* value.h (value_as_address): Rename value_as_pointer.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35
36 #include <errno.h>
37 #include "gdb_string.h"
38
39 /* Flag indicating HP compilers were used; needed to correctly handle some
40 value operations with HP aCC code/runtime. */
41 extern int hp_som_som_object_present;
42
43 extern int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
47
48 static CORE_ADDR find_function_addr (value_ptr, struct type **);
49 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
50
51
52 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
53
54 static value_ptr search_struct_field (char *, value_ptr, int,
55 struct type *, int);
56
57 static value_ptr search_struct_method (char *, value_ptr *,
58 value_ptr *,
59 int, int *, struct type *);
60
61 static int check_field_in (struct type *, const char *);
62
63 static CORE_ADDR allocate_space_in_inferior (int);
64
65 static value_ptr cast_into_complex (struct type *, value_ptr);
66
67 static struct fn_field *find_method_list (value_ptr * argp, char *method,
68 int offset, int *static_memfuncp,
69 struct type *type, int *num_fns,
70 struct type **basetype,
71 int *boffset);
72
73 void _initialize_valops (void);
74
75 /* Flag for whether we want to abandon failed expression evals by default. */
76
77 #if 0
78 static int auto_abandon = 0;
79 #endif
80
81 int overload_resolution = 0;
82
83 /* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
87
88 int unwind_on_signal_p = 0;
89 \f
90
91
92 /* Find the address of function name NAME in the inferior. */
93
94 value_ptr
95 find_function_in_inferior (char *name)
96 {
97 register struct symbol *sym;
98 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
99 if (sym != NULL)
100 {
101 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
102 {
103 error ("\"%s\" exists in this program but is not a function.",
104 name);
105 }
106 return value_of_variable (sym, NULL);
107 }
108 else
109 {
110 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
111 if (msymbol != NULL)
112 {
113 struct type *type;
114 CORE_ADDR maddr;
115 type = lookup_pointer_type (builtin_type_char);
116 type = lookup_function_type (type);
117 type = lookup_pointer_type (type);
118 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
119 return value_from_pointer (type, maddr);
120 }
121 else
122 {
123 if (!target_has_execution)
124 error ("evaluation of this expression requires the target program to be active");
125 else
126 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
127 }
128 }
129 }
130
131 /* Allocate NBYTES of space in the inferior using the inferior's malloc
132 and return a value that is a pointer to the allocated space. */
133
134 value_ptr
135 value_allocate_space_in_inferior (int len)
136 {
137 value_ptr blocklen;
138 register value_ptr val = find_function_in_inferior ("malloc");
139
140 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
141 val = call_function_by_hand (val, 1, &blocklen);
142 if (value_logical_not (val))
143 {
144 if (!target_has_execution)
145 error ("No memory available to program now: you need to start the target first");
146 else
147 error ("No memory available to program: call to malloc failed");
148 }
149 return val;
150 }
151
152 static CORE_ADDR
153 allocate_space_in_inferior (int len)
154 {
155 return value_as_long (value_allocate_space_in_inferior (len));
156 }
157
158 /* Cast value ARG2 to type TYPE and return as a value.
159 More general than a C cast: accepts any two types of the same length,
160 and if ARG2 is an lvalue it can be cast into anything at all. */
161 /* In C++, casts may change pointer or object representations. */
162
163 value_ptr
164 value_cast (struct type *type, register value_ptr arg2)
165 {
166 register enum type_code code1;
167 register enum type_code code2;
168 register int scalar;
169 struct type *type2;
170
171 int convert_to_boolean = 0;
172
173 if (VALUE_TYPE (arg2) == type)
174 return arg2;
175
176 CHECK_TYPEDEF (type);
177 code1 = TYPE_CODE (type);
178 COERCE_REF (arg2);
179 type2 = check_typedef (VALUE_TYPE (arg2));
180
181 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
182 is treated like a cast to (TYPE [N])OBJECT,
183 where N is sizeof(OBJECT)/sizeof(TYPE). */
184 if (code1 == TYPE_CODE_ARRAY)
185 {
186 struct type *element_type = TYPE_TARGET_TYPE (type);
187 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
188 if (element_length > 0
189 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
190 {
191 struct type *range_type = TYPE_INDEX_TYPE (type);
192 int val_length = TYPE_LENGTH (type2);
193 LONGEST low_bound, high_bound, new_length;
194 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
195 low_bound = 0, high_bound = 0;
196 new_length = val_length / element_length;
197 if (val_length % element_length != 0)
198 warning ("array element type size does not divide object size in cast");
199 /* FIXME-type-allocation: need a way to free this type when we are
200 done with it. */
201 range_type = create_range_type ((struct type *) NULL,
202 TYPE_TARGET_TYPE (range_type),
203 low_bound,
204 new_length + low_bound - 1);
205 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
206 element_type, range_type);
207 return arg2;
208 }
209 }
210
211 if (current_language->c_style_arrays
212 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
213 arg2 = value_coerce_array (arg2);
214
215 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
216 arg2 = value_coerce_function (arg2);
217
218 type2 = check_typedef (VALUE_TYPE (arg2));
219 COERCE_VARYING_ARRAY (arg2, type2);
220 code2 = TYPE_CODE (type2);
221
222 if (code1 == TYPE_CODE_COMPLEX)
223 return cast_into_complex (type, arg2);
224 if (code1 == TYPE_CODE_BOOL)
225 {
226 code1 = TYPE_CODE_INT;
227 convert_to_boolean = 1;
228 }
229 if (code1 == TYPE_CODE_CHAR)
230 code1 = TYPE_CODE_INT;
231 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
232 code2 = TYPE_CODE_INT;
233
234 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
235 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
236
237 if (code1 == TYPE_CODE_STRUCT
238 && code2 == TYPE_CODE_STRUCT
239 && TYPE_NAME (type) != 0)
240 {
241 /* Look in the type of the source to see if it contains the
242 type of the target as a superclass. If so, we'll need to
243 offset the object in addition to changing its type. */
244 value_ptr v = search_struct_field (type_name_no_tag (type),
245 arg2, 0, type2, 1);
246 if (v)
247 {
248 VALUE_TYPE (v) = type;
249 return v;
250 }
251 }
252 if (code1 == TYPE_CODE_FLT && scalar)
253 return value_from_double (type, value_as_double (arg2));
254 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
255 || code1 == TYPE_CODE_RANGE)
256 && (scalar || code2 == TYPE_CODE_PTR))
257 {
258 LONGEST longest;
259
260 if (hp_som_som_object_present && /* if target compiled by HP aCC */
261 (code2 == TYPE_CODE_PTR))
262 {
263 unsigned int *ptr;
264 value_ptr retvalp;
265
266 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
267 {
268 /* With HP aCC, pointers to data members have a bias */
269 case TYPE_CODE_MEMBER:
270 retvalp = value_from_longest (type, value_as_long (arg2));
271 /* force evaluation */
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284
285 /* When we cast pointers to integers, we mustn't use
286 POINTER_TO_ADDRESS to find the address the pointer
287 represents, as value_as_long would. GDB should evaluate
288 expressions just as the compiler would --- and the compiler
289 sees a cast as a simple reinterpretation of the pointer's
290 bits. */
291 if (code2 == TYPE_CODE_PTR)
292 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
293 TYPE_LENGTH (type2));
294 else
295 longest = value_as_long (arg2);
296 return value_from_longest (type, convert_to_boolean ?
297 (LONGEST) (longest ? 1 : 0) : longest);
298 }
299 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
300 code2 == TYPE_CODE_ENUM ||
301 code2 == TYPE_CODE_RANGE))
302 {
303 /* TYPE_LENGTH (type) is the length of a pointer, but we really
304 want the length of an address! -- we are really dealing with
305 addresses (i.e., gdb representations) not pointers (i.e.,
306 target representations) here.
307
308 This allows things like "print *(int *)0x01000234" to work
309 without printing a misleading message -- which would
310 otherwise occur when dealing with a target having two byte
311 pointers and four byte addresses. */
312
313 int addr_bit = TARGET_ADDR_BIT;
314
315 LONGEST longest = value_as_long (arg2);
316 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
317 {
318 if (longest >= ((LONGEST) 1 << addr_bit)
319 || longest <= -((LONGEST) 1 << addr_bit))
320 warning ("value truncated");
321 }
322 return value_from_longest (type, longest);
323 }
324 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
325 {
326 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
327 {
328 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
329 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
330 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
331 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
332 && !value_logical_not (arg2))
333 {
334 value_ptr v;
335
336 /* Look in the type of the source to see if it contains the
337 type of the target as a superclass. If so, we'll need to
338 offset the pointer rather than just change its type. */
339 if (TYPE_NAME (t1) != NULL)
340 {
341 v = search_struct_field (type_name_no_tag (t1),
342 value_ind (arg2), 0, t2, 1);
343 if (v)
344 {
345 v = value_addr (v);
346 VALUE_TYPE (v) = type;
347 return v;
348 }
349 }
350
351 /* Look in the type of the target to see if it contains the
352 type of the source as a superclass. If so, we'll need to
353 offset the pointer rather than just change its type.
354 FIXME: This fails silently with virtual inheritance. */
355 if (TYPE_NAME (t2) != NULL)
356 {
357 v = search_struct_field (type_name_no_tag (t2),
358 value_zero (t1, not_lval), 0, t1, 1);
359 if (v)
360 {
361 value_ptr v2 = value_ind (arg2);
362 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
363 + VALUE_OFFSET (v);
364
365 /* JYG: adjust the new pointer value and
366 embedded offset. */
367 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
368 VALUE_EMBEDDED_OFFSET (v2) = 0;
369
370 v2 = value_addr (v2);
371 VALUE_TYPE (v2) = type;
372 return v2;
373 }
374 }
375 }
376 /* No superclass found, just fall through to change ptr type. */
377 }
378 VALUE_TYPE (arg2) = type;
379 arg2 = value_change_enclosing_type (arg2, type);
380 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
381 return arg2;
382 }
383 else if (chill_varying_type (type))
384 {
385 struct type *range1, *range2, *eltype1, *eltype2;
386 value_ptr val;
387 int count1, count2;
388 LONGEST low_bound, high_bound;
389 char *valaddr, *valaddr_data;
390 /* For lint warning about eltype2 possibly uninitialized: */
391 eltype2 = NULL;
392 if (code2 == TYPE_CODE_BITSTRING)
393 error ("not implemented: converting bitstring to varying type");
394 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
395 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
396 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
397 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
398 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
399 error ("Invalid conversion to varying type");
400 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
401 range2 = TYPE_FIELD_TYPE (type2, 0);
402 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
403 count1 = -1;
404 else
405 count1 = high_bound - low_bound + 1;
406 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
407 count1 = -1, count2 = 0; /* To force error before */
408 else
409 count2 = high_bound - low_bound + 1;
410 if (count2 > count1)
411 error ("target varying type is too small");
412 val = allocate_value (type);
413 valaddr = VALUE_CONTENTS_RAW (val);
414 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
415 /* Set val's __var_length field to count2. */
416 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
417 count2);
418 /* Set the __var_data field to count2 elements copied from arg2. */
419 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
420 count2 * TYPE_LENGTH (eltype2));
421 /* Zero the rest of the __var_data field of val. */
422 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
423 (count1 - count2) * TYPE_LENGTH (eltype2));
424 return val;
425 }
426 else if (VALUE_LVAL (arg2) == lval_memory)
427 {
428 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
429 VALUE_BFD_SECTION (arg2));
430 }
431 else if (code1 == TYPE_CODE_VOID)
432 {
433 return value_zero (builtin_type_void, not_lval);
434 }
435 else
436 {
437 error ("Invalid cast.");
438 return 0;
439 }
440 }
441
442 /* Create a value of type TYPE that is zero, and return it. */
443
444 value_ptr
445 value_zero (struct type *type, enum lval_type lv)
446 {
447 register value_ptr val = allocate_value (type);
448
449 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
450 VALUE_LVAL (val) = lv;
451
452 return val;
453 }
454
455 /* Return a value with type TYPE located at ADDR.
456
457 Call value_at only if the data needs to be fetched immediately;
458 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
459 value_at_lazy instead. value_at_lazy simply records the address of
460 the data and sets the lazy-evaluation-required flag. The lazy flag
461 is tested in the VALUE_CONTENTS macro, which is used if and when
462 the contents are actually required.
