2002-08-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
44
45 extern int overload_debug;
46 /* Local functions. */
47
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
50
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
53
54
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
56
57 static struct value *search_struct_field (char *, struct value *, int,
58 struct type *, int);
59
60 static struct value *search_struct_method (char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int check_field_in (struct type *, const char *);
65
66 static CORE_ADDR allocate_space_in_inferior (int);
67
68 static struct value *cast_into_complex (struct type *, struct value *);
69
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
71 int offset,
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
75
76 void _initialize_valops (void);
77
78 /* Flag for whether we want to abandon failed expression evals by default. */
79
80 #if 0
81 static int auto_abandon = 0;
82 #endif
83
84 int overload_resolution = 0;
85
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92 \f
93
94
95 /* Find the address of function name NAME in the inferior. */
96
97 struct value *
98 find_function_in_inferior (char *name)
99 {
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
114 if (msymbol != NULL)
115 {
116 struct type *type;
117 CORE_ADDR maddr;
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
123 }
124 else
125 {
126 if (!target_has_execution)
127 error ("evaluation of this expression requires the target program to be active");
128 else
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132 }
133
134 /* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
137 struct value *
138 value_allocate_space_in_inferior (int len)
139 {
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior ("malloc");
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (int len)
157 {
158 return value_as_long (value_allocate_space_in_inferior (len));
159 }
160
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
165
166 struct value *
167 value_cast (struct type *type, struct value *arg2)
168 {
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
175
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
181 COERCE_REF (arg2);
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
201 warning ("array element type size does not divide object size in cast");
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
240 if (code1 == TYPE_CODE_STRUCT
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
247 struct value *v = search_struct_field (type_name_no_tag (type),
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
267 struct value *retvalp;
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
274 /* force evaluation */
275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 return retvalp;
278
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
282
283 default:
284 break; /* fall out and go to normal handling */
285 }
286 }
287
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
293 bits. */
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
297 else
298 longest = value_as_long (arg2);
299 return value_from_longest (type, convert_to_boolean ?
300 (LONGEST) (longest ? 1 : 0) : longest);
301 }
302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
305 {
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
310
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
315
316 int addr_bit = TARGET_ADDR_BIT;
317
318 LONGEST longest = value_as_long (arg2);
319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
320 {
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
323 warning ("value truncated");
324 }
325 return value_from_longest (type, longest);
326 }
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
328 {
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
330 {
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
336 {
337 struct value *v;
338
339 /* Look in the type of the source to see if it contains the
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
342 if (TYPE_NAME (t1) != NULL)
343 {
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
346 if (v)
347 {
348 v = value_addr (v);
349 VALUE_TYPE (v) = type;
350 return v;
351 }
352 }
353
354 /* Look in the type of the target to see if it contains the
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
358 if (TYPE_NAME (t2) != NULL)
359 {
360 v = search_struct_field (type_name_no_tag (t2),
361 value_zero (t1, not_lval), 0, t1, 1);
362 if (v)
363 {
364 struct value *v2 = value_ind (arg2);
365 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
366 + VALUE_OFFSET (v);
367
368 /* JYG: adjust the new pointer value and
369 embedded offset. */
370 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
371 VALUE_EMBEDDED_OFFSET (v2) = 0;
372
373 v2 = value_addr (v2);
374 VALUE_TYPE (v2) = type;
375 return v2;
376 }
377 }
378 }
379 /* No superclass found, just fall through to change ptr type. */
380 }
381 VALUE_TYPE (arg2) = type;
382 arg2 = value_change_enclosing_type (arg2, type);
383 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
384 return arg2;
385 }
386 /* OBSOLETE else if (chill_varying_type (type)) */
387 /* OBSOLETE { */
388 /* OBSOLETE struct type *range1, *range2, *eltype1, *eltype2; */
389 /* OBSOLETE struct value *val; */
390 /* OBSOLETE int count1, count2; */
391 /* OBSOLETE LONGEST low_bound, high_bound; */
392 /* OBSOLETE char *valaddr, *valaddr_data; */
393 /* OBSOLETE *//* For lint warning about eltype2 possibly uninitialized: */
394 /* OBSOLETE eltype2 = NULL; */
395 /* OBSOLETE if (code2 == TYPE_CODE_BITSTRING) */
396 /* OBSOLETE error ("not implemented: converting bitstring to varying type"); */
397 /* OBSOLETE if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) */
398 /* OBSOLETE || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), */
399 /* OBSOLETE eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), */
400 /* OBSOLETE (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) */
401 /* OBSOLETE *//*|| TYPE_CODE (eltype1) != TYPE_CODE (eltype2) *//* ))) */
402 /* OBSOLETE error ("Invalid conversion to varying type"); */
403 /* OBSOLETE range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); */
404 /* OBSOLETE range2 = TYPE_FIELD_TYPE (type2, 0); */
405 /* OBSOLETE if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) */
406 /* OBSOLETE count1 = -1; */
407 /* OBSOLETE else */
408 /* OBSOLETE count1 = high_bound - low_bound + 1; */
409 /* OBSOLETE if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) */
410 /* OBSOLETE count1 = -1, count2 = 0; *//* To force error before */
411 /* OBSOLETE else */
412 /* OBSOLETE count2 = high_bound - low_bound + 1; */
413 /* OBSOLETE if (count2 > count1) */
414 /* OBSOLETE error ("target varying type is too small"); */
415 /* OBSOLETE val = allocate_value (type); */
416 /* OBSOLETE valaddr = VALUE_CONTENTS_RAW (val); */
417 /* OBSOLETE valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; */
418 /* OBSOLETE *//* Set val's __var_length field to count2. */
419 /* OBSOLETE store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), */
420 /* OBSOLETE count2); */
421 /* OBSOLETE *//* Set the __var_data field to count2 elements copied from arg2. */
422 /* OBSOLETE memcpy (valaddr_data, VALUE_CONTENTS (arg2), */
423 /* OBSOLETE count2 * TYPE_LENGTH (eltype2)); */
424 /* OBSOLETE *//* Zero the rest of the __var_data field of val. */
425 /* OBSOLETE memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', */
426 /* OBSOLETE (count1 - count2) * TYPE_LENGTH (eltype2)); */
427 /* OBSOLETE return val; */
428 /* OBSOLETE } */
429 else if (VALUE_LVAL (arg2) == lval_memory)
430 {
431 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
432 VALUE_BFD_SECTION (arg2));
433 }
434 else if (code1 == TYPE_CODE_VOID)
435 {
436 return value_zero (builtin_type_void, not_lval);
437 }
438 else
439 {
440 error ("Invalid cast.");
441 return 0;
442 }
443 }
444
445 /* Create a value of type TYPE that is zero, and return it. */
446
447 struct value *
448 value_zero (struct type *type, enum lval_type lv)
449 {
450 struct value *val = allocate_value (type);
451
452 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
453 VALUE_LVAL (val) = lv;
454
455 return val;
456 }
457
458 /* Return a value with type TYPE located at ADDR.
459
460 Call value_at only if the data needs to be fetched immediately;
461 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
462 value_at_lazy instead. value_at_lazy simply records the address of
463 the data and sets the lazy-evaluation-required flag. The lazy flag
464 is tested in the VALUE_CONTENTS macro, which is used if and when
465 the contents are actually required.
466
467 Note: value_at does *NOT* handle embedded offsets; perform such
468 adjustments before or after calling it. */
469
470 struct value *
471 value_at (struct type *type, CORE_ADDR addr, asection *sect)
472 {
473 struct value *val;
474
475 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
476 error ("Attempt to dereference a generic pointer.");
477
478 val = allocate_value (type);
479
480 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
481
482 VALUE_LVAL (val) = lval_memory;
483 VALUE_ADDRESS (val) = addr;
484 VALUE_BFD_SECTION (val) = sect;
485
486 return val;
487 }
488
489 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
490
491 struct value *
492 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
493 {
494 struct value *val;
495
496 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
497 error ("Attempt to dereference a generic pointer.");
498
499 val = allocate_value (type);
500
501 VALUE_LVAL (val) = lval_memory;
502 VALUE_ADDRESS (val) = addr;
503 VALUE_LAZY (val) = 1;
504 VALUE_BFD_SECTION (val) = sect;
505
506 return val;
507 }
508
509 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
510 if the current data for a variable needs to be loaded into
511 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
512 clears the lazy flag to indicate that the data in the buffer is valid.
513
514 If the value is zero-length, we avoid calling read_memory, which would
515 abort. We mark the value as fetched anyway -- all 0 bytes of it.
516
517 This function returns a value because it is used in the VALUE_CONTENTS
518 macro as part of an expression, where a void would not work. The
519 value is ignored. */
520
521 int
522 value_fetch_lazy (struct value *val)
523 {
524 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
525 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
526
527 struct type *type = VALUE_TYPE (val);
528 if (length)
529 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
530
531 VALUE_LAZY (val) = 0;
532 return 0;
533 }
534
535
536 /* Store the contents of FROMVAL into the location of TOVAL.
