2304274c2bb31abdd7e97c9cc74cc680d2abb2e2
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
44
45 extern int overload_debug;
46 /* Local functions. */
47
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
50
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
53
54
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
56
57 static struct value *search_struct_field (char *, struct value *, int,
58 struct type *, int);
59
60 static struct value *search_struct_method (char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int check_field_in (struct type *, const char *);
65
66 static CORE_ADDR allocate_space_in_inferior (int);
67
68 static struct value *cast_into_complex (struct type *, struct value *);
69
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
71 int offset,
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
75
76 void _initialize_valops (void);
77
78 /* Flag for whether we want to abandon failed expression evals by default. */
79
80 #if 0
81 static int auto_abandon = 0;
82 #endif
83
84 int overload_resolution = 0;
85
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92
93 /* How you should pass arguments to a function depends on whether it
94 was defined in K&R style or prototype style. If you define a
95 function using the K&R syntax that takes a `float' argument, then
96 callers must pass that argument as a `double'. If you define the
97 function using the prototype syntax, then you must pass the
98 argument as a `float', with no promotion.
99
100 Unfortunately, on certain older platforms, the debug info doesn't
101 indicate reliably how each function was defined. A function type's
102 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
103 defined in prototype style. When calling a function whose
104 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
105 what to do.
106
107 For modern targets, it is proper to assume that, if the prototype
108 flag is clear, that can be trusted: `float' arguments should be
109 promoted to `double'. For some older targets, if the prototype
110 flag is clear, that doesn't tell us anything. The default is to
111 trust the debug information; the user can override this behavior
112 with "set coerce-float-to-double 0". */
113
114 static int coerce_float_to_double;
115 \f
116
117 /* Find the address of function name NAME in the inferior. */
118
119 struct value *
120 find_function_in_inferior (const char *name)
121 {
122 register struct symbol *sym;
123 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
124 if (sym != NULL)
125 {
126 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
127 {
128 error ("\"%s\" exists in this program but is not a function.",
129 name);
130 }
131 return value_of_variable (sym, NULL);
132 }
133 else
134 {
135 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
136 if (msymbol != NULL)
137 {
138 struct type *type;
139 CORE_ADDR maddr;
140 type = lookup_pointer_type (builtin_type_char);
141 type = lookup_function_type (type);
142 type = lookup_pointer_type (type);
143 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
144 return value_from_pointer (type, maddr);
145 }
146 else
147 {
148 if (!target_has_execution)
149 error ("evaluation of this expression requires the target program to be active");
150 else
151 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
152 }
153 }
154 }
155
156 /* Allocate NBYTES of space in the inferior using the inferior's malloc
157 and return a value that is a pointer to the allocated space. */
158
159 struct value *
160 value_allocate_space_in_inferior (int len)
161 {
162 struct value *blocklen;
163 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
164
165 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
166 val = call_function_by_hand (val, 1, &blocklen);
167 if (value_logical_not (val))
168 {
169 if (!target_has_execution)
170 error ("No memory available to program now: you need to start the target first");
171 else
172 error ("No memory available to program: call to malloc failed");
173 }
174 return val;
175 }
176
177 static CORE_ADDR
178 allocate_space_in_inferior (int len)
179 {
180 return value_as_long (value_allocate_space_in_inferior (len));
181 }
182
183 /* Cast value ARG2 to type TYPE and return as a value.
184 More general than a C cast: accepts any two types of the same length,
185 and if ARG2 is an lvalue it can be cast into anything at all. */
186 /* In C++, casts may change pointer or object representations. */
187
188 struct value *
189 value_cast (struct type *type, struct value *arg2)
190 {
191 register enum type_code code1;
192 register enum type_code code2;
193 register int scalar;
194 struct type *type2;
195
196 int convert_to_boolean = 0;
197
198 if (VALUE_TYPE (arg2) == type)
199 return arg2;
200
201 CHECK_TYPEDEF (type);
202 code1 = TYPE_CODE (type);
203 COERCE_REF (arg2);
204 type2 = check_typedef (VALUE_TYPE (arg2));
205
206 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
207 is treated like a cast to (TYPE [N])OBJECT,
208 where N is sizeof(OBJECT)/sizeof(TYPE). */
209 if (code1 == TYPE_CODE_ARRAY)
210 {
211 struct type *element_type = TYPE_TARGET_TYPE (type);
212 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
213 if (element_length > 0
214 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
215 {
216 struct type *range_type = TYPE_INDEX_TYPE (type);
217 int val_length = TYPE_LENGTH (type2);
218 LONGEST low_bound, high_bound, new_length;
219 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
220 low_bound = 0, high_bound = 0;
221 new_length = val_length / element_length;
222 if (val_length % element_length != 0)
223 warning ("array element type size does not divide object size in cast");
224 /* FIXME-type-allocation: need a way to free this type when we are
225 done with it. */
226 range_type = create_range_type ((struct type *) NULL,
227 TYPE_TARGET_TYPE (range_type),
228 low_bound,
229 new_length + low_bound - 1);
230 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
231 element_type, range_type);
232 return arg2;
233 }
234 }
235
236 if (current_language->c_style_arrays
237 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
238 arg2 = value_coerce_array (arg2);
239
240 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
241 arg2 = value_coerce_function (arg2);
242
243 type2 = check_typedef (VALUE_TYPE (arg2));
244 COERCE_VARYING_ARRAY (arg2, type2);
245 code2 = TYPE_CODE (type2);
246
247 if (code1 == TYPE_CODE_COMPLEX)
248 return cast_into_complex (type, arg2);
249 if (code1 == TYPE_CODE_BOOL)
250 {
251 code1 = TYPE_CODE_INT;
252 convert_to_boolean = 1;
253 }
254 if (code1 == TYPE_CODE_CHAR)
255 code1 = TYPE_CODE_INT;
256 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
257 code2 = TYPE_CODE_INT;
258
259 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
260 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
261
262 if (code1 == TYPE_CODE_STRUCT
263 && code2 == TYPE_CODE_STRUCT
264 && TYPE_NAME (type) != 0)
265 {
266 /* Look in the type of the source to see if it contains the
267 type of the target as a superclass. If so, we'll need to
268 offset the object in addition to changing its type. */
269 struct value *v = search_struct_field (type_name_no_tag (type),
270 arg2, 0, type2, 1);
271 if (v)
272 {
273 VALUE_TYPE (v) = type;
274 return v;
275 }
276 }
277 if (code1 == TYPE_CODE_FLT && scalar)
278 return value_from_double (type, value_as_double (arg2));
279 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
280 || code1 == TYPE_CODE_RANGE)
281 && (scalar || code2 == TYPE_CODE_PTR))
282 {
283 LONGEST longest;
284
285 if (hp_som_som_object_present && /* if target compiled by HP aCC */
286 (code2 == TYPE_CODE_PTR))
287 {
288 unsigned int *ptr;
289 struct value *retvalp;
290
291 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
292 {
293 /* With HP aCC, pointers to data members have a bias */
294 case TYPE_CODE_MEMBER:
295 retvalp = value_from_longest (type, value_as_long (arg2));
296 /* force evaluation */
297 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
298 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
299 return retvalp;
300
301 /* While pointers to methods don't really point to a function */
302 case TYPE_CODE_METHOD:
303 error ("Pointers to methods not supported with HP aCC");
304
305 default:
306 break; /* fall out and go to normal handling */
307 }
308 }
309
310 /* When we cast pointers to integers, we mustn't use
311 POINTER_TO_ADDRESS to find the address the pointer
312 represents, as value_as_long would. GDB should evaluate
313 expressions just as the compiler would --- and the compiler
314 sees a cast as a simple reinterpretation of the pointer's
315 bits. */
316 if (code2 == TYPE_CODE_PTR)
317 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
318 TYPE_LENGTH (type2));
319 else
320 longest = value_as_long (arg2);
321 return value_from_longest (type, convert_to_boolean ?
322 (LONGEST) (longest ? 1 : 0) : longest);
323 }
324 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
325 code2 == TYPE_CODE_ENUM ||
326 code2 == TYPE_CODE_RANGE))
327 {
328 /* TYPE_LENGTH (type) is the length of a pointer, but we really
329 want the length of an address! -- we are really dealing with
330 addresses (i.e., gdb representations) not pointers (i.e.,
331 target representations) here.
