
1484 pointer to function or just a function */
1485 if (args[i]->lval == not_lval)
1486 {
1487 char *arg_name;
1488 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1489 error ("\
1490 You cannot use function <%s> as argument. \n\
1491 You must use a pointer to function type variable. Command ignored.", arg_name);
1492 }
1493 }
1494
1495 if (REG_STRUCT_HAS_ADDR_P ())
1496 {
1497 /* This is a machine like the sparc, where we may need to pass a
1498 pointer to the structure, not the structure itself. */
1499 for (i = nargs - 1; i >= 0; i--)
1500 {
1501 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1502 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1503 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1504 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1505 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1506 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1507 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1508 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1509 && TYPE_LENGTH (arg_type) > 8)
1510 )
1511 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1512 {
1513 CORE_ADDR addr;
1514 int len; /* = TYPE_LENGTH (arg_type); */
1515 int aligned_len;
1516 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1517 len = TYPE_LENGTH (arg_type);
1518
1519 if (STACK_ALIGN_P ())
1520 /* MVS 11/22/96: I think at least some of this
1521 stack_align code is really broken. Better to let
1522 PUSH_ARGUMENTS adjust the stack in a target-defined
1523 manner. */
1524 aligned_len = STACK_ALIGN (len);
1525 else
1526 aligned_len = len;
1527 if (INNER_THAN (1, 2))
1528 {
1529 /* stack grows downward */
1530 sp -= aligned_len;
1531 /* ... so the address of the thing we push is the
1532 stack pointer after we push it. */
1533 addr = sp;
1534 }
1535 else
1536 {
1537 /* The stack grows up, so the address of the thing
1538 we push is the stack pointer before we push it. */
1539 addr = sp;
1540 sp += aligned_len;
1541 }
1542 /* Push the structure. */
1543 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1544 /* The value we're going to pass is the address of the
1545 thing we just pushed. */
1546 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1547 (LONGEST) addr); */
1548 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1549 addr);
1550 }
1551 }
1552 }
1553
1554
1555 /* Reserve space for the return structure to be written on the
1556 stack, if necessary */
1557
1558 if (struct_return)
1559 {
1560 int len = TYPE_LENGTH (value_type);
1561 if (STACK_ALIGN_P ())
1562 /* MVS 11/22/96: I think at least some of this stack_align
1563 code is really broken. Better to let PUSH_ARGUMENTS adjust
1564 the stack in a target-defined manner. */
1565 len = STACK_ALIGN (len);
1566 if (INNER_THAN (1, 2))
1567 {
1568 /* stack grows downward */
1569 sp -= len;
1570 struct_addr = sp;
1571 }
1572 else
1573 {
1574 /* stack grows upward */
1575 struct_addr = sp;
1576 sp += len;
1577 }
1578 }
1579
1580 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1581 on other architectures. This is because all the alignment is
1582 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1583 in hppa_push_arguments */
1584 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1585 {
1586 /* MVS 11/22/96: I think at least some of this stack_align code
1587 is really broken. Better to let PUSH_ARGUMENTS adjust the
1588 stack in a target-defined manner. */
1589 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1590 {
1591 /* If stack grows down, we must leave a hole at the top. */
1592 int len = 0;
1593
1594 for (i = nargs - 1; i >= 0; i--)
1595 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1596 if (CALL_DUMMY_STACK_ADJUST_P)
1597 len += CALL_DUMMY_STACK_ADJUST;
1598 sp -= STACK_ALIGN (len) - len;
1599 }
1600 }
1601
1602 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1603
1604 if (PUSH_RETURN_ADDRESS_P ())
1605 /* for targets that use no CALL_DUMMY */
1606 /* There are a number of targets now which actually don't write
1607 any CALL_DUMMY instructions into the target, but instead just
1608 save the machine state, push the arguments, and jump directly
1609 to the callee function. Since this doesn't actually involve
1610 executing a JSR/BSR instruction, the return address must be set
1611 up by hand, either by pushing onto the stack or copying into a
1612 return-address register as appropriate. Formerly this has been
1613 done in PUSH_ARGUMENTS, but that's overloading its
1614 functionality a bit, so I'm making it explicit to do it here. */
1615 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1616
1617 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1618 {
1619 /* If stack grows up, we must leave a hole at the bottom, note
1620 that sp already has been advanced for the arguments! */
1621 if (CALL_DUMMY_STACK_ADJUST_P)
1622 sp += CALL_DUMMY_STACK_ADJUST;
1623 sp = STACK_ALIGN (sp);
1624 }
1625
1626 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1627 anything here! */
1628 /* MVS 11/22/96: I think at least some of this stack_align code is
1629 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1630 a target-defined manner. */
1631 if (CALL_DUMMY_STACK_ADJUST_P)
1632 if (INNER_THAN (1, 2))
1633 {
1634 /* stack grows downward */
1635 sp -= CALL_DUMMY_STACK_ADJUST;
1636 }
1637
1638 /* Store the address at which the structure is supposed to be
1639 written. Note that this (and the code which reserved the space
1640 above) assumes that gcc was used to compile this function. Since
1641 it doesn't cost us anything but space and if the function is pcc
1642 it will ignore this value, we will make that assumption.
1643
1644 Also note that on some machines (like the sparc) pcc uses a
1645 convention like gcc's. */
1646
1647 if (struct_return)
1648 STORE_STRUCT_RETURN (struct_addr, sp);
1649
1650 /* Write the stack pointer. This is here because the statements above
1651 might fool with it. On SPARC, this write also stores the register
1652 window into the right place in the new stack frame, which otherwise
1653 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1654 write_sp (sp);
1655
1656 if (SAVE_DUMMY_FRAME_TOS_P ())
1657 SAVE_DUMMY_FRAME_TOS (sp);
1658
1659 {
1660 char *retbuf = (char*) alloca (REGISTER_BYTES);
1661 char *name;
1662 struct symbol *symbol;
1663
1664 name = NULL;
1665 symbol = find_pc_function (funaddr);
1666 if (symbol)
1667 {
1668 name = SYMBOL_SOURCE_NAME (symbol);
1669 }
1670 else
1671 {
1672 /* Try the minimal symbols. */
1673 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1674
1675 if (msymbol)
1676 {
1677 name = SYMBOL_SOURCE_NAME (msymbol);
1678 }
1679 }
1680 if (name == NULL)
1681 {
1682 char format[80];
1683 sprintf (format, "at %s", local_hex_format ());
1684 name = alloca (80);
1685 /* FIXME-32x64: assumes funaddr fits in a long. */
1686 sprintf (name, format, (unsigned long) funaddr);
1687 }
1688
1689 /* Execute the stack dummy routine, calling FUNCTION.
1690 When it is done, discard the empty frame
1691 after storing the contents of all regs into retbuf. */
1692 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1693
1694 if (rc == 1)
1695 {
1696 /* We stopped inside the FUNCTION because of a random signal.