463
464 Note: value_at does *NOT* handle embedded offsets; perform such
465 adjustments before or after calling it. */
466
467 value_ptr
468 value_at (struct type *type, CORE_ADDR addr, asection *sect)
469 {
470 register value_ptr val;
471
472 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
473 error ("Attempt to dereference a generic pointer.");
474
475 val = allocate_value (type);
476
477 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
478
479 VALUE_LVAL (val) = lval_memory;
480 VALUE_ADDRESS (val) = addr;
481 VALUE_BFD_SECTION (val) = sect;
482
483 return val;
484 }
485
486 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
487
488 value_ptr
489 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
490 {
491 register value_ptr val;
492
493 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
494 error ("Attempt to dereference a generic pointer.");
495
496 val = allocate_value (type);
497
498 VALUE_LVAL (val) = lval_memory;
499 VALUE_ADDRESS (val) = addr;
500 VALUE_LAZY (val) = 1;
501 VALUE_BFD_SECTION (val) = sect;
502
503 return val;
504 }
505
506 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
507 if the current data for a variable needs to be loaded into
508 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
509 clears the lazy flag to indicate that the data in the buffer is valid.
510
511 If the value is zero-length, we avoid calling read_memory, which would
512 abort. We mark the value as fetched anyway -- all 0 bytes of it.
513
514 This function returns a value because it is used in the VALUE_CONTENTS
515 macro as part of an expression, where a void would not work. The
516 value is ignored. */
517
518 int
519 value_fetch_lazy (register value_ptr val)
520 {
521 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
522 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
523
524 struct type *type = VALUE_TYPE (val);
525 if (length)
526 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
527
528 VALUE_LAZY (val) = 0;
529 return 0;
530 }
531
532
533 /* Store the contents of FROMVAL into the location of TOVAL.
534 Return a new value with the location of TOVAL and contents of FROMVAL. */
535
536 value_ptr
537 value_assign (register value_ptr toval, register value_ptr fromval)
538 {
539 register struct type *type;
540 register value_ptr val;
541 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
542 int use_buffer = 0;
543
544 if (!toval->modifiable)
545 error ("Left operand of assignment is not a modifiable lvalue.");
546
547 COERCE_REF (toval);
548
549 type = VALUE_TYPE (toval);
550 if (VALUE_LVAL (toval) != lval_internalvar)
551 fromval = value_cast (type, fromval);
552 else
553 COERCE_ARRAY (fromval);
554 CHECK_TYPEDEF (type);
555
556 /* If TOVAL is a special machine register requiring conversion
557 of program values to a special raw format,
558 convert FROMVAL's contents now, with result in `raw_buffer',
559 and set USE_BUFFER to the number of bytes to write. */
560
561 if (VALUE_REGNO (toval) >= 0)
562 {
563 int regno = VALUE_REGNO (toval);
564 if (REGISTER_CONVERTIBLE (regno))
565 {
566 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
567 REGISTER_CONVERT_TO_RAW (fromtype, regno,
568 VALUE_CONTENTS (fromval), raw_buffer);
569 use_buffer = REGISTER_RAW_SIZE (regno);
570 }
571 }
572
573 switch (VALUE_LVAL (toval))
574 {
575 case lval_internalvar:
576 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
577 val = value_copy (VALUE_INTERNALVAR (toval)->value);
578 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
579 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
580 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
581 return val;
582
583 case lval_internalvar_component:
584 set_internalvar_component (VALUE_INTERNALVAR (toval),
585 VALUE_OFFSET (toval),
586 VALUE_BITPOS (toval),
587 VALUE_BITSIZE (toval),
588 fromval);
589 break;
590
591 case lval_memory:
592 {
593 char *dest_buffer;
594 CORE_ADDR changed_addr;
595 int changed_len;
596
597 if (VALUE_BITSIZE (toval))
598 {
599 char buffer[sizeof (LONGEST)];
600 /* We assume that the argument to read_memory is in units of
601 host chars. FIXME: Is that correct? */
602 changed_len = (VALUE_BITPOS (toval)
603 + VALUE_BITSIZE (toval)
604 + HOST_CHAR_BIT - 1)
605 / HOST_CHAR_BIT;
606
607 if (changed_len > (int) sizeof (LONGEST))
608 error ("Can't handle bitfields which don't fit in a %d bit word.",
609 sizeof (LONGEST) * HOST_CHAR_BIT);
610
611 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
612 buffer, changed_len);
613 modify_field (buffer, value_as_long (fromval),
614 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
615 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
616 dest_buffer = buffer;
617 }
618 else if (use_buffer)
619 {
620 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
621 changed_len = use_buffer;
622 dest_buffer = raw_buffer;
623 }
624 else
625 {
626 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
627 changed_len = TYPE_LENGTH (type);
628 dest_buffer = VALUE_CONTENTS (fromval);
629 }
630
631 write_memory (changed_addr, dest_buffer, changed_len);
632 if (memory_changed_hook)
633 memory_changed_hook (changed_addr, changed_len);
634 }
635 break;
636
637 case lval_register:
638 if (VALUE_BITSIZE (toval))
639 {
640 char buffer[sizeof (LONGEST)];
641 int len =
642 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
643
644 if (len > (int) sizeof (LONGEST))
645 error ("Can't handle bitfields in registers larger than %d bits.",
646 sizeof (LONGEST) * HOST_CHAR_BIT);
647
648 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
649 > len * HOST_CHAR_BIT)
650 /* Getting this right would involve being very careful about
651 byte order. */
652 error ("Can't assign to bitfields that cross register "
653 "boundaries.");
654
655 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
656 buffer, len);
657 modify_field (buffer, value_as_long (fromval),
658 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
659 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
660 buffer, len);
661 }
662 else if (use_buffer)
663 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
664 raw_buffer, use_buffer);
665 else
666 {
667 /* Do any conversion necessary when storing this type to more
668 than one register. */
669 #ifdef REGISTER_CONVERT_FROM_TYPE
670 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
671 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
672 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 raw_buffer, TYPE_LENGTH (type));
674 #else
675 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
676 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
677 #endif
678 }
679 /* Assigning to the stack pointer, frame pointer, and other
680 (architecture and calling convention specific) registers may
681 cause the frame cache to be out of date. We just do this
682 on all assignments to registers for simplicity; I doubt the slowdown
683 matters. */
684 reinit_frame_cache ();
685 break;
686
687 case lval_reg_frame_relative:
688 {
689 /* value is stored in a series of registers in the frame
690 specified by the structure. Copy that value out, modify
691 it, and copy it back in. */
692 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
693 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
694 int byte_offset = VALUE_OFFSET (toval) % reg_size;
695 int reg_offset = VALUE_OFFSET (toval) / reg_size;
696 int amount_copied;
697
698 /* Make the buffer large enough in all cases. */
699 char *buffer = (char *) alloca (amount_to_copy
700 + sizeof (LONGEST)
701 + MAX_REGISTER_RAW_SIZE);
702
703 int regno;
704 struct frame_info *frame;
705
706 /* Figure out which frame this is in currently. */
707 for (frame = get_current_frame ();
708 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
709 frame = get_prev_frame (frame))
710 ;
711
712 if (!frame)
713 error ("Value being assigned to is no longer active.");
714
715 amount_to_copy += (reg_size - amount_to_copy % reg_size);
716
717 /* Copy it out. */
718 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
719 amount_copied = 0);
720 amount_copied < amount_to_copy;
721 amount_copied += reg_size, regno++)
722 {
723 get_saved_register (buffer + amount_copied,
724 (int *) NULL, (CORE_ADDR *) NULL,
725 frame, regno, (enum lval_type *) NULL);
726 }
727
728 /* Modify what needs to be modified. */
729 if (VALUE_BITSIZE (toval))
730 modify_field (buffer + byte_offset,
731 value_as_long (fromval),
732 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
733 else if (use_buffer)
734 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
735 else
736 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
737 TYPE_LENGTH (type));
738
739 /* Copy it back. */
740 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
741 amount_copied = 0);
742 amount_copied < amount_to_copy;
743 amount_copied += reg_size, regno++)
744 {
745 enum lval_type lval;
746 CORE_ADDR addr;
747 int optim;
748
749 /* Just find out where to put it. */
750 get_saved_register ((char *) NULL,
751 &optim, &addr, frame, regno, &lval);
752
753 if (optim)
754 error ("Attempt to assign to a value that was optimized out.");
755 if (lval == lval_memory)
756 write_memory (addr, buffer + amount_copied, reg_size);
757 else if (lval == lval_register)
758 write_register_bytes (addr, buffer + amount_copied, reg_size);
759 else
760 error ("Attempt to assign to an unmodifiable value.");
761 }
762
763 if (register_changed_hook)
764 register_changed_hook (-1);
765 }
766 break;
767
768
769 default:
770 error ("Left operand of assignment is not an lvalue.");
771 }
772
773 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
774 If the field is signed, and is negative, then sign extend. */
775 if ((VALUE_BITSIZE (toval) > 0)
776 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
777 {
778 LONGEST fieldval = value_as_long (fromval);
779 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
780
781 fieldval &= valmask;
782 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
783 fieldval |= ~valmask;
784
785 fromval = value_from_longest (type, fieldval);
786 }
787
788 val = value_copy (toval);
789 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
790 TYPE_LENGTH (type));
791 VALUE_TYPE (val) = type;
792 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
793 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
794 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
795
796 return val;
797 }
798
799 /* Extend a value VAL to COUNT repetitions of its type. */
800
801 value_ptr
802 value_repeat (value_ptr arg1, int count)
803 {
804 register value_ptr val;
805
806 if (VALUE_LVAL (arg1) != lval_memory)
807 error ("Only values in memory can be extended with '@'.");
808 if (count < 1)
809 error ("Invalid number %d of repetitions.", count);
810
811 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
812
813 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
814 VALUE_CONTENTS_ALL_RAW (val),
815 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
816 VALUE_LVAL (val) = lval_memory;
817 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
818
819 return val;
820 }
821
822 value_ptr
823 value_of_variable (struct symbol *var, struct block *b)
824 {
825 value_ptr val;
826 struct frame_info *frame = NULL;
827
828 if (!b)
829 frame = NULL; /* Use selected frame. */
830 else if (symbol_read_needs_frame (var))
831 {
832 frame = block_innermost_frame (b);
833 if (!frame)
834 {
835 if (BLOCK_FUNCTION (b)
836 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
837 error ("No frame is currently executing in block %s.",
838 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
839 else
840 error ("No frame is currently executing in specified block");
841 }
842 }
843
844 val = read_var_value (var, frame);
845 if (!val)
846 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
847
848 return val;
849 }
850
851 /* Given a value which is an array, return a value which is a pointer to its
852 first element, regardless of whether or not the array has a nonzero lower
853 bound.
854
855 FIXME: A previous comment here indicated that this routine should be
856 substracting the array's lower bound. It's not clear to me that this
857 is correct. Given an array subscripting operation, it would certainly
858 work to do the adjustment here, essentially computing:
859
860 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
861
862 However I believe a more appropriate and logical place to account for
863 the lower bound is to do so in value_subscript, essentially computing:
864
865 (&array[0] + ((index - lowerbound) * sizeof array[0]))
866
867 As further evidence consider what would happen with operations other
868 than array subscripting, where the caller would get back a value that
869 had an address somewhere before the actual first element of the array,
870 and the information about the lower bound would be lost because of
871 the coercion to pointer type.
872 */
873
874 value_ptr
875 value_coerce_array (value_ptr arg1)
876 {
877 register struct type *type = check_typedef (VALUE_TYPE (arg1));
878
879 if (VALUE_LVAL (arg1) != lval_memory)
880 error ("Attempt to take address of value not located in memory.");
881
882 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
883 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
884 }
885
886 /* Given a value which is a function, return a value which is a pointer
887 to it. */
888
889 value_ptr
890 value_coerce_function (value_ptr arg1)
891 {
892 value_ptr retval;
893
894 if (VALUE_LVAL (arg1) != lval_memory)
895 error ("Attempt to take address of value not located in memory.");
896
897 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
898 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
899 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
900 return retval;
901 }
902
903 /* Return a pointer value for the object for which ARG1 is the contents. */
904
905 value_ptr
906 value_addr (value_ptr arg1)
907 {
908 value_ptr arg2;
909
910 struct type *type = check_typedef (VALUE_TYPE (arg1));
911 if (TYPE_CODE (type) == TYPE_CODE_REF)
912 {
913 /* Copy the value, but change the type from (T&) to (T*).