332
333 This allows things like "print *(int *)0x01000234" to work
334 without printing a misleading message -- which would
335 otherwise occur when dealing with a target having two byte
336 pointers and four byte addresses. */
337
338 int addr_bit = TARGET_ADDR_BIT;
339
340 LONGEST longest = value_as_long (arg2);
341 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
342 {
343 if (longest >= ((LONGEST) 1 << addr_bit)
344 || longest <= -((LONGEST) 1 << addr_bit))
345 warning ("value truncated");
346 }
347 return value_from_longest (type, longest);
348 }
349 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
350 {
351 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
352 {
353 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
354 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
355 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
356 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
357 && !value_logical_not (arg2))
358 {
359 struct value *v;
360
361 /* Look in the type of the source to see if it contains the
362 type of the target as a superclass. If so, we'll need to
363 offset the pointer rather than just change its type. */
364 if (TYPE_NAME (t1) != NULL)
365 {
366 v = search_struct_field (type_name_no_tag (t1),
367 value_ind (arg2), 0, t2, 1);
368 if (v)
369 {
370 v = value_addr (v);
371 VALUE_TYPE (v) = type;
372 return v;
373 }
374 }
375
376 /* Look in the type of the target to see if it contains the
377 type of the source as a superclass. If so, we'll need to
378 offset the pointer rather than just change its type.
379 FIXME: This fails silently with virtual inheritance. */
380 if (TYPE_NAME (t2) != NULL)
381 {
382 v = search_struct_field (type_name_no_tag (t2),
383 value_zero (t1, not_lval), 0, t1, 1);
384 if (v)
385 {
386 CORE_ADDR addr2 = value_as_address (arg2);
387 addr2 -= (VALUE_ADDRESS (v)
388 + VALUE_OFFSET (v)
389 + VALUE_EMBEDDED_OFFSET (v));
390 return value_from_pointer (type, addr2);
391 }
392 }
393 }
394 /* No superclass found, just fall through to change ptr type. */
395 }
396 VALUE_TYPE (arg2) = type;
397 arg2 = value_change_enclosing_type (arg2, type);
398 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
399 return arg2;
400 }
401 else if (VALUE_LVAL (arg2) == lval_memory)
402 {
403 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
404 VALUE_BFD_SECTION (arg2));
405 }
406 else if (code1 == TYPE_CODE_VOID)
407 {
408 return value_zero (builtin_type_void, not_lval);
409 }
410 else
411 {
412 error ("Invalid cast.");
413 return 0;
414 }
415 }
416
417 /* Create a value of type TYPE that is zero, and return it. */
418
419 struct value *
420 value_zero (struct type *type, enum lval_type lv)
421 {
422 struct value *val = allocate_value (type);
423
424 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
425 VALUE_LVAL (val) = lv;
426
427 return val;
428 }
429
430 /* Return a value with type TYPE located at ADDR.
431
432 Call value_at only if the data needs to be fetched immediately;
433 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
434 value_at_lazy instead. value_at_lazy simply records the address of
435 the data and sets the lazy-evaluation-required flag. The lazy flag
436 is tested in the VALUE_CONTENTS macro, which is used if and when
437 the contents are actually required.
438
439 Note: value_at does *NOT* handle embedded offsets; perform such
440 adjustments before or after calling it. */
441
442 struct value *
443 value_at (struct type *type, CORE_ADDR addr, asection *sect)
444 {
445 struct value *val;
446
447 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
448 error ("Attempt to dereference a generic pointer.");
449
450 val = allocate_value (type);
451
452 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
453
454 VALUE_LVAL (val) = lval_memory;
455 VALUE_ADDRESS (val) = addr;
456 VALUE_BFD_SECTION (val) = sect;
457
458 return val;
459 }
460
461 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
462
463 struct value *
464 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
465 {
466 struct value *val;
467
468 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
469 error ("Attempt to dereference a generic pointer.");
470
471 val = allocate_value (type);
472
473 VALUE_LVAL (val) = lval_memory;
474 VALUE_ADDRESS (val) = addr;
475 VALUE_LAZY (val) = 1;
476 VALUE_BFD_SECTION (val) = sect;
477
478 return val;
479 }
480
481 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
482 if the current data for a variable needs to be loaded into
483 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
484 clears the lazy flag to indicate that the data in the buffer is valid.
485
486 If the value is zero-length, we avoid calling read_memory, which would
487 abort. We mark the value as fetched anyway -- all 0 bytes of it.
488
489 This function returns a value because it is used in the VALUE_CONTENTS
490 macro as part of an expression, where a void would not work. The
491 value is ignored. */
492
493 int
494 value_fetch_lazy (struct value *val)
495 {
496 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
497 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
498
499 struct type *type = VALUE_TYPE (val);
500 if (length)
501 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
502
503 VALUE_LAZY (val) = 0;
504 return 0;
505 }
506
507
508 /* Store the contents of FROMVAL into the location of TOVAL.
509 Return a new value with the location of TOVAL and contents of FROMVAL. */
510
511 struct value *
512 value_assign (struct value *toval, struct value *fromval)
513 {
514 register struct type *type;
515 struct value *val;
516 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
517 int use_buffer = 0;
518 struct frame_id old_frame;
519
520 if (!toval->modifiable)
521 error ("Left operand of assignment is not a modifiable lvalue.");
522
523 COERCE_REF (toval);
524
525 type = VALUE_TYPE (toval);
526 if (VALUE_LVAL (toval) != lval_internalvar)
527 fromval = value_cast (type, fromval);
528 else
529 COERCE_ARRAY (fromval);
530 CHECK_TYPEDEF (type);
531
532 /* If TOVAL is a special machine register requiring conversion
533 of program values to a special raw format,
534 convert FROMVAL's contents now, with result in `raw_buffer',
535 and set USE_BUFFER to the number of bytes to write. */
536
537 if (VALUE_REGNO (toval) >= 0)
538 {
539 int regno = VALUE_REGNO (toval);
540 if (CONVERT_REGISTER_P (regno))
541 {
542 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
543 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
544 use_buffer = REGISTER_RAW_SIZE (regno);
545 }
546 }
547
548 /* Since modifying a register can trash the frame chain, and modifying memory
549 can trash the frame cache, we save the old frame and then restore the new
550 frame afterwards. */
551 old_frame = get_frame_id (deprecated_selected_frame);
552
553 switch (VALUE_LVAL (toval))
554 {
555 case lval_internalvar:
556 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
557 val = value_copy (VALUE_INTERNALVAR (toval)->value);
558 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
559 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
560 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
561 return val;
562
563 case lval_internalvar_component:
564 set_internalvar_component (VALUE_INTERNALVAR (toval),
565 VALUE_OFFSET (toval),
566 VALUE_BITPOS (toval),
567 VALUE_BITSIZE (toval),
568 fromval);
569 break;
570
571 case lval_memory:
572 {
573 char *dest_buffer;
574 CORE_ADDR changed_addr;
575 int changed_len;
576
577 if (VALUE_BITSIZE (toval))
578 {
579 char buffer[sizeof (LONGEST)];
580 /* We assume that the argument to read_memory is in units of
581 host chars. FIXME: Is that correct? */
582 changed_len = (VALUE_BITPOS (toval)
583 + VALUE_BITSIZE (toval)
584 + HOST_CHAR_BIT - 1)
585 / HOST_CHAR_BIT;
586
587 if (changed_len > (int) sizeof (LONGEST))
588 error ("Can't handle bitfields which don't fit in a %d bit word.",
589 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
590
591 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
592 buffer, changed_len);
593 modify_field (buffer, value_as_long (fromval),
594 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
595 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
596 dest_buffer = buffer;
597 }
598 else if (use_buffer)
599 {
600 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
601 changed_len = use_buffer;
602 dest_buffer = raw_buffer;
603 }
604 else
605 {
606 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
607 changed_len = TYPE_LENGTH (type);
608 dest_buffer = VALUE_CONTENTS (fromval);
609 }
610
611 write_memory (changed_addr, dest_buffer, changed_len);
612 if (memory_changed_hook)
613 memory_changed_hook (changed_addr, changed_len);
614 target_changed_event ();
615 }
616 break;
617
618 case lval_reg_frame_relative:
619 case lval_register:
620 {
621 /* value is stored in a series of registers in the frame
622 specified by the structure. Copy that value out, modify
623 it, and copy it back in. */
624 int amount_copied;
625 int amount_to_copy;
626 char *buffer;
627 int value_reg;
628 int reg_offset;
629 int byte_offset;
630 int regno;
631 struct frame_info *frame;
632
633 /* Figure out which frame this is in currently. */
634 if (VALUE_LVAL (toval) == lval_register)
635 {
636 frame = get_current_frame ();
637 value_reg = VALUE_REGNO (toval);
638 }
639 else
640 {
641 for (frame = get_current_frame ();
642 frame && get_frame_base (frame) != VALUE_FRAME (toval);
643 frame = get_prev_frame (frame))
644 ;
645 value_reg = VALUE_FRAME_REGNUM (toval);
646 }
647
648 if (!frame)
649 error ("Value being assigned to is no longer active.");
650
651 /* Locate the first register that falls in the value that