1697 Further execution of the FUNCTION is not allowed. */
1698
1699 if (unwind_on_signal_p)
1700 {
1701 /* The user wants the context restored. */
1702
1703 /* We must get back to the frame we were before the dummy call. */
1704 POP_FRAME;
1705
1706 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1707 a C++ name with arguments and stuff. */
1708 error ("\
1709 The program being debugged was signaled while in a function called from GDB.\n\
1710 GDB has restored the context to what it was before the call.\n\
1711 To change this behavior use \"set unwindonsignal off\"\n\
1712 Evaluation of the expression containing the function (%s) will be abandoned.",
1713 name);
1714 }
1715 else
1716 {
1717 /* The user wants to stay in the frame where we stopped (default).*/
1718
1719 /* If we did the cleanups, we would print a spurious error
1720 message (Unable to restore previously selected frame),
1721 would write the registers from the inf_status (which is
1722 wrong), and would do other wrong things. */
1723 discard_cleanups (old_chain);
1724 discard_inferior_status (inf_status);
1725
1726 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1727 a C++ name with arguments and stuff. */
1728 error ("\
1729 The program being debugged was signaled while in a function called from GDB.\n\
1730 GDB remains in the frame where the signal was received.\n\
1731 To change this behavior use \"set unwindonsignal on\"\n\
1732 Evaluation of the expression containing the function (%s) will be abandoned.",
1733 name);
1734 }
1735 }
1736
1737 if (rc == 2)
1738 {
1739 /* We hit a breakpoint inside the FUNCTION. */
1740
1741 /* If we did the cleanups, we would print a spurious error
1742 message (Unable to restore previously selected frame),
1743 would write the registers from the inf_status (which is
1744 wrong), and would do other wrong things. */
1745 discard_cleanups (old_chain);
1746 discard_inferior_status (inf_status);
1747
1748 /* The following error message used to say "The expression
1749 which contained the function call has been discarded." It
1750 is a hard concept to explain in a few words. Ideally, GDB
1751 would be able to resume evaluation of the expression when
1752 the function finally is done executing. Perhaps someday
1753 this will be implemented (it would not be easy). */
1754
1755 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1756 a C++ name with arguments and stuff. */
1757 error ("\
1758 The program being debugged stopped while in a function called from GDB.\n\
1759 When the function (%s) is done executing, GDB will silently\n\
1760 stop (instead of continuing to evaluate the expression containing\n\
1761 the function call).", name);
1762 }
1763
1764 /* If we get here the called FUNCTION run to completion. */
1765 do_cleanups (old_chain);
1766
1767 /* Figure out the value returned by the function. */
1768 /* elz: I defined this new macro for the hppa architecture only.
1769 this gives us a way to get the value returned by the function from the stack,
1770 at the same address we told the function to put it.
1771 We cannot assume on the pa that r28 still contains the address of the returned
1772 structure. Usually this will be overwritten by the callee.
1773 I don't know about other architectures, so I defined this macro
1774 */
1775
1776 #ifdef VALUE_RETURNED_FROM_STACK
1777 if (struct_return)
1778 return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1779 #endif
1780
1781 return value_being_returned (value_type, retbuf, struct_return);
1782 }
1783 }
1784
1785 struct value *
1786 call_function_by_hand (struct value *function, int nargs, struct value **args)
1787 {
1788 if (CALL_DUMMY_P)
1789 {
1790 return hand_function_call (function, nargs, args);
1791 }
1792 else
1793 {
1794 error ("Cannot invoke functions on this machine.");
1795 }
1796 }
1797 \f
1798
1799
1800 /* Create a value for an array by allocating space in the inferior, copying
1801 the data into that space, and then setting up an array value.
1802
1803 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1804 populated from the values passed in ELEMVEC.
1805
1806 The element type of the array is inherited from the type of the
1807 first element, and all elements must have the same size (though we
1808 don't currently enforce any restriction on their types). */
1809
1810 struct value *
1811 value_array (int lowbound, int highbound, struct value **elemvec)
1812 {
1813 int nelem;
1814 int idx;
1815 unsigned int typelength;
1816 struct value *val;
1817 struct type *rangetype;
1818 struct type *arraytype;
1819 CORE_ADDR addr;
1820
1821 /* Validate that the bounds are reasonable and that each of the elements
1822 have the same size. */
1823
1824 nelem = highbound - lowbound + 1;
1825 if (nelem <= 0)
1826 {
1827 error ("bad array bounds (%d, %d)", lowbound, highbound);
1828 }
1829 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1830 for (idx = 1; idx < nelem; idx++)
1831 {
1832 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1833 {
1834 error ("array elements must all be the same size");
1835 }
1836 }
1837
1838 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1839 lowbound, highbound);
1840 arraytype = create_array_type ((struct type *) NULL,
1841 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1842
1843 if (!current_language->c_style_arrays)
1844 {
1845 val = allocate_value (arraytype);
1846 for (idx = 0; idx < nelem; idx++)
1847 {
1848 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1849 VALUE_CONTENTS_ALL (elemvec[idx]),
1850 typelength);
1851 }
1852 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1853 return val;
1854 }
1855
1856 /* Allocate space to store the array in the inferior, and then initialize
1857 it by copying in each element. FIXME: Is it worth it to create a
1858 local buffer in which to collect each value and then write all the
1859 bytes in one operation? */
1860
1861 addr = allocate_space_in_inferior (nelem * typelength);
1862 for (idx = 0; idx < nelem; idx++)
1863 {
1864 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1865 typelength);
1866 }
1867
1868 /* Create the array type and set up an array value to be evaluated lazily. */
1869
1870 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1871 return (val);
1872 }
1873
1874 /* Create a value for a string constant by allocating space in the inferior,
1875 copying the data into that space, and returning the address with type
1876 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1877 of characters.
1878 Note that string types are like array of char types with a lower bound of
1879 zero and an upper bound of LEN - 1. Also note that the string may contain
1880 embedded null bytes. */
1881
1882 struct value *
1883 value_string (char *ptr, int len)
1884 {
1885 struct value *val;
1886 int lowbound = current_language->string_lower_bound;
1887 struct type *rangetype = create_range_type ((struct type *) NULL,
1888 builtin_type_int,
1889 lowbound, len + lowbound - 1);
1890 struct type *stringtype
1891 = create_string_type ((struct type *) NULL, rangetype);
1892 CORE_ADDR addr;
1893
1894 if (current_language->c_style_arrays == 0)
1895 {
1896 val = allocate_value (stringtype);
1897 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1898 return val;
1899 }
1900
1901
1902 /* Allocate space to store the string in the inferior, and then
1903 copy LEN bytes from PTR in gdb to that address in the inferior. */
1904
1905 addr = allocate_space_in_inferior (len);
1906 write_memory (addr, ptr, len);
1907
1908 val = value_at_lazy (stringtype, addr, NULL);
1909 return (val);
1910 }
1911
1912 struct value *
1913 value_bitstring (char *ptr, int len)
1914 {
1915 struct value *val;
1916 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1917 0, len - 1);
1918 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1919 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1920 val = allocate_value (type);
1921 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1922 return val;
1923 }
1924 \f
1925 /* See if we can pass arguments in T2 to a function which takes arguments
1926 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1927 arguments need coercion of some sort, then the coerced values are written
1928 into T2. Return value is 0 if the arguments could be matched, or the
1929 position at which they differ if not.
1930
1931 STATICP is nonzero if the T1 argument list came from a
1932 static member function.