537 Return a new value with the location of TOVAL and contents of FROMVAL. */
538
539 struct value *
540 value_assign (struct value *toval, struct value *fromval)
541 {
542 register struct type *type;
543 struct value *val;
544 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
545 int use_buffer = 0;
546
547 if (!toval->modifiable)
548 error ("Left operand of assignment is not a modifiable lvalue.");
549
550 COERCE_REF (toval);
551
552 type = VALUE_TYPE (toval);
553 if (VALUE_LVAL (toval) != lval_internalvar)
554 fromval = value_cast (type, fromval);
555 else
556 COERCE_ARRAY (fromval);
557 CHECK_TYPEDEF (type);
558
559 /* If TOVAL is a special machine register requiring conversion
560 of program values to a special raw format,
561 convert FROMVAL's contents now, with result in `raw_buffer',
562 and set USE_BUFFER to the number of bytes to write. */
563
564 if (VALUE_REGNO (toval) >= 0)
565 {
566 int regno = VALUE_REGNO (toval);
567 if (CONVERT_REGISTER_P (regno))
568 {
569 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
570 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
571 use_buffer = REGISTER_RAW_SIZE (regno);
572 }
573 }
574
575 switch (VALUE_LVAL (toval))
576 {
577 case lval_internalvar:
578 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
579 val = value_copy (VALUE_INTERNALVAR (toval)->value);
580 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
581 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
582 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
583 return val;
584
585 case lval_internalvar_component:
586 set_internalvar_component (VALUE_INTERNALVAR (toval),
587 VALUE_OFFSET (toval),
588 VALUE_BITPOS (toval),
589 VALUE_BITSIZE (toval),
590 fromval);
591 break;
592
593 case lval_memory:
594 {
595 char *dest_buffer;
596 CORE_ADDR changed_addr;
597 int changed_len;
598
599 if (VALUE_BITSIZE (toval))
600 {
601 char buffer[sizeof (LONGEST)];
602 /* We assume that the argument to read_memory is in units of
603 host chars. FIXME: Is that correct? */
604 changed_len = (VALUE_BITPOS (toval)
605 + VALUE_BITSIZE (toval)
606 + HOST_CHAR_BIT - 1)
607 / HOST_CHAR_BIT;
608
609 if (changed_len > (int) sizeof (LONGEST))
610 error ("Can't handle bitfields which don't fit in a %d bit word.",
611 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
612
613 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
614 buffer, changed_len);
615 modify_field (buffer, value_as_long (fromval),
616 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
617 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
618 dest_buffer = buffer;
619 }
620 else if (use_buffer)
621 {
622 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
623 changed_len = use_buffer;
624 dest_buffer = raw_buffer;
625 }
626 else
627 {
628 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
629 changed_len = TYPE_LENGTH (type);
630 dest_buffer = VALUE_CONTENTS (fromval);
631 }
632
633 write_memory (changed_addr, dest_buffer, changed_len);
634 if (memory_changed_hook)
635 memory_changed_hook (changed_addr, changed_len);
636 }
637 break;
638
639 case lval_register:
640 if (VALUE_BITSIZE (toval))
641 {
642 char buffer[sizeof (LONGEST)];
643 int len =
644 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
645
646 if (len > (int) sizeof (LONGEST))
647 error ("Can't handle bitfields in registers larger than %d bits.",
648 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
649
650 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
651 > len * HOST_CHAR_BIT)
652 /* Getting this right would involve being very careful about
653 byte order. */
654 error ("Can't assign to bitfields that cross register "
655 "boundaries.");
656
657 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
658 buffer, len);
659 modify_field (buffer, value_as_long (fromval),
660 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
661 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
662 buffer, len);
663 }
664 else if (use_buffer)
665 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
666 raw_buffer, use_buffer);
667 else
668 {
669 /* Do any conversion necessary when storing this type to more
670 than one register. */
671 #ifdef REGISTER_CONVERT_FROM_TYPE
672 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
673 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
674 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
675 raw_buffer, TYPE_LENGTH (type));
676 #else
677 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
678 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
679 #endif
680 }
681 /* Assigning to the stack pointer, frame pointer, and other
682 (architecture and calling convention specific) registers may
683 cause the frame cache to be out of date. We just do this
684 on all assignments to registers for simplicity; I doubt the slowdown
685 matters. */
686 reinit_frame_cache ();
687 break;
688
689 case lval_reg_frame_relative:
690 {
691 /* value is stored in a series of registers in the frame
692 specified by the structure. Copy that value out, modify
693 it, and copy it back in. */
694 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
695 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
696 int byte_offset = VALUE_OFFSET (toval) % reg_size;
697 int reg_offset = VALUE_OFFSET (toval) / reg_size;
698 int amount_copied;
699
700 /* Make the buffer large enough in all cases. */
701 /* FIXME (alloca): Not safe for very large data types. */
702 char *buffer = (char *) alloca (amount_to_copy
703 + sizeof (LONGEST)
704 + MAX_REGISTER_RAW_SIZE);
705
706 int regno;
707 struct frame_info *frame;
708
709 /* Figure out which frame this is in currently. */
710 for (frame = get_current_frame ();
711 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
712 frame = get_prev_frame (frame))
713 ;
714
715 if (!frame)
716 error ("Value being assigned to is no longer active.");
717
718 amount_to_copy += (reg_size - amount_to_copy % reg_size);
719
720 /* Copy it out. */
721 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
722 amount_copied = 0);
723 amount_copied < amount_to_copy;
724 amount_copied += reg_size, regno++)
725 {
726 get_saved_register (buffer + amount_copied,
727 (int *) NULL, (CORE_ADDR *) NULL,
728 frame, regno, (enum lval_type *) NULL);
729 }
730
731 /* Modify what needs to be modified. */
732 if (VALUE_BITSIZE (toval))
733 modify_field (buffer + byte_offset,
734 value_as_long (fromval),
735 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
736 else if (use_buffer)
737 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
738 else
739 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
740 TYPE_LENGTH (type));
741
742 /* Copy it back. */
743 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
744 amount_copied = 0);
745 amount_copied < amount_to_copy;
746 amount_copied += reg_size, regno++)
747 {
748 enum lval_type lval;
749 CORE_ADDR addr;
750 int optim;
751
752 /* Just find out where to put it. */
753 get_saved_register ((char *) NULL,
754 &optim, &addr, frame, regno, &lval);
755
756 if (optim)
757 error ("Attempt to assign to a value that was optimized out.");
758 if (lval == lval_memory)
759 write_memory (addr, buffer + amount_copied, reg_size);
760 else if (lval == lval_register)
761 write_register_bytes (addr, buffer + amount_copied, reg_size);
762 else
763 error ("Attempt to assign to an unmodifiable value.");
764 }
765
766 if (register_changed_hook)
767 register_changed_hook (-1);
768 }
769 break;
770
771
772 default:
773 error ("Left operand of assignment is not an lvalue.");
774 }
775
776 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
777 If the field is signed, and is negative, then sign extend. */
778 if ((VALUE_BITSIZE (toval) > 0)
779 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
780 {
781 LONGEST fieldval = value_as_long (fromval);
782 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
783
784 fieldval &= valmask;
785 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
786 fieldval |= ~valmask;
787
788 fromval = value_from_longest (type, fieldval);
789 }
790
791 val = value_copy (toval);
792 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
793 TYPE_LENGTH (type));
794 VALUE_TYPE (val) = type;
795 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
796 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
797 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
798
799 return val;
800 }
801
802 /* Extend a value VAL to COUNT repetitions of its type. */
803
804 struct value *
805 value_repeat (struct value *arg1, int count)
806 {
807 struct value *val;
808
809 if (VALUE_LVAL (arg1) != lval_memory)
810 error ("Only values in memory can be extended with '@'.");
811 if (count < 1)
812 error ("Invalid number %d of repetitions.", count);
813
814 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
815
816 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
817 VALUE_CONTENTS_ALL_RAW (val),
818 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
819 VALUE_LVAL (val) = lval_memory;
820 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
821
822 return val;
823 }
824
825 struct value *
826 value_of_variable (struct symbol *var, struct block *b)
827 {
828 struct value *val;
829 struct frame_info *frame = NULL;
830
831 if (!b)
832 frame = NULL; /* Use selected frame. */
833 else if (symbol_read_needs_frame (var))
834 {
835 frame = block_innermost_frame (b);
836 if (!frame)
837 {
838 if (BLOCK_FUNCTION (b)
839 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
840 error ("No frame is currently executing in block %s.",
841 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
842 else
843 error ("No frame is currently executing in specified block");
844 }
845 }
846
847 val = read_var_value (var, frame);
848 if (!val)
849 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
850
851 return val;
852 }
853
854 /* Given a value which is an array, return a value which is a pointer to its
855 first element, regardless of whether or not the array has a nonzero lower
856 bound.
857
858 FIXME: A previous comment here indicated that this routine should be
859 substracting the array's lower bound. It's not clear to me that this
860 is correct. Given an array subscripting operation, it would certainly
861 work to do the adjustment here, essentially computing:
862
863 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
864
865 However I believe a more appropriate and logical place to account for
866 the lower bound is to do so in value_subscript, essentially computing:
867
868 (&array[0] + ((index - lowerbound) * sizeof array[0]))
869
870 As further evidence consider what would happen with operations other
871 than array subscripting, where the caller would get back a value that
872 had an address somewhere before the actual first element of the array,
873 and the information about the lower bound would be lost because of
874 the coercion to pointer type.
875 */
876
877 struct value *
878 value_coerce_array (struct value *arg1)
879 {
880 register struct type *type = check_typedef (VALUE_TYPE (arg1));
881
882 if (VALUE_LVAL (arg1) != lval_memory)
883 error ("Attempt to take address of value not located in memory.");
884
885 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
886 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
887 }
888
889 /* Given a value which is a function, return a value which is a pointer
890 to it. */
891
892 struct value *
893 value_coerce_function (struct value *arg1)
894 {
895 struct value *retval;
896
897 if (VALUE_LVAL (arg1) != lval_memory)
898 error ("Attempt to take address of value not located in memory.");
899
900 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
901 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
902 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
903 return retval;
904 }
905
906 /* Return a pointer value for the object for which ARG1 is the contents. */
907
908 struct value *
909 value_addr (struct value *arg1)
910 {
911 struct value *arg2;
912
913 struct type *type = check_typedef (VALUE_TYPE (arg1));
914 if (TYPE_CODE (type) == TYPE_CODE_REF)
915 {
916 /* Copy the value, but change the type from (T&) to (T*).
917 We keep the same location information, which is efficient,
918 and allows &(&X) to get the location containing the reference. */
919 arg2 = value_copy (arg1);
920 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
921 return arg2;
922 }
923 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
924 return value_coerce_function (arg1);
925
926 if (VALUE_LVAL (arg1) != lval_memory)
927 error ("Attempt to take address of value not located in memory.");
928
929 /* Get target memory address */
930 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
931 (VALUE_ADDRESS (arg1)
932 + VALUE_OFFSET (arg1)
933 + VALUE_EMBEDDED_OFFSET (arg1)));
934
935 /* This may be a pointer to a base subobject; so remember the
936 full derived object's type ... */
937 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
938 /* ... and also the relative position of the subobject in the full object */
939 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
940 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
941 return arg2;
942 }
943
944 /* Given a value of a pointer type, apply the C unary * operator to it. */
945
946 struct value *
947 value_ind (struct value *arg1)
948 {
949 struct type *base_type;
950 struct value *arg2;
951
952 COERCE_ARRAY (arg1);
953
954 base_type = check_typedef (VALUE_TYPE (arg1));
955
956 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
957 error ("not implemented: member types in value_ind");
958
959 /* Allow * on an integer so we can cast it to whatever we want.
960 This returns an int, which seems like the most C-like thing
961 to do. "long long" variables are rare enough that
962 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
963 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
964 return value_at_lazy (builtin_type_int,
965 (CORE_ADDR) value_as_long (arg1),
966 VALUE_BFD_SECTION (arg1));
967 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
968 {
969 struct type *enc_type;
970 /* We may be pointing to something embedded in a larger object */
971 /* Get the real type of the enclosing object */
972 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
973 enc_type = TYPE_TARGET_TYPE (enc_type);
974 /* Retrieve the enclosing object pointed to */
975 arg2 = value_at_lazy (enc_type,
976 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
977 VALUE_BFD_SECTION (arg1));
978 /* Re-adjust type */
979 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
980 /* Add embedding info */
981 arg2 = value_change_enclosing_type (arg2, enc_type);
982 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
983
984 /* We may be pointing to an object of some derived type */
985 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
986 return arg2;
987 }
988
989 error ("Attempt to take contents of a non-pointer value.");
990 return 0; /* For lint -- never reached */
991 }
992 \f
993 /* Pushing small parts of stack frames. */
994
995 /* Push one word (the size of object that a register holds). */
996
997 CORE_ADDR
998 push_word (CORE_ADDR sp, ULONGEST word)
999 {
1000 register int len = REGISTER_SIZE;
1001 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1002
1003 store_unsigned_integer (buffer, len, word);
1004 if (INNER_THAN (1, 2))
1005 {
1006 /* stack grows downward */
1007 sp -= len;
1008 write_memory (sp, buffer, len);
1009 }
1010 else
1011 {
1012 /* stack grows upward */
1013 write_memory (sp, buffer, len);
1014 sp += len;
1015 }
1016
1017 return sp;
1018 }
1019
1020 /* Push LEN bytes with data at BUFFER. */
1021
1022 CORE_ADDR
1023 push_bytes (CORE_ADDR sp, char *buffer, int len)
1024 {
1025 if (INNER_THAN (1, 2))
1026 {
1027 /* stack grows downward */
1028 sp -= len;
1029 write_memory (sp, buffer, len);
1030 }
1031 else
1032 {
1033 /* stack grows upward */
1034 write_memory (sp, buffer, len);
1035 sp += len;
1036 }
1037
1038 return sp;
1039 }
1040
1041 #ifndef PARM_BOUNDARY
1042 #define PARM_BOUNDARY (0)
1043 #endif
1044
1045 /* Push onto the stack the specified value VALUE. Pad it correctly for
1046 it to be an argument to a function. */
1047
1048 static CORE_ADDR
1049 value_push (register CORE_ADDR sp, struct value *arg)
1050 {
1051 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1052 register int container_len = len;
1053 register int offset;
1054
1055 /* How big is the container we're going to put this value in? */
1056 if (PARM_BOUNDARY)
1057 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1058 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1059
1060 /* Are we going to put it at the high or low end of the container? */
1061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1062 offset = container_len - len;
1063 else
1064 offset = 0;
1065
1066 if (INNER_THAN (1, 2))
1067 {
1068 /* stack grows downward */
1069 sp -= container_len;
1070 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1071 }
1072 else
1073 {
1074 /* stack grows upward */
1075 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1076 sp += container_len;
1077 }
1078
1079 return sp;
1080 }
1081
1082 CORE_ADDR
1083 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1084 int struct_return, CORE_ADDR struct_addr)
1085 {
1086 /* ASSERT ( !struct_return); */
1087 int i;
1088 for (i = nargs - 1; i >= 0; i--)
1089 sp = value_push (sp, args[i]);
1090 return sp;
1091 }
1092
1093
1094 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1095
1096 How you should pass arguments to a function depends on whether it
1097 was defined in K&R style or prototype style. If you define a
1098 function using the K&R syntax that takes a `float' argument, then
1099 callers must pass that argument as a `double'. If you define the
1100 function using the prototype syntax, then you must pass the
1101 argument as a `float', with no promotion.