652 needs to be transfered. Compute the offset of the value in
653 that register. */
654 {
655 int offset;
656 for (reg_offset = value_reg, offset = 0;
657 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
658 reg_offset++);
659 byte_offset = VALUE_OFFSET (toval) - offset;
660 }
661
662 /* Compute the number of register aligned values that need to
663 be copied. */
664 if (VALUE_BITSIZE (toval))
665 amount_to_copy = byte_offset + 1;
666 else
667 amount_to_copy = byte_offset + TYPE_LENGTH (type);
668
669 /* And a bounce buffer. Be slightly over generous. */
670 buffer = (char *) alloca (amount_to_copy
671 + MAX_REGISTER_RAW_SIZE);
672
673 /* Copy it in. */
674 for (regno = reg_offset, amount_copied = 0;
675 amount_copied < amount_to_copy;
676 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
677 {
678 frame_register_read (frame, regno, buffer + amount_copied);
679 }
680
681 /* Modify what needs to be modified. */
682 if (VALUE_BITSIZE (toval))
683 {
684 modify_field (buffer + byte_offset,
685 value_as_long (fromval),
686 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
687 }
688 else if (use_buffer)
689 {
690 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
691 }
692 else
693 {
694 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
695 TYPE_LENGTH (type));
696 /* Do any conversion necessary when storing this type to
697 more than one register. */
698 #ifdef REGISTER_CONVERT_FROM_TYPE
699 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
700 (buffer + byte_offset));
701 #endif
702 }
703
704 /* Copy it out. */
705 for (regno = reg_offset, amount_copied = 0;
706 amount_copied < amount_to_copy;
707 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
708 {
709 enum lval_type lval;
710 CORE_ADDR addr;
711 int optim;
712 int realnum;
713
714 /* Just find out where to put it. */
715 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
716 NULL);
717
718 if (optim)
719 error ("Attempt to assign to a value that was optimized out.");
720 if (lval == lval_memory)
721 write_memory (addr, buffer + amount_copied,
722 REGISTER_RAW_SIZE (regno));
723 else if (lval == lval_register)
724 regcache_cooked_write (current_regcache, realnum,
725 (buffer + amount_copied));
726 else
727 error ("Attempt to assign to an unmodifiable value.");
728 }
729
730 if (register_changed_hook)
731 register_changed_hook (-1);
732 target_changed_event ();
733
734 }
735 break;
736
737
738 default:
739 error ("Left operand of assignment is not an lvalue.");
740 }
741
742 /* Assigning to the stack pointer, frame pointer, and other
743 (architecture and calling convention specific) registers may
744 cause the frame cache to be out of date. Assigning to memory
745 also can. We just do this on all assignments to registers or
746 memory, for simplicity's sake; I doubt the slowdown matters. */
747 switch (VALUE_LVAL (toval))
748 {
749 case lval_memory:
750 case lval_register:
751 case lval_reg_frame_relative:
752
753 reinit_frame_cache ();
754
755 /* Having destoroyed the frame cache, restore the selected frame. */
756
757 /* FIXME: cagney/2002-11-02: There has to be a better way of
758 doing this. Instead of constantly saving/restoring the
759 frame. Why not create a get_selected_frame() function that,
760 having saved the selected frame's ID can automatically
761 re-find the previously selected frame automatically. */
762
763 {
764 struct frame_info *fi = frame_find_by_id (old_frame);
765 if (fi != NULL)
766 select_frame (fi);
767 }
768
769 break;
770 default:
771 break;
772 }
773
774 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
775 If the field is signed, and is negative, then sign extend. */
776 if ((VALUE_BITSIZE (toval) > 0)
777 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
778 {
779 LONGEST fieldval = value_as_long (fromval);
780 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
781
782 fieldval &= valmask;
783 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
784 fieldval |= ~valmask;
785
786 fromval = value_from_longest (type, fieldval);
787 }
788
789 val = value_copy (toval);
790 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
791 TYPE_LENGTH (type));
792 VALUE_TYPE (val) = type;
793 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
794 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
795 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
796
797 return val;
798 }
799
800 /* Extend a value VAL to COUNT repetitions of its type. */
801
802 struct value *
803 value_repeat (struct value *arg1, int count)
804 {
805 struct value *val;
806
807 if (VALUE_LVAL (arg1) != lval_memory)
808 error ("Only values in memory can be extended with '@'.");
809 if (count < 1)
810 error ("Invalid number %d of repetitions.", count);
811
812 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
813
814 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
815 VALUE_CONTENTS_ALL_RAW (val),
816 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
817 VALUE_LVAL (val) = lval_memory;
818 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
819
820 return val;
821 }
822
823 struct value *
824 value_of_variable (struct symbol *var, struct block *b)
825 {
826 struct value *val;
827 struct frame_info *frame = NULL;
828
829 if (!b)
830 frame = NULL; /* Use selected frame. */
831 else if (symbol_read_needs_frame (var))
832 {
833 frame = block_innermost_frame (b);
834 if (!frame)
835 {
836 if (BLOCK_FUNCTION (b)
837 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
838 error ("No frame is currently executing in block %s.",
839 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
840 else
841 error ("No frame is currently executing in specified block");
842 }
843 }
844
845 val = read_var_value (var, frame);
846 if (!val)
847 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
848
849 return val;
850 }
851
852 /* Given a value which is an array, return a value which is a pointer to its
853 first element, regardless of whether or not the array has a nonzero lower
854 bound.
855
856 FIXME: A previous comment here indicated that this routine should be
857 substracting the array's lower bound. It's not clear to me that this
858 is correct. Given an array subscripting operation, it would certainly
859 work to do the adjustment here, essentially computing:
860
861 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
862
863 However I believe a more appropriate and logical place to account for
864 the lower bound is to do so in value_subscript, essentially computing:
865
866 (&array[0] + ((index - lowerbound) * sizeof array[0]))
867
868 As further evidence consider what would happen with operations other
869 than array subscripting, where the caller would get back a value that
870 had an address somewhere before the actual first element of the array,
871 and the information about the lower bound would be lost because of
872 the coercion to pointer type.
873 */
874
875 struct value *
876 value_coerce_array (struct value *arg1)
877 {
878 register struct type *type = check_typedef (VALUE_TYPE (arg1));
879
880 if (VALUE_LVAL (arg1) != lval_memory)
881 error ("Attempt to take address of value not located in memory.");
882
883 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
884 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
885 }
886
887 /* Given a value which is a function, return a value which is a pointer
888 to it. */
889
890 struct value *
891 value_coerce_function (struct value *arg1)
892 {
893 struct value *retval;
894
895 if (VALUE_LVAL (arg1) != lval_memory)
896 error ("Attempt to take address of value not located in memory.");
897
898 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
899 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
900 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
901 return retval;
902 }
903
904 /* Return a pointer value for the object for which ARG1 is the contents. */
905
906 struct value *
907 value_addr (struct value *arg1)
908 {
909 struct value *arg2;
910
911 struct type *type = check_typedef (VALUE_TYPE (arg1));
912 if (TYPE_CODE (type) == TYPE_CODE_REF)
913 {
914 /* Copy the value, but change the type from (T&) to (T*).
915 We keep the same location information, which is efficient,
916 and allows &(&X) to get the location containing the reference. */
917 arg2 = value_copy (arg1);
918 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
919 return arg2;
920 }
921 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
922 return value_coerce_function (arg1);
923
924 if (VALUE_LVAL (arg1) != lval_memory)
925 error ("Attempt to take address of value not located in memory.");
926
927 /* Get target memory address */
928 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
929 (VALUE_ADDRESS (arg1)
930 + VALUE_OFFSET (arg1)
931 + VALUE_EMBEDDED_OFFSET (arg1)));
932
933 /* This may be a pointer to a base subobject; so remember the
934 full derived object's type ... */
935 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
936 /* ... and also the relative position of the subobject in the full object */
937 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
938 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
939 return arg2;
940 }
941
942 /* Given a value of a pointer type, apply the C unary * operator to it. */
943
944 struct value *
945 value_ind (struct value *arg1)
946 {
947 struct type *base_type;
948 struct value *arg2;
949
950 COERCE_ARRAY (arg1);
951
952 base_type = check_typedef (VALUE_TYPE (arg1));
953
954 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
955 error ("not implemented: member types in value_ind");
956
957 /* Allow * on an integer so we can cast it to whatever we want.