1933
1934 For non-static member functions, we ignore the first argument,
1935 which is the type of the instance variable. This is because we want
1936 to handle calls with objects from derived classes. This is not
1937 entirely correct: we should actually check to make sure that a
1938 requested operation is type secure, shouldn't we? FIXME. */
1939
1940 static int
1941 typecmp (int staticp, struct type *t1[], struct value *t2[])
1942 {
1943 int i;
1944
1945 if (t2 == 0)
1946 return 1;
1947 if (staticp && t1 == 0)
1948 return t2[1] != 0;
1949 if (t1 == 0)
1950 return 1;
1951 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1952 return 0;
1953 if (t1[!staticp] == 0)
1954 return 0;
1955 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1956 {
1957 struct type *tt1, *tt2;
1958 if (!t2[i])
1959 return i + 1;
1960 tt1 = check_typedef (t1[i]);
1961 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1962 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1963 /* We should be doing hairy argument matching, as below. */
1964 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1965 {
1966 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1967 t2[i] = value_coerce_array (t2[i]);
1968 else
1969 t2[i] = value_addr (t2[i]);
1970 continue;
1971 }
1972
1973 /* djb - 20000715 - Until the new type structure is in the
1974 place, and we can attempt things like implicit conversions,
1975 we need to do this so you can take something like a map<const
1976 char *>, and properly access map["hello"], because the
1977 argument to [] will be a reference to a pointer to a char,
1978 and the argument will be a pointer to a char. */
1979 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1980 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1981 {
1982 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1983 }
1984 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1985 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1986 TYPE_CODE(tt2) == TYPE_CODE_REF)
1987 {
1988 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1989 }
1990 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1991 continue;
1992 /* Array to pointer is a `trivial conversion' according to the ARM. */
1993
1994 /* We should be doing much hairier argument matching (see section 13.2
1995 of the ARM), but as a quick kludge, just check for the same type
1996 code. */
1997 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1998 return i + 1;
1999 }
2000 if (!t1[i])
2001 return 0;
2002 return t2[i] ? i + 1 : 0;
2003 }
2004
2005 /* Helper function used by value_struct_elt to recurse through baseclasses.
2006 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2007 and search in it assuming it has (class) type TYPE.
2008 If found, return value, else return NULL.
2009
2010 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2011 look for a baseclass named NAME. */
2012
2013 static struct value *
2014 search_struct_field (char *name, struct value *arg1, int offset,
2015 register struct type *type, int looking_for_baseclass)
2016 {
2017 int i;
2018 int nbases = TYPE_N_BASECLASSES (type);
2019
2020 CHECK_TYPEDEF (type);
2021
2022 if (!looking_for_baseclass)
2023 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2024 {
2025 char *t_field_name = TYPE_FIELD_NAME (type, i);
2026
2027 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2028 {
2029 struct value *v;
2030 if (TYPE_FIELD_STATIC (type, i))
2031 v = value_static_field (type, i);
2032 else
2033 v = value_primitive_field (arg1, offset, i, type);
2034 if (v == 0)
2035 error ("there is no field named %s", name);
2036 return v;
2037 }
2038
2039 if (t_field_name
2040 && (t_field_name[0] == '\0'
2041 || (TYPE_CODE (type) == TYPE_CODE_UNION
2042 && (strcmp_iw (t_field_name, "else") == 0))))
2043 {
2044 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2045 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2046 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2047 {
2048 /* Look for a match through the fields of an anonymous union,
2049 or anonymous struct. C++ provides anonymous unions.
2050
2051 In the GNU Chill implementation of variant record types,
2052 each <alternative field> has an (anonymous) union type,
2053 each member of the union represents a <variant alternative>.
2054 Each <variant alternative> is represented as a struct,
2055 with a member for each <variant field>. */
2056
2057 struct value *v;
2058 int new_offset = offset;
2059
2060 /* This is pretty gross. In G++, the offset in an anonymous
2061 union is relative to the beginning of the enclosing struct.
2062 In the GNU Chill implementation of variant records,
2063 the bitpos is zero in an anonymous union field, so we
2064 have to add the offset of the union here. */
2065 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2066 || (TYPE_NFIELDS (field_type) > 0
2067 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2068 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2069
2070 v = search_struct_field (name, arg1, new_offset, field_type,
2071 looking_for_baseclass);
2072 if (v)
2073 return v;
2074 }
2075 }
2076 }
2077
2078 for (i = 0; i < nbases; i++)
2079 {
2080 struct value *v;
2081 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2082 /* If we are looking for baseclasses, this is what we get when we
2083 hit them. But it could happen that the base part's member name
2084 is not yet filled in. */
2085 int found_baseclass = (looking_for_baseclass
2086 && TYPE_BASECLASS_NAME (type, i) != NULL
2087 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2088
2089 if (BASETYPE_VIA_VIRTUAL (type, i))
2090 {
2091 int boffset;
2092 struct value *v2 = allocate_value (basetype);
2093
2094 boffset = baseclass_offset (type, i,
2095 VALUE_CONTENTS (arg1) + offset,
2096 VALUE_ADDRESS (arg1)
2097 + VALUE_OFFSET (arg1) + offset);
2098 if (boffset == -1)
2099 error ("virtual baseclass botch");
2100
2101 /* The virtual base class pointer might have been clobbered by the
2102 user program. Make sure that it still points to a valid memory
2103 location. */
2104
2105 boffset += offset;
2106 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2107 {
2108 CORE_ADDR base_addr;
2109
2110 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2111 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2112 TYPE_LENGTH (basetype)) != 0)
2113 error ("virtual baseclass botch");
2114 VALUE_LVAL (v2) = lval_memory;
2115 VALUE_ADDRESS (v2) = base_addr;
2116 }
2117 else
2118 {
2119 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2120 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2121 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2122 if (VALUE_LAZY (arg1))
2123 VALUE_LAZY (v2) = 1;
2124 else
2125 memcpy (VALUE_CONTENTS_RAW (v2),
2126 VALUE_CONTENTS_RAW (arg1) + boffset,
2127 TYPE_LENGTH (basetype));
2128 }
2129
2130 if (found_baseclass)
2131 return v2;
2132 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2133 looking_for_baseclass);
2134 }
2135 else if (found_baseclass)
2136 v = value_primitive_field (arg1, offset, i, type);
2137 else
2138 v = search_struct_field (name, arg1,
2139 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2140 basetype, looking_for_baseclass);
2141 if (v)
2142 return v;
2143 }
2144 return NULL;
2145 }
2146
2147
2148 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2149 * in an object pointed to by VALADDR (on the host), assumed to be of
2150 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2151 * looking (in case VALADDR is the contents of an enclosing object).
2152 *
2153 * This routine recurses on the primary base of the derived class because
2154 * the virtual base entries of the primary base appear before the other
2155 * virtual base entries.
2156 *
2157 * If the virtual base is not found, a negative integer is returned.
2158 * The magnitude of the negative integer is the number of entries in
2159 * the virtual table to skip over (entries corresponding to various
2160 * ancestral classes in the chain of primary bases).
2161 *
2162 * Important: This assumes the HP / Taligent C++ runtime
2163 * conventions. Use baseclass_offset() instead to deal with g++
2164 * conventions. */
2165
2166 void
2167 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2168 int offset, int *boffset_p, int *skip_p)
2169 {
2170 int boffset; /* offset of virtual base */
2171 int index; /* displacement to use in virtual table */
2172 int skip;
2173
2174 struct value *vp;
2175 CORE_ADDR vtbl; /* the virtual table pointer */
2176 struct type *pbc; /* the primary base class */
2177
2178 /* Look for the virtual base recursively in the primary base, first.