1102
1103 Unfortunately, on certain older platforms, the debug info doesn't
1104 indicate reliably how each function was defined. A function type's
1105 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1106 defined in prototype style. When calling a function whose
1107 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1108 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1109
1110 For modern targets, it is proper to assume that, if the prototype
1111 flag is clear, that can be trusted: `float' arguments should be
1112 promoted to `double'. You should register the function
1113 `standard_coerce_float_to_double' to get this behavior.
1114
1115 For some older targets, if the prototype flag is clear, that
1116 doesn't tell us anything. So we guess that, if we don't have a
1117 type for the formal parameter (i.e., the first argument to
1118 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1119 otherwise, we should leave it alone. The function
1120 `default_coerce_float_to_double' provides this behavior; it is the
1121 default value, for compatibility with older configurations. */
1122 int
1123 default_coerce_float_to_double (struct type *formal, struct type *actual)
1124 {
1125 return formal == NULL;
1126 }
1127
1128
1129 int
1130 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1131 {
1132 return 1;
1133 }
1134
1135
1136 /* Perform the standard coercions that are specified
1137 for arguments to be passed to C functions.
1138
1139 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1140 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1141
1142 static struct value *
1143 value_arg_coerce (struct value *arg, struct type *param_type,
1144 int is_prototyped)
1145 {
1146 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1147 register struct type *type
1148 = param_type ? check_typedef (param_type) : arg_type;
1149
1150 switch (TYPE_CODE (type))
1151 {
1152 case TYPE_CODE_REF:
1153 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1154 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1155 {
1156 arg = value_addr (arg);
1157 VALUE_TYPE (arg) = param_type;
1158 return arg;
1159 }
1160 break;
1161 case TYPE_CODE_INT:
1162 case TYPE_CODE_CHAR:
1163 case TYPE_CODE_BOOL:
1164 case TYPE_CODE_ENUM:
1165 /* If we don't have a prototype, coerce to integer type if necessary. */
1166 if (!is_prototyped)
1167 {
1168 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1169 type = builtin_type_int;
1170 }
1171 /* Currently all target ABIs require at least the width of an integer
1172 type for an argument. We may have to conditionalize the following
1173 type coercion for future targets. */
1174 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1175 type = builtin_type_int;
1176 break;
1177 case TYPE_CODE_FLT:
1178 /* FIXME: We should always convert floats to doubles in the
1179 non-prototyped case. As many debugging formats include
1180 no information about prototyping, we have to live with
1181 COERCE_FLOAT_TO_DOUBLE for now. */
1182 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1183 {
1184 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1185 type = builtin_type_double;
1186 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1187 type = builtin_type_long_double;
1188 }
1189 break;
1190 case TYPE_CODE_FUNC:
1191 type = lookup_pointer_type (type);
1192 break;
1193 case TYPE_CODE_ARRAY:
1194 /* Arrays are coerced to pointers to their first element, unless
1195 they are vectors, in which case we want to leave them alone,
1196 because they are passed by value. */
1197 if (current_language->c_style_arrays)
1198 if (!TYPE_VECTOR (type))
1199 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1200 break;
1201 case TYPE_CODE_UNDEF:
1202 case TYPE_CODE_PTR:
1203 case TYPE_CODE_STRUCT:
1204 case TYPE_CODE_UNION:
1205 case TYPE_CODE_VOID:
1206 case TYPE_CODE_SET:
1207 case TYPE_CODE_RANGE:
1208 case TYPE_CODE_STRING:
1209 case TYPE_CODE_BITSTRING:
1210 case TYPE_CODE_ERROR:
1211 case TYPE_CODE_MEMBER:
1212 case TYPE_CODE_METHOD:
1213 case TYPE_CODE_COMPLEX:
1214 default:
1215 break;
1216 }
1217
1218 return value_cast (type, arg);
1219 }
1220
1221 /* Determine a function's address and its return type from its value.
1222 Calls error() if the function is not valid for calling. */
1223
1224 static CORE_ADDR
1225 find_function_addr (struct value *function, struct type **retval_type)
1226 {
1227 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1228 register enum type_code code = TYPE_CODE (ftype);
1229 struct type *value_type;
1230 CORE_ADDR funaddr;
1231
1232 /* If it's a member function, just look at the function
1233 part of it. */
1234
1235 /* Determine address to call. */
1236 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1237 {
1238 funaddr = VALUE_ADDRESS (function);
1239 value_type = TYPE_TARGET_TYPE (ftype);
1240 }
1241 else if (code == TYPE_CODE_PTR)
1242 {
1243 funaddr = value_as_address (function);
1244 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1245 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1246 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1247 {
1248 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1249 value_type = TYPE_TARGET_TYPE (ftype);
1250 }
1251 else
1252 value_type = builtin_type_int;
1253 }
1254 else if (code == TYPE_CODE_INT)
1255 {
1256 /* Handle the case of functions lacking debugging info.
1257 Their values are characters since their addresses are char */
1258 if (TYPE_LENGTH (ftype) == 1)
1259 funaddr = value_as_address (value_addr (function));
1260 else
1261 /* Handle integer used as address of a function. */
1262 funaddr = (CORE_ADDR) value_as_long (function);
1263
1264 value_type = builtin_type_int;
1265 }
1266 else
1267 error ("Invalid data type for function to be called.");
1268
1269 *retval_type = value_type;
1270 return funaddr;
1271 }
1272
1273 /* All this stuff with a dummy frame may seem unnecessarily complicated
1274 (why not just save registers in GDB?). The purpose of pushing a dummy
1275 frame which looks just like a real frame is so that if you call a
1276 function and then hit a breakpoint (get a signal, etc), "backtrace"
1277 will look right. Whether the backtrace needs to actually show the
1278 stack at the time the inferior function was called is debatable, but
1279 it certainly needs to not display garbage. So if you are contemplating
1280 making dummy frames be different from normal frames, consider that. */
1281
1282 /* Perform a function call in the inferior.
1283 ARGS is a vector of values of arguments (NARGS of them).
1284 FUNCTION is a value, the function to be called.
1285 Returns a value representing what the function returned.
1286 May fail to return, if a breakpoint or signal is hit
1287 during the execution of the function.
1288
1289 ARGS is modified to contain coerced values. */
1290
1291 static struct value *
1292 hand_function_call (struct value *function, int nargs, struct value **args)
1293 {
1294 register CORE_ADDR sp;
1295 register int i;
1296 int rc;
1297 CORE_ADDR start_sp;
1298 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1299 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1300 and remove any extra bytes which might exist because ULONGEST is
1301 bigger than REGISTER_SIZE.
1302
1303 NOTE: This is pretty wierd, as the call dummy is actually a
1304 sequence of instructions. But CISC machines will have
1305 to pack the instructions into REGISTER_SIZE units (and
1306 so will RISC machines for which INSTRUCTION_SIZE is not
1307 REGISTER_SIZE).
1308
1309 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1310 target byte order. */
1311
1312 static ULONGEST *dummy;
1313 int sizeof_dummy1;
1314 char *dummy1;
1315 CORE_ADDR old_sp;
1316 struct type *value_type;
1317 unsigned char struct_return;
1318 CORE_ADDR struct_addr = 0;
1319 struct regcache *retbuf;
1320 struct cleanup *retbuf_cleanup;
1321 struct inferior_status *inf_status;
1322 struct cleanup *inf_status_cleanup;
1323 CORE_ADDR funaddr;
1324 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1325 CORE_ADDR real_pc;
1326 struct type *param_type = NULL;
1327 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1328 int n_method_args = 0;
1329
1330 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1331 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1332 dummy1 = alloca (sizeof_dummy1);
1333 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1334
1335 if (!target_has_execution)
1336 noprocess ();
1337
1338 /* Create a cleanup chain that contains the retbuf (buffer
1339 containing the register values). This chain is create BEFORE the
1340 inf_status chain so that the inferior status can cleaned up
1341 (restored or discarded) without having the retbuf freed. */
1342 retbuf = regcache_xmalloc (current_gdbarch);
1343 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1344
1345 /* A cleanup for the inferior status. Create this AFTER the retbuf
1346 so that this can be discarded or applied without interfering with
1347 the regbuf. */
1348 inf_status = save_inferior_status (1);
1349 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1350
1351 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1352 (and POP_FRAME for restoring them). (At least on most machines)
1353 they are saved on the stack in the inferior. */
1354 PUSH_DUMMY_FRAME;
1355
1356 old_sp = sp = read_sp ();
1357
1358 if (INNER_THAN (1, 2))
1359 {
1360 /* Stack grows down */
1361 sp -= sizeof_dummy1;
1362 start_sp = sp;
1363 }
1364 else
1365 {
1366 /* Stack grows up */
1367 start_sp = sp;
1368 sp += sizeof_dummy1;
1369 }
1370
1371 funaddr = find_function_addr (function, &value_type);
1372 CHECK_TYPEDEF (value_type);
1373
1374 {
1375 struct block *b = block_for_pc (funaddr);
1376 /* If compiled without -g, assume GCC 2. */
1377 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1378 }
1379
1380 /* Are we returning a value using a structure return or a normal
1381 value return? */
1382
1383 struct_return = using_struct_return (function, funaddr, value_type,
1384 using_gcc);
1385
1386 /* Create a call sequence customized for this function
1387 and the number of arguments for it. */
1388 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1389 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1390 REGISTER_SIZE,
1391 (ULONGEST) dummy[i]);
1392
1393 #ifdef GDB_TARGET_IS_HPPA
1394 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1395 value_type, using_gcc);
1396 #else
1397 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1398 value_type, using_gcc);
1399 real_pc = start_sp;
1400 #endif
1401
1402 if (CALL_DUMMY_LOCATION == ON_STACK)
1403 {
1404 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1405 if (USE_GENERIC_DUMMY_FRAMES)
1406 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1407 }
1408
1409 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1410 {
1411 /* Convex Unix prohibits executing in the stack segment. */
1412 /* Hope there is empty room at the top of the text segment. */
1413 extern CORE_ADDR text_end;
1414 static int checked = 0;
1415 if (!checked)
1416 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1417 if (read_memory_integer (start_sp, 1) != 0)
1418 error ("text segment full -- no place to put call");
1419 checked = 1;
1420 sp = old_sp;
1421 real_pc = text_end - sizeof_dummy1;
1422 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1423 if (USE_GENERIC_DUMMY_FRAMES)
1424 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1425 }
1426
1427 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1428 {
1429 extern CORE_ADDR text_end;
1430 int errcode;
1431 sp = old_sp;
1432 real_pc = text_end;
1433 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1434 if (errcode != 0)
1435 error ("Cannot write text segment -- call_function failed");
1436 if (USE_GENERIC_DUMMY_FRAMES)
1437 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1438 }
1439
1440 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1441 {
1442 real_pc = funaddr;
1443 if (USE_GENERIC_DUMMY_FRAMES)
1444 /* NOTE: cagney/2002-04-13: The entry point is going to be
1445 modified with a single breakpoint. */
1446 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1447 CALL_DUMMY_ADDRESS () + 1);
1448 }
1449
1450 #ifdef lint
1451 sp = old_sp; /* It really is used, for some ifdef's... */
1452 #endif
1453
1454 if (nargs < TYPE_NFIELDS (ftype))
1455 error ("too few arguments in function call");
1456
1457 for (i = nargs - 1; i >= 0; i--)
1458 {
1459 int prototyped;
1460
1461 /* FIXME drow/2002-05-31: Should just always mark methods as
1462 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1463 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1464 prototyped = 1;
1465 else
1466 prototyped = TYPE_PROTOTYPED (ftype);
1467
1468 if (i < TYPE_NFIELDS (ftype))
1469 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1470 prototyped);
1471 else
1472 args[i] = value_arg_coerce (args[i], NULL, 0);
1473
1474 /*elz: this code is to handle the case in which the function to be called
1475 has a pointer to function as parameter and the corresponding actual argument
1476 is the address of a function and not a pointer to function variable.