958 This returns an int, which seems like the most C-like thing
959 to do. "long long" variables are rare enough that
960 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
961 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
962 return value_at_lazy (builtin_type_int,
963 (CORE_ADDR) value_as_long (arg1),
964 VALUE_BFD_SECTION (arg1));
965 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
966 {
967 struct type *enc_type;
968 /* We may be pointing to something embedded in a larger object */
969 /* Get the real type of the enclosing object */
970 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
971 enc_type = TYPE_TARGET_TYPE (enc_type);
972 /* Retrieve the enclosing object pointed to */
973 arg2 = value_at_lazy (enc_type,
974 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
975 VALUE_BFD_SECTION (arg1));
976 /* Re-adjust type */
977 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
978 /* Add embedding info */
979 arg2 = value_change_enclosing_type (arg2, enc_type);
980 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
981
982 /* We may be pointing to an object of some derived type */
983 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
984 return arg2;
985 }
986
987 error ("Attempt to take contents of a non-pointer value.");
988 return 0; /* For lint -- never reached */
989 }
990 \f
991 /* Pushing small parts of stack frames. */
992
993 /* Push one word (the size of object that a register holds). */
994
995 CORE_ADDR
996 push_word (CORE_ADDR sp, ULONGEST word)
997 {
998 register int len = REGISTER_SIZE;
999 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1000
1001 store_unsigned_integer (buffer, len, word);
1002 if (INNER_THAN (1, 2))
1003 {
1004 /* stack grows downward */
1005 sp -= len;
1006 write_memory (sp, buffer, len);
1007 }
1008 else
1009 {
1010 /* stack grows upward */
1011 write_memory (sp, buffer, len);
1012 sp += len;
1013 }
1014
1015 return sp;
1016 }
1017
1018 /* Push LEN bytes with data at BUFFER. */
1019
1020 CORE_ADDR
1021 push_bytes (CORE_ADDR sp, char *buffer, int len)
1022 {
1023 if (INNER_THAN (1, 2))
1024 {
1025 /* stack grows downward */
1026 sp -= len;
1027 write_memory (sp, buffer, len);
1028 }
1029 else
1030 {
1031 /* stack grows upward */
1032 write_memory (sp, buffer, len);
1033 sp += len;
1034 }
1035
1036 return sp;
1037 }
1038
1039 #ifndef PARM_BOUNDARY
1040 #define PARM_BOUNDARY (0)
1041 #endif
1042
1043 /* Push onto the stack the specified value VALUE. Pad it correctly for
1044 it to be an argument to a function. */
1045
1046 static CORE_ADDR
1047 value_push (register CORE_ADDR sp, struct value *arg)
1048 {
1049 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1050 register int container_len = len;
1051 register int offset;
1052
1053 /* How big is the container we're going to put this value in? */
1054 if (PARM_BOUNDARY)
1055 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1056 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1057
1058 /* Are we going to put it at the high or low end of the container? */
1059 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1060 offset = container_len - len;
1061 else
1062 offset = 0;
1063
1064 if (INNER_THAN (1, 2))
1065 {
1066 /* stack grows downward */
1067 sp -= container_len;
1068 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1069 }
1070 else
1071 {
1072 /* stack grows upward */
1073 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1074 sp += container_len;
1075 }
1076
1077 return sp;
1078 }
1079
1080 CORE_ADDR
1081 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1082 int struct_return, CORE_ADDR struct_addr)
1083 {
1084 /* ASSERT ( !struct_return); */
1085 int i;
1086 for (i = nargs - 1; i >= 0; i--)
1087 sp = value_push (sp, args[i]);
1088 return sp;
1089 }
1090
1091 /* Perform the standard coercions that are specified
1092 for arguments to be passed to C functions.
1093
1094 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1095 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1096
1097 static struct value *
1098 value_arg_coerce (struct value *arg, struct type *param_type,
1099 int is_prototyped)
1100 {
1101 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1102 register struct type *type
1103 = param_type ? check_typedef (param_type) : arg_type;
1104
1105 switch (TYPE_CODE (type))
1106 {
1107 case TYPE_CODE_REF:
1108 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1109 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1110 {
1111 arg = value_addr (arg);
1112 VALUE_TYPE (arg) = param_type;
1113 return arg;
1114 }
1115 break;
1116 case TYPE_CODE_INT:
1117 case TYPE_CODE_CHAR:
1118 case TYPE_CODE_BOOL:
1119 case TYPE_CODE_ENUM:
1120 /* If we don't have a prototype, coerce to integer type if necessary. */
1121 if (!is_prototyped)
1122 {
1123 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1124 type = builtin_type_int;
1125 }
1126 /* Currently all target ABIs require at least the width of an integer
1127 type for an argument. We may have to conditionalize the following
1128 type coercion for future targets. */
1129 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1130 type = builtin_type_int;
1131 break;
1132 case TYPE_CODE_FLT:
1133 if (!is_prototyped && coerce_float_to_double)
1134 {
1135 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1136 type = builtin_type_double;
1137 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1138 type = builtin_type_long_double;
1139 }
1140 break;
1141 case TYPE_CODE_FUNC:
1142 type = lookup_pointer_type (type);
1143 break;
1144 case TYPE_CODE_ARRAY:
1145 /* Arrays are coerced to pointers to their first element, unless
1146 they are vectors, in which case we want to leave them alone,
1147 because they are passed by value. */
1148 if (current_language->c_style_arrays)
1149 if (!TYPE_VECTOR (type))
1150 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1151 break;
1152 case TYPE_CODE_UNDEF:
1153 case TYPE_CODE_PTR:
1154 case TYPE_CODE_STRUCT:
1155 case TYPE_CODE_UNION:
1156 case TYPE_CODE_VOID:
1157 case TYPE_CODE_SET:
1158 case TYPE_CODE_RANGE:
1159 case TYPE_CODE_STRING:
1160 case TYPE_CODE_BITSTRING:
1161 case TYPE_CODE_ERROR:
1162 case TYPE_CODE_MEMBER:
1163 case TYPE_CODE_METHOD:
1164 case TYPE_CODE_COMPLEX:
1165 default:
1166 break;
1167 }
1168
1169 return value_cast (type, arg);
1170 }
1171
1172 /* Determine a function's address and its return type from its value.
1173 Calls error() if the function is not valid for calling. */
1174
1175 static CORE_ADDR
1176 find_function_addr (struct value *function, struct type **retval_type)
1177 {
1178 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1179 register enum type_code code = TYPE_CODE (ftype);
1180 struct type *value_type;
1181 CORE_ADDR funaddr;
1182
1183 /* If it's a member function, just look at the function
1184 part of it. */
1185
1186 /* Determine address to call. */
1187 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1188 {
1189 funaddr = VALUE_ADDRESS (function);
1190 value_type = TYPE_TARGET_TYPE (ftype);
1191 }
1192 else if (code == TYPE_CODE_PTR)
1193 {
1194 funaddr = value_as_address (function);
1195 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1196 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1197 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1198 {
1199 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1200 value_type = TYPE_TARGET_TYPE (ftype);
1201 }
1202 else
1203 value_type = builtin_type_int;
1204 }
1205 else if (code == TYPE_CODE_INT)
1206 {
1207 /* Handle the case of functions lacking debugging info.
1208 Their values are characters since their addresses are char */
1209 if (TYPE_LENGTH (ftype) == 1)
1210 funaddr = value_as_address (value_addr (function));
1211 else
1212 /* Handle integer used as address of a function. */
1213 funaddr = (CORE_ADDR) value_as_long (function);
1214
1215 value_type = builtin_type_int;
1216 }
1217 else
1218 error ("Invalid data type for function to be called.");
1219
1220 *retval_type = value_type;
1221 return funaddr;
1222 }
1223
1224 /* All this stuff with a dummy frame may seem unnecessarily complicated
1225 (why not just save registers in GDB?). The purpose of pushing a dummy
1226 frame which looks just like a real frame is so that if you call a
1227 function and then hit a breakpoint (get a signal, etc), "backtrace"
1228 will look right. Whether the backtrace needs to actually show the
1229 stack at the time the inferior function was called is debatable, but
1230 it certainly needs to not display garbage. So if you are contemplating
1231 making dummy frames be different from normal frames, consider that. */
1232
1233 /* Perform a function call in the inferior.
1234 ARGS is a vector of values of arguments (NARGS of them).
1235 FUNCTION is a value, the function to be called.
1236 Returns a value representing what the function returned.
1237 May fail to return, if a breakpoint or signal is hit
1238 during the execution of the function.
1239
1240 ARGS is modified to contain coerced values. */
1241
1242 static struct value *
1243 hand_function_call (struct value *function, int nargs, struct value **args)
1244 {
1245 register CORE_ADDR sp;
1246 register int i;
1247 int rc;
1248 CORE_ADDR start_sp;
1249 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1250 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1251 and remove any extra bytes which might exist because ULONGEST is
1252 bigger than REGISTER_SIZE.