2179 * This is because the derived class object and its primary base
2180 * subobject share the primary virtual table. */
2181
2182 boffset = 0;
2183 pbc = TYPE_PRIMARY_BASE (type);
2184 if (pbc)
2185 {
2186 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2187 if (skip < 0)
2188 {
2189 *boffset_p = boffset;
2190 *skip_p = -1;
2191 return;
2192 }
2193 }
2194 else
2195 skip = 0;
2196
2197
2198 /* Find the index of the virtual base according to HP/Taligent
2199 runtime spec. (Depth-first, left-to-right.) */
2200 index = virtual_base_index_skip_primaries (basetype, type);
2201
2202 if (index < 0)
2203 {
2204 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2205 *boffset_p = 0;
2206 return;
2207 }
2208
2209 /* pai: FIXME -- 32x64 possible problem */
2210 /* First word (4 bytes) in object layout is the vtable pointer */
2211 vtbl = *(CORE_ADDR *) (valaddr + offset);
2212
2213 /* Before the constructor is invoked, things are usually zero'd out. */
2214 if (vtbl == 0)
2215 error ("Couldn't find virtual table -- object may not be constructed yet.");
2216
2217
2218 /* Find virtual base's offset -- jump over entries for primary base
2219 * ancestors, then use the index computed above. But also adjust by
2220 * HP_ACC_VBASE_START for the vtable slots before the start of the
2221 * virtual base entries. Offset is negative -- virtual base entries
2222 * appear _before_ the address point of the virtual table. */
2223
2224 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2225 & use long type */
2226
2227 /* epstein : FIXME -- added param for overlay section. May not be correct */
2228 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2229 boffset = value_as_long (vp);
2230 *skip_p = -1;
2231 *boffset_p = boffset;
2232 return;
2233 }
2234
2235
2236 /* Helper function used by value_struct_elt to recurse through baseclasses.
2237 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2238 and search in it assuming it has (class) type TYPE.
2239 If found, return value, else if name matched and args not return (value)-1,
2240 else return NULL. */
2241
2242 static struct value *
2243 search_struct_method (char *name, struct value **arg1p,
2244 struct value **args, int offset,
2245 int *static_memfuncp, register struct type *type)
2246 {
2247 int i;
2248 struct value *v;
2249 int name_matched = 0;
2250 char dem_opname[64];
2251
2252 CHECK_TYPEDEF (type);
2253 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2254 {
2255 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2256 /* FIXME! May need to check for ARM demangling here */
2257 if (strncmp (t_field_name, "__", 2) == 0 ||
2258 strncmp (t_field_name, "op", 2) == 0 ||
2259 strncmp (t_field_name, "type", 4) == 0)
2260 {
2261 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2262 t_field_name = dem_opname;
2263 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2264 t_field_name = dem_opname;
2265 }
2266 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2267 {
2268 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2269 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2270 name_matched = 1;
2271
2272 if (j > 0 && args == 0)
2273 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2274 else if (j == 0 && args == 0)
2275 {
2276 if (TYPE_FN_FIELD_STUB (f, j))
2277 check_stub_method (type, i, j);
2278 v = value_fn_field (arg1p, f, j, type, offset);
2279 if (v != NULL)
2280 return v;
2281 }
2282 else
2283 while (j >= 0)
2284 {
2285 if (TYPE_FN_FIELD_STUB (f, j))
2286 check_stub_method (type, i, j);
2287 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2288 TYPE_FN_FIELD_ARGS (f, j), args))
2289 {
2290 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2291 return value_virtual_fn_field (arg1p, f, j, type, offset);
2292 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2293 *static_memfuncp = 1;
2294 v = value_fn_field (arg1p, f, j, type, offset);
2295 if (v != NULL)
2296 return v;
2297 }
2298 j--;
2299 }
2300 }
2301 }
2302
2303 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2304 {
2305 int base_offset;
2306
2307 if (BASETYPE_VIA_VIRTUAL (type, i))
2308 {
2309 if (TYPE_HAS_VTABLE (type))
2310 {
2311 /* HP aCC compiled type, search for virtual base offset
2312 according to HP/Taligent runtime spec. */
2313 int skip;
2314 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2315 VALUE_CONTENTS_ALL (*arg1p),
2316 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2317 &base_offset, &skip);
2318 if (skip >= 0)
2319 error ("Virtual base class offset not found in vtable");
2320 }
2321 else
2322 {
2323 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2324 char *base_valaddr;
2325
2326 /* The virtual base class pointer might have been clobbered by the
2327 user program. Make sure that it still points to a valid memory
2328 location. */
2329
2330 if (offset < 0 || offset >= TYPE_LENGTH (type))
2331 {
2332 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2333 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2334 + VALUE_OFFSET (*arg1p) + offset,
2335 base_valaddr,
2336 TYPE_LENGTH (baseclass)) != 0)
2337 error ("virtual baseclass botch");
2338 }
2339 else
2340 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2341
2342 base_offset =
2343 baseclass_offset (type, i, base_valaddr,
2344 VALUE_ADDRESS (*arg1p)
2345 + VALUE_OFFSET (*arg1p) + offset);
2346 if (base_offset == -1)
2347 error ("virtual baseclass botch");
2348 }
2349 }
2350 else
2351 {
2352 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2353 }
2354 v = search_struct_method (name, arg1p, args, base_offset + offset,
2355 static_memfuncp, TYPE_BASECLASS (type, i));
2356 if (v == (struct value *) - 1)
2357 {
2358 name_matched = 1;
2359 }
2360 else if (v)
2361 {
2362 /* FIXME-bothner: Why is this commented out? Why is it here? */
2363 /* *arg1p = arg1_tmp; */
2364 return v;
2365 }
2366 }
2367 if (name_matched)
2368 return (struct value *) - 1;
2369 else
2370 return NULL;
2371 }
2372
2373 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2374 extract the component named NAME from the ultimate target structure/union
2375 and return it as a value with its appropriate type.
2376 ERR is used in the error message if *ARGP's type is wrong.
2377
2378 C++: ARGS is a list of argument types to aid in the selection of
2379 an appropriate method. Also, handle derived types.
2380
2381 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2382 where the truthvalue of whether the function that was resolved was
2383 a static member function or not is stored.