1477 In aCC compiled code, the calls through pointers to functions (in the body
1478 of the function called by hand) are made via $$dyncall_external which
1479 requires some registers setting, this is taken care of if we call
1480 via a function pointer variable, but not via a function address.
1481 In cc this is not a problem. */
1482
1483 if (using_gcc == 0)
1484 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1485 /* if this parameter is a pointer to function */
1486 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1487 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1488 /* elz: FIXME here should go the test about the compiler used
1489 to compile the target. We want to issue the error
1490 message only if the compiler used was HP's aCC.
1491 If we used HP's cc, then there is no problem and no need
1492 to return at this point */
1493 if (using_gcc == 0) /* && compiler == aCC */
1494 /* go see if the actual parameter is a variable of type
1495 pointer to function or just a function */
1496 if (args[i]->lval == not_lval)
1497 {
1498 char *arg_name;
1499 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1500 error ("\
1501 You cannot use function <%s> as argument. \n\
1502 You must use a pointer to function type variable. Command ignored.", arg_name);
1503 }
1504 }
1505
1506 if (REG_STRUCT_HAS_ADDR_P ())
1507 {
1508 /* This is a machine like the sparc, where we may need to pass a
1509 pointer to the structure, not the structure itself. */
1510 for (i = nargs - 1; i >= 0; i--)
1511 {
1512 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1513 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1514 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1515 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1516 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1517 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1518 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1519 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1520 && TYPE_LENGTH (arg_type) > 8)
1521 )
1522 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1523 {
1524 CORE_ADDR addr;
1525 int len; /* = TYPE_LENGTH (arg_type); */
1526 int aligned_len;
1527 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1528 len = TYPE_LENGTH (arg_type);
1529
1530 if (STACK_ALIGN_P ())
1531 /* MVS 11/22/96: I think at least some of this
1532 stack_align code is really broken. Better to let
1533 PUSH_ARGUMENTS adjust the stack in a target-defined
1534 manner. */
1535 aligned_len = STACK_ALIGN (len);
1536 else
1537 aligned_len = len;
1538 if (INNER_THAN (1, 2))
1539 {
1540 /* stack grows downward */
1541 sp -= aligned_len;
1542 /* ... so the address of the thing we push is the
1543 stack pointer after we push it. */
1544 addr = sp;
1545 }
1546 else
1547 {
1548 /* The stack grows up, so the address of the thing
1549 we push is the stack pointer before we push it. */
1550 addr = sp;
1551 sp += aligned_len;
1552 }
1553 /* Push the structure. */
1554 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1555 /* The value we're going to pass is the address of the
1556 thing we just pushed. */
1557 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1558 (LONGEST) addr); */
1559 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1560 addr);
1561 }
1562 }
1563 }
1564
1565
1566 /* Reserve space for the return structure to be written on the
1567 stack, if necessary */
1568
1569 if (struct_return)
1570 {
1571 int len = TYPE_LENGTH (value_type);
1572 if (STACK_ALIGN_P ())
1573 /* MVS 11/22/96: I think at least some of this stack_align
1574 code is really broken. Better to let PUSH_ARGUMENTS adjust
1575 the stack in a target-defined manner. */
1576 len = STACK_ALIGN (len);
1577 if (INNER_THAN (1, 2))
1578 {
1579 /* stack grows downward */
1580 sp -= len;
1581 struct_addr = sp;
1582 }
1583 else
1584 {
1585 /* stack grows upward */
1586 struct_addr = sp;
1587 sp += len;
1588 }
1589 }
1590
1591 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1592 on other architectures. This is because all the alignment is
1593 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1594 in hppa_push_arguments */
1595 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1596 {
1597 /* MVS 11/22/96: I think at least some of this stack_align code
1598 is really broken. Better to let PUSH_ARGUMENTS adjust the
1599 stack in a target-defined manner. */
1600 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1601 {
1602 /* If stack grows down, we must leave a hole at the top. */
1603 int len = 0;
1604
1605 for (i = nargs - 1; i >= 0; i--)
1606 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1607 if (CALL_DUMMY_STACK_ADJUST_P)
1608 len += CALL_DUMMY_STACK_ADJUST;
1609 sp -= STACK_ALIGN (len) - len;
1610 }
1611 }
1612
1613 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1614
1615 if (PUSH_RETURN_ADDRESS_P ())
1616 /* for targets that use no CALL_DUMMY */
1617 /* There are a number of targets now which actually don't write
1618 any CALL_DUMMY instructions into the target, but instead just
1619 save the machine state, push the arguments, and jump directly
1620 to the callee function. Since this doesn't actually involve
1621 executing a JSR/BSR instruction, the return address must be set
1622 up by hand, either by pushing onto the stack or copying into a
1623 return-address register as appropriate. Formerly this has been
1624 done in PUSH_ARGUMENTS, but that's overloading its
1625 functionality a bit, so I'm making it explicit to do it here. */
1626 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1627
1628 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1629 {
1630 /* If stack grows up, we must leave a hole at the bottom, note
1631 that sp already has been advanced for the arguments! */
1632 if (CALL_DUMMY_STACK_ADJUST_P)
1633 sp += CALL_DUMMY_STACK_ADJUST;
1634 sp = STACK_ALIGN (sp);
1635 }
1636
1637 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1638 anything here! */
1639 /* MVS 11/22/96: I think at least some of this stack_align code is
1640 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1641 a target-defined manner. */
1642 if (CALL_DUMMY_STACK_ADJUST_P)
1643 if (INNER_THAN (1, 2))
1644 {
1645 /* stack grows downward */
1646 sp -= CALL_DUMMY_STACK_ADJUST;
1647 }
1648
1649 /* Store the address at which the structure is supposed to be
1650 written. Note that this (and the code which reserved the space
1651 above) assumes that gcc was used to compile this function. Since
1652 it doesn't cost us anything but space and if the function is pcc
1653 it will ignore this value, we will make that assumption.
1654
1655 Also note that on some machines (like the sparc) pcc uses a
1656 convention like gcc's. */
1657
1658 if (struct_return)
1659 STORE_STRUCT_RETURN (struct_addr, sp);
1660
1661 /* Write the stack pointer. This is here because the statements above
1662 might fool with it. On SPARC, this write also stores the register
1663 window into the right place in the new stack frame, which otherwise
1664 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1665 write_sp (sp);
1666
1667 if (SAVE_DUMMY_FRAME_TOS_P ())
1668 SAVE_DUMMY_FRAME_TOS (sp);
1669
1670 {
1671 char *name;
1672 struct symbol *symbol;
1673
1674 name = NULL;
1675 symbol = find_pc_function (funaddr);
1676 if (symbol)
1677 {
1678 name = SYMBOL_SOURCE_NAME (symbol);
1679 }
1680 else
1681 {
1682 /* Try the minimal symbols. */
1683 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1684
1685 if (msymbol)
1686 {
1687 name = SYMBOL_SOURCE_NAME (msymbol);
1688 }
1689 }
1690 if (name == NULL)
1691 {
1692 char format[80];
1693 sprintf (format, "at %s", local_hex_format ());
1694 name = alloca (80);
1695 /* FIXME-32x64: assumes funaddr fits in a long. */
1696 sprintf (name, format, (unsigned long) funaddr);
1697 }
1698
1699 /* Execute the stack dummy routine, calling FUNCTION.
1700 When it is done, discard the empty frame
1701 after storing the contents of all regs into retbuf. */
1702 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1703
1704 if (rc == 1)
1705 {
1706 /* We stopped inside the FUNCTION because of a random signal.
1707 Further execution of the FUNCTION is not allowed. */
1708
1709 if (unwind_on_signal_p)
1710 {
1711 /* The user wants the context restored. */
1712
1713 /* We must get back to the frame we were before the dummy call. */
1714 POP_FRAME;
1715
1716 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1717 a C++ name with arguments and stuff. */
1718 error ("\
1719 The program being debugged was signaled while in a function called from GDB.\n\
1720 GDB has restored the context to what it was before the call.\n\
1721 To change this behavior use \"set unwindonsignal off\"\n\
1722 Evaluation of the expression containing the function (%s) will be abandoned.",
1723 name);
1724 }
1725 else
1726 {
1727 /* The user wants to stay in the frame where we stopped (default).*/
1728
1729 /* If we restored the inferior status (via the cleanup),
1730 we would print a spurious error message (Unable to
1731 restore previously selected frame), would write the
1732 registers from the inf_status (which is wrong), and
1733 would do other wrong things. */
1734 discard_cleanups (inf_status_cleanup);
1735 discard_inferior_status (inf_status);
1736
1737 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1738 a C++ name with arguments and stuff. */
1739 error ("\
1740 The program being debugged was signaled while in a function called from GDB.\n\
1741 GDB remains in the frame where the signal was received.\n\
1742 To change this behavior use \"set unwindonsignal on\"\n\
1743 Evaluation of the expression containing the function (%s) will be abandoned.",
1744 name);
1745 }
1746 }
1747
1748 if (rc == 2)
1749 {
1750 /* We hit a breakpoint inside the FUNCTION. */
1751
1752 /* If we restored the inferior status (via the cleanup), we
1753 would print a spurious error message (Unable to restore
1754 previously selected frame), would write the registers from
1755 the inf_status (which is wrong), and would do other wrong
1756 things. */
1757 discard_cleanups (inf_status_cleanup);
1758 discard_inferior_status (inf_status);
1759
1760 /* The following error message used to say "The expression
1761 which contained the function call has been discarded." It
1762 is a hard concept to explain in a few words. Ideally, GDB
1763 would be able to resume evaluation of the expression when
1764 the function finally is done executing. Perhaps someday
1765 this will be implemented (it would not be easy). */
1766
1767 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1768 a C++ name with arguments and stuff. */
1769 error ("\
1770 The program being debugged stopped while in a function called from GDB.\n\
1771 When the function (%s) is done executing, GDB will silently\n\
1772 stop (instead of continuing to evaluate the expression containing\n\
1773 the function call).", name);
1774 }
1775
1776 /* If we get here the called FUNCTION run to completion. */
1777
1778 /* Restore the inferior status, via its cleanup. At this stage,
1779 leave the RETBUF alone. */
1780 do_cleanups (inf_status_cleanup);
1781
1782 /* Figure out the value returned by the function. */
1783 /* elz: I defined this new macro for the hppa architecture only.
1784 this gives us a way to get the value returned by the function from the stack,
1785 at the same address we told the function to put it.
1786 We cannot assume on the pa that r28 still contains the address of the returned
1787 structure. Usually this will be overwritten by the callee.
1788 I don't know about other architectures, so I defined this macro
1789 */
1790
1791 #ifdef VALUE_RETURNED_FROM_STACK
1792 if (struct_return)
1793 {
1794 do_cleanups (retbuf_cleanup);
1795 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1796 }
1797 #endif
1798
1799 {
1800 struct value *retval = value_being_returned (value_type, retbuf, struct_return);
1801 do_cleanups (retbuf_cleanup);
1802 return retval;
1803 }
1804 }
1805 }
1806
1807 struct value *
1808 call_function_by_hand (struct value *function, int nargs, struct value **args)
1809 {
1810 if (CALL_DUMMY_P)
1811 {
1812 return hand_function_call (function, nargs, args);
1813 }
1814 else
1815 {
1816 error ("Cannot invoke functions on this machine.");
1817 }
1818 }
1819 \f
1820
1821
1822 /* Create a value for an array by allocating space in the inferior, copying
1823 the data into that space, and then setting up an array value.