1253
1254 NOTE: This is pretty wierd, as the call dummy is actually a
1255 sequence of instructions. But CISC machines will have
1256 to pack the instructions into REGISTER_SIZE units (and
1257 so will RISC machines for which INSTRUCTION_SIZE is not
1258 REGISTER_SIZE).
1259
1260 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1261 target byte order. */
1262
1263 static ULONGEST *dummy;
1264 int sizeof_dummy1;
1265 char *dummy1;
1266 CORE_ADDR old_sp;
1267 struct type *value_type;
1268 unsigned char struct_return;
1269 CORE_ADDR struct_addr = 0;
1270 struct regcache *retbuf;
1271 struct cleanup *retbuf_cleanup;
1272 struct inferior_status *inf_status;
1273 struct cleanup *inf_status_cleanup;
1274 CORE_ADDR funaddr;
1275 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1276 CORE_ADDR real_pc;
1277 struct type *param_type = NULL;
1278 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1279 int n_method_args = 0;
1280
1281 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1282 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1283 dummy1 = alloca (sizeof_dummy1);
1284 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1285
1286 if (!target_has_execution)
1287 noprocess ();
1288
1289 /* Create a cleanup chain that contains the retbuf (buffer
1290 containing the register values). This chain is create BEFORE the
1291 inf_status chain so that the inferior status can cleaned up
1292 (restored or discarded) without having the retbuf freed. */
1293 retbuf = regcache_xmalloc (current_gdbarch);
1294 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1295
1296 /* A cleanup for the inferior status. Create this AFTER the retbuf
1297 so that this can be discarded or applied without interfering with
1298 the regbuf. */
1299 inf_status = save_inferior_status (1);
1300 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1301
1302 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1303 (and POP_FRAME for restoring them). (At least on most machines)
1304 they are saved on the stack in the inferior. */
1305 PUSH_DUMMY_FRAME;
1306
1307 old_sp = read_sp ();
1308
1309 /* Ensure that the initial SP is correctly aligned. */
1310 if (gdbarch_frame_align_p (current_gdbarch))
1311 {
1312 /* NOTE: cagney/2002-09-18:
1313
1314 On a RISC architecture, a void parameterless generic dummy
1315 frame (i.e., no parameters, no result) typically does not
1316 need to push anything the stack and hence can leave SP and
1317 FP. Similarly, a framelss (possibly leaf) function does not
1318 push anything on the stack and, hence, that too can leave FP
1319 and SP unchanged. As a consequence, a sequence of void
1320 parameterless generic dummy frame calls to frameless
1321 functions will create a sequence of effectively identical
1322 frames (SP, FP and TOS and PC the same). This, not
1323 suprisingly, results in what appears to be a stack in an
1324 infinite loop --- when GDB tries to find a generic dummy
1325 frame on the internal dummy frame stack, it will always find
1326 the first one.
1327
1328 To avoid this problem, the code below always grows the stack.
1329 That way, two dummy frames can never be identical. It does
1330 burn a few bytes of stack but that is a small price to pay
1331 :-). */
1332 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1333 if (sp == old_sp)
1334 {
1335 if (INNER_THAN (1, 2))
1336 /* Stack grows down. */
1337 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1338 else
1339 /* Stack grows up. */
1340 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1341 }
1342 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1343 || (INNER_THAN (2, 1) && sp >= old_sp));
1344 }
1345 else
1346 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1347 aligned the SP is! Further, per comment above, if the generic
1348 dummy frame ends up empty (because nothing is pushed) GDB won't
1349 be able to correctly perform back traces. If a target is
1350 having trouble with backtraces, first thing to do is add
1351 FRAME_ALIGN() to its architecture vector. After that, try
1352 adding SAVE_DUMMY_FRAME_TOS() and modifying FRAME_CHAIN so that
1353 when the next outer frame is a generic dummy, it returns the
1354 current frame's base. */
1355 sp = old_sp;
1356
1357 if (INNER_THAN (1, 2))
1358 {
1359 /* Stack grows down */
1360 sp -= sizeof_dummy1;
1361 start_sp = sp;
1362 }
1363 else
1364 {
1365 /* Stack grows up */
1366 start_sp = sp;
1367 sp += sizeof_dummy1;
1368 }
1369
1370 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1371 after allocating space for the call dummy. A target can specify
1372 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1373 alignment requirements are met. */
1374
1375 funaddr = find_function_addr (function, &value_type);
1376 CHECK_TYPEDEF (value_type);
1377
1378 {
1379 struct block *b = block_for_pc (funaddr);
1380 /* If compiled without -g, assume GCC 2. */
1381 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1382 }
1383
1384 /* Are we returning a value using a structure return or a normal
1385 value return? */
1386
1387 struct_return = using_struct_return (function, funaddr, value_type,
1388 using_gcc);
1389
1390 /* Create a call sequence customized for this function
1391 and the number of arguments for it. */
1392 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1393 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1394 REGISTER_SIZE,
1395 (ULONGEST) dummy[i]);
1396
1397 #ifdef GDB_TARGET_IS_HPPA
1398 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1399 value_type, using_gcc);
1400 #else
1401 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1402 value_type, using_gcc);
1403 real_pc = start_sp;
1404 #endif
1405
1406 if (CALL_DUMMY_LOCATION == ON_STACK)
1407 {
1408 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1409 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1410 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1411 }
1412
1413 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1414 {
1415 real_pc = funaddr;
1416 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1417 /* NOTE: cagney/2002-04-13: The entry point is going to be
1418 modified with a single breakpoint. */
1419 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1420 CALL_DUMMY_ADDRESS () + 1);
1421 }
1422
1423 #ifdef lint
1424 sp = old_sp; /* It really is used, for some ifdef's... */
1425 #endif
1426
1427 if (nargs < TYPE_NFIELDS (ftype))
1428 error ("too few arguments in function call");
1429
1430 for (i = nargs - 1; i >= 0; i--)
1431 {
1432 int prototyped;
1433
1434 /* FIXME drow/2002-05-31: Should just always mark methods as
1435 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1436 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1437 prototyped = 1;
1438 else
1439 prototyped = TYPE_PROTOTYPED (ftype);
1440
1441 if (i < TYPE_NFIELDS (ftype))
1442 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1443 prototyped);
1444 else
1445 args[i] = value_arg_coerce (args[i], NULL, 0);
1446
1447 /*elz: this code is to handle the case in which the function to be called
1448 has a pointer to function as parameter and the corresponding actual argument
1449 is the address of a function and not a pointer to function variable.
1450 In aCC compiled code, the calls through pointers to functions (in the body
1451 of the function called by hand) are made via $$dyncall_external which
1452 requires some registers setting, this is taken care of if we call
1453 via a function pointer variable, but not via a function address.
1454 In cc this is not a problem. */
1455
1456 if (using_gcc == 0)
1457 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1458 /* if this parameter is a pointer to function */
1459 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1460 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1461 /* elz: FIXME here should go the test about the compiler used
1462 to compile the target. We want to issue the error
1463 message only if the compiler used was HP's aCC.
1464 If we used HP's cc, then there is no problem and no need
1465 to return at this point */
1466 if (using_gcc == 0) /* && compiler == aCC */
1467 /* go see if the actual parameter is a variable of type
1468 pointer to function or just a function */
1469 if (args[i]->lval == not_lval)
1470 {
1471 char *arg_name;
1472 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1473 error ("\
1474 You cannot use function <%s> as argument. \n\
1475 You must use a pointer to function type variable. Command ignored.", arg_name);
1476 }
1477 }
1478
1479 if (REG_STRUCT_HAS_ADDR_P ())
1480 {
1481 /* This is a machine like the sparc, where we may need to pass a
1482 pointer to the structure, not the structure itself. */
1483 for (i = nargs - 1; i >= 0; i--)
1484 {
1485 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1486 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1487 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1488 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1489 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1490 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1491 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1492 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1493 && TYPE_LENGTH (arg_type) > 8)
1494 )
1495 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1496 {
1497 CORE_ADDR addr;
1498 int len; /* = TYPE_LENGTH (arg_type); */
1499 int aligned_len;
1500 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1501 len = TYPE_LENGTH (arg_type);
1502
1503 if (STACK_ALIGN_P ())
1504 /* MVS 11/22/96: I think at least some of this
1505 stack_align code is really broken. Better to let
1506 PUSH_ARGUMENTS adjust the stack in a target-defined
1507 manner. */
1508 aligned_len = STACK_ALIGN (len);
1509 else
1510 aligned_len = len;
1511 if (INNER_THAN (1, 2))
1512 {
1513 /* stack grows downward */
1514 sp -= aligned_len;
1515 /* ... so the address of the thing we push is the
1516 stack pointer after we push it. */
1517 addr = sp;
1518 }
1519 else
1520 {
1521 /* The stack grows up, so the address of the thing
1522 we push is the stack pointer before we push it. */
1523 addr = sp;
1524 sp += aligned_len;
1525 }
1526 /* Push the structure. */
1527 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1528 /* The value we're going to pass is the address of the
1529 thing we just pushed. */
1530 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1531 (LONGEST) addr); */