2384
2385 ERR is an error message to be printed in case the field is not found. */
2386
2387 struct value *
2388 value_struct_elt (struct value **argp, struct value **args,
2389 char *name, int *static_memfuncp, char *err)
2390 {
2391 register struct type *t;
2392 struct value *v;
2393
2394 COERCE_ARRAY (*argp);
2395
2396 t = check_typedef (VALUE_TYPE (*argp));
2397
2398 /* Follow pointers until we get to a non-pointer. */
2399
2400 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2401 {
2402 *argp = value_ind (*argp);
2403 /* Don't coerce fn pointer to fn and then back again! */
2404 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2405 COERCE_ARRAY (*argp);
2406 t = check_typedef (VALUE_TYPE (*argp));
2407 }
2408
2409 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2410 error ("not implemented: member type in value_struct_elt");
2411
2412 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2413 && TYPE_CODE (t) != TYPE_CODE_UNION)
2414 error ("Attempt to extract a component of a value that is not a %s.", err);
2415
2416 /* Assume it's not, unless we see that it is. */
2417 if (static_memfuncp)
2418 *static_memfuncp = 0;
2419
2420 if (!args)
2421 {
2422 /* if there are no arguments ...do this... */
2423
2424 /* Try as a field first, because if we succeed, there
2425 is less work to be done. */
2426 v = search_struct_field (name, *argp, 0, t, 0);
2427 if (v)
2428 return v;
2429
2430 /* C++: If it was not found as a data field, then try to
2431 return it as a pointer to a method. */
2432
2433 if (destructor_name_p (name, t))
2434 error ("Cannot get value of destructor");
2435
2436 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2437
2438 if (v == (struct value *) - 1)
2439 error ("Cannot take address of a method");
2440 else if (v == 0)
2441 {
2442 if (TYPE_NFN_FIELDS (t))
2443 error ("There is no member or method named %s.", name);
2444 else
2445 error ("There is no member named %s.", name);
2446 }
2447 return v;
2448 }
2449
2450 if (destructor_name_p (name, t))
2451 {
2452 if (!args[1])
2453 {
2454 /* Destructors are a special case. */
2455 int m_index, f_index;
2456
2457 v = NULL;
2458 if (get_destructor_fn_field (t, &m_index, &f_index))
2459 {
2460 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2461 f_index, NULL, 0);
2462 }
2463 if (v == NULL)
2464 error ("could not find destructor function named %s.", name);
2465 else
2466 return v;
2467 }
2468 else
2469 {
2470 error ("destructor should not have any argument");
2471 }
2472 }
2473 else
2474 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2475
2476 if (v == (struct value *) - 1)
2477 {
2478 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2479 }
2480 else if (v == 0)
2481 {
2482 /* See if user tried to invoke data as function. If so,
2483 hand it back. If it's not callable (i.e., a pointer to function),
2484 gdb should give an error. */
2485 v = search_struct_field (name, *argp, 0, t, 0);
2486 }
2487
2488 if (!v)
2489 error ("Structure has no component named %s.", name);
2490 return v;
2491 }
2492
2493 /* Search through the methods of an object (and its bases)
2494 * to find a specified method. Return the pointer to the
2495 * fn_field list of overloaded instances.
2496 * Helper function for value_find_oload_list.
2497 * ARGP is a pointer to a pointer to a value (the object)
2498 * METHOD is a string containing the method name
2499 * OFFSET is the offset within the value
2500 * STATIC_MEMFUNCP is set if the method is static
2501 * TYPE is the assumed type of the object
2502 * NUM_FNS is the number of overloaded instances
2503 * BASETYPE is set to the actual type of the subobject where the method is found
2504 * BOFFSET is the offset of the base subobject where the method is found */
2505
2506 static struct fn_field *
2507 find_method_list (struct value **argp, char *method, int offset,
2508 int *static_memfuncp, struct type *type, int *num_fns,
2509 struct type **basetype, int *boffset)
2510 {
2511 int i;
2512 struct fn_field *f;
2513 CHECK_TYPEDEF (type);
2514
2515 *num_fns = 0;
2516
2517 /* First check in object itself */
2518 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2519 {
2520 /* pai: FIXME What about operators and type conversions? */
2521 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2522 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2523 {
2524 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2525 *basetype = type;
2526 *boffset = offset;
2527 return TYPE_FN_FIELDLIST1 (type, i);
2528 }
2529 }
2530
2531 /* Not found in object, check in base subobjects */
2532 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2533 {
2534 int base_offset;
2535 if (BASETYPE_VIA_VIRTUAL (type, i))
2536 {
2537 if (TYPE_HAS_VTABLE (type))
2538 {
2539 /* HP aCC compiled type, search for virtual base offset
2540 * according to HP/Taligent runtime spec. */
2541 int skip;
2542 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2543 VALUE_CONTENTS_ALL (*argp),
2544 offset + VALUE_EMBEDDED_OFFSET (*argp),
2545 &base_offset, &skip);
2546 if (skip >= 0)
2547 error ("Virtual base class offset not found in vtable");
2548 }
2549 else
2550 {
2551 /* probably g++ runtime model */
2552 base_offset = VALUE_OFFSET (*argp) + offset;
2553 base_offset =
2554 baseclass_offset (type, i,
2555 VALUE_CONTENTS (*argp) + base_offset,
2556 VALUE_ADDRESS (*argp) + base_offset);
2557 if (base_offset == -1)
2558 error ("virtual baseclass botch");
2559 }
2560 }
2561 else
2562 /* non-virtual base, simply use bit position from debug info */
2563 {
2564 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2565 }
2566 f = find_method_list (argp, method, base_offset + offset,
2567 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2568 if (f)
2569 return f;
2570 }
2571 return NULL;
2572 }
2573
2574 /* Return the list of overloaded methods of a specified name.
2575 * ARGP is a pointer to a pointer to a value (the object)
2576 * METHOD is the method name
2577 * OFFSET is the offset within the value contents
2578 * STATIC_MEMFUNCP is set if the method is static
2579 * NUM_FNS is the number of overloaded instances
2580 * BASETYPE is set to the type of the base subobject that defines the method
2581 * BOFFSET is the offset of the base subobject which defines the method */
2582
2583 struct fn_field *
2584 value_find_oload_method_list (struct value **argp, char *method, int offset,
2585 int *static_memfuncp, int *num_fns,
2586 struct type **basetype, int *boffset)
2587 {
2588 struct type *t;
2589
2590 t = check_typedef (VALUE_TYPE (*argp));
2591
2592 /* code snarfed from value_struct_elt */
2593 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2594 {
2595 *argp = value_ind (*argp);
2596 /* Don't coerce fn pointer to fn and then back again! */
2597 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2598 COERCE_ARRAY (*argp);
2599 t = check_typedef (VALUE_TYPE (*argp));
2600 }
2601
2602 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2603 error ("Not implemented: member type in value_find_oload_lis");
2604
2605 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2606 && TYPE_CODE (t) != TYPE_CODE_UNION)
2607 error ("Attempt to extract a component of a value that is not a struct or union");
2608
2609 /* Assume it's not static, unless we see that it is. */
2610 if (static_memfuncp)
2611 *static_memfuncp = 0;
2612
2613 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2614
2615 }
2616
2617 /* Given an array of argument types (ARGTYPES) (which includes an
2618 entry for "this" in the case of C++ methods), the number of
2619 arguments NARGS, the NAME of a function whether it's a method or
2620 not (METHOD), and the degree of laxness (LAX) in conforming to
2621 overload resolution rules in ANSI C++, find the best function that
2622 matches on the argument types according to the overload resolution
2623 rules.
2624
2625 In the case of class methods, the parameter OBJ is an object value
2626 in which to search for overloaded methods.
2627
2628 In the case of non-method functions, the parameter FSYM is a symbol
2629 corresponding to one of the overloaded functions.
2630
2631 Return value is an integer: 0 -> good match, 10 -> debugger applied
2632 non-standard coercions, 100 -> incompatible.
2633
2634 If a method is being searched for, VALP will hold the value.
2635 If a non-method is being searched for, SYMP will hold the symbol for it.
2636
2637 If a method is being searched for, and it is a static method,
2638 then STATICP will point to a non-zero value.