914 We keep the same location information, which is efficient,
915 and allows &(&X) to get the location containing the reference. */
916 arg2 = value_copy (arg1);
917 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
918 return arg2;
919 }
920 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
921 return value_coerce_function (arg1);
922
923 if (VALUE_LVAL (arg1) != lval_memory)
924 error ("Attempt to take address of value not located in memory.");
925
926 /* Get target memory address */
927 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
928 (VALUE_ADDRESS (arg1)
929 + VALUE_OFFSET (arg1)
930 + VALUE_EMBEDDED_OFFSET (arg1)));
931
932 /* This may be a pointer to a base subobject; so remember the
933 full derived object's type ... */
934 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
935 /* ... and also the relative position of the subobject in the full object */
936 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
937 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
938 return arg2;
939 }
940
941 /* Given a value of a pointer type, apply the C unary * operator to it. */
942
943 value_ptr
944 value_ind (value_ptr arg1)
945 {
946 struct type *base_type;
947 value_ptr arg2;
948
949 COERCE_ARRAY (arg1);
950
951 base_type = check_typedef (VALUE_TYPE (arg1));
952
953 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
954 error ("not implemented: member types in value_ind");
955
956 /* Allow * on an integer so we can cast it to whatever we want.
957 This returns an int, which seems like the most C-like thing
958 to do. "long long" variables are rare enough that
959 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
960 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
961 return value_at (builtin_type_int,
962 (CORE_ADDR) value_as_long (arg1),
963 VALUE_BFD_SECTION (arg1));
964 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
965 {
966 struct type *enc_type;
967 /* We may be pointing to something embedded in a larger object */
968 /* Get the real type of the enclosing object */
969 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
970 enc_type = TYPE_TARGET_TYPE (enc_type);
971 /* Retrieve the enclosing object pointed to */
972 arg2 = value_at_lazy (enc_type,
973 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
974 VALUE_BFD_SECTION (arg1));
975 /* Re-adjust type */
976 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
977 /* Add embedding info */
978 arg2 = value_change_enclosing_type (arg2, enc_type);
979 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
980
981 /* We may be pointing to an object of some derived type */
982 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
983 return arg2;
984 }
985
986 error ("Attempt to take contents of a non-pointer value.");
987 return 0; /* For lint -- never reached */
988 }
989 \f
990 /* Pushing small parts of stack frames. */
991
992 /* Push one word (the size of object that a register holds). */
993
994 CORE_ADDR
995 push_word (CORE_ADDR sp, ULONGEST word)
996 {
997 register int len = REGISTER_SIZE;
998 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
999
1000 store_unsigned_integer (buffer, len, word);
1001 if (INNER_THAN (1, 2))
1002 {
1003 /* stack grows downward */
1004 sp -= len;
1005 write_memory (sp, buffer, len);
1006 }
1007 else
1008 {
1009 /* stack grows upward */
1010 write_memory (sp, buffer, len);
1011 sp += len;
1012 }
1013
1014 return sp;
1015 }
1016
1017 /* Push LEN bytes with data at BUFFER. */
1018
1019 CORE_ADDR
1020 push_bytes (CORE_ADDR sp, char *buffer, int len)
1021 {
1022 if (INNER_THAN (1, 2))
1023 {
1024 /* stack grows downward */
1025 sp -= len;
1026 write_memory (sp, buffer, len);
1027 }
1028 else
1029 {
1030 /* stack grows upward */
1031 write_memory (sp, buffer, len);
1032 sp += len;
1033 }
1034
1035 return sp;
1036 }
1037
1038 #ifndef PARM_BOUNDARY
1039 #define PARM_BOUNDARY (0)
1040 #endif
1041
1042 /* Push onto the stack the specified value VALUE. Pad it correctly for
1043 it to be an argument to a function. */
1044
1045 static CORE_ADDR
1046 value_push (register CORE_ADDR sp, value_ptr arg)
1047 {
1048 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1049 register int container_len = len;
1050 register int offset;
1051
1052 /* How big is the container we're going to put this value in? */
1053 if (PARM_BOUNDARY)
1054 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1055 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1056
1057 /* Are we going to put it at the high or low end of the container? */
1058 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1059 offset = container_len - len;
1060 else
1061 offset = 0;
1062
1063 if (INNER_THAN (1, 2))
1064 {
1065 /* stack grows downward */
1066 sp -= container_len;
1067 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1068 }
1069 else
1070 {
1071 /* stack grows upward */
1072 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1073 sp += container_len;
1074 }
1075
1076 return sp;
1077 }
1078
1079 #ifndef PUSH_ARGUMENTS
1080 #define PUSH_ARGUMENTS default_push_arguments
1081 #endif
1082
1083 CORE_ADDR
1084 default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1085 int struct_return, CORE_ADDR struct_addr)
1086 {
1087 /* ASSERT ( !struct_return); */
1088 int i;
1089 for (i = nargs - 1; i >= 0; i--)
1090 sp = value_push (sp, args[i]);
1091 return sp;
1092 }
1093
1094
1095 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1096 when we don't have any type for the argument at hand. This occurs
1097 when we have no debug info, or when passing varargs.
1098
1099 This is an annoying default: the rule the compiler follows is to do
1100 the standard promotions whenever there is no prototype in scope,
1101 and almost all targets want this behavior. But there are some old
1102 architectures which want this odd behavior. If you want to go
1103 through them all and fix them, please do. Modern gdbarch-style
1104 targets may find it convenient to use standard_coerce_float_to_double. */
1105 int
1106 default_coerce_float_to_double (struct type *formal, struct type *actual)
1107 {
1108 return formal == NULL;
1109 }
1110
1111
1112 /* Always coerce floats to doubles when there is no prototype in scope.
1113 If your architecture follows the standard type promotion rules for
1114 calling unprototyped functions, your gdbarch init function can pass
1115 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1116 int
1117 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1118 {
1119 return 1;
1120 }
1121
1122
1123 /* Perform the standard coercions that are specified
1124 for arguments to be passed to C functions.
1125
1126 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1127 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1128
1129 static value_ptr
1130 value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
1131 {
1132 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1133 register struct type *type
1134 = param_type ? check_typedef (param_type) : arg_type;
1135
1136 switch (TYPE_CODE (type))
1137 {
1138 case TYPE_CODE_REF:
1139 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1140 {
1141 arg = value_addr (arg);
1142 VALUE_TYPE (arg) = param_type;
1143 return arg;
1144 }
1145 break;
1146 case TYPE_CODE_INT:
1147 case TYPE_CODE_CHAR:
1148 case TYPE_CODE_BOOL:
1149 case TYPE_CODE_ENUM:
1150 /* If we don't have a prototype, coerce to integer type if necessary. */
1151 if (!is_prototyped)
1152 {
1153 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1154 type = builtin_type_int;
1155 }
1156 /* Currently all target ABIs require at least the width of an integer
1157 type for an argument. We may have to conditionalize the following
1158 type coercion for future targets. */
1159 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1160 type = builtin_type_int;
1161 break;
1162 case TYPE_CODE_FLT:
1163 /* FIXME: We should always convert floats to doubles in the
1164 non-prototyped case. As many debugging formats include
1165 no information about prototyping, we have to live with
1166 COERCE_FLOAT_TO_DOUBLE for now. */
1167 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1168 {
1169 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1170 type = builtin_type_double;
1171 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1172 type = builtin_type_long_double;
1173 }
1174 break;
1175 case TYPE_CODE_FUNC:
1176 type = lookup_pointer_type (type);
1177 break;
1178 case TYPE_CODE_ARRAY:
1179 if (current_language->c_style_arrays)
1180 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1181 break;
1182 case TYPE_CODE_UNDEF:
1183 case TYPE_CODE_PTR:
1184 case TYPE_CODE_STRUCT:
1185 case TYPE_CODE_UNION:
1186 case TYPE_CODE_VOID:
1187 case TYPE_CODE_SET:
1188 case TYPE_CODE_RANGE:
1189 case TYPE_CODE_STRING:
1190 case TYPE_CODE_BITSTRING:
1191 case TYPE_CODE_ERROR:
1192 case TYPE_CODE_MEMBER:
1193 case TYPE_CODE_METHOD:
1194 case TYPE_CODE_COMPLEX:
1195 default:
1196 break;
1197 }
1198
1199 return value_cast (type, arg);
1200 }
1201
1202 /* Determine a function's address and its return type from its value.
1203 Calls error() if the function is not valid for calling. */
1204
1205 static CORE_ADDR
1206 find_function_addr (value_ptr function, struct type **retval_type)
1207 {
1208 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1209 register enum type_code code = TYPE_CODE (ftype);
1210 struct type *value_type;
1211 CORE_ADDR funaddr;
1212
1213 /* If it's a member function, just look at the function
1214 part of it. */
1215
1216 /* Determine address to call. */
1217 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1218 {
1219 funaddr = VALUE_ADDRESS (function);
1220 value_type = TYPE_TARGET_TYPE (ftype);
1221 }
1222 else if (code == TYPE_CODE_PTR)
1223 {
1224 funaddr = value_as_address (function);
1225 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1226 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1227 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1228 {
1229 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1230 value_type = TYPE_TARGET_TYPE (ftype);
1231 }
1232 else
1233 value_type = builtin_type_int;
1234 }
1235 else if (code == TYPE_CODE_INT)
1236 {
1237 /* Handle the case of functions lacking debugging info.
1238 Their values are characters since their addresses are char */
1239 if (TYPE_LENGTH (ftype) == 1)
1240 funaddr = value_as_address (value_addr (function));
1241 else
1242 /* Handle integer used as address of a function. */
1243 funaddr = (CORE_ADDR) value_as_long (function);
1244
1245 value_type = builtin_type_int;
1246 }
1247 else
1248 error ("Invalid data type for function to be called.");
1249
1250 *retval_type = value_type;
1251 return funaddr;
1252 }
1253
1254 /* All this stuff with a dummy frame may seem unnecessarily complicated
1255 (why not just save registers in GDB?). The purpose of pushing a dummy
1256 frame which looks just like a real frame is so that if you call a
1257 function and then hit a breakpoint (get a signal, etc), "backtrace"
1258 will look right. Whether the backtrace needs to actually show the
1259 stack at the time the inferior function was called is debatable, but
1260 it certainly needs to not display garbage. So if you are contemplating
1261 making dummy frames be different from normal frames, consider that. */
1262
1263 /* Perform a function call in the inferior.
1264 ARGS is a vector of values of arguments (NARGS of them).
1265 FUNCTION is a value, the function to be called.
1266 Returns a value representing what the function returned.
1267 May fail to return, if a breakpoint or signal is hit
1268 during the execution of the function.
1269
1270 ARGS is modified to contain coerced values. */
1271
1272 static value_ptr hand_function_call (value_ptr function, int nargs,
1273 value_ptr * args);
1274 static value_ptr
1275 hand_function_call (value_ptr function, int nargs, value_ptr *args)
1276 {
1277 register CORE_ADDR sp;
1278 register int i;
1279 int rc;
1280 CORE_ADDR start_sp;
1281 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1282 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1283 and remove any extra bytes which might exist because ULONGEST is
1284 bigger than REGISTER_SIZE.