1532 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1533 addr);
1534 }
1535 }
1536 }
1537
1538
1539 /* Reserve space for the return structure to be written on the
1540 stack, if necessary. Make certain that the value is correctly
1541 aligned. */
1542
1543 if (struct_return)
1544 {
1545 int len = TYPE_LENGTH (value_type);
1546 if (STACK_ALIGN_P ())
1547 /* MVS 11/22/96: I think at least some of this stack_align
1548 code is really broken. Better to let PUSH_ARGUMENTS adjust
1549 the stack in a target-defined manner. */
1550 len = STACK_ALIGN (len);
1551 if (INNER_THAN (1, 2))
1552 {
1553 /* Stack grows downward. Align STRUCT_ADDR and SP after
1554 making space for the return value. */
1555 sp -= len;
1556 if (gdbarch_frame_align_p (current_gdbarch))
1557 sp = gdbarch_frame_align (current_gdbarch, sp);
1558 struct_addr = sp;
1559 }
1560 else
1561 {
1562 /* Stack grows upward. Align the frame, allocate space, and
1563 then again, re-align the frame??? */
1564 if (gdbarch_frame_align_p (current_gdbarch))
1565 sp = gdbarch_frame_align (current_gdbarch, sp);
1566 struct_addr = sp;
1567 sp += len;
1568 if (gdbarch_frame_align_p (current_gdbarch))
1569 sp = gdbarch_frame_align (current_gdbarch, sp);
1570 }
1571 }
1572
1573 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1574 on other architectures. This is because all the alignment is
1575 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1576 in hppa_push_arguments */
1577 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1578 {
1579 /* MVS 11/22/96: I think at least some of this stack_align code
1580 is really broken. Better to let PUSH_ARGUMENTS adjust the
1581 stack in a target-defined manner. */
1582 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1583 {
1584 /* If stack grows down, we must leave a hole at the top. */
1585 int len = 0;
1586
1587 for (i = nargs - 1; i >= 0; i--)
1588 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1589 if (CALL_DUMMY_STACK_ADJUST_P)
1590 len += CALL_DUMMY_STACK_ADJUST;
1591 sp -= STACK_ALIGN (len) - len;
1592 }
1593 }
1594
1595 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1596
1597 if (PUSH_RETURN_ADDRESS_P ())
1598 /* for targets that use no CALL_DUMMY */
1599 /* There are a number of targets now which actually don't write
1600 any CALL_DUMMY instructions into the target, but instead just
1601 save the machine state, push the arguments, and jump directly
1602 to the callee function. Since this doesn't actually involve
1603 executing a JSR/BSR instruction, the return address must be set
1604 up by hand, either by pushing onto the stack or copying into a
1605 return-address register as appropriate. Formerly this has been
1606 done in PUSH_ARGUMENTS, but that's overloading its
1607 functionality a bit, so I'm making it explicit to do it here. */
1608 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1609
1610 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1611 {
1612 /* If stack grows up, we must leave a hole at the bottom, note
1613 that sp already has been advanced for the arguments! */
1614 if (CALL_DUMMY_STACK_ADJUST_P)
1615 sp += CALL_DUMMY_STACK_ADJUST;
1616 sp = STACK_ALIGN (sp);
1617 }
1618
1619 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1620 anything here! */
1621 /* MVS 11/22/96: I think at least some of this stack_align code is
1622 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1623 a target-defined manner. */
1624 if (CALL_DUMMY_STACK_ADJUST_P)
1625 if (INNER_THAN (1, 2))
1626 {
1627 /* stack grows downward */
1628 sp -= CALL_DUMMY_STACK_ADJUST;
1629 }
1630
1631 /* Store the address at which the structure is supposed to be
1632 written. Note that this (and the code which reserved the space
1633 above) assumes that gcc was used to compile this function. Since
1634 it doesn't cost us anything but space and if the function is pcc
1635 it will ignore this value, we will make that assumption.
1636
1637 Also note that on some machines (like the sparc) pcc uses a
1638 convention like gcc's. */
1639
1640 if (struct_return)
1641 STORE_STRUCT_RETURN (struct_addr, sp);
1642
1643 /* Write the stack pointer. This is here because the statements above
1644 might fool with it. On SPARC, this write also stores the register
1645 window into the right place in the new stack frame, which otherwise
1646 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1647 write_sp (sp);
1648
1649 if (SAVE_DUMMY_FRAME_TOS_P ())
1650 SAVE_DUMMY_FRAME_TOS (sp);
1651
1652 {
1653 char *name;
1654 struct symbol *symbol;
1655
1656 name = NULL;
1657 symbol = find_pc_function (funaddr);
1658 if (symbol)
1659 {
1660 name = SYMBOL_SOURCE_NAME (symbol);
1661 }
1662 else
1663 {
1664 /* Try the minimal symbols. */
1665 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1666
1667 if (msymbol)
1668 {
1669 name = SYMBOL_SOURCE_NAME (msymbol);
1670 }
1671 }
1672 if (name == NULL)
1673 {
1674 char format[80];
1675 sprintf (format, "at %s", local_hex_format ());
1676 name = alloca (80);
1677 /* FIXME-32x64: assumes funaddr fits in a long. */
1678 sprintf (name, format, (unsigned long) funaddr);
1679 }
1680
1681 /* Execute the stack dummy routine, calling FUNCTION.
1682 When it is done, discard the empty frame
1683 after storing the contents of all regs into retbuf. */
1684 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1685
1686 if (rc == 1)
1687 {
1688 /* We stopped inside the FUNCTION because of a random signal.
1689 Further execution of the FUNCTION is not allowed. */
1690
1691 if (unwind_on_signal_p)
1692 {
1693 /* The user wants the context restored. */
1694
1695 /* We must get back to the frame we were before the dummy
1696 call. */
1697 frame_pop (get_current_frame ());
1698
1699 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1700 a C++ name with arguments and stuff. */
1701 error ("\
1702 The program being debugged was signaled while in a function called from GDB.\n\
1703 GDB has restored the context to what it was before the call.\n\
1704 To change this behavior use \"set unwindonsignal off\"\n\
1705 Evaluation of the expression containing the function (%s) will be abandoned.",
1706 name);
1707 }
1708 else
1709 {
1710 /* The user wants to stay in the frame where we stopped (default).*/
1711
1712 /* If we restored the inferior status (via the cleanup),
1713 we would print a spurious error message (Unable to
1714 restore previously selected frame), would write the
1715 registers from the inf_status (which is wrong), and
1716 would do other wrong things. */
1717 discard_cleanups (inf_status_cleanup);
1718 discard_inferior_status (inf_status);
1719
1720 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1721 a C++ name with arguments and stuff. */
1722 error ("\
1723 The program being debugged was signaled while in a function called from GDB.\n\
1724 GDB remains in the frame where the signal was received.\n\
1725 To change this behavior use \"set unwindonsignal on\"\n\
1726 Evaluation of the expression containing the function (%s) will be abandoned.",
1727 name);
1728 }
1729 }
1730
1731 if (rc == 2)
1732 {
1733 /* We hit a breakpoint inside the FUNCTION. */
1734
1735 /* If we restored the inferior status (via the cleanup), we
1736 would print a spurious error message (Unable to restore
1737 previously selected frame), would write the registers from
1738 the inf_status (which is wrong), and would do other wrong
1739 things. */
1740 discard_cleanups (inf_status_cleanup);
1741 discard_inferior_status (inf_status);
1742
1743 /* The following error message used to say "The expression
1744 which contained the function call has been discarded." It
1745 is a hard concept to explain in a few words. Ideally, GDB
1746 would be able to resume evaluation of the expression when
1747 the function finally is done executing. Perhaps someday
1748 this will be implemented (it would not be easy). */
1749
1750 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1751 a C++ name with arguments and stuff. */
1752 error ("\
1753 The program being debugged stopped while in a function called from GDB.\n\
1754 When the function (%s) is done executing, GDB will silently\n\
1755 stop (instead of continuing to evaluate the expression containing\n\
1756 the function call).", name);
1757 }
1758
1759 /* If we get here the called FUNCTION run to completion. */
1760
1761 /* Restore the inferior status, via its cleanup. At this stage,
1762 leave the RETBUF alone. */
1763 do_cleanups (inf_status_cleanup);
1764
1765 /* Figure out the value returned by the function. */
1766 /* elz: I defined this new macro for the hppa architecture only.
1767 this gives us a way to get the value returned by the function
1768 from the stack, at the same address we told the function to put
1769 it. We cannot assume on the pa that r28 still contains the
1770 address of the returned structure. Usually this will be
1771 overwritten by the callee. I don't know about other
1772 architectures, so I defined this macro */
1773 #ifdef VALUE_RETURNED_FROM_STACK
1774 if (struct_return)
1775 {
1776 do_cleanups (retbuf_cleanup);
1777 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1778 }
1779 #endif
1780 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1781 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1782 fetch the return value direct from the stack. This lack of
1783 trust comes about because legacy targets have a nasty habit of
1784 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1785 For such targets, just hope that value_being_returned() can
1786 find the adjusted value. */
1787 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1788 {
1789 struct value *retval = value_at (value_type, struct_addr, NULL);
1790 do_cleanups (retbuf_cleanup);
1791 return retval;
1792 }
1793 else
1794 {
1795 struct value *retval = value_being_returned (value_type, retbuf,
1796 struct_return);
1797 do_cleanups (retbuf_cleanup);
1798 return retval;
1799 }
1800 }
1801 }
1802
1803 struct value *
1804 call_function_by_hand (struct value *function, int nargs, struct value **args)
1805 {
1806 if (CALL_DUMMY_P)
1807 {
1808 return hand_function_call (function, nargs, args);
1809 }
1810 else
1811 {
1812 error ("Cannot invoke functions on this machine.");
1813 }
1814 }
1815 \f
1816
1817
1818 /* Create a value for an array by allocating space in the inferior, copying
1819 the data into that space, and then setting up an array value.