2639
2640 Note: This function does *not* check the value of
2641 overload_resolution. Caller must check it to see whether overload
2642 resolution is permitted.
2643 */
2644
2645 int
2646 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2647 int lax, struct value **objp, struct symbol *fsym,
2648 struct value **valp, struct symbol **symp, int *staticp)
2649 {
2650 int nparms;
2651 struct type **parm_types;
2652 int champ_nparms = 0;
2653 struct value *obj = (objp ? *objp : NULL);
2654
2655 short oload_champ = -1; /* Index of best overloaded function */
2656 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2657 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2658 short oload_ambig_champ = -1; /* 2nd contender for best match */
2659 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2660 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2661
2662 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2663 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2664
2665 struct value *temp = obj;
2666 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2667 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2668 int num_fns = 0; /* Number of overloaded instances being considered */
2669 struct type *basetype = NULL;
2670 int boffset;
2671 register int jj;
2672 register int ix;
2673
2674 char *obj_type_name = NULL;
2675 char *func_name = NULL;
2676
2677 /* Get the list of overloaded methods or functions */
2678 if (method)
2679 {
2680 int i;
2681 int len;
2682 struct type *domain;
2683 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2684 /* Hack: evaluate_subexp_standard often passes in a pointer
2685 value rather than the object itself, so try again */
2686 if ((!obj_type_name || !*obj_type_name) &&
2687 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2688 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2689
2690 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2691 staticp,
2692 &num_fns,
2693 &basetype, &boffset);
2694 if (!fns_ptr || !num_fns)
2695 error ("Couldn't find method %s%s%s",
2696 obj_type_name,
2697 (obj_type_name && *obj_type_name) ? "::" : "",
2698 name);
2699 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2700 len = TYPE_NFN_FIELDS (domain);
2701 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2702 give us the info we need directly in the types. We have to
2703 use the method stub conversion to get it. Be aware that this
2704 is by no means perfect, and if you use STABS, please move to
2705 DWARF-2, or something like it, because trying to improve
2706 overloading using STABS is really a waste of time. */
2707 for (i = 0; i < len; i++)
2708 {
2709 int j;
2710 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2711 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2712
2713 for (j = 0; j < len2; j++)
2714 {
2715 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2716 check_stub_method (domain, i, j);
2717 }
2718 }
2719 }
2720 else
2721 {
2722 int i = -1;
2723 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2724
2725 /* If the name is NULL this must be a C-style function.
2726 Just return the same symbol. */
2727 if (!func_name)
2728 {
2729 *symp = fsym;
2730 return 0;
2731 }
2732
2733 oload_syms = make_symbol_overload_list (fsym);
2734 while (oload_syms[++i])
2735 num_fns++;
2736 if (!num_fns)
2737 error ("Couldn't find function %s", func_name);
2738 }
2739
2740 oload_champ_bv = NULL;
2741
2742 /* Consider each candidate in turn */
2743 for (ix = 0; ix < num_fns; ix++)
2744 {
2745 if (method)
2746 {
2747 /* For static member functions, we won't have a this pointer, but nothing
2748 else seems to handle them right now, so we just pretend ourselves */
2749 nparms=0;
2750
2751 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2752 {
2753 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2754 nparms++;
2755 }
2756 }
2757 else
2758 {
2759 /* If it's not a method, this is the proper place */
2760 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2761 }
2762
2763 /* Prepare array of parameter types */
2764 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2765 for (jj = 0; jj < nparms; jj++)
2766 parm_types[jj] = (method
2767 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2768 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2769
2770 /* Compare parameter types to supplied argument types */
2771 bv = rank_function (parm_types, nparms, arg_types, nargs);
2772
2773 if (!oload_champ_bv)
2774 {
2775 oload_champ_bv = bv;
2776 oload_champ = 0;
2777 champ_nparms = nparms;
2778 }
2779 else
2780 /* See whether current candidate is better or worse than previous best */
2781 switch (compare_badness (bv, oload_champ_bv))
2782 {
2783 case 0:
2784 oload_ambiguous = 1; /* top two contenders are equally good */
2785 oload_ambig_champ = ix;
2786 break;
2787 case 1:
2788 oload_ambiguous = 2; /* incomparable top contenders */
2789 oload_ambig_champ = ix;
2790 break;
2791 case 2:
2792 oload_champ_bv = bv; /* new champion, record details */
2793 oload_ambiguous = 0;
2794 oload_champ = ix;
2795 oload_ambig_champ = -1;
2796 champ_nparms = nparms;
2797 break;
2798 case 3:
2799 default:
2800 break;
2801 }
2802 xfree (parm_types);
2803 if (overload_debug)
2804 {
2805 if (method)
2806 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2807 else
2808 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2809 for (jj = 0; jj < nargs; jj++)
2810 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2811 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2812 }
2813 } /* end loop over all candidates */
2814 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2815 if they have the exact same goodness. This is because there is no
2816 way to differentiate based on return type, which we need to in
2817 cases like overloads of .begin() <It's both const and non-const> */
2818 #if 0
2819 if (oload_ambiguous)
2820 {
2821 if (method)
2822 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2823 obj_type_name,
2824 (obj_type_name && *obj_type_name) ? "::" : "",
2825 name);
2826 else
2827 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2828 func_name);
2829 }
2830 #endif
2831
2832 /* Check how bad the best match is */
2833 for (ix = 1; ix <= nargs; ix++)
2834 {
2835 if (oload_champ_bv->rank[ix] >= 100)
2836 oload_incompatible = 1; /* truly mismatched types */
2837
2838 else if (oload_champ_bv->rank[ix] >= 10)
2839 oload_non_standard = 1; /* non-standard type conversions needed */
2840 }
2841 if (oload_incompatible)
2842 {
2843 if (method)
2844 error ("Cannot resolve method %s%s%s to any overloaded instance",
2845 obj_type_name,
2846 (obj_type_name && *obj_type_name) ? "::" : "",
2847 name);
2848 else
2849 error ("Cannot resolve function %s to any overloaded instance",
2850 func_name);
2851 }
2852 else if (oload_non_standard)
2853 {
2854 if (method)
2855 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2856 obj_type_name,
2857 (obj_type_name && *obj_type_name) ? "::" : "",
2858 name);
2859 else
2860 warning ("Using non-standard conversion to match function %s to supplied arguments",
2861 func_name);
2862 }
2863
2864 if (method)
2865 {
2866 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2867 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2868 else
2869 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2870 }
2871 else
2872 {
2873 *symp = oload_syms[oload_champ];
2874 xfree (func_name);
2875 }
2876
2877 if (objp)
2878 {
2879 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2880 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2881 {
2882 temp = value_addr (temp);
2883 }
2884 *objp = temp;
2885 }
2886 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2887 }
2888
2889 /* C++: return 1 is NAME is a legitimate name for the destructor
2890 of type TYPE. If TYPE does not have a destructor, or
2891 if NAME is inappropriate for TYPE, an error is signaled. */
2892 int
2893 destructor_name_p (const char *name, const struct type *type)
2894 {
2895 /* destructors are a special case. */
2896
2897 if (name[0] == '~')
2898 {
2899 char *dname = type_name_no_tag (type);
2900 char *cp = strchr (dname, '<');
2901 unsigned int len;
2902
2903 /* Do not compare the template part for template classes. */
2904 if (cp == NULL)
2905 len = strlen (dname);
2906 else
2907 len = cp - dname;
2908 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2909 error ("name of destructor must equal name of class");
2910 else
2911 return 1;
2912 }
2913 return 0;
2914 }
2915
2916 /* Helper function for check_field: Given TYPE, a structure/union,
2917 return 1 if the component named NAME from the ultimate