1824
1825 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1826 populated from the values passed in ELEMVEC.
1827
1828 The element type of the array is inherited from the type of the
1829 first element, and all elements must have the same size (though we
1830 don't currently enforce any restriction on their types). */
1831
1832 struct value *
1833 value_array (int lowbound, int highbound, struct value **elemvec)
1834 {
1835 int nelem;
1836 int idx;
1837 unsigned int typelength;
1838 struct value *val;
1839 struct type *rangetype;
1840 struct type *arraytype;
1841 CORE_ADDR addr;
1842
1843 /* Validate that the bounds are reasonable and that each of the elements
1844 have the same size. */
1845
1846 nelem = highbound - lowbound + 1;
1847 if (nelem <= 0)
1848 {
1849 error ("bad array bounds (%d, %d)", lowbound, highbound);
1850 }
1851 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1852 for (idx = 1; idx < nelem; idx++)
1853 {
1854 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1855 {
1856 error ("array elements must all be the same size");
1857 }
1858 }
1859
1860 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1861 lowbound, highbound);
1862 arraytype = create_array_type ((struct type *) NULL,
1863 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1864
1865 if (!current_language->c_style_arrays)
1866 {
1867 val = allocate_value (arraytype);
1868 for (idx = 0; idx < nelem; idx++)
1869 {
1870 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1871 VALUE_CONTENTS_ALL (elemvec[idx]),
1872 typelength);
1873 }
1874 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1875 return val;
1876 }
1877
1878 /* Allocate space to store the array in the inferior, and then initialize
1879 it by copying in each element. FIXME: Is it worth it to create a
1880 local buffer in which to collect each value and then write all the
1881 bytes in one operation? */
1882
1883 addr = allocate_space_in_inferior (nelem * typelength);
1884 for (idx = 0; idx < nelem; idx++)
1885 {
1886 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1887 typelength);
1888 }
1889
1890 /* Create the array type and set up an array value to be evaluated lazily. */
1891
1892 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1893 return (val);
1894 }
1895
1896 /* Create a value for a string constant by allocating space in the inferior,
1897 copying the data into that space, and returning the address with type
1898 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1899 of characters.
1900 Note that string types are like array of char types with a lower bound of
1901 zero and an upper bound of LEN - 1. Also note that the string may contain
1902 embedded null bytes. */
1903
1904 struct value *
1905 value_string (char *ptr, int len)
1906 {
1907 struct value *val;
1908 int lowbound = current_language->string_lower_bound;
1909 struct type *rangetype = create_range_type ((struct type *) NULL,
1910 builtin_type_int,
1911 lowbound, len + lowbound - 1);
1912 struct type *stringtype
1913 = create_string_type ((struct type *) NULL, rangetype);
1914 CORE_ADDR addr;
1915
1916 if (current_language->c_style_arrays == 0)
1917 {
1918 val = allocate_value (stringtype);
1919 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1920 return val;
1921 }
1922
1923
1924 /* Allocate space to store the string in the inferior, and then
1925 copy LEN bytes from PTR in gdb to that address in the inferior. */
1926
1927 addr = allocate_space_in_inferior (len);
1928 write_memory (addr, ptr, len);
1929
1930 val = value_at_lazy (stringtype, addr, NULL);
1931 return (val);
1932 }
1933
1934 struct value *
1935 value_bitstring (char *ptr, int len)
1936 {
1937 struct value *val;
1938 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1939 0, len - 1);
1940 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1941 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1942 val = allocate_value (type);
1943 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1944 return val;
1945 }
1946 \f
1947 /* See if we can pass arguments in T2 to a function which takes arguments
1948 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1949 vector. If some arguments need coercion of some sort, then the coerced
1950 values are written into T2. Return value is 0 if the arguments could be
1951 matched, or the position at which they differ if not.
1952
1953 STATICP is nonzero if the T1 argument list came from a
1954 static member function. T2 will still include the ``this'' pointer,
1955 but it will be skipped.
1956
1957 For non-static member functions, we ignore the first argument,
1958 which is the type of the instance variable. This is because we want
1959 to handle calls with objects from derived classes. This is not
1960 entirely correct: we should actually check to make sure that a
1961 requested operation is type secure, shouldn't we? FIXME. */
1962
1963 static int
1964 typecmp (int staticp, int varargs, int nargs,
1965 struct field t1[], struct value *t2[])
1966 {
1967 int i;
1968
1969 if (t2 == 0)
1970 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1971
1972 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1973 if (staticp)
1974 t2 ++;
1975
1976 for (i = 0;
1977 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1978 i++)
1979 {
1980 struct type *tt1, *tt2;
1981
1982 if (!t2[i])
1983 return i + 1;
1984
1985 tt1 = check_typedef (t1[i].type);
1986 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1987
1988 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1989 /* We should be doing hairy argument matching, as below. */
1990 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1991 {
1992 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1993 t2[i] = value_coerce_array (t2[i]);
1994 else
1995 t2[i] = value_addr (t2[i]);
1996 continue;
1997 }
1998
1999 /* djb - 20000715 - Until the new type structure is in the
2000 place, and we can attempt things like implicit conversions,
2001 we need to do this so you can take something like a map<const
2002 char *>, and properly access map["hello"], because the
2003 argument to [] will be a reference to a pointer to a char,
2004 and the argument will be a pointer to a char. */
2005 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2006 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2007 {
2008 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2009 }
2010 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2011 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2012 TYPE_CODE(tt2) == TYPE_CODE_REF)
2013 {
2014 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2015 }
2016 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2017 continue;
2018 /* Array to pointer is a `trivial conversion' according to the ARM. */
2019
2020 /* We should be doing much hairier argument matching (see section 13.2
2021 of the ARM), but as a quick kludge, just check for the same type
2022 code. */
2023 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2024 return i + 1;
2025 }
2026 if (varargs || t2[i] == NULL)
2027 return 0;
2028 return i + 1;
2029 }
2030
2031 /* Helper function used by value_struct_elt to recurse through baseclasses.
2032 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2033 and search in it assuming it has (class) type TYPE.
2034 If found, return value, else return NULL.
2035
2036 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2037 look for a baseclass named NAME. */
2038
2039 static struct value *
2040 search_struct_field (char *name, struct value *arg1, int offset,
2041 register struct type *type, int looking_for_baseclass)
2042 {
2043 int i;
2044 int nbases = TYPE_N_BASECLASSES (type);
2045
2046 CHECK_TYPEDEF (type);
2047
2048 if (!looking_for_baseclass)
2049 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2050 {
2051 char *t_field_name = TYPE_FIELD_NAME (type, i);
2052
2053 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2054 {
2055 struct value *v;
2056 if (TYPE_FIELD_STATIC (type, i))
2057 v = value_static_field (type, i);
2058 else
2059 v = value_primitive_field (arg1, offset, i, type);
2060 if (v == 0)
2061 error ("there is no field named %s", name);
2062 return v;
2063 }
2064
2065 if (t_field_name
2066 && (t_field_name[0] == '\0'
2067 || (TYPE_CODE (type) == TYPE_CODE_UNION
2068 && (strcmp_iw (t_field_name, "else") == 0))))
2069 {
2070 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2071 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2072 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2073 {
2074 /* Look for a match through the fields of an anonymous union,
2075 or anonymous struct. C++ provides anonymous unions.
2076
2077 In the GNU Chill (OBSOLETE) implementation of
2078 variant record types, each <alternative field> has
2079 an (anonymous) union type, each member of the union
2080 represents a <variant alternative>. Each <variant
2081 alternative> is represented as a struct, with a
2082 member for each <variant field>. */
2083
2084 struct value *v;
2085 int new_offset = offset;
2086
2087 /* This is pretty gross. In G++, the offset in an
2088 anonymous union is relative to the beginning of the
2089 enclosing struct. In the GNU Chill (OBSOLETE)
2090 implementation of variant records, the bitpos is
2091 zero in an anonymous union field, so we have to add
2092 the offset of the union here. */
2093 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2094 || (TYPE_NFIELDS (field_type) > 0
2095 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2096 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2097
2098 v = search_struct_field (name, arg1, new_offset, field_type,
2099 looking_for_baseclass);
2100 if (v)
2101 return v;
2102 }
2103 }
2104 }
2105
2106 for (i = 0; i < nbases; i++)
2107 {
2108 struct value *v;
2109 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2110 /* If we are looking for baseclasses, this is what we get when we
2111 hit them. But it could happen that the base part's member name
2112 is not yet filled in. */
2113 int found_baseclass = (looking_for_baseclass
2114 && TYPE_BASECLASS_NAME (type, i) != NULL
2115 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2116
2117 if (BASETYPE_VIA_VIRTUAL (type, i))
2118 {
2119 int boffset;
2120 struct value *v2 = allocate_value (basetype);
2121
2122 boffset = baseclass_offset (type, i,
2123 VALUE_CONTENTS (arg1) + offset,
2124 VALUE_ADDRESS (arg1)
2125 + VALUE_OFFSET (arg1) + offset);
2126 if (boffset == -1)
2127 error ("virtual baseclass botch");
2128
2129 /* The virtual base class pointer might have been clobbered by the
2130 user program. Make sure that it still points to a valid memory
2131 location. */
2132
2133 boffset += offset;
2134 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2135 {
2136 CORE_ADDR base_addr;
2137
2138 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2139 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2140 TYPE_LENGTH (basetype)) != 0)
2141 error ("virtual baseclass botch");
2142 VALUE_LVAL (v2) = lval_memory;
2143 VALUE_ADDRESS (v2) = base_addr;
2144 }
2145 else
2146 {
2147 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2148 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2149 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2150 if (VALUE_LAZY (arg1))
2151 VALUE_LAZY (v2) = 1;
2152 else
2153 memcpy (VALUE_CONTENTS_RAW (v2),
2154 VALUE_CONTENTS_RAW (arg1) + boffset,
2155 TYPE_LENGTH (basetype));
2156 }
2157
2158 if (found_baseclass)
2159 return v2;
2160 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2161 looking_for_baseclass);
2162 }
2163 else if (found_baseclass)
2164 v = value_primitive_field (arg1, offset, i, type);
2165 else
2166 v = search_struct_field (name, arg1,
2167 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2168 basetype, looking_for_baseclass);
2169 if (v)
2170 return v;
2171 }
2172 return NULL;
2173 }
2174
2175
2176 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2177 * in an object pointed to by VALADDR (on the host), assumed to be of
2178 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2179 * looking (in case VALADDR is the contents of an enclosing object).
2180 *
2181 * This routine recurses on the primary base of the derived class because
2182 * the virtual base entries of the primary base appear before the other
2183 * virtual base entries.
2184 *
2185 * If the virtual base is not found, a negative integer is returned.
2186 * The magnitude of the negative integer is the number of entries in
2187 * the virtual table to skip over (entries corresponding to various
2188 * ancestral classes in the chain of primary bases).
2189 *
2190 * Important: This assumes the HP / Taligent C++ runtime
2191 * conventions. Use baseclass_offset() instead to deal with g++
2192 * conventions. */
2193
2194 void
2195 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2196 int offset, int *boffset_p, int *skip_p)
2197 {
2198 int boffset; /* offset of virtual base */
2199 int index; /* displacement to use in virtual table */
2200 int skip;
2201
2202 struct value *vp;
2203 CORE_ADDR vtbl; /* the virtual table pointer */
2204 struct type *pbc; /* the primary base class */
2205
2206 /* Look for the virtual base recursively in the primary base, first.