1285
1286 NOTE: This is pretty wierd, as the call dummy is actually a
1287 sequence of instructions. But CISC machines will have
1288 to pack the instructions into REGISTER_SIZE units (and
1289 so will RISC machines for which INSTRUCTION_SIZE is not
1290 REGISTER_SIZE).
1291
1292 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1293 target byte order. */
1294
1295 static ULONGEST *dummy;
1296 int sizeof_dummy1;
1297 char *dummy1;
1298 CORE_ADDR old_sp;
1299 struct type *value_type;
1300 unsigned char struct_return;
1301 CORE_ADDR struct_addr = 0;
1302 struct inferior_status *inf_status;
1303 struct cleanup *old_chain;
1304 CORE_ADDR funaddr;
1305 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1306 CORE_ADDR real_pc;
1307 struct type *param_type = NULL;
1308 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1309
1310 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1311 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1312 dummy1 = alloca (sizeof_dummy1);
1313 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1314
1315 if (!target_has_execution)
1316 noprocess ();
1317
1318 inf_status = save_inferior_status (1);
1319 old_chain = make_cleanup_restore_inferior_status (inf_status);
1320
1321 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1322 (and POP_FRAME for restoring them). (At least on most machines)
1323 they are saved on the stack in the inferior. */
1324 PUSH_DUMMY_FRAME;
1325
1326 old_sp = sp = read_sp ();
1327
1328 if (INNER_THAN (1, 2))
1329 {
1330 /* Stack grows down */
1331 sp -= sizeof_dummy1;
1332 start_sp = sp;
1333 }
1334 else
1335 {
1336 /* Stack grows up */
1337 start_sp = sp;
1338 sp += sizeof_dummy1;
1339 }
1340
1341 funaddr = find_function_addr (function, &value_type);
1342 CHECK_TYPEDEF (value_type);
1343
1344 {
1345 struct block *b = block_for_pc (funaddr);
1346 /* If compiled without -g, assume GCC 2. */
1347 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1348 }
1349
1350 /* Are we returning a value using a structure return or a normal
1351 value return? */
1352
1353 struct_return = using_struct_return (function, funaddr, value_type,
1354 using_gcc);
1355
1356 /* Create a call sequence customized for this function
1357 and the number of arguments for it. */
1358 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1359 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1360 REGISTER_SIZE,
1361 (ULONGEST) dummy[i]);
1362
1363 #ifdef GDB_TARGET_IS_HPPA
1364 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1365 value_type, using_gcc);
1366 #else
1367 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1368 value_type, using_gcc);
1369 real_pc = start_sp;
1370 #endif
1371
1372 if (CALL_DUMMY_LOCATION == ON_STACK)
1373 {
1374 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1375 }
1376
1377 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1378 {
1379 /* Convex Unix prohibits executing in the stack segment. */
1380 /* Hope there is empty room at the top of the text segment. */
1381 extern CORE_ADDR text_end;
1382 static int checked = 0;
1383 if (!checked)
1384 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1385 if (read_memory_integer (start_sp, 1) != 0)
1386 error ("text segment full -- no place to put call");
1387 checked = 1;
1388 sp = old_sp;
1389 real_pc = text_end - sizeof_dummy1;
1390 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1391 }
1392
1393 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1394 {
1395 extern CORE_ADDR text_end;
1396 int errcode;
1397 sp = old_sp;
1398 real_pc = text_end;
1399 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1400 if (errcode != 0)
1401 error ("Cannot write text segment -- call_function failed");
1402 }
1403
1404 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1405 {
1406 real_pc = funaddr;
1407 }
1408
1409 #ifdef lint
1410 sp = old_sp; /* It really is used, for some ifdef's... */
1411 #endif
1412
1413 if (nargs < TYPE_NFIELDS (ftype))
1414 error ("too few arguments in function call");
1415
1416 for (i = nargs - 1; i >= 0; i--)
1417 {
1418 /* If we're off the end of the known arguments, do the standard
1419 promotions. FIXME: if we had a prototype, this should only
1420 be allowed if ... were present. */
1421 if (i >= TYPE_NFIELDS (ftype))
1422 args[i] = value_arg_coerce (args[i], NULL, 0);
1423
1424 else
1425 {
1426 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1427 param_type = TYPE_FIELD_TYPE (ftype, i);
1428
1429 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1430 }
1431
1432 /*elz: this code is to handle the case in which the function to be called
1433 has a pointer to function as parameter and the corresponding actual argument
1434 is the address of a function and not a pointer to function variable.
1435 In aCC compiled code, the calls through pointers to functions (in the body
1436 of the function called by hand) are made via $$dyncall_external which
1437 requires some registers setting, this is taken care of if we call
1438 via a function pointer variable, but not via a function address.
1439 In cc this is not a problem. */
1440
1441 if (using_gcc == 0)
1442 if (param_type)
1443 /* if this parameter is a pointer to function */
1444 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1445 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1446 /* elz: FIXME here should go the test about the compiler used
1447 to compile the target. We want to issue the error
1448 message only if the compiler used was HP's aCC.
1449 If we used HP's cc, then there is no problem and no need
1450 to return at this point */
1451 if (using_gcc == 0) /* && compiler == aCC */
1452 /* go see if the actual parameter is a variable of type
1453 pointer to function or just a function */
1454 if (args[i]->lval == not_lval)
1455 {
1456 char *arg_name;
1457 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1458 error ("\
1459 You cannot use function <%s> as argument. \n\
1460 You must use a pointer to function type variable. Command ignored.", arg_name);
1461 }
1462 }
1463
1464 if (REG_STRUCT_HAS_ADDR_P ())
1465 {
1466 /* This is a machine like the sparc, where we may need to pass a
1467 pointer to the structure, not the structure itself. */
1468 for (i = nargs - 1; i >= 0; i--)
1469 {
1470 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1471 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1472 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1473 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1474 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1475 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1476 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1477 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1478 && TYPE_LENGTH (arg_type) > 8)
1479 )
1480 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1481 {
1482 CORE_ADDR addr;
1483 int len; /* = TYPE_LENGTH (arg_type); */
1484 int aligned_len;
1485 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1486 len = TYPE_LENGTH (arg_type);
1487
1488 if (STACK_ALIGN_P ())
1489 /* MVS 11/22/96: I think at least some of this
1490 stack_align code is really broken. Better to let
1491 PUSH_ARGUMENTS adjust the stack in a target-defined
1492 manner. */
1493 aligned_len = STACK_ALIGN (len);
1494 else
1495 aligned_len = len;
1496 if (INNER_THAN (1, 2))
1497 {
1498 /* stack grows downward */
1499 sp -= aligned_len;
1500 /* ... so the address of the thing we push is the
1501 stack pointer after we push it. */
1502 addr = sp;
1503 }
1504 else
1505 {
1506 /* The stack grows up, so the address of the thing
1507 we push is the stack pointer before we push it. */
1508 addr = sp;
1509 sp += aligned_len;
1510 }
1511 /* Push the structure. */
1512 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1513 /* The value we're going to pass is the address of the
1514 thing we just pushed. */
1515 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1516 (LONGEST) addr); */
1517 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1518 addr);
1519 }
1520 }
1521 }
1522
1523
1524 /* Reserve space for the return structure to be written on the
1525 stack, if necessary */
1526
1527 if (struct_return)
1528 {
1529 int len = TYPE_LENGTH (value_type);
1530 if (STACK_ALIGN_P ())
1531 /* MVS 11/22/96: I think at least some of this stack_align
1532 code is really broken. Better to let PUSH_ARGUMENTS adjust
1533 the stack in a target-defined manner. */
1534 len = STACK_ALIGN (len);
1535 if (INNER_THAN (1, 2))
1536 {
1537 /* stack grows downward */
1538 sp -= len;
1539 struct_addr = sp;
1540 }
1541 else
1542 {
1543 /* stack grows upward */
1544 struct_addr = sp;
1545 sp += len;
1546 }
1547 }
1548
1549 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1550 on other architectures. This is because all the alignment is
1551 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1552 in hppa_push_arguments */
1553 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1554 {
1555 /* MVS 11/22/96: I think at least some of this stack_align code
1556 is really broken. Better to let PUSH_ARGUMENTS adjust the
1557 stack in a target-defined manner. */
1558 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1559 {
1560 /* If stack grows down, we must leave a hole at the top. */
1561 int len = 0;
1562
1563 for (i = nargs - 1; i >= 0; i--)
1564 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1565 if (CALL_DUMMY_STACK_ADJUST_P)
1566 len += CALL_DUMMY_STACK_ADJUST;
1567 sp -= STACK_ALIGN (len) - len;
1568 }
1569 }
1570
1571 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1572
1573 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1574 /* There are a number of targets now which actually don't write any
1575 CALL_DUMMY instructions into the target, but instead just save the
1576 machine state, push the arguments, and jump directly to the callee
1577 function. Since this doesn't actually involve executing a JSR/BSR
1578 instruction, the return address must be set up by hand, either by
1579 pushing onto the stack or copying into a return-address register
1580 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1581 but that's overloading its functionality a bit, so I'm making it
1582 explicit to do it here. */
1583 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1584 #endif /* PUSH_RETURN_ADDRESS */
1585
1586 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1587 {
1588 /* If stack grows up, we must leave a hole at the bottom, note
1589 that sp already has been advanced for the arguments! */
1590 if (CALL_DUMMY_STACK_ADJUST_P)
1591 sp += CALL_DUMMY_STACK_ADJUST;
1592 sp = STACK_ALIGN (sp);
1593 }
1594
1595 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1596 anything here! */
1597 /* MVS 11/22/96: I think at least some of this stack_align code is
1598 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1599 a target-defined manner. */
1600 if (CALL_DUMMY_STACK_ADJUST_P)
1601 if (INNER_THAN (1, 2))
1602 {
1603 /* stack grows downward */
1604 sp -= CALL_DUMMY_STACK_ADJUST;
1605 }
1606
1607 /* Store the address at which the structure is supposed to be
1608 written. Note that this (and the code which reserved the space
1609 above) assumes that gcc was used to compile this function. Since
1610 it doesn't cost us anything but space and if the function is pcc
1611 it will ignore this value, we will make that assumption.
1612
1613 Also note that on some machines (like the sparc) pcc uses a
1614 convention like gcc's. */
1615
1616 if (struct_return)
1617 STORE_STRUCT_RETURN (struct_addr, sp);
1618
1619 /* Write the stack pointer. This is here because the statements above
1620 might fool with it. On SPARC, this write also stores the register
1621 window into the right place in the new stack frame, which otherwise
1622 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1623 write_sp (sp);
1624
1625 if (SAVE_DUMMY_FRAME_TOS_P ())
1626 SAVE_DUMMY_FRAME_TOS (sp);
1627
1628 {
1629 char *retbuf = (char*) alloca (REGISTER_BYTES);
1630 char *name;
1631 struct symbol *symbol;
1632
1633 name = NULL;
1634 symbol = find_pc_function (funaddr);
1635 if (symbol)
1636 {
1637 name = SYMBOL_SOURCE_NAME (symbol);
1638 }
1639 else
1640 {
1641 /* Try the minimal symbols. */
1642 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1643
1644 if (msymbol)
1645 {
1646 name = SYMBOL_SOURCE_NAME (msymbol);
1647 }
1648 }
1649 if (name == NULL)
1650 {
1651 char format[80];
1652 sprintf (format, "at %s", local_hex_format ());
1653 name = alloca (80);
1654 /* FIXME-32x64: assumes funaddr fits in a long. */
1655 sprintf (name, format, (unsigned long) funaddr);
1656 }
1657
1658 /* Execute the stack dummy routine, calling FUNCTION.
1659 When it is done, discard the empty frame
1660 after storing the contents of all regs into retbuf. */
1661 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1662
1663 if (rc == 1)
1664 {
1665 /* We stopped inside the FUNCTION because of a random signal.
1666 Further execution of the FUNCTION is not allowed. */
1667
1668 if (unwind_on_signal_p)
1669 {
1670 /* The user wants the context restored. */
1671
1672 /* We must get back to the frame we were before the dummy call. */
1673 POP_FRAME;
1674
1675 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1676 a C++ name with arguments and stuff. */
1677 error ("\
1678 The program being debugged was signaled while in a function called from GDB.\n\
1679 GDB has restored the context to what it was before the call.\n\
1680 To change this behavior use \"set unwindonsignal off\"\n\
1681 Evaluation of the expression containing the function (%s) will be abandoned.",
1682 name);
1683 }
1684 else
1685 {
1686 /* The user wants to stay in the frame where we stopped (default).*/
1687
1688 /* If we did the cleanups, we would print a spurious error
1689 message (Unable to restore previously selected frame),
1690 would write the registers from the inf_status (which is
1691 wrong), and would do other wrong things. */
1692 discard_cleanups (old_chain);
1693 discard_inferior_status (inf_status);
1694
1695 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1696 a C++ name with arguments and stuff. */
1697 error ("\
1698 The program being debugged was signaled while in a function called from GDB.\n\
1699 GDB remains in the frame where the signal was received.\n\
1700 To change this behavior use \"set unwindonsignal on\"\n\
1701 Evaluation of the expression containing the function (%s) will be abandoned.",
1702 name);
1703 }
1704 }
1705
1706 if (rc == 2)
1707 {
1708 /* We hit a breakpoint inside the FUNCTION. */
1709
1710 /* If we did the cleanups, we would print a spurious error
1711 message (Unable to restore previously selected frame),
1712 would write the registers from the inf_status (which is
1713 wrong), and would do other wrong things. */
1714 discard_cleanups (old_chain);
1715 discard_inferior_status (inf_status);
1716
1717 /* The following error message used to say "The expression
1718 which contained the function call has been discarded." It
1719 is a hard concept to explain in a few words. Ideally, GDB
1720 would be able to resume evaluation of the expression when
1721 the function finally is done executing. Perhaps someday
1722 this will be implemented (it would not be easy). */
1723
1724 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1725 a C++ name with arguments and stuff. */
1726 error ("\
1727 The program being debugged stopped while in a function called from GDB.\n\
1728 When the function (%s) is done executing, GDB will silently\n\
1729 stop (instead of continuing to evaluate the expression containing\n\
1730 the function call).", name);
1731 }
1732
1733 /* If we get here the called FUNCTION run to completion. */
1734 do_cleanups (old_chain);
1735
1736 /* Figure out the value returned by the function. */
1737 /* elz: I defined this new macro for the hppa architecture only.