2918 target structure/union is defined, otherwise, return 0. */
2919
2920 static int
2921 check_field_in (register struct type *type, const char *name)
2922 {
2923 register int i;
2924
2925 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2926 {
2927 char *t_field_name = TYPE_FIELD_NAME (type, i);
2928 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2929 return 1;
2930 }
2931
2932 /* C++: If it was not found as a data field, then try to
2933 return it as a pointer to a method. */
2934
2935 /* Destructors are a special case. */
2936 if (destructor_name_p (name, type))
2937 {
2938 int m_index, f_index;
2939
2940 return get_destructor_fn_field (type, &m_index, &f_index);
2941 }
2942
2943 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2944 {
2945 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2946 return 1;
2947 }
2948
2949 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2950 if (check_field_in (TYPE_BASECLASS (type, i), name))
2951 return 1;
2952
2953 return 0;
2954 }
2955
2956
2957 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2958 return 1 if the component named NAME from the ultimate
2959 target structure/union is defined, otherwise, return 0. */
2960
2961 int
2962 check_field (struct value *arg1, const char *name)
2963 {
2964 register struct type *t;
2965
2966 COERCE_ARRAY (arg1);
2967
2968 t = VALUE_TYPE (arg1);
2969
2970 /* Follow pointers until we get to a non-pointer. */
2971
2972 for (;;)
2973 {
2974 CHECK_TYPEDEF (t);
2975 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2976 break;
2977 t = TYPE_TARGET_TYPE (t);
2978 }
2979
2980 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2981 error ("not implemented: member type in check_field");
2982
2983 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2984 && TYPE_CODE (t) != TYPE_CODE_UNION)
2985 error ("Internal error: `this' is not an aggregate");
2986
2987 return check_field_in (t, name);
2988 }
2989
2990 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2991 return the address of this member as a "pointer to member"
2992 type. If INTYPE is non-null, then it will be the type
2993 of the member we are looking for. This will help us resolve
2994 "pointers to member functions". This function is used
2995 to resolve user expressions of the form "DOMAIN::NAME". */
2996
2997 struct value *
2998 value_struct_elt_for_reference (struct type *domain, int offset,
2999 struct type *curtype, char *name,
3000 struct type *intype)
3001 {
3002 register struct type *t = curtype;
3003 register int i;
3004 struct value *v;
3005
3006 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3007 && TYPE_CODE (t) != TYPE_CODE_UNION)
3008 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3009
3010 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3011 {
3012 char *t_field_name = TYPE_FIELD_NAME (t, i);
3013
3014 if (t_field_name && STREQ (t_field_name, name))
3015 {
3016 if (TYPE_FIELD_STATIC (t, i))
3017 {
3018 v = value_static_field (t, i);
3019 if (v == NULL)
3020 error ("Internal error: could not find static variable %s",
3021 name);
3022 return v;
3023 }
3024 if (TYPE_FIELD_PACKED (t, i))
3025 error ("pointers to bitfield members not allowed");
3026
3027 return value_from_longest
3028 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3029 domain)),
3030 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3031 }
3032 }
3033
3034 /* C++: If it was not found as a data field, then try to
3035 return it as a pointer to a method. */
3036
3037 /* Destructors are a special case. */
3038 if (destructor_name_p (name, t))
3039 {
3040 error ("member pointers to destructors not implemented yet");
3041 }
3042
3043 /* Perform all necessary dereferencing. */
3044 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3045 intype = TYPE_TARGET_TYPE (intype);
3046
3047 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3048 {
3049 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3050 char dem_opname[64];
3051
3052 if (strncmp (t_field_name, "__", 2) == 0 ||
3053 strncmp (t_field_name, "op", 2) == 0 ||
3054 strncmp (t_field_name, "type", 4) == 0)
3055 {
3056 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3057 t_field_name = dem_opname;
3058 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3059 t_field_name = dem_opname;
3060 }
3061 if (t_field_name && STREQ (t_field_name, name))
3062 {
3063 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3064 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3065
3066 if (intype == 0 && j > 1)
3067 error ("non-unique member `%s' requires type instantiation", name);
3068 if (intype)
3069 {
3070 while (j--)
3071 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3072 break;
3073 if (j < 0)
3074 error ("no member function matches that type instantiation");
3075 }
3076 else
3077 j = 0;
3078
3079 if (TYPE_FN_FIELD_STUB (f, j))
3080 check_stub_method (t, i, j);
3081 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3082 {
3083 return value_from_longest
3084 (lookup_reference_type
3085 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3086 domain)),
3087 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3088 }
3089 else
3090 {
3091 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3092 0, VAR_NAMESPACE, 0, NULL);
3093 if (s == NULL)
3094 {
3095 v = 0;
3096 }
3097 else
3098 {
3099 v = read_var_value (s, 0);
3100 #if 0
3101 VALUE_TYPE (v) = lookup_reference_type
3102 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3103 domain));
3104 #endif
3105 }
3106 return v;
3107 }
3108 }
3109 }
3110 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3111 {
3112 struct value *v;
3113 int base_offset;
3114
3115 if (BASETYPE_VIA_VIRTUAL (t, i))
3116 base_offset = 0;
3117 else
3118 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3119 v = value_struct_elt_for_reference (domain,
3120 offset + base_offset,
3121 TYPE_BASECLASS (t, i),
3122 name,
3123 intype);
3124 if (v)
3125 return v;
3126 }
3127 return 0;
3128 }
3129
3130
3131 /* Given a pointer value V, find the real (RTTI) type
3132 of the object it points to.
3133 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3134 and refer to the values computed for the object pointed to. */
3135
3136 struct type *
3137 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3138 {
3139 struct value *target;
3140
3141 target = value_ind (v);
3142
3143 return value_rtti_type (target, full, top, using_enc);
3144 }
3145
3146 /* Given a value pointed to by ARGP, check its real run-time type, and
3147 if that is different from the enclosing type, create a new value
3148 using the real run-time type as the enclosing type (and of the same
3149 type as ARGP) and return it, with the embedded offset adjusted to
3150 be the correct offset to the enclosed object
3151 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3152 parameters, computed by value_rtti_type(). If these are available,
3153 they can be supplied and a second call to value_rtti_type() is avoided.
3154 (Pass RTYPE == NULL if they're not available */
3155
3156 struct value *
3157 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3158 int xusing_enc)
3159 {
3160 struct type *real_type;
3161 int full = 0;
3162 int top = -1;
3163 int using_enc = 0;
3164 struct value *new_val;
3165
3166 if (rtype)
3167 {
3168 real_type = rtype;
3169 full = xfull;
3170 top = xtop;
3171 using_enc = xusing_enc;
3172 }
3173 else
3174 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3175
3176 /* If no RTTI data, or if object is already complete, do nothing */
3177 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3178 return argp;
3179
3180 /* If we have the full object, but for some reason the enclosing
3181 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3182 if (full)
3183 {
3184 argp = value_change_enclosing_type (argp, real_type);
3185 return argp;
3186 }
3187
3188 /* Check if object is in memory */
3189 if (VALUE_LVAL (argp) != lval_memory)
3190 {
3191 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3192
3193 return argp;
3194 }
3195
3196 /* All other cases -- retrieve the complete object */
3197 /* Go back by the computed top_offset from the beginning of the object,
3198 adjusting for the embedded offset of argp if that's what value_rtti_type
3199 used for its computation. */
3200 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3201 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3202 VALUE_BFD_SECTION (argp));
3203 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3204 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3205 return new_val;
3206 }
3207
3208
3209
3210
3211 /* C++: return the value of the class instance variable, if one exists.