2207 * This is because the derived class object and its primary base
2208 * subobject share the primary virtual table. */
2209
2210 boffset = 0;
2211 pbc = TYPE_PRIMARY_BASE (type);
2212 if (pbc)
2213 {
2214 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2215 if (skip < 0)
2216 {
2217 *boffset_p = boffset;
2218 *skip_p = -1;
2219 return;
2220 }
2221 }
2222 else
2223 skip = 0;
2224
2225
2226 /* Find the index of the virtual base according to HP/Taligent
2227 runtime spec. (Depth-first, left-to-right.) */
2228 index = virtual_base_index_skip_primaries (basetype, type);
2229
2230 if (index < 0)
2231 {
2232 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2233 *boffset_p = 0;
2234 return;
2235 }
2236
2237 /* pai: FIXME -- 32x64 possible problem */
2238 /* First word (4 bytes) in object layout is the vtable pointer */
2239 vtbl = *(CORE_ADDR *) (valaddr + offset);
2240
2241 /* Before the constructor is invoked, things are usually zero'd out. */
2242 if (vtbl == 0)
2243 error ("Couldn't find virtual table -- object may not be constructed yet.");
2244
2245
2246 /* Find virtual base's offset -- jump over entries for primary base
2247 * ancestors, then use the index computed above. But also adjust by
2248 * HP_ACC_VBASE_START for the vtable slots before the start of the
2249 * virtual base entries. Offset is negative -- virtual base entries
2250 * appear _before_ the address point of the virtual table. */
2251
2252 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2253 & use long type */
2254
2255 /* epstein : FIXME -- added param for overlay section. May not be correct */
2256 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2257 boffset = value_as_long (vp);
2258 *skip_p = -1;
2259 *boffset_p = boffset;
2260 return;
2261 }
2262
2263
2264 /* Helper function used by value_struct_elt to recurse through baseclasses.
2265 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2266 and search in it assuming it has (class) type TYPE.
2267 If found, return value, else if name matched and args not return (value)-1,
2268 else return NULL. */
2269
2270 static struct value *
2271 search_struct_method (char *name, struct value **arg1p,
2272 struct value **args, int offset,
2273 int *static_memfuncp, register struct type *type)
2274 {
2275 int i;
2276 struct value *v;
2277 int name_matched = 0;
2278 char dem_opname[64];
2279
2280 CHECK_TYPEDEF (type);
2281 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2282 {
2283 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2284 /* FIXME! May need to check for ARM demangling here */
2285 if (strncmp (t_field_name, "__", 2) == 0 ||
2286 strncmp (t_field_name, "op", 2) == 0 ||
2287 strncmp (t_field_name, "type", 4) == 0)
2288 {
2289 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2290 t_field_name = dem_opname;
2291 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2292 t_field_name = dem_opname;
2293 }
2294 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2295 {
2296 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2297 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2298 name_matched = 1;
2299
2300 if (j > 0 && args == 0)
2301 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2302 else if (j == 0 && args == 0)
2303 {
2304 if (TYPE_FN_FIELD_STUB (f, j))
2305 check_stub_method (type, i, j);
2306 v = value_fn_field (arg1p, f, j, type, offset);
2307 if (v != NULL)
2308 return v;
2309 }
2310 else
2311 while (j >= 0)
2312 {
2313 if (TYPE_FN_FIELD_STUB (f, j))
2314 check_stub_method (type, i, j);
2315 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2316 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2317 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2318 TYPE_FN_FIELD_ARGS (f, j), args))
2319 {
2320 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2321 return value_virtual_fn_field (arg1p, f, j, type, offset);
2322 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2323 *static_memfuncp = 1;
2324 v = value_fn_field (arg1p, f, j, type, offset);
2325 if (v != NULL)
2326 return v;
2327 }
2328 j--;
2329 }
2330 }
2331 }
2332
2333 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2334 {
2335 int base_offset;
2336
2337 if (BASETYPE_VIA_VIRTUAL (type, i))
2338 {
2339 if (TYPE_HAS_VTABLE (type))
2340 {
2341 /* HP aCC compiled type, search for virtual base offset
2342 according to HP/Taligent runtime spec. */
2343 int skip;
2344 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2345 VALUE_CONTENTS_ALL (*arg1p),
2346 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2347 &base_offset, &skip);
2348 if (skip >= 0)
2349 error ("Virtual base class offset not found in vtable");
2350 }
2351 else
2352 {
2353 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2354 char *base_valaddr;
2355
2356 /* The virtual base class pointer might have been clobbered by the
2357 user program. Make sure that it still points to a valid memory
2358 location. */
2359
2360 if (offset < 0 || offset >= TYPE_LENGTH (type))
2361 {
2362 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2363 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2364 + VALUE_OFFSET (*arg1p) + offset,
2365 base_valaddr,
2366 TYPE_LENGTH (baseclass)) != 0)
2367 error ("virtual baseclass botch");
2368 }
2369 else
2370 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2371
2372 base_offset =
2373 baseclass_offset (type, i, base_valaddr,
2374 VALUE_ADDRESS (*arg1p)
2375 + VALUE_OFFSET (*arg1p) + offset);
2376 if (base_offset == -1)
2377 error ("virtual baseclass botch");
2378 }
2379 }
2380 else
2381 {
2382 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2383 }
2384 v = search_struct_method (name, arg1p, args, base_offset + offset,
2385 static_memfuncp, TYPE_BASECLASS (type, i));
2386 if (v == (struct value *) - 1)
2387 {
2388 name_matched = 1;
2389 }
2390 else if (v)
2391 {
2392 /* FIXME-bothner: Why is this commented out? Why is it here? */
2393 /* *arg1p = arg1_tmp; */
2394 return v;
2395 }
2396 }
2397 if (name_matched)
2398 return (struct value *) - 1;
2399 else
2400 return NULL;
2401 }
2402
2403 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2404 extract the component named NAME from the ultimate target structure/union
2405 and return it as a value with its appropriate type.
2406 ERR is used in the error message if *ARGP's type is wrong.
2407
2408 C++: ARGS is a list of argument types to aid in the selection of
2409 an appropriate method. Also, handle derived types.
2410
2411 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2412 where the truthvalue of whether the function that was resolved was
2413 a static member function or not is stored.
2414
2415 ERR is an error message to be printed in case the field is not found. */
2416
2417 struct value *
2418 value_struct_elt (struct value **argp, struct value **args,
2419 char *name, int *static_memfuncp, char *err)
2420 {
2421 register struct type *t;
2422 struct value *v;
2423
2424 COERCE_ARRAY (*argp);
2425
2426 t = check_typedef (VALUE_TYPE (*argp));
2427
2428 /* Follow pointers until we get to a non-pointer. */
2429
2430 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2431 {
2432 *argp = value_ind (*argp);
2433 /* Don't coerce fn pointer to fn and then back again! */
2434 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2435 COERCE_ARRAY (*argp);
2436 t = check_typedef (VALUE_TYPE (*argp));
2437 }
2438
2439 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2440 error ("not implemented: member type in value_struct_elt");
2441
2442 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2443 && TYPE_CODE (t) != TYPE_CODE_UNION)
2444 error ("Attempt to extract a component of a value that is not a %s.", err);
2445
2446 /* Assume it's not, unless we see that it is. */
2447 if (static_memfuncp)
2448 *static_memfuncp = 0;
2449
2450 if (!args)
2451 {
2452 /* if there are no arguments ...do this... */
2453
2454 /* Try as a field first, because if we succeed, there
2455 is less work to be done. */
2456 v = search_struct_field (name, *argp, 0, t, 0);
2457 if (v)
2458 return v;
2459
2460 /* C++: If it was not found as a data field, then try to
2461 return it as a pointer to a method. */
2462
2463 if (destructor_name_p (name, t))
2464 error ("Cannot get value of destructor");
2465
2466 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2467
2468 if (v == (struct value *) - 1)
2469 error ("Cannot take address of a method");
2470 else if (v == 0)
2471 {
2472 if (TYPE_NFN_FIELDS (t))
2473 error ("There is no member or method named %s.", name);
2474 else
2475 error ("There is no member named %s.", name);
2476 }
2477 return v;
2478 }
2479
2480 if (destructor_name_p (name, t))
2481 {
2482 if (!args[1])
2483 {
2484 /* Destructors are a special case. */
2485 int m_index, f_index;
2486
2487 v = NULL;
2488 if (get_destructor_fn_field (t, &m_index, &f_index))
2489 {
2490 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2491 f_index, NULL, 0);
2492 }
2493 if (v == NULL)
2494 error ("could not find destructor function named %s.", name);
2495 else
2496 return v;
2497 }
2498 else
2499 {
2500 error ("destructor should not have any argument");
2501 }
2502 }
2503 else
2504 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2505
2506 if (v == (struct value *) - 1)
2507 {
2508 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2509 }
2510 else if (v == 0)
2511 {
2512 /* See if user tried to invoke data as function. If so,
2513 hand it back. If it's not callable (i.e., a pointer to function),
2514 gdb should give an error. */
2515 v = search_struct_field (name, *argp, 0, t, 0);
2516 }
2517
2518 if (!v)
2519 error ("Structure has no component named %s.", name);
2520 return v;
2521 }
2522
2523 /* Search through the methods of an object (and its bases)
2524 * to find a specified method. Return the pointer to the
2525 * fn_field list of overloaded instances.
2526 * Helper function for value_find_oload_list.
2527 * ARGP is a pointer to a pointer to a value (the object)
2528 * METHOD is a string containing the method name
2529 * OFFSET is the offset within the value
2530 * TYPE is the assumed type of the object
2531 * NUM_FNS is the number of overloaded instances
2532 * BASETYPE is set to the actual type of the subobject where the method is found
2533 * BOFFSET is the offset of the base subobject where the method is found */
2534
2535 static struct fn_field *
2536 find_method_list (struct value **argp, char *method, int offset,
2537 struct type *type, int *num_fns,
2538 struct type **basetype, int *boffset)
2539 {
2540 int i;
2541 struct fn_field *f;
2542 CHECK_TYPEDEF (type);
2543
2544 *num_fns = 0;
2545
2546 /* First check in object itself */
2547 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2548 {
2549 /* pai: FIXME What about operators and type conversions? */
2550 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2551 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2552 {
2553 /* Resolve any stub methods. */
2554 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2555 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2556 int j;
2557
2558 *num_fns = len;
2559 *basetype = type;
2560 *boffset = offset;
2561
2562 for (j = 0; j < len; j++)
2563 {
2564 if (TYPE_FN_FIELD_STUB (f, j))
2565 check_stub_method (type, i, j);
2566 }
2567
2568 return f;
2569 }
2570 }
2571
2572 /* Not found in object, check in base subobjects */
2573 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2574 {
2575 int base_offset;
2576 if (BASETYPE_VIA_VIRTUAL (type, i))
2577 {
2578 if (TYPE_HAS_VTABLE (type))
2579 {
2580 /* HP aCC compiled type, search for virtual base offset
2581 * according to HP/Taligent runtime spec. */
2582 int skip;
2583 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2584 VALUE_CONTENTS_ALL (*argp),
2585 offset + VALUE_EMBEDDED_OFFSET (*argp),
2586 &base_offset, &skip);
2587 if (skip >= 0)
2588 error ("Virtual base class offset not found in vtable");
2589 }
2590 else
2591 {
2592 /* probably g++ runtime model */
2593 base_offset = VALUE_OFFSET (*argp) + offset;
2594 base_offset =
2595 baseclass_offset (type, i,
2596 VALUE_CONTENTS (*argp) + base_offset,
2597 VALUE_ADDRESS (*argp) + base_offset);
2598 if (base_offset == -1)
2599 error ("virtual baseclass botch");
2600 }
2601 }
2602 else
2603 /* non-virtual base, simply use bit position from debug info */
2604 {
2605 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2606 }
2607 f = find_method_list (argp, method, base_offset + offset,
2608 TYPE_BASECLASS (type, i), num_fns, basetype,
2609 boffset);
2610 if (f)
2611 return f;
2612 }
2613 return NULL;
2614 }
2615
2616 /* Return the list of overloaded methods of a specified name.