1820
1821 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1822 populated from the values passed in ELEMVEC.
1823
1824 The element type of the array is inherited from the type of the
1825 first element, and all elements must have the same size (though we
1826 don't currently enforce any restriction on their types). */
1827
1828 struct value *
1829 value_array (int lowbound, int highbound, struct value **elemvec)
1830 {
1831 int nelem;
1832 int idx;
1833 unsigned int typelength;
1834 struct value *val;
1835 struct type *rangetype;
1836 struct type *arraytype;
1837 CORE_ADDR addr;
1838
1839 /* Validate that the bounds are reasonable and that each of the elements
1840 have the same size. */
1841
1842 nelem = highbound - lowbound + 1;
1843 if (nelem <= 0)
1844 {
1845 error ("bad array bounds (%d, %d)", lowbound, highbound);
1846 }
1847 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1848 for (idx = 1; idx < nelem; idx++)
1849 {
1850 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1851 {
1852 error ("array elements must all be the same size");
1853 }
1854 }
1855
1856 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1857 lowbound, highbound);
1858 arraytype = create_array_type ((struct type *) NULL,
1859 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1860
1861 if (!current_language->c_style_arrays)
1862 {
1863 val = allocate_value (arraytype);
1864 for (idx = 0; idx < nelem; idx++)
1865 {
1866 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1867 VALUE_CONTENTS_ALL (elemvec[idx]),
1868 typelength);
1869 }
1870 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1871 return val;
1872 }
1873
1874 /* Allocate space to store the array in the inferior, and then initialize
1875 it by copying in each element. FIXME: Is it worth it to create a
1876 local buffer in which to collect each value and then write all the
1877 bytes in one operation? */
1878
1879 addr = allocate_space_in_inferior (nelem * typelength);
1880 for (idx = 0; idx < nelem; idx++)
1881 {
1882 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1883 typelength);
1884 }
1885
1886 /* Create the array type and set up an array value to be evaluated lazily. */
1887
1888 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1889 return (val);
1890 }
1891
1892 /* Create a value for a string constant by allocating space in the inferior,
1893 copying the data into that space, and returning the address with type
1894 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1895 of characters.
1896 Note that string types are like array of char types with a lower bound of
1897 zero and an upper bound of LEN - 1. Also note that the string may contain
1898 embedded null bytes. */
1899
1900 struct value *
1901 value_string (char *ptr, int len)
1902 {
1903 struct value *val;
1904 int lowbound = current_language->string_lower_bound;
1905 struct type *rangetype = create_range_type ((struct type *) NULL,
1906 builtin_type_int,
1907 lowbound, len + lowbound - 1);
1908 struct type *stringtype
1909 = create_string_type ((struct type *) NULL, rangetype);
1910 CORE_ADDR addr;
1911
1912 if (current_language->c_style_arrays == 0)
1913 {
1914 val = allocate_value (stringtype);
1915 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1916 return val;
1917 }
1918
1919
1920 /* Allocate space to store the string in the inferior, and then
1921 copy LEN bytes from PTR in gdb to that address in the inferior. */
1922
1923 addr = allocate_space_in_inferior (len);
1924 write_memory (addr, ptr, len);
1925
1926 val = value_at_lazy (stringtype, addr, NULL);
1927 return (val);
1928 }
1929
1930 struct value *
1931 value_bitstring (char *ptr, int len)
1932 {
1933 struct value *val;
1934 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1935 0, len - 1);
1936 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1937 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1938 val = allocate_value (type);
1939 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1940 return val;
1941 }
1942 \f
1943 /* See if we can pass arguments in T2 to a function which takes arguments
1944 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1945 vector. If some arguments need coercion of some sort, then the coerced
1946 values are written into T2. Return value is 0 if the arguments could be
1947 matched, or the position at which they differ if not.
1948
1949 STATICP is nonzero if the T1 argument list came from a
1950 static member function. T2 will still include the ``this'' pointer,
1951 but it will be skipped.
1952
1953 For non-static member functions, we ignore the first argument,
1954 which is the type of the instance variable. This is because we want
1955 to handle calls with objects from derived classes. This is not
1956 entirely correct: we should actually check to make sure that a
1957 requested operation is type secure, shouldn't we? FIXME. */
1958
1959 static int
1960 typecmp (int staticp, int varargs, int nargs,
1961 struct field t1[], struct value *t2[])
1962 {
1963 int i;
1964
1965 if (t2 == 0)
1966 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1967
1968 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1969 if (staticp)
1970 t2 ++;
1971
1972 for (i = 0;
1973 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1974 i++)
1975 {
1976 struct type *tt1, *tt2;
1977
1978 if (!t2[i])
1979 return i + 1;
1980
1981 tt1 = check_typedef (t1[i].type);
1982 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1983
1984 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1985 /* We should be doing hairy argument matching, as below. */
1986 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1987 {
1988 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1989 t2[i] = value_coerce_array (t2[i]);
1990 else
1991 t2[i] = value_addr (t2[i]);
1992 continue;
1993 }
1994
1995 /* djb - 20000715 - Until the new type structure is in the
1996 place, and we can attempt things like implicit conversions,
1997 we need to do this so you can take something like a map<const
1998 char *>, and properly access map["hello"], because the
1999 argument to [] will be a reference to a pointer to a char,
2000 and the argument will be a pointer to a char. */
2001 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2002 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2003 {
2004 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2005 }
2006 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2007 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2008 TYPE_CODE(tt2) == TYPE_CODE_REF)
2009 {
2010 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2011 }
2012 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2013 continue;
2014 /* Array to pointer is a `trivial conversion' according to the ARM. */
2015
2016 /* We should be doing much hairier argument matching (see section 13.2
2017 of the ARM), but as a quick kludge, just check for the same type
2018 code. */
2019 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2020 return i + 1;
2021 }
2022 if (varargs || t2[i] == NULL)
2023 return 0;
2024 return i + 1;
2025 }
2026
2027 /* Helper function used by value_struct_elt to recurse through baseclasses.
2028 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2029 and search in it assuming it has (class) type TYPE.
2030 If found, return value, else return NULL.
2031
2032 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2033 look for a baseclass named NAME. */
2034
2035 static struct value *
2036 search_struct_field (char *name, struct value *arg1, int offset,
2037 register struct type *type, int looking_for_baseclass)
2038 {
2039 int i;
2040 int nbases = TYPE_N_BASECLASSES (type);
2041
2042 CHECK_TYPEDEF (type);
2043
2044 if (!looking_for_baseclass)
2045 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2046 {
2047 char *t_field_name = TYPE_FIELD_NAME (type, i);
2048
2049 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2050 {
2051 struct value *v;
2052 if (TYPE_FIELD_STATIC (type, i))
2053 {
2054 v = value_static_field (type, i);
2055 if (v == 0)
2056 error ("field %s is nonexistent or has been optimised out",
2057 name);
2058 }
2059 else
2060 {
2061 v = value_primitive_field (arg1, offset, i, type);
2062 if (v == 0)
2063 error ("there is no field named %s", name);
2064 }
2065 return v;
2066 }
2067
2068 if (t_field_name
2069 && (t_field_name[0] == '\0'
2070 || (TYPE_CODE (type) == TYPE_CODE_UNION
2071 && (strcmp_iw (t_field_name, "else") == 0))))
2072 {
2073 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2074 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2075 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2076 {
2077 /* Look for a match through the fields of an anonymous union,
2078 or anonymous struct. C++ provides anonymous unions.