1738 this gives us a way to get the value returned by the function from the stack,
1739 at the same address we told the function to put it.
1740 We cannot assume on the pa that r28 still contains the address of the returned
1741 structure. Usually this will be overwritten by the callee.
1742 I don't know about other architectures, so I defined this macro
1743 */
1744
1745 #ifdef VALUE_RETURNED_FROM_STACK
1746 if (struct_return)
1747 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1748 #endif
1749
1750 return value_being_returned (value_type, retbuf, struct_return);
1751 }
1752 }
1753
1754 value_ptr
1755 call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
1756 {
1757 if (CALL_DUMMY_P)
1758 {
1759 return hand_function_call (function, nargs, args);
1760 }
1761 else
1762 {
1763 error ("Cannot invoke functions on this machine.");
1764 }
1765 }
1766 \f
1767
1768
1769 /* Create a value for an array by allocating space in the inferior, copying
1770 the data into that space, and then setting up an array value.
1771
1772 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1773 populated from the values passed in ELEMVEC.
1774
1775 The element type of the array is inherited from the type of the
1776 first element, and all elements must have the same size (though we
1777 don't currently enforce any restriction on their types). */
1778
1779 value_ptr
1780 value_array (int lowbound, int highbound, value_ptr *elemvec)
1781 {
1782 int nelem;
1783 int idx;
1784 unsigned int typelength;
1785 value_ptr val;
1786 struct type *rangetype;
1787 struct type *arraytype;
1788 CORE_ADDR addr;
1789
1790 /* Validate that the bounds are reasonable and that each of the elements
1791 have the same size. */
1792
1793 nelem = highbound - lowbound + 1;
1794 if (nelem <= 0)
1795 {
1796 error ("bad array bounds (%d, %d)", lowbound, highbound);
1797 }
1798 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1799 for (idx = 1; idx < nelem; idx++)
1800 {
1801 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1802 {
1803 error ("array elements must all be the same size");
1804 }
1805 }
1806
1807 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1808 lowbound, highbound);
1809 arraytype = create_array_type ((struct type *) NULL,
1810 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1811
1812 if (!current_language->c_style_arrays)
1813 {
1814 val = allocate_value (arraytype);
1815 for (idx = 0; idx < nelem; idx++)
1816 {
1817 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1818 VALUE_CONTENTS_ALL (elemvec[idx]),
1819 typelength);
1820 }
1821 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1822 return val;
1823 }
1824
1825 /* Allocate space to store the array in the inferior, and then initialize
1826 it by copying in each element. FIXME: Is it worth it to create a
1827 local buffer in which to collect each value and then write all the
1828 bytes in one operation? */
1829
1830 addr = allocate_space_in_inferior (nelem * typelength);
1831 for (idx = 0; idx < nelem; idx++)
1832 {
1833 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1834 typelength);
1835 }
1836
1837 /* Create the array type and set up an array value to be evaluated lazily. */
1838
1839 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1840 return (val);
1841 }
1842
1843 /* Create a value for a string constant by allocating space in the inferior,
1844 copying the data into that space, and returning the address with type
1845 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1846 of characters.
1847 Note that string types are like array of char types with a lower bound of
1848 zero and an upper bound of LEN - 1. Also note that the string may contain
1849 embedded null bytes. */
1850
1851 value_ptr
1852 value_string (char *ptr, int len)
1853 {
1854 value_ptr val;
1855 int lowbound = current_language->string_lower_bound;
1856 struct type *rangetype = create_range_type ((struct type *) NULL,
1857 builtin_type_int,
1858 lowbound, len + lowbound - 1);
1859 struct type *stringtype
1860 = create_string_type ((struct type *) NULL, rangetype);
1861 CORE_ADDR addr;
1862
1863 if (current_language->c_style_arrays == 0)
1864 {
1865 val = allocate_value (stringtype);
1866 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1867 return val;
1868 }
1869
1870
1871 /* Allocate space to store the string in the inferior, and then
1872 copy LEN bytes from PTR in gdb to that address in the inferior. */
1873
1874 addr = allocate_space_in_inferior (len);
1875 write_memory (addr, ptr, len);
1876
1877 val = value_at_lazy (stringtype, addr, NULL);
1878 return (val);
1879 }
1880
1881 value_ptr
1882 value_bitstring (char *ptr, int len)
1883 {
1884 value_ptr val;
1885 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1886 0, len - 1);
1887 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1888 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1889 val = allocate_value (type);
1890 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1891 return val;
1892 }
1893 \f
1894 /* See if we can pass arguments in T2 to a function which takes arguments
1895 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1896 arguments need coercion of some sort, then the coerced values are written
1897 into T2. Return value is 0 if the arguments could be matched, or the
1898 position at which they differ if not.
1899
1900 STATICP is nonzero if the T1 argument list came from a
1901 static member function.
1902
1903 For non-static member functions, we ignore the first argument,
1904 which is the type of the instance variable. This is because we want
1905 to handle calls with objects from derived classes. This is not
1906 entirely correct: we should actually check to make sure that a
1907 requested operation is type secure, shouldn't we? FIXME. */
1908
1909 static int
1910 typecmp (int staticp, struct type *t1[], value_ptr t2[])
1911 {
1912 int i;
1913
1914 if (t2 == 0)
1915 return 1;
1916 if (staticp && t1 == 0)
1917 return t2[1] != 0;
1918 if (t1 == 0)
1919 return 1;
1920 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1921 return 0;
1922 if (t1[!staticp] == 0)
1923 return 0;
1924 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1925 {
1926 struct type *tt1, *tt2;
1927 if (!t2[i])
1928 return i + 1;
1929 tt1 = check_typedef (t1[i]);
1930 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1931 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1932 /* We should be doing hairy argument matching, as below. */
1933 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1934 {
1935 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1936 t2[i] = value_coerce_array (t2[i]);
1937 else
1938 t2[i] = value_addr (t2[i]);
1939 continue;
1940 }
1941
1942 /* djb - 20000715 - Until the new type structure is in the
1943 place, and we can attempt things like implicit conversions,
1944 we need to do this so you can take something like a map<const
1945 char *>, and properly access map["hello"], because the
1946 argument to [] will be a reference to a pointer to a char,
1947 and the argument will be a pointer to a char. */
1948 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1949 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1950 {
1951 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1952 }
1953 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1954 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1955 TYPE_CODE(tt2) == TYPE_CODE_REF)
1956 {
1957 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1958 }
1959 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1960 continue;
1961 /* Array to pointer is a `trivial conversion' according to the ARM. */
1962
1963 /* We should be doing much hairier argument matching (see section 13.2
1964 of the ARM), but as a quick kludge, just check for the same type
1965 code. */
1966 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1967 return i + 1;
1968 }
1969 if (!t1[i])
1970 return 0;
1971 return t2[i] ? i + 1 : 0;
1972 }
1973
1974 /* Helper function used by value_struct_elt to recurse through baseclasses.
1975 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1976 and search in it assuming it has (class) type TYPE.
1977 If found, return value, else return NULL.
1978
1979 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1980 look for a baseclass named NAME. */
1981
1982 static value_ptr
1983 search_struct_field (char *name, register value_ptr arg1, int offset,
1984 register struct type *type, int looking_for_baseclass)
1985 {
1986 int i;
1987 int nbases = TYPE_N_BASECLASSES (type);
1988
1989 CHECK_TYPEDEF (type);
1990
1991 if (!looking_for_baseclass)
1992 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1993 {
1994 char *t_field_name = TYPE_FIELD_NAME (type, i);
1995
1996 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1997 {
1998 value_ptr v;
1999 if (TYPE_FIELD_STATIC (type, i))
2000 v = value_static_field (type, i);
2001 else
2002 v = value_primitive_field (arg1, offset, i, type);
2003 if (v == 0)
2004 error ("there is no field named %s", name);
2005 return v;
2006 }
2007
2008 if (t_field_name
2009 && (t_field_name[0] == '\0'
2010 || (TYPE_CODE (type) == TYPE_CODE_UNION
2011 && (strcmp_iw (t_field_name, "else") == 0))))
2012 {
2013 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2014 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2015 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2016 {
2017 /* Look for a match through the fields of an anonymous union,
2018 or anonymous struct. C++ provides anonymous unions.
2019
2020 In the GNU Chill implementation of variant record types,
2021 each <alternative field> has an (anonymous) union type,
2022 each member of the union represents a <variant alternative>.
2023 Each <variant alternative> is represented as a struct,
2024 with a member for each <variant field>. */
2025
2026 value_ptr v;
2027 int new_offset = offset;
2028
2029 /* This is pretty gross. In G++, the offset in an anonymous
2030 union is relative to the beginning of the enclosing struct.
2031 In the GNU Chill implementation of variant records,
2032 the bitpos is zero in an anonymous union field, so we
2033 have to add the offset of the union here. */
2034 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2035 || (TYPE_NFIELDS (field_type) > 0
2036 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2037 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2038
2039 v = search_struct_field (name, arg1, new_offset, field_type,
2040 looking_for_baseclass);
2041 if (v)
2042 return v;
2043 }
2044 }
2045 }
2046
2047 for (i = 0; i < nbases; i++)
2048 {
2049 value_ptr v;
2050 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2051 /* If we are looking for baseclasses, this is what we get when we
2052 hit them. But it could happen that the base part's member name
2053 is not yet filled in. */
2054 int found_baseclass = (looking_for_baseclass
2055 && TYPE_BASECLASS_NAME (type, i) != NULL
2056 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2057
2058 if (BASETYPE_VIA_VIRTUAL (type, i))
2059 {
2060 int boffset;
2061 value_ptr v2 = allocate_value (basetype);
2062
2063 boffset = baseclass_offset (type, i,
2064 VALUE_CONTENTS (arg1) + offset,
2065 VALUE_ADDRESS (arg1)
2066 + VALUE_OFFSET (arg1) + offset);
2067 if (boffset == -1)
2068 error ("virtual baseclass botch");
2069
2070 /* The virtual base class pointer might have been clobbered by the
2071 user program. Make sure that it still points to a valid memory
2072 location. */
2073
2074 boffset += offset;
2075 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2076 {
2077 CORE_ADDR base_addr;
2078
2079 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2080 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2081 TYPE_LENGTH (basetype)) != 0)
2082 error ("virtual baseclass botch");
2083 VALUE_LVAL (v2) = lval_memory;
2084 VALUE_ADDRESS (v2) = base_addr;
2085 }
2086 else
2087 {
2088 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2089 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2090 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2091 if (VALUE_LAZY (arg1))
2092 VALUE_LAZY (v2) = 1;
2093 else
2094 memcpy (VALUE_CONTENTS_RAW (v2),
2095 VALUE_CONTENTS_RAW (arg1) + boffset,
2096 TYPE_LENGTH (basetype));
2097 }
2098
2099 if (found_baseclass)
2100 return v2;
2101 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2102 looking_for_baseclass);
2103 }
2104 else if (found_baseclass)
2105 v = value_primitive_field (arg1, offset, i, type);
2106 else
2107 v = search_struct_field (name, arg1,
2108 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2109 basetype, looking_for_baseclass);
2110 if (v)
2111 return v;
2112 }
2113 return NULL;
2114 }
2115
2116
2117 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2118 * in an object pointed to by VALADDR (on the host), assumed to be of
2119 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2120 * looking (in case VALADDR is the contents of an enclosing object).