2617 * ARGP is a pointer to a pointer to a value (the object)
2618 * METHOD is the method name
2619 * OFFSET is the offset within the value contents
2620 * NUM_FNS is the number of overloaded instances
2621 * BASETYPE is set to the type of the base subobject that defines the method
2622 * BOFFSET is the offset of the base subobject which defines the method */
2623
2624 struct fn_field *
2625 value_find_oload_method_list (struct value **argp, char *method, int offset,
2626 int *num_fns, struct type **basetype,
2627 int *boffset)
2628 {
2629 struct type *t;
2630
2631 t = check_typedef (VALUE_TYPE (*argp));
2632
2633 /* code snarfed from value_struct_elt */
2634 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2635 {
2636 *argp = value_ind (*argp);
2637 /* Don't coerce fn pointer to fn and then back again! */
2638 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2639 COERCE_ARRAY (*argp);
2640 t = check_typedef (VALUE_TYPE (*argp));
2641 }
2642
2643 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2644 error ("Not implemented: member type in value_find_oload_lis");
2645
2646 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2647 && TYPE_CODE (t) != TYPE_CODE_UNION)
2648 error ("Attempt to extract a component of a value that is not a struct or union");
2649
2650 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2651 }
2652
2653 /* Given an array of argument types (ARGTYPES) (which includes an
2654 entry for "this" in the case of C++ methods), the number of
2655 arguments NARGS, the NAME of a function whether it's a method or
2656 not (METHOD), and the degree of laxness (LAX) in conforming to
2657 overload resolution rules in ANSI C++, find the best function that
2658 matches on the argument types according to the overload resolution
2659 rules.
2660
2661 In the case of class methods, the parameter OBJ is an object value
2662 in which to search for overloaded methods.
2663
2664 In the case of non-method functions, the parameter FSYM is a symbol
2665 corresponding to one of the overloaded functions.
2666
2667 Return value is an integer: 0 -> good match, 10 -> debugger applied
2668 non-standard coercions, 100 -> incompatible.
2669
2670 If a method is being searched for, VALP will hold the value.
2671 If a non-method is being searched for, SYMP will hold the symbol for it.
2672
2673 If a method is being searched for, and it is a static method,
2674 then STATICP will point to a non-zero value.
2675
2676 Note: This function does *not* check the value of
2677 overload_resolution. Caller must check it to see whether overload
2678 resolution is permitted.
2679 */
2680
2681 int
2682 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2683 int lax, struct value **objp, struct symbol *fsym,
2684 struct value **valp, struct symbol **symp, int *staticp)
2685 {
2686 int nparms;
2687 struct type **parm_types;
2688 int champ_nparms = 0;
2689 struct value *obj = (objp ? *objp : NULL);
2690
2691 short oload_champ = -1; /* Index of best overloaded function */
2692 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2693 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2694 short oload_ambig_champ = -1; /* 2nd contender for best match */
2695 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2696 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2697
2698 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2699 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2700
2701 struct value *temp = obj;
2702 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2703 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2704 int num_fns = 0; /* Number of overloaded instances being considered */
2705 struct type *basetype = NULL;
2706 int boffset;
2707 register int jj;
2708 register int ix;
2709 int static_offset;
2710 struct cleanup *cleanups = NULL;
2711
2712 char *obj_type_name = NULL;
2713 char *func_name = NULL;
2714
2715 /* Get the list of overloaded methods or functions */
2716 if (method)
2717 {
2718 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2719 /* Hack: evaluate_subexp_standard often passes in a pointer
2720 value rather than the object itself, so try again */
2721 if ((!obj_type_name || !*obj_type_name) &&
2722 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2723 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2724
2725 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2726 &num_fns,
2727 &basetype, &boffset);
2728 if (!fns_ptr || !num_fns)
2729 error ("Couldn't find method %s%s%s",
2730 obj_type_name,
2731 (obj_type_name && *obj_type_name) ? "::" : "",
2732 name);
2733 /* If we are dealing with stub method types, they should have
2734 been resolved by find_method_list via value_find_oload_method_list
2735 above. */
2736 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2737 }
2738 else
2739 {
2740 int i = -1;
2741 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2742
2743 /* If the name is NULL this must be a C-style function.
2744 Just return the same symbol. */
2745 if (!func_name)
2746 {
2747 *symp = fsym;
2748 return 0;
2749 }
2750
2751 oload_syms = make_symbol_overload_list (fsym);
2752 cleanups = make_cleanup (xfree, oload_syms);
2753 while (oload_syms[++i])
2754 num_fns++;
2755 if (!num_fns)
2756 error ("Couldn't find function %s", func_name);
2757 }
2758
2759 oload_champ_bv = NULL;
2760
2761 /* Consider each candidate in turn */
2762 for (ix = 0; ix < num_fns; ix++)
2763 {
2764 static_offset = 0;
2765 if (method)
2766 {
2767 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2768 static_offset = 1;
2769 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2770 }
2771 else
2772 {
2773 /* If it's not a method, this is the proper place */
2774 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2775 }
2776
2777 /* Prepare array of parameter types */
2778 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2779 for (jj = 0; jj < nparms; jj++)
2780 parm_types[jj] = (method
2781 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2782 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2783
2784 /* Compare parameter types to supplied argument types. Skip THIS for
2785 static methods. */
2786 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2787 nargs - static_offset);
2788
2789 if (!oload_champ_bv)
2790 {
2791 oload_champ_bv = bv;
2792 oload_champ = 0;
2793 champ_nparms = nparms;
2794 }
2795 else
2796 /* See whether current candidate is better or worse than previous best */
2797 switch (compare_badness (bv, oload_champ_bv))
2798 {
2799 case 0:
2800 oload_ambiguous = 1; /* top two contenders are equally good */
2801 oload_ambig_champ = ix;
2802 break;
2803 case 1:
2804 oload_ambiguous = 2; /* incomparable top contenders */
2805 oload_ambig_champ = ix;
2806 break;
2807 case 2:
2808 oload_champ_bv = bv; /* new champion, record details */
2809 oload_ambiguous = 0;
2810 oload_champ = ix;
2811 oload_ambig_champ = -1;
2812 champ_nparms = nparms;
2813 break;
2814 case 3:
2815 default:
2816 break;
2817 }
2818 xfree (parm_types);
2819 if (overload_debug)
2820 {
2821 if (method)
2822 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2823 else
2824 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2825 for (jj = 0; jj < nargs - static_offset; jj++)
2826 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2827 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2828 }
2829 } /* end loop over all candidates */
2830 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2831 if they have the exact same goodness. This is because there is no
2832 way to differentiate based on return type, which we need to in
2833 cases like overloads of .begin() <It's both const and non-const> */
2834 #if 0
2835 if (oload_ambiguous)
2836 {
2837 if (method)
2838 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2839 obj_type_name,
2840 (obj_type_name && *obj_type_name) ? "::" : "",
2841 name);
2842 else
2843 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2844 func_name);
2845 }
2846 #endif
2847
2848 /* Check how bad the best match is. */
2849 static_offset = 0;
2850 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2851 static_offset = 1;
2852 for (ix = 1; ix <= nargs - static_offset; ix++)
2853 {
2854 if (oload_champ_bv->rank[ix] >= 100)
2855 oload_incompatible = 1; /* truly mismatched types */
2856
2857 else if (oload_champ_bv->rank[ix] >= 10)
2858 oload_non_standard = 1; /* non-standard type conversions needed */
2859 }
2860 if (oload_incompatible)
2861 {
2862 if (method)
2863 error ("Cannot resolve method %s%s%s to any overloaded instance",
2864 obj_type_name,
2865 (obj_type_name && *obj_type_name) ? "::" : "",
2866 name);
2867 else
2868 error ("Cannot resolve function %s to any overloaded instance",
2869 func_name);
2870 }
2871 else if (oload_non_standard)
2872 {
2873 if (method)
2874 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2875 obj_type_name,
2876 (obj_type_name && *obj_type_name) ? "::" : "",
2877 name);
2878 else
2879 warning ("Using non-standard conversion to match function %s to supplied arguments",
2880 func_name);
2881 }
2882
2883 if (method)
2884 {
2885 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2886 *staticp = 1;
2887 else if (staticp)
2888 *staticp = 0;
2889 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2890 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2891 else
2892 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2893 }
2894 else
2895 {
2896 *symp = oload_syms[oload_champ];
2897 xfree (func_name);
2898 }
2899
2900 if (objp)
2901 {
2902 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2903 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2904 {
2905 temp = value_addr (temp);
2906 }
2907 *objp = temp;
2908 }
2909 if (cleanups != NULL)
2910 do_cleanups (cleanups);
2911
2912 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2913 }
2914
2915 /* C++: return 1 is NAME is a legitimate name for the destructor
2916 of type TYPE. If TYPE does not have a destructor, or
2917 if NAME is inappropriate for TYPE, an error is signaled. */
2918 int
2919 destructor_name_p (const char *name, const struct type *type)
2920 {
2921 /* destructors are a special case. */
2922
2923 if (name[0] == '~')
2924 {
2925 char *dname = type_name_no_tag (type);
2926 char *cp = strchr (dname, '<');
2927 unsigned int len;
2928
2929 /* Do not compare the template part for template classes. */
2930 if (cp == NULL)
2931 len = strlen (dname);
2932 else
2933 len = cp - dname;
2934 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2935 error ("name of destructor must equal name of class");
2936 else
2937 return 1;
2938 }
2939 return 0;
2940 }
2941
2942 /* Helper function for check_field: Given TYPE, a structure/union,
2943 return 1 if the component named NAME from the ultimate
2944 target structure/union is defined, otherwise, return 0. */
2945
2946 static int
2947 check_field_in (register struct type *type, const char *name)
2948 {
2949 register int i;
2950
2951 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2952 {
2953 char *t_field_name = TYPE_FIELD_NAME (type, i);
2954 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2955 return 1;
2956 }
2957
2958 /* C++: If it was not found as a data field, then try to
2959 return it as a pointer to a method. */
2960
2961 /* Destructors are a special case. */
2962 if (destructor_name_p (name, type))
2963 {
2964 int m_index, f_index;
2965
2966 return get_destructor_fn_field (type, &m_index, &f_index);
2967 }
2968
2969 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2970 {
2971 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2972 return 1;
2973 }
2974
2975 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2976 if (check_field_in (TYPE_BASECLASS (type, i), name))
2977 return 1;
2978
2979 return 0;
2980 }
2981
2982
2983 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2984 return 1 if the component named NAME from the ultimate
2985 target structure/union is defined, otherwise, return 0. */
2986
2987 int
2988 check_field (struct value *arg1, const char *name)
2989 {
2990 register struct type *t;
2991
2992 COERCE_ARRAY (arg1);
2993
2994 t = VALUE_TYPE (arg1);
2995
2996 /* Follow pointers until we get to a non-pointer. */
2997
2998 for (;;)
2999 {
3000 CHECK_TYPEDEF (t);
3001 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3002 break;
3003 t = TYPE_TARGET_TYPE (t);
3004 }
3005
3006 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3007 error ("not implemented: member type in check_field");
3008
3009 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3010 && TYPE_CODE (t) != TYPE_CODE_UNION)
3011 error ("Internal error: `this' is not an aggregate");
3012
3013 return check_field_in (t, name);
3014 }
3015
3016 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3017 return the address of this member as a "pointer to member"
3018 type. If INTYPE is non-null, then it will be the type
3019 of the member we are looking for. This will help us resolve
3020 "pointers to member functions". This function is used
3021 to resolve user expressions of the form "DOMAIN::NAME". */
3022
3023 struct value *
3024 value_struct_elt_for_reference (struct type *domain, int offset,
3025 struct type *curtype, char *name,
3026 struct type *intype)
3027 {
3028 register struct type *t = curtype;
3029 register int i;
3030 struct value *v;
3031
3032 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3033 && TYPE_CODE (t) != TYPE_CODE_UNION)
3034 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3035
3036 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3037 {
3038 char *t_field_name = TYPE_FIELD_NAME (t, i);
3039
3040 if (t_field_name && STREQ (t_field_name, name))
3041 {
3042 if (TYPE_FIELD_STATIC (t, i))
3043 {
3044 v = value_static_field (t, i);
3045 if (v == NULL)
3046 error ("Internal error: could not find static variable %s",
3047 name);
3048 return v;
3049 }
3050 if (TYPE_FIELD_PACKED (t, i))
3051 error ("pointers to bitfield members not allowed");
3052
3053 return value_from_longest
3054 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3055 domain)),
3056 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3057 }
3058 }
3059
3060 /* C++: If it was not found as a data field, then try to
3061 return it as a pointer to a method. */
3062
3063 /* Destructors are a special case. */
3064 if (destructor_name_p (name, t))
3065 {
3066 error ("member pointers to destructors not implemented yet");
3067 }
3068
3069 /* Perform all necessary dereferencing. */
3070 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3071 intype = TYPE_TARGET_TYPE (intype);
3072
3073 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3074 {
3075 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3076 char dem_opname[64];
3077
3078 if (strncmp (t_field_name, "__", 2) == 0 ||
3079 strncmp (t_field_name, "op", 2) == 0 ||
3080 strncmp (t_field_name, "type", 4) == 0)
3081 {
3082 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3083 t_field_name = dem_opname;
3084 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3085 t_field_name = dem_opname;
3086 }
3087 if (t_field_name && STREQ (t_field_name, name))
3088 {
3089 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3090 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3091
3092 if (intype == 0 && j > 1)
3093 error ("non-unique member `%s' requires type instantiation", name);
3094 if (intype)
3095 {
3096 while (j--)
3097 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3098 break;
3099 if (j < 0)
3100 error ("no member function matches that type instantiation");
3101 }
3102 else
3103 j = 0;
3104
3105 if (TYPE_FN_FIELD_STUB (f, j))
3106 check_stub_method (t, i, j);
3107 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3108 {
3109 return value_from_longest
3110 (lookup_reference_type
3111 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3112 domain)),
3113 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3114 }
3115 else
3116 {
3117 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3118 0, VAR_NAMESPACE, 0, NULL);
3119 if (s == NULL)
3120 {
3121 v = 0;
3122 }
3123 else
3124 {
3125 v = read_var_value (s, 0);
3126 #if 0
3127 VALUE_TYPE (v) = lookup_reference_type
3128 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3129 domain));
3130 #endif
3131 }
3132 return v;
3133 }
3134 }
3135 }
3136 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3137 {
3138 struct value *v;
3139 int base_offset;
3140
3141 if (BASETYPE_VIA_VIRTUAL (t, i))
3142 base_offset = 0;
3143 else
3144 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3145 v = value_struct_elt_for_reference (domain,
3146 offset + base_offset,
3147 TYPE_BASECLASS (t, i),
3148 name,
3149 intype);
3150 if (v)
3151 return v;
3152 }
3153 return 0;
3154 }
3155
3156
3157 /* Given a pointer value V, find the real (RTTI) type
3158 of the object it points to.