3212 Flag COMPLAIN signals an error if the request is made in an
3213 inappropriate context. */
3214
3215 struct value *
3216 value_of_this (int complain)
3217 {
3218 struct symbol *func, *sym;
3219 struct block *b;
3220 int i;
3221 static const char funny_this[] = "this";
3222 struct value *this;
3223
3224 if (selected_frame == 0)
3225 {
3226 if (complain)
3227 error ("no frame selected");
3228 else
3229 return 0;
3230 }
3231
3232 func = get_frame_function (selected_frame);
3233 if (!func)
3234 {
3235 if (complain)
3236 error ("no `this' in nameless context");
3237 else
3238 return 0;
3239 }
3240
3241 b = SYMBOL_BLOCK_VALUE (func);
3242 i = BLOCK_NSYMS (b);
3243 if (i <= 0)
3244 {
3245 if (complain)
3246 error ("no args, no `this'");
3247 else
3248 return 0;
3249 }
3250
3251 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3252 symbol instead of the LOC_ARG one (if both exist). */
3253 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
3254 if (sym == NULL)
3255 {
3256 if (complain)
3257 error ("current stack frame not in method");
3258 else
3259 return NULL;
3260 }
3261
3262 this = read_var_value (sym, selected_frame);
3263 if (this == 0 && complain)
3264 error ("`this' argument at unknown address");
3265 return this;
3266 }
3267
3268 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3269 long, starting at LOWBOUND. The result has the same lower bound as
3270 the original ARRAY. */
3271
3272 struct value *
3273 value_slice (struct value *array, int lowbound, int length)
3274 {
3275 struct type *slice_range_type, *slice_type, *range_type;
3276 LONGEST lowerbound, upperbound, offset;
3277 struct value *slice;
3278 struct type *array_type;
3279 array_type = check_typedef (VALUE_TYPE (array));
3280 COERCE_VARYING_ARRAY (array, array_type);
3281 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3282 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3283 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3284 error ("cannot take slice of non-array");
3285 range_type = TYPE_INDEX_TYPE (array_type);
3286 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3287 error ("slice from bad array or bitstring");
3288 if (lowbound < lowerbound || length < 0
3289 || lowbound + length - 1 > upperbound
3290 /* Chill allows zero-length strings but not arrays. */
3291 || (current_language->la_language == language_chill
3292 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3293 error ("slice out of range");
3294 /* FIXME-type-allocation: need a way to free this type when we are
3295 done with it. */
3296 slice_range_type = create_range_type ((struct type *) NULL,
3297 TYPE_TARGET_TYPE (range_type),
3298 lowbound, lowbound + length - 1);
3299 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3300 {
3301 int i;
3302 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3303 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3304 slice = value_zero (slice_type, not_lval);
3305 for (i = 0; i < length; i++)
3306 {
3307 int element = value_bit_index (array_type,
3308 VALUE_CONTENTS (array),
3309 lowbound + i);
3310 if (element < 0)
3311 error ("internal error accessing bitstring");
3312 else if (element > 0)
3313 {
3314 int j = i % TARGET_CHAR_BIT;
3315 if (BITS_BIG_ENDIAN)
3316 j = TARGET_CHAR_BIT - 1 - j;
3317 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3318 }
3319 }
3320 /* We should set the address, bitssize, and bitspos, so the clice
3321 can be used on the LHS, but that may require extensions to
3322 value_assign. For now, just leave as a non_lval. FIXME. */
3323 }
3324 else
3325 {
3326 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3327 offset
3328 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3329 slice_type = create_array_type ((struct type *) NULL, element_type,
3330 slice_range_type);
3331 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3332 slice = allocate_value (slice_type);
3333 if (VALUE_LAZY (array))
3334 VALUE_LAZY (slice) = 1;
3335 else
3336 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3337 TYPE_LENGTH (slice_type));
3338 if (VALUE_LVAL (array) == lval_internalvar)
3339 VALUE_LVAL (slice) = lval_internalvar_component;
3340 else
3341 VALUE_LVAL (slice) = VALUE_LVAL (array);
3342 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3343 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3344 }
3345 return slice;
3346 }
3347
3348 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3349 value as a fixed-length array. */
3350
3351 struct value *
3352 varying_to_slice (struct value *varray)
3353 {
3354 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3355 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3356 VALUE_CONTENTS (varray)
3357 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3358 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3359 }
3360
3361 /* Create a value for a FORTRAN complex number. Currently most of
3362 the time values are coerced to COMPLEX*16 (i.e. a complex number
3363 composed of 2 doubles. This really should be a smarter routine
3364 that figures out precision inteligently as opposed to assuming
3365 doubles. FIXME: fmb */
3366
3367 struct value *
3368 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3369 {
3370 struct value *val;
3371 struct type *real_type = TYPE_TARGET_TYPE (type);
3372
3373 val = allocate_value (type);
3374 arg1 = value_cast (real_type, arg1);
3375 arg2 = value_cast (real_type, arg2);
3376
3377 memcpy (VALUE_CONTENTS_RAW (val),
3378 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3379 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3380 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3381 return val;
3382 }
3383
3384 /* Cast a value into the appropriate complex data type. */
3385
3386 static struct value *
3387 cast_into_complex (struct type *type, struct value *val)
3388 {
3389 struct type *real_type = TYPE_TARGET_TYPE (type);
3390 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3391 {
3392 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3393 struct value *re_val = allocate_value (val_real_type);
3394 struct value *im_val = allocate_value (val_real_type);
3395
3396 memcpy (VALUE_CONTENTS_RAW (re_val),
3397 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3398 memcpy (VALUE_CONTENTS_RAW (im_val),
3399 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3400 TYPE_LENGTH (val_real_type));
3401
3402 return value_literal_complex (re_val, im_val, type);
3403 }
3404 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3405 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3406 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3407 else
3408 error ("cannot cast non-number to complex");
3409 }
3410
3411 void
3412 _initialize_valops (void)
3413 {
3414 #if 0
3415 add_show_from_set
3416 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3417 "Set automatic abandonment of expressions upon failure.",
3418 &setlist),
3419 &showlist);
3420 #endif
3421
3422 add_show_from_set
3423 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3424 "Set overload resolution in evaluating C++ functions.",
3425 &setlist),
3426 &showlist);
3427 overload_resolution = 1;
3428
3429 add_show_from_set (
3430 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3431 (char *) &unwind_on_signal_p,
3432 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3433 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3434 is received while in a function called from gdb (call dummy). If set, gdb\n\
3435 unwinds the stack and restore the context to what as it was before the call.\n\
3436 The default is to stop in the frame where the signal was received.", &setlist),
3437 &showlist);
3438 }
This page took 0.146452 seconds and 4 git commands to generate.