2121 *
2122 * This routine recurses on the primary base of the derived class because
2123 * the virtual base entries of the primary base appear before the other
2124 * virtual base entries.
2125 *
2126 * If the virtual base is not found, a negative integer is returned.
2127 * The magnitude of the negative integer is the number of entries in
2128 * the virtual table to skip over (entries corresponding to various
2129 * ancestral classes in the chain of primary bases).
2130 *
2131 * Important: This assumes the HP / Taligent C++ runtime
2132 * conventions. Use baseclass_offset() instead to deal with g++
2133 * conventions. */
2134
2135 void
2136 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2137 int offset, int *boffset_p, int *skip_p)
2138 {
2139 int boffset; /* offset of virtual base */
2140 int index; /* displacement to use in virtual table */
2141 int skip;
2142
2143 value_ptr vp;
2144 CORE_ADDR vtbl; /* the virtual table pointer */
2145 struct type *pbc; /* the primary base class */
2146
2147 /* Look for the virtual base recursively in the primary base, first.
2148 * This is because the derived class object and its primary base
2149 * subobject share the primary virtual table. */
2150
2151 boffset = 0;
2152 pbc = TYPE_PRIMARY_BASE (type);
2153 if (pbc)
2154 {
2155 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2156 if (skip < 0)
2157 {
2158 *boffset_p = boffset;
2159 *skip_p = -1;
2160 return;
2161 }
2162 }
2163 else
2164 skip = 0;
2165
2166
2167 /* Find the index of the virtual base according to HP/Taligent
2168 runtime spec. (Depth-first, left-to-right.) */
2169 index = virtual_base_index_skip_primaries (basetype, type);
2170
2171 if (index < 0)
2172 {
2173 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2174 *boffset_p = 0;
2175 return;
2176 }
2177
2178 /* pai: FIXME -- 32x64 possible problem */
2179 /* First word (4 bytes) in object layout is the vtable pointer */
2180 vtbl = *(CORE_ADDR *) (valaddr + offset);
2181
2182 /* Before the constructor is invoked, things are usually zero'd out. */
2183 if (vtbl == 0)
2184 error ("Couldn't find virtual table -- object may not be constructed yet.");
2185
2186
2187 /* Find virtual base's offset -- jump over entries for primary base
2188 * ancestors, then use the index computed above. But also adjust by
2189 * HP_ACC_VBASE_START for the vtable slots before the start of the
2190 * virtual base entries. Offset is negative -- virtual base entries
2191 * appear _before_ the address point of the virtual table. */
2192
2193 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2194 & use long type */
2195
2196 /* epstein : FIXME -- added param for overlay section. May not be correct */
2197 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2198 boffset = value_as_long (vp);
2199 *skip_p = -1;
2200 *boffset_p = boffset;
2201 return;
2202 }
2203
2204
2205 /* Helper function used by value_struct_elt to recurse through baseclasses.
2206 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2207 and search in it assuming it has (class) type TYPE.
2208 If found, return value, else if name matched and args not return (value)-1,
2209 else return NULL. */
2210
2211 static value_ptr
2212 search_struct_method (char *name, register value_ptr *arg1p,
2213 register value_ptr *args, int offset,
2214 int *static_memfuncp, register struct type *type)
2215 {
2216 int i;
2217 value_ptr v;
2218 int name_matched = 0;
2219 char dem_opname[64];
2220
2221 CHECK_TYPEDEF (type);
2222 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2223 {
2224 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2225 /* FIXME! May need to check for ARM demangling here */
2226 if (strncmp (t_field_name, "__", 2) == 0 ||
2227 strncmp (t_field_name, "op", 2) == 0 ||
2228 strncmp (t_field_name, "type", 4) == 0)
2229 {
2230 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2231 t_field_name = dem_opname;
2232 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2233 t_field_name = dem_opname;
2234 }
2235 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2236 {
2237 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2238 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2239 name_matched = 1;
2240
2241 if (j > 0 && args == 0)
2242 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2243 while (j >= 0)
2244 {
2245 if (TYPE_FN_FIELD_STUB (f, j))
2246 check_stub_method (type, i, j);
2247 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2248 TYPE_FN_FIELD_ARGS (f, j), args))
2249 {
2250 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2251 return value_virtual_fn_field (arg1p, f, j, type, offset);
2252 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2253 *static_memfuncp = 1;
2254 v = value_fn_field (arg1p, f, j, type, offset);
2255 if (v != NULL)
2256 return v;
2257 }
2258 j--;
2259 }
2260 }
2261 }
2262
2263 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2264 {
2265 int base_offset;
2266
2267 if (BASETYPE_VIA_VIRTUAL (type, i))
2268 {
2269 if (TYPE_HAS_VTABLE (type))
2270 {
2271 /* HP aCC compiled type, search for virtual base offset
2272 according to HP/Taligent runtime spec. */
2273 int skip;
2274 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2275 VALUE_CONTENTS_ALL (*arg1p),
2276 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2277 &base_offset, &skip);
2278 if (skip >= 0)
2279 error ("Virtual base class offset not found in vtable");
2280 }
2281 else
2282 {
2283 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2284 char *base_valaddr;
2285
2286 /* The virtual base class pointer might have been clobbered by the
2287 user program. Make sure that it still points to a valid memory
2288 location. */
2289
2290 if (offset < 0 || offset >= TYPE_LENGTH (type))
2291 {
2292 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2293 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2294 + VALUE_OFFSET (*arg1p) + offset,
2295 base_valaddr,
2296 TYPE_LENGTH (baseclass)) != 0)
2297 error ("virtual baseclass botch");
2298 }
2299 else
2300 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2301
2302 base_offset =
2303 baseclass_offset (type, i, base_valaddr,
2304 VALUE_ADDRESS (*arg1p)
2305 + VALUE_OFFSET (*arg1p) + offset);
2306 if (base_offset == -1)
2307 error ("virtual baseclass botch");
2308 }
2309 }
2310 else
2311 {
2312 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2313 }
2314 v = search_struct_method (name, arg1p, args, base_offset + offset,
2315 static_memfuncp, TYPE_BASECLASS (type, i));
2316 if (v == (value_ptr) - 1)
2317 {
2318 name_matched = 1;
2319 }
2320 else if (v)
2321 {
2322 /* FIXME-bothner: Why is this commented out? Why is it here? */
2323 /* *arg1p = arg1_tmp; */
2324 return v;
2325 }
2326 }
2327 if (name_matched)
2328 return (value_ptr) - 1;
2329 else
2330 return NULL;
2331 }
2332
2333 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2334 extract the component named NAME from the ultimate target structure/union
2335 and return it as a value with its appropriate type.
2336 ERR is used in the error message if *ARGP's type is wrong.
2337
2338 C++: ARGS is a list of argument types to aid in the selection of
2339 an appropriate method. Also, handle derived types.
2340
2341 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2342 where the truthvalue of whether the function that was resolved was
2343 a static member function or not is stored.
2344
2345 ERR is an error message to be printed in case the field is not found. */
2346
2347 value_ptr
2348 value_struct_elt (register value_ptr *argp, register value_ptr *args,
2349 char *name, int *static_memfuncp, char *err)
2350 {
2351 register struct type *t;
2352 value_ptr v;
2353
2354 COERCE_ARRAY (*argp);
2355
2356 t = check_typedef (VALUE_TYPE (*argp));
2357
2358 /* Follow pointers until we get to a non-pointer. */
2359
2360 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2361 {
2362 *argp = value_ind (*argp);
2363 /* Don't coerce fn pointer to fn and then back again! */
2364 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2365 COERCE_ARRAY (*argp);
2366 t = check_typedef (VALUE_TYPE (*argp));
2367 }
2368
2369 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2370 error ("not implemented: member type in value_struct_elt");
2371
2372 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2373 && TYPE_CODE (t) != TYPE_CODE_UNION)
2374 error ("Attempt to extract a component of a value that is not a %s.", err);
2375
2376 /* Assume it's not, unless we see that it is. */
2377 if (static_memfuncp)
2378 *static_memfuncp = 0;
2379
2380 if (!args)
2381 {
2382 /* if there are no arguments ...do this... */
2383
2384 /* Try as a field first, because if we succeed, there
2385 is less work to be done. */
2386 v = search_struct_field (name, *argp, 0, t, 0);
2387 if (v)
2388 return v;
2389
2390 /* C++: If it was not found as a data field, then try to
2391 return it as a pointer to a method. */
2392
2393 if (destructor_name_p (name, t))
2394 error ("Cannot get value of destructor");
2395
2396 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2397
2398 if (v == (value_ptr) - 1)
2399 error ("Cannot take address of a method");
2400 else if (v == 0)
2401 {
2402 if (TYPE_NFN_FIELDS (t))
2403 error ("There is no member or method named %s.", name);
2404 else
2405 error ("There is no member named %s.", name);
2406 }
2407 return v;
2408 }
2409
2410 if (destructor_name_p (name, t))
2411 {
2412 if (!args[1])
2413 {
2414 /* Destructors are a special case. */
2415 int m_index, f_index;
2416
2417 v = NULL;
2418 if (get_destructor_fn_field (t, &m_index, &f_index))
2419 {
2420 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2421 f_index, NULL, 0);
2422 }
2423 if (v == NULL)
2424 error ("could not find destructor function named %s.", name);
2425 else
2426 return v;
2427 }
2428 else
2429 {
2430 error ("destructor should not have any argument");
2431 }
2432 }
2433 else
2434 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2435
2436 if (v == (value_ptr) - 1)
2437 {
2438 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2439 }
2440 else if (v == 0)
2441 {
2442 /* See if user tried to invoke data as function. If so,
2443 hand it back. If it's not callable (i.e., a pointer to function),
2444 gdb should give an error. */
2445 v = search_struct_field (name, *argp, 0, t, 0);
2446 }
2447
2448 if (!v)
2449 error ("Structure has no component named %s.", name);
2450 return v;
2451 }
2452
2453 /* Search through the methods of an object (and its bases)
2454 * to find a specified method. Return the pointer to the
2455 * fn_field list of overloaded instances.
2456 * Helper function for value_find_oload_list.
2457 * ARGP is a pointer to a pointer to a value (the object)
2458 * METHOD is a string containing the method name
2459 * OFFSET is the offset within the value
2460 * STATIC_MEMFUNCP is set if the method is static
2461 * TYPE is the assumed type of the object
2462 * NUM_FNS is the number of overloaded instances
2463 * BASETYPE is set to the actual type of the subobject where the method is found
2464 * BOFFSET is the offset of the base subobject where the method is found */
2465
2466 static struct fn_field *
2467 find_method_list (value_ptr *argp, char *method, int offset,
2468 int *static_memfuncp, struct type *type, int *num_fns,
2469 struct type **basetype, int *boffset)
2470 {
2471 int i;
2472 struct fn_field *f;
2473 CHECK_TYPEDEF (type);
2474
2475 *num_fns = 0;
2476
2477 /* First check in object itself */
2478 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2479 {
2480 /* pai: FIXME What about operators and type conversions? */
2481 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2482 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2483 {
2484 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2485 *basetype = type;
2486 *boffset = offset;
2487 return TYPE_FN_FIELDLIST1 (type, i);
2488 }
2489 }
2490
2491 /* Not found in object, check in base subobjects */
2492 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2493 {
2494 int base_offset;
2495 if (BASETYPE_VIA_VIRTUAL (type, i))
2496 {
2497 if (TYPE_HAS_VTABLE (type))
2498 {
2499 /* HP aCC compiled type, search for virtual base offset
2500 * according to HP/Taligent runtime spec. */
2501 int skip;
2502 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2503 VALUE_CONTENTS_ALL (*argp),
2504 offset + VALUE_EMBEDDED_OFFSET (*argp),
2505 &base_offset, &skip);
2506 if (skip >= 0)
2507 error ("Virtual base class offset not found in vtable");
2508 }
2509 else
2510 {
2511 /* probably g++ runtime model */
2512 base_offset = VALUE_OFFSET (*argp) + offset;
2513 base_offset =
2514 baseclass_offset (type, i,
2515 VALUE_CONTENTS (*argp) + base_offset,
2516 VALUE_ADDRESS (*argp) + base_offset);
2517 if (base_offset == -1)
2518 error ("virtual baseclass botch");
2519 }
2520 }
2521 else
2522 /* non-virtual base, simply use bit position from debug info */
2523 {
2524 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2525 }
2526 f = find_method_list (argp, method, base_offset + offset,
2527 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2528 if (f)
2529 return f;
2530 }
2531 return NULL;
2532 }
2533
2534 /* Return the list of overloaded methods of a specified name.