3159 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3160 and refer to the values computed for the object pointed to. */
3161
3162 struct type *
3163 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3164 {
3165 struct value *target;
3166
3167 target = value_ind (v);
3168
3169 return value_rtti_type (target, full, top, using_enc);
3170 }
3171
3172 /* Given a value pointed to by ARGP, check its real run-time type, and
3173 if that is different from the enclosing type, create a new value
3174 using the real run-time type as the enclosing type (and of the same
3175 type as ARGP) and return it, with the embedded offset adjusted to
3176 be the correct offset to the enclosed object
3177 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3178 parameters, computed by value_rtti_type(). If these are available,
3179 they can be supplied and a second call to value_rtti_type() is avoided.
3180 (Pass RTYPE == NULL if they're not available */
3181
3182 struct value *
3183 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3184 int xusing_enc)
3185 {
3186 struct type *real_type;
3187 int full = 0;
3188 int top = -1;
3189 int using_enc = 0;
3190 struct value *new_val;
3191
3192 if (rtype)
3193 {
3194 real_type = rtype;
3195 full = xfull;
3196 top = xtop;
3197 using_enc = xusing_enc;
3198 }
3199 else
3200 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3201
3202 /* If no RTTI data, or if object is already complete, do nothing */
3203 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3204 return argp;
3205
3206 /* If we have the full object, but for some reason the enclosing
3207 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3208 if (full)
3209 {
3210 argp = value_change_enclosing_type (argp, real_type);
3211 return argp;
3212 }
3213
3214 /* Check if object is in memory */
3215 if (VALUE_LVAL (argp) != lval_memory)
3216 {
3217 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3218
3219 return argp;
3220 }
3221
3222 /* All other cases -- retrieve the complete object */
3223 /* Go back by the computed top_offset from the beginning of the object,
3224 adjusting for the embedded offset of argp if that's what value_rtti_type
3225 used for its computation. */
3226 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3227 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3228 VALUE_BFD_SECTION (argp));
3229 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3230 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3231 return new_val;
3232 }
3233
3234
3235
3236
3237 /* C++: return the value of the class instance variable, if one exists.
3238 Flag COMPLAIN signals an error if the request is made in an
3239 inappropriate context. */
3240
3241 struct value *
3242 value_of_this (int complain)
3243 {
3244 struct symbol *func, *sym;
3245 struct block *b;
3246 int i;
3247 static const char funny_this[] = "this";
3248 struct value *this;
3249
3250 if (selected_frame == 0)
3251 {
3252 if (complain)
3253 error ("no frame selected");
3254 else
3255 return 0;
3256 }
3257
3258 func = get_frame_function (selected_frame);
3259 if (!func)
3260 {
3261 if (complain)
3262 error ("no `this' in nameless context");
3263 else
3264 return 0;
3265 }
3266
3267 b = SYMBOL_BLOCK_VALUE (func);
3268 i = BLOCK_NSYMS (b);
3269 if (i <= 0)
3270 {
3271 if (complain)
3272 error ("no args, no `this'");
3273 else
3274 return 0;
3275 }
3276
3277 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3278 symbol instead of the LOC_ARG one (if both exist). */
3279 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
3280 if (sym == NULL)
3281 {
3282 if (complain)
3283 error ("current stack frame not in method");
3284 else
3285 return NULL;
3286 }
3287
3288 this = read_var_value (sym, selected_frame);
3289 if (this == 0 && complain)
3290 error ("`this' argument at unknown address");
3291 return this;
3292 }
3293
3294 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3295 long, starting at LOWBOUND. The result has the same lower bound as
3296 the original ARRAY. */
3297
3298 struct value *
3299 value_slice (struct value *array, int lowbound, int length)
3300 {
3301 struct type *slice_range_type, *slice_type, *range_type;
3302 LONGEST lowerbound, upperbound, offset;
3303 struct value *slice;
3304 struct type *array_type;
3305 array_type = check_typedef (VALUE_TYPE (array));
3306 COERCE_VARYING_ARRAY (array, array_type);
3307 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3308 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3309 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3310 error ("cannot take slice of non-array");
3311 range_type = TYPE_INDEX_TYPE (array_type);
3312 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3313 error ("slice from bad array or bitstring");
3314 if (lowbound < lowerbound || length < 0
3315 || lowbound + length - 1 > upperbound)
3316 /* OBSOLETE Chill allows zero-length strings but not arrays. */
3317 /* OBSOLETE || (current_language->la_language == language_chill */
3318 /* OBSOLETE && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) */
3319 error ("slice out of range");
3320 /* FIXME-type-allocation: need a way to free this type when we are
3321 done with it. */
3322 slice_range_type = create_range_type ((struct type *) NULL,
3323 TYPE_TARGET_TYPE (range_type),
3324 lowbound, lowbound + length - 1);
3325 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3326 {
3327 int i;
3328 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3329 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3330 slice = value_zero (slice_type, not_lval);
3331 for (i = 0; i < length; i++)
3332 {
3333 int element = value_bit_index (array_type,
3334 VALUE_CONTENTS (array),
3335 lowbound + i);
3336 if (element < 0)
3337 error ("internal error accessing bitstring");
3338 else if (element > 0)
3339 {
3340 int j = i % TARGET_CHAR_BIT;
3341 if (BITS_BIG_ENDIAN)
3342 j = TARGET_CHAR_BIT - 1 - j;
3343 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3344 }
3345 }
3346 /* We should set the address, bitssize, and bitspos, so the clice
3347 can be used on the LHS, but that may require extensions to
3348 value_assign. For now, just leave as a non_lval. FIXME. */
3349 }
3350 else
3351 {
3352 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3353 offset
3354 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3355 slice_type = create_array_type ((struct type *) NULL, element_type,
3356 slice_range_type);
3357 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3358 slice = allocate_value (slice_type);
3359 if (VALUE_LAZY (array))
3360 VALUE_LAZY (slice) = 1;
3361 else
3362 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3363 TYPE_LENGTH (slice_type));
3364 if (VALUE_LVAL (array) == lval_internalvar)
3365 VALUE_LVAL (slice) = lval_internalvar_component;
3366 else
3367 VALUE_LVAL (slice) = VALUE_LVAL (array);
3368 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3369 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3370 }
3371 return slice;
3372 }
3373
3374 /* Assuming OBSOLETE chill_varying_type (VARRAY) is true, return an
3375 equivalent value as a fixed-length array. */
3376
3377 struct value *
3378 varying_to_slice (struct value *varray)
3379 {
3380 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3381 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3382 VALUE_CONTENTS (varray)
3383 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3384 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3385 }
3386
3387 /* Create a value for a FORTRAN complex number. Currently most of
3388 the time values are coerced to COMPLEX*16 (i.e. a complex number
3389 composed of 2 doubles. This really should be a smarter routine
3390 that figures out precision inteligently as opposed to assuming
3391 doubles. FIXME: fmb */
3392
3393 struct value *
3394 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3395 {
3396 struct value *val;
3397 struct type *real_type = TYPE_TARGET_TYPE (type);
3398
3399 val = allocate_value (type);
3400 arg1 = value_cast (real_type, arg1);
3401 arg2 = value_cast (real_type, arg2);
3402
3403 memcpy (VALUE_CONTENTS_RAW (val),
3404 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3405 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3406 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3407 return val;
3408 }
3409
3410 /* Cast a value into the appropriate complex data type. */
3411
3412 static struct value *
3413 cast_into_complex (struct type *type, struct value *val)
3414 {
3415 struct type *real_type = TYPE_TARGET_TYPE (type);
3416 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3417 {
3418 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3419 struct value *re_val = allocate_value (val_real_type);
3420 struct value *im_val = allocate_value (val_real_type);
3421
3422 memcpy (VALUE_CONTENTS_RAW (re_val),
3423 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3424 memcpy (VALUE_CONTENTS_RAW (im_val),
3425 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3426 TYPE_LENGTH (val_real_type));
3427
3428 return value_literal_complex (re_val, im_val, type);
3429 }
3430 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3431 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3432 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3433 else
3434 error ("cannot cast non-number to complex");
3435 }
3436
3437 void
3438 _initialize_valops (void)
3439 {
3440 #if 0
3441 add_show_from_set
3442 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3443 "Set automatic abandonment of expressions upon failure.",
3444 &setlist),
3445 &showlist);
3446 #endif
3447
3448 add_show_from_set
3449 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3450 "Set overload resolution in evaluating C++ functions.",
3451 &setlist),
3452 &showlist);
3453 overload_resolution = 1;
3454
3455 add_show_from_set (
3456 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3457 (char *) &unwind_on_signal_p,
3458 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3459 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3460 is received while in a function called from gdb (call dummy). If set, gdb\n\
3461 unwinds the stack and restore the context to what as it was before the call.\n\
3462 The default is to stop in the frame where the signal was received.", &setlist),
3463 &showlist);
3464 }
This page took 0.149566 seconds and 4 git commands to generate.