2535 * ARGP is a pointer to a pointer to a value (the object)
2536 * METHOD is the method name
2537 * OFFSET is the offset within the value contents
2538 * STATIC_MEMFUNCP is set if the method is static
2539 * NUM_FNS is the number of overloaded instances
2540 * BASETYPE is set to the type of the base subobject that defines the method
2541 * BOFFSET is the offset of the base subobject which defines the method */
2542
2543 struct fn_field *
2544 value_find_oload_method_list (value_ptr *argp, char *method, int offset,
2545 int *static_memfuncp, int *num_fns,
2546 struct type **basetype, int *boffset)
2547 {
2548 struct type *t;
2549
2550 t = check_typedef (VALUE_TYPE (*argp));
2551
2552 /* code snarfed from value_struct_elt */
2553 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2554 {
2555 *argp = value_ind (*argp);
2556 /* Don't coerce fn pointer to fn and then back again! */
2557 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2558 COERCE_ARRAY (*argp);
2559 t = check_typedef (VALUE_TYPE (*argp));
2560 }
2561
2562 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2563 error ("Not implemented: member type in value_find_oload_lis");
2564
2565 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2566 && TYPE_CODE (t) != TYPE_CODE_UNION)
2567 error ("Attempt to extract a component of a value that is not a struct or union");
2568
2569 /* Assume it's not static, unless we see that it is. */
2570 if (static_memfuncp)
2571 *static_memfuncp = 0;
2572
2573 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2574
2575 }
2576
2577 /* Given an array of argument types (ARGTYPES) (which includes an
2578 entry for "this" in the case of C++ methods), the number of
2579 arguments NARGS, the NAME of a function whether it's a method or
2580 not (METHOD), and the degree of laxness (LAX) in conforming to
2581 overload resolution rules in ANSI C++, find the best function that
2582 matches on the argument types according to the overload resolution
2583 rules.
2584
2585 In the case of class methods, the parameter OBJ is an object value
2586 in which to search for overloaded methods.
2587
2588 In the case of non-method functions, the parameter FSYM is a symbol
2589 corresponding to one of the overloaded functions.
2590
2591 Return value is an integer: 0 -> good match, 10 -> debugger applied
2592 non-standard coercions, 100 -> incompatible.
2593
2594 If a method is being searched for, VALP will hold the value.
2595 If a non-method is being searched for, SYMP will hold the symbol for it.
2596
2597 If a method is being searched for, and it is a static method,
2598 then STATICP will point to a non-zero value.
2599
2600 Note: This function does *not* check the value of
2601 overload_resolution. Caller must check it to see whether overload
2602 resolution is permitted.
2603 */
2604
2605 int
2606 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2607 int lax, value_ptr obj, struct symbol *fsym,
2608 value_ptr *valp, struct symbol **symp, int *staticp)
2609 {
2610 int nparms;
2611 struct type **parm_types;
2612 int champ_nparms = 0;
2613
2614 short oload_champ = -1; /* Index of best overloaded function */
2615 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2616 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2617 short oload_ambig_champ = -1; /* 2nd contender for best match */
2618 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2619 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2620
2621 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2622 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2623
2624 value_ptr temp = obj;
2625 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2626 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2627 int num_fns = 0; /* Number of overloaded instances being considered */
2628 struct type *basetype = NULL;
2629 int boffset;
2630 register int jj;
2631 register int ix;
2632
2633 char *obj_type_name = NULL;
2634 char *func_name = NULL;
2635
2636 /* Get the list of overloaded methods or functions */
2637 if (method)
2638 {
2639 int i;
2640 int len;
2641 struct type *domain;
2642 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2643 /* Hack: evaluate_subexp_standard often passes in a pointer
2644 value rather than the object itself, so try again */
2645 if ((!obj_type_name || !*obj_type_name) &&
2646 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2647 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2648
2649 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2650 staticp,
2651 &num_fns,
2652 &basetype, &boffset);
2653 if (!fns_ptr || !num_fns)
2654 error ("Couldn't find method %s%s%s",
2655 obj_type_name,
2656 (obj_type_name && *obj_type_name) ? "::" : "",
2657 name);
2658 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2659 len = TYPE_NFN_FIELDS (domain);
2660 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2661 give us the info we need directly in the types. We have to
2662 use the method stub conversion to get it. Be aware that this
2663 is by no means perfect, and if you use STABS, please move to
2664 DWARF-2, or something like it, because trying to improve
2665 overloading using STABS is really a waste of time. */
2666 for (i = 0; i < len; i++)
2667 {
2668 int j;
2669 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2670 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2671
2672 for (j = 0; j < len2; j++)
2673 {
2674 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2675 check_stub_method (domain, i, j);
2676 }
2677 }
2678 }
2679 else
2680 {
2681 int i = -1;
2682 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2683
2684 /* If the name is NULL this must be a C-style function.
2685 Just return the same symbol. */
2686 if (!func_name)
2687 {
2688 *symp = fsym;
2689 return 0;
2690 }
2691
2692 oload_syms = make_symbol_overload_list (fsym);
2693 while (oload_syms[++i])
2694 num_fns++;
2695 if (!num_fns)
2696 error ("Couldn't find function %s", func_name);
2697 }
2698
2699 oload_champ_bv = NULL;
2700
2701 /* Consider each candidate in turn */
2702 for (ix = 0; ix < num_fns; ix++)
2703 {
2704 if (method)
2705 {
2706 /* For static member functions, we won't have a this pointer, but nothing
2707 else seems to handle them right now, so we just pretend ourselves */
2708 nparms=0;
2709
2710 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2711 {
2712 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2713 nparms++;
2714 }
2715 }
2716 else
2717 {
2718 /* If it's not a method, this is the proper place */
2719 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2720 }
2721
2722 /* Prepare array of parameter types */
2723 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2724 for (jj = 0; jj < nparms; jj++)
2725 parm_types[jj] = (method
2726 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2727 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2728
2729 /* Compare parameter types to supplied argument types */
2730 bv = rank_function (parm_types, nparms, arg_types, nargs);
2731
2732 if (!oload_champ_bv)
2733 {
2734 oload_champ_bv = bv;
2735 oload_champ = 0;
2736 champ_nparms = nparms;
2737 }
2738 else
2739 /* See whether current candidate is better or worse than previous best */
2740 switch (compare_badness (bv, oload_champ_bv))
2741 {
2742 case 0:
2743 oload_ambiguous = 1; /* top two contenders are equally good */
2744 oload_ambig_champ = ix;
2745 break;
2746 case 1:
2747 oload_ambiguous = 2; /* incomparable top contenders */
2748 oload_ambig_champ = ix;
2749 break;
2750 case 2:
2751 oload_champ_bv = bv; /* new champion, record details */
2752 oload_ambiguous = 0;
2753 oload_champ = ix;
2754 oload_ambig_champ = -1;
2755 champ_nparms = nparms;
2756 break;
2757 case 3:
2758 default:
2759 break;
2760 }
2761 xfree (parm_types);
2762 if (overload_debug)
2763 {
2764 if (method)
2765 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2766 else
2767 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2768 for (jj = 0; jj < nargs; jj++)
2769 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2770 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2771 }
2772 } /* end loop over all candidates */
2773 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2774 if they have the exact same goodness. This is because there is no
2775 way to differentiate based on return type, which we need to in
2776 cases like overloads of .begin() <It's both const and non-const> */
2777 #if 0
2778 if (oload_ambiguous)
2779 {
2780 if (method)
2781 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2782 obj_type_name,
2783 (obj_type_name && *obj_type_name) ? "::" : "",
2784 name);
2785 else
2786 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2787 func_name);
2788 }
2789 #endif
2790
2791 /* Check how bad the best match is */
2792 for (ix = 1; ix <= nargs; ix++)
2793 {
2794 if (oload_champ_bv->rank[ix] >= 100)
2795 oload_incompatible = 1; /* truly mismatched types */
2796
2797 else if (oload_champ_bv->rank[ix] >= 10)
2798 oload_non_standard = 1; /* non-standard type conversions needed */
2799 }
2800 if (oload_incompatible)
2801 {
2802 if (method)
2803 error ("Cannot resolve method %s%s%s to any overloaded instance",
2804 obj_type_name,
2805 (obj_type_name && *obj_type_name) ? "::" : "",
2806 name);
2807 else
2808 error ("Cannot resolve function %s to any overloaded instance",
2809 func_name);
2810 }
2811 else if (oload_non_standard)
2812 {
2813 if (method)
2814 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2815 obj_type_name,
2816 (obj_type_name && *obj_type_name) ? "::" : "",
2817 name);
2818 else
2819 warning ("Using non-standard conversion to match function %s to supplied arguments",
2820 func_name);
2821 }
2822
2823 if (method)
2824 {
2825 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2826 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2827 else
2828 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2829 }
2830 else
2831 {
2832 *symp = oload_syms[oload_champ];
2833 xfree (func_name);
2834 }
2835
2836 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2837 }
2838
2839 /* C++: return 1 is NAME is a legitimate name for the destructor
2840 of type TYPE. If TYPE does not have a destructor, or
2841 if NAME is inappropriate for TYPE, an error is signaled. */
2842 int
2843 destructor_name_p (const char *name, const struct type *type)
2844 {
2845 /* destructors are a special case. */
2846
2847 if (name[0] == '~')
2848 {
2849 char *dname = type_name_no_tag (type);
2850 char *cp = strchr (dname, '<');
2851 unsigned int len;
2852
2853 /* Do not compare the template part for template classes. */
2854 if (cp == NULL)
2855 len = strlen (dname);
2856 else
2857 len = cp - dname;
2858 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2859 error ("name of destructor must equal name of class");
2860 else
2861 return 1;
2862 }
2863 return 0;
2864 }
2865
2866 /* Helper function for check_field: Given TYPE, a structure/union,
2867 return 1 if the component named NAME from the ultimate
2868 target structure/union is defined, otherwise, return 0. */
2869
2870 static int
2871 check_field_in (register struct type *type, const char *name)
2872 {
2873 register int i;
2874
2875 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2876 {
2877 char *t_field_name = TYPE_FIELD_NAME (type, i);
2878 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2879 return 1;
2880 }
2881
2882 /* C++: If it was not found as a data field, then try to
2883 return it as a pointer to a method. */
2884
2885 /* Destructors are a special case. */
2886 if (destructor_name_p (name, type))
2887 {
2888 int m_index, f_index;
2889
2890 return get_destructor_fn_field (type, &m_index, &f_index);
2891 }
2892
2893 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2894 {
2895 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2896 return 1;
2897 }
2898
2899 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2900 if (check_field_in (TYPE_BASECLASS (type, i), name))
2901 return 1;
2902
2903 return 0;
2904 }
2905
2906
2907 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2908 return 1 if the component named NAME from the ultimate
2909 target structure/union is defined, otherwise, return 0. */
2910
2911 int
2912 check_field (register value_ptr arg1, const char *name)
2913 {
2914 register struct type *t;
2915
2916 COERCE_ARRAY (arg1);
2917
2918 t = VALUE_TYPE (arg1);
2919
2920 /* Follow pointers until we get to a non-pointer. */
2921
2922 for (;;)
2923 {
2924 CHECK_TYPEDEF (t);
2925 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2926 break;
2927 t = TYPE_TARGET_TYPE (t);
2928 }
2929
2930 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2931 error ("not implemented: member type in check_field");
2932
2933 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2934 && TYPE_CODE (t) != TYPE_CODE_UNION)
2935 error ("Internal error: `this' is not an aggregate");
2936
2937 return check_field_in (t, name);
2938 }
2939
2940 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2941 return the address of this member as a "pointer to member"
2942 type. If INTYPE is non-null, then it will be the type
2943 of the member we are looking for. This will help us resolve
2944 "pointers to member functions". This function is used
2945 to resolve user expressions of the form "DOMAIN::NAME". */
2946
2947 value_ptr
2948 value_struct_elt_for_reference (struct type *domain, int offset,
2949 struct type *curtype, char *name,
2950 struct type *intype)
2951 {
2952 register struct type *t = curtype;
2953 register int i;
2954 value_ptr v;
2955
2956 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2957 && TYPE_CODE (t) != TYPE_CODE_UNION)
2958 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2959
2960 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2961 {
2962 char *t_field_name = TYPE_FIELD_NAME (t, i);
2963
2964 if (t_field_name && STREQ (t_field_name, name))
2965 {
2966 if (TYPE_FIELD_STATIC (t, i))
2967 {
2968 v = value_static_field (t, i);
2969 if (v == NULL)
2970 error ("Internal error: could not find static variable %s",
2971 name);
2972 return v;
2973 }
2974 if (TYPE_FIELD_PACKED (t, i))
2975 error ("pointers to bitfield members not allowed");
2976
2977 return value_from_longest
2978 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2979 domain)),
2980 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2981 }
2982 }
2983
2984 /* C++: If it was not found as a data field, then try to
2985 return it as a pointer to a method. */
2986
2987 /* Destructors are a special case. */
2988 if (destructor_name_p (name, t))
2989 {
2990 error ("member pointers to destructors not implemented yet");
2991 }
2992
2993 /* Perform all necessary dereferencing. */
2994 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2995 intype = TYPE_TARGET_TYPE (intype);
2996
2997 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2998 {
2999 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3000 char dem_opname[64];
3001
3002 if (strncmp (t_field_name, "__", 2) == 0 ||
3003 strncmp (t_field_name, "op", 2) == 0 ||
3004 strncmp (t_field_name, "type", 4) == 0)
3005 {
3006 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3007 t_field_name = dem_opname;
3008 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3009 t_field_name = dem_opname;
3010 }
3011 if (t_field_name && STREQ (t_field_name, name))
3012 {
3013 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3014 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3015
3016 if (intype == 0 && j > 1)
3017 error ("non-unique member `%s' requires type instantiation", name);
3018 if (intype)
3019 {
3020 while (j--)
3021 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3022 break;
3023 if (j < 0)
3024 error ("no member function matches that type instantiation");
3025 }
3026 else
3027 j = 0;
3028
3029 if (TYPE_FN_FIELD_STUB (f, j))
3030 check_stub_method (t, i, j);
3031 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3032 {
3033 return value_from_longest
3034 (lookup_reference_type
3035 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3036 domain)),
3037 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3038 }
3039 else
3040 {
3041 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3042 0, VAR_NAMESPACE, 0, NULL);
3043 if (s == NULL)
3044 {
3045 v = 0;
3046 }
3047 else
3048 {
3049 v = read_var_value (s, 0);
3050 #if 0
3051 VALUE_TYPE (v) = lookup_reference_type
3052 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3053 domain));
3054 #endif
3055 }
3056 return v;
3057 }
3058 }
3059 }
3060 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3061 {
3062 value_ptr v;
3063 int base_offset;
3064
3065 if (BASETYPE_VIA_VIRTUAL (t, i))
3066 base_offset = 0;
3067 else
3068 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3069 v = value_struct_elt_for_reference (domain,
3070 offset + base_offset,
3071 TYPE_BASECLASS (t, i),
3072 name,
3073 intype);
3074 if (v)
3075 return v;
3076 }
3077 return 0;
3078 }
3079
3080
3081 /* Given a pointer value V, find the real (RTTI) type
3082 of the object it points to.
3083 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3084 and refer to the values computed for the object pointed to. */
3085
3086 struct type *
3087 value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
3088 {
3089 value_ptr target;
3090
3091 target = value_ind (v);
3092
3093 return value_rtti_type (target, full, top, using_enc);
3094 }
3095
3096 /* Given a value pointed to by ARGP, check its real run-time type, and
3097 if that is different from the enclosing type, create a new value
3098 using the real run-time type as the enclosing type (and of the same
3099 type as ARGP) and return it, with the embedded offset adjusted to
3100 be the correct offset to the enclosed object
3101 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3102 parameters, computed by value_rtti_type(). If these are available,
3103 they can be supplied and a second call to value_rtti_type() is avoided.
3104 (Pass RTYPE == NULL if they're not available */
3105
3106 value_ptr
3107 value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
3108 int xusing_enc)
3109 {
3110 struct type *real_type;
3111 int full = 0;
3112 int top = -1;
3113 int using_enc = 0;
3114 value_ptr new_val;
3115
3116 if (rtype)
3117 {
3118 real_type = rtype;
3119 full = xfull;
3120 top = xtop;
3121 using_enc = xusing_enc;
3122 }
3123 else
3124 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3125
3126 /* If no RTTI data, or if object is already complete, do nothing */
3127 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3128 return argp;
3129
3130 /* If we have the full object, but for some reason the enclosing
3131 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3132 if (full)
3133 {
3134 argp = value_change_enclosing_type (argp, real_type);
3135 return argp;
3136 }
3137
3138 /* Check if object is in memory */
3139 if (VALUE_LVAL (argp) != lval_memory)
3140 {
3141 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3142
3143 return argp;
3144 }
3145
3146 /* All other cases -- retrieve the complete object */
3147 /* Go back by the computed top_offset from the beginning of the object,
3148 adjusting for the embedded offset of argp if that's what value_rtti_type
3149 used for its computation. */
3150 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3151 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3152 VALUE_BFD_SECTION (argp));
3153 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3154 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3155 return new_val;
3156 }
3157
3158
3159
3160
3161 /* C++: return the value of the class instance variable, if one exists.
3162 Flag COMPLAIN signals an error if the request is made in an
3163 inappropriate context. */
3164
3165 value_ptr
3166 value_of_this (int complain)
3167 {
3168 struct symbol *func, *sym;
3169 struct block *b;
3170 int i;
3171 static const char funny_this[] = "this";
3172 value_ptr this;
3173
3174 if (selected_frame == 0)
3175 {
3176 if (complain)
3177 error ("no frame selected");
3178 else
3179 return 0;
3180 }
3181
3182 func = get_frame_function (selected_frame);
3183 if (!func)
3184 {
3185 if (complain)
3186 error ("no `this' in nameless context");
3187 else
3188 return 0;
3189 }
3190
3191 b = SYMBOL_BLOCK_VALUE (func);
3192 i = BLOCK_NSYMS (b);
3193 if (i <= 0)
3194 {
3195 if (complain)
3196 error ("no args, no `this'");
3197 else
3198 return 0;
3199 }
3200
3201 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3202 symbol instead of the LOC_ARG one (if both exist). */
3203 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3204 if (sym == NULL)
3205 {
3206 if (complain)
3207 error ("current stack frame not in method");
3208 else
3209 return NULL;
3210 }
3211
3212 this = read_var_value (sym, selected_frame);
3213 if (this == 0 && complain)
3214 error ("`this' argument at unknown address");
3215 return this;
3216 }
3217
3218 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3219 long, starting at LOWBOUND. The result has the same lower bound as
3220 the original ARRAY. */
3221
3222 value_ptr
3223 value_slice (value_ptr array, int lowbound, int length)
3224 {
3225 struct type *slice_range_type, *slice_type, *range_type;
3226 LONGEST lowerbound, upperbound, offset;
3227 value_ptr slice;
3228 struct type *array_type;
3229 array_type = check_typedef (VALUE_TYPE (array));
3230 COERCE_VARYING_ARRAY (array, array_type);
3231 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3232 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3233 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3234 error ("cannot take slice of non-array");
3235 range_type = TYPE_INDEX_TYPE (array_type);
3236 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3237 error ("slice from bad array or bitstring");
3238 if (lowbound < lowerbound || length < 0
3239 || lowbound + length - 1 > upperbound
3240 /* Chill allows zero-length strings but not arrays. */
3241 || (current_language->la_language == language_chill
3242 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3243 error ("slice out of range");
3244 /* FIXME-type-allocation: need a way to free this type when we are
3245 done with it. */
3246 slice_range_type = create_range_type ((struct type *) NULL,
3247 TYPE_TARGET_TYPE (range_type),
3248 lowbound, lowbound + length - 1);
3249 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3250 {
3251 int i;
3252 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3253 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3254 slice = value_zero (slice_type, not_lval);
3255 for (i = 0; i < length; i++)
3256 {
3257 int element = value_bit_index (array_type,
3258 VALUE_CONTENTS (array),
3259 lowbound + i);
3260 if (element < 0)
3261 error ("internal error accessing bitstring");
3262 else if (element > 0)
3263 {
3264 int j = i % TARGET_CHAR_BIT;
3265 if (BITS_BIG_ENDIAN)
3266 j = TARGET_CHAR_BIT - 1 - j;
3267 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3268 }
3269 }
3270 /* We should set the address, bitssize, and bitspos, so the clice
3271 can be used on the LHS, but that may require extensions to
3272 value_assign. For now, just leave as a non_lval. FIXME. */
3273 }
3274 else
3275 {
3276 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3277 offset
3278 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3279 slice_type = create_array_type ((struct type *) NULL, element_type,
3280 slice_range_type);
3281 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3282 slice = allocate_value (slice_type);
3283 if (VALUE_LAZY (array))
3284 VALUE_LAZY (slice) = 1;
3285 else
3286 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3287 TYPE_LENGTH (slice_type));
3288 if (VALUE_LVAL (array) == lval_internalvar)
3289 VALUE_LVAL (slice) = lval_internalvar_component;
3290 else
3291 VALUE_LVAL (slice) = VALUE_LVAL (array);
3292 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3293 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3294 }
3295 return slice;
3296 }
3297
3298 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3299 value as a fixed-length array. */
3300
3301 value_ptr
3302 varying_to_slice (value_ptr varray)
3303 {
3304 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3305 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3306 VALUE_CONTENTS (varray)
3307 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3308 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3309 }
3310
3311 /* Create a value for a FORTRAN complex number. Currently most of
3312 the time values are coerced to COMPLEX*16 (i.e. a complex number
3313 composed of 2 doubles. This really should be a smarter routine
3314 that figures out precision inteligently as opposed to assuming
3315 doubles. FIXME: fmb */
3316
3317 value_ptr
3318 value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
3319 {
3320 register value_ptr val;
3321 struct type *real_type = TYPE_TARGET_TYPE (type);
3322
3323 val = allocate_value (type);
3324 arg1 = value_cast (real_type, arg1);
3325 arg2 = value_cast (real_type, arg2);
3326
3327 memcpy (VALUE_CONTENTS_RAW (val),
3328 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3329 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3330 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3331 return val;
3332 }
3333
3334 /* Cast a value into the appropriate complex data type. */
3335
3336 static value_ptr
3337 cast_into_complex (struct type *type, register value_ptr val)
3338 {
3339 struct type *real_type = TYPE_TARGET_TYPE (type);
3340 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3341 {
3342 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3343 value_ptr re_val = allocate_value (val_real_type);
3344 value_ptr im_val = allocate_value (val_real_type);
3345
3346 memcpy (VALUE_CONTENTS_RAW (re_val),
3347 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3348 memcpy (VALUE_CONTENTS_RAW (im_val),
3349 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3350 TYPE_LENGTH (val_real_type));
3351
3352 return value_literal_complex (re_val, im_val, type);
3353 }
3354 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3355 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3356 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3357 else
3358 error ("cannot cast non-number to complex");
3359 }
3360
3361 void
3362 _initialize_valops (void)
3363 {
3364 #if 0
3365 add_show_from_set
3366 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3367 "Set automatic abandonment of expressions upon failure.",
3368 &setlist),
3369 &showlist);
3370 #endif
3371
3372 add_show_from_set
3373 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3374 "Set overload resolution in evaluating C++ functions.",
3375 &setlist),
3376 &showlist);
3377 overload_resolution = 1;
3378
3379 add_show_from_set (
3380 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3381 (char *) &unwind_on_signal_p,
3382 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3383 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3384 is received while in a function called from gdb (call dummy). If set, gdb\n\
3385 unwinds the stack and restore the context to what as it was before the call.\n\
3386 The default is to stop in the frame where the signal was received.", &setlist),
3387 &showlist);
3388 }
This page took 0.099151 seconds and 4 git commands to generate.