2079
2080 In the GNU Chill (now deleted from GDB)
2081 implementation of variant record types, each
2082 <alternative field> has an (anonymous) union type,
2083 each member of the union represents a <variant
2084 alternative>. Each <variant alternative> is
2085 represented as a struct, with a member for each
2086 <variant field>. */
2087
2088 struct value *v;
2089 int new_offset = offset;
2090
2091 /* This is pretty gross. In G++, the offset in an
2092 anonymous union is relative to the beginning of the
2093 enclosing struct. In the GNU Chill (now deleted
2094 from GDB) implementation of variant records, the
2095 bitpos is zero in an anonymous union field, so we
2096 have to add the offset of the union here. */
2097 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2098 || (TYPE_NFIELDS (field_type) > 0
2099 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2100 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2101
2102 v = search_struct_field (name, arg1, new_offset, field_type,
2103 looking_for_baseclass);
2104 if (v)
2105 return v;
2106 }
2107 }
2108 }
2109
2110 for (i = 0; i < nbases; i++)
2111 {
2112 struct value *v;
2113 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2114 /* If we are looking for baseclasses, this is what we get when we
2115 hit them. But it could happen that the base part's member name
2116 is not yet filled in. */
2117 int found_baseclass = (looking_for_baseclass
2118 && TYPE_BASECLASS_NAME (type, i) != NULL
2119 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2120
2121 if (BASETYPE_VIA_VIRTUAL (type, i))
2122 {
2123 int boffset;
2124 struct value *v2 = allocate_value (basetype);
2125
2126 boffset = baseclass_offset (type, i,
2127 VALUE_CONTENTS (arg1) + offset,
2128 VALUE_ADDRESS (arg1)
2129 + VALUE_OFFSET (arg1) + offset);
2130 if (boffset == -1)
2131 error ("virtual baseclass botch");
2132
2133 /* The virtual base class pointer might have been clobbered by the
2134 user program. Make sure that it still points to a valid memory
2135 location. */
2136
2137 boffset += offset;
2138 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2139 {
2140 CORE_ADDR base_addr;
2141
2142 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2143 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2144 TYPE_LENGTH (basetype)) != 0)
2145 error ("virtual baseclass botch");
2146 VALUE_LVAL (v2) = lval_memory;
2147 VALUE_ADDRESS (v2) = base_addr;
2148 }
2149 else
2150 {
2151 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2152 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2153 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2154 if (VALUE_LAZY (arg1))
2155 VALUE_LAZY (v2) = 1;
2156 else
2157 memcpy (VALUE_CONTENTS_RAW (v2),
2158 VALUE_CONTENTS_RAW (arg1) + boffset,
2159 TYPE_LENGTH (basetype));
2160 }
2161
2162 if (found_baseclass)
2163 return v2;
2164 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2165 looking_for_baseclass);
2166 }
2167 else if (found_baseclass)
2168 v = value_primitive_field (arg1, offset, i, type);
2169 else
2170 v = search_struct_field (name, arg1,
2171 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2172 basetype, looking_for_baseclass);
2173 if (v)
2174 return v;
2175 }
2176 return NULL;
2177 }
2178
2179
2180 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2181 * in an object pointed to by VALADDR (on the host), assumed to be of
2182 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2183 * looking (in case VALADDR is the contents of an enclosing object).
2184 *
2185 * This routine recurses on the primary base of the derived class because
2186 * the virtual base entries of the primary base appear before the other
2187 * virtual base entries.
2188 *
2189 * If the virtual base is not found, a negative integer is returned.
2190 * The magnitude of the negative integer is the number of entries in
2191 * the virtual table to skip over (entries corresponding to various
2192 * ancestral classes in the chain of primary bases).
2193 *
2194 * Important: This assumes the HP / Taligent C++ runtime
2195 * conventions. Use baseclass_offset() instead to deal with g++
2196 * conventions. */
2197
2198 void
2199 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2200 int offset, int *boffset_p, int *skip_p)
2201 {
2202 int boffset; /* offset of virtual base */
2203 int index; /* displacement to use in virtual table */
2204 int skip;
2205
2206 struct value *vp;
2207 CORE_ADDR vtbl; /* the virtual table pointer */
2208 struct type *pbc; /* the primary base class */
2209
2210 /* Look for the virtual base recursively in the primary base, first.
2211 * This is because the derived class object and its primary base
2212 * subobject share the primary virtual table. */
2213
2214 boffset = 0;
2215 pbc = TYPE_PRIMARY_BASE (type);
2216 if (pbc)
2217 {
2218 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2219 if (skip < 0)
2220 {
2221 *boffset_p = boffset;
2222 *skip_p = -1;
2223 return;
2224 }
2225 }
2226 else
2227 skip = 0;
2228
2229
2230 /* Find the index of the virtual base according to HP/Taligent
2231 runtime spec. (Depth-first, left-to-right.) */
2232 index = virtual_base_index_skip_primaries (basetype, type);
2233
2234 if (index < 0)
2235 {
2236 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2237 *boffset_p = 0;
2238 return;
2239 }
2240
2241 /* pai: FIXME -- 32x64 possible problem */
2242 /* First word (4 bytes) in object layout is the vtable pointer */
2243 vtbl = *(CORE_ADDR *) (valaddr + offset);
2244
2245 /* Before the constructor is invoked, things are usually zero'd out. */
2246 if (vtbl == 0)
2247 error ("Couldn't find virtual table -- object may not be constructed yet.");
2248
2249
2250 /* Find virtual base's offset -- jump over entries for primary base
2251 * ancestors, then use the index computed above. But also adjust by
2252 * HP_ACC_VBASE_START for the vtable slots before the start of the
2253 * virtual base entries. Offset is negative -- virtual base entries
2254 * appear _before_ the address point of the virtual table. */
2255
2256 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2257 & use long type */
2258
2259 /* epstein : FIXME -- added param for overlay section. May not be correct */
2260 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2261 boffset = value_as_long (vp);
2262 *skip_p = -1;
2263 *boffset_p = boffset;
2264 return;
2265 }
2266
2267
2268 /* Helper function used by value_struct_elt to recurse through baseclasses.
2269 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2270 and search in it assuming it has (class) type TYPE.
2271 If found, return value, else if name matched and args not return (value)-1,
2272 else return NULL. */
2273
2274 static struct value *
2275 search_struct_method (char *name, struct value **arg1p,
2276 struct value **args, int offset,
2277 int *static_memfuncp, register struct type *type)
2278 {
2279 int i;
2280 struct value *v;
2281 int name_matched = 0;
2282 char dem_opname[64];
2283
2284 CHECK_TYPEDEF (type);
2285 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2286 {
2287 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2288 /* FIXME! May need to check for ARM demangling here */
2289 if (strncmp (t_field_name, "__", 2) == 0 ||
2290 strncmp (t_field_name, "op", 2) == 0 ||
2291 strncmp (t_field_name, "type", 4) == 0)
2292 {
2293 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2294 t_field_name = dem_opname;
2295 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2296 t_field_name = dem_opname;
2297 }
2298 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2299 {
2300 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2301 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2302 name_matched = 1;
2303
2304 check_stub_method_group (type, i);
2305 if (j > 0 && args == 0)
2306 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2307 else if (j == 0 && args == 0)
2308 {
2309 v = value_fn_field (arg1p, f, j, type, offset);
2310 if (v != NULL)
2311 return v;
2312 }
2313 else
2314 while (j >= 0)
2315 {
2316 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2317 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2318 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2319 TYPE_FN_FIELD_ARGS (f, j), args))
2320 {
2321 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2322 return value_virtual_fn_field (arg1p, f, j, type, offset);
2323 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2324 *static_memfuncp = 1;
2325 v = value_fn_field (arg1p, f, j, type, offset);
2326 if (v != NULL)
2327 return v;
2328 }
2329 j--;
2330 }
2331 }
2332 }
2333
2334 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2335 {
2336 int base_offset;
2337
2338 if (BASETYPE_VIA_VIRTUAL (type, i))
2339 {
2340 if (TYPE_HAS_VTABLE (type))
2341 {
2342 /* HP aCC compiled type, search for virtual base offset
2343 according to HP/Taligent runtime spec. */
2344 int skip;
2345 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2346 VALUE_CONTENTS_ALL (*arg1p),
2347 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2348 &base_offset, &skip);
2349 if (skip >= 0)
2350 error ("Virtual base class offset not found in vtable");
2351 }
2352 else
2353 {
2354 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2355 char *base_valaddr;
2356
2357 /* The virtual base class pointer might have been clobbered by the
2358 user program. Make sure that it still points to a valid memory
2359 location. */
2360
2361 if (offset < 0 || offset >= TYPE_LENGTH (type))
2362 {
2363 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2364 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2365 + VALUE_OFFSET (*arg1p) + offset,
2366 base_valaddr,
2367 TYPE_LENGTH (baseclass)) != 0)
2368 error ("virtual baseclass botch");
2369 }
2370 else
2371 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2372
2373 base_offset =
2374 baseclass_offset (type, i, base_valaddr,
2375 VALUE_ADDRESS (*arg1p)
2376 + VALUE_OFFSET (*arg1p) + offset);
2377 if (base_offset == -1)
2378 error ("virtual baseclass botch");
2379 }
2380 }
2381 else
2382 {
2383 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2384 }
2385 v = search_struct_method (name, arg1p, args, base_offset + offset,
2386 static_memfuncp, TYPE_BASECLASS (type, i));
2387 if (v == (struct value *) - 1)
2388 {
2389 name_matched = 1;
2390 }
2391 else if (v)
2392 {
2393 /* FIXME-bothner: Why is this commented out? Why is it here? */
2394 /* *arg1p = arg1_tmp; */
2395 return v;
2396 }
2397 }
2398 if (name_matched)
2399 return (struct value *) - 1;
2400 else
2401 return NULL;
2402 }
2403
2404 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2405 extract the component named NAME from the ultimate target structure/union
2406 and return it as a value with its appropriate type.
2407 ERR is used in the error message if *ARGP's type is wrong.
2408
2409 C++: ARGS is a list of argument types to aid in the selection of
2410 an appropriate method. Also, handle derived types.
2411
2412 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2413 where the truthvalue of whether the function that was resolved was
2414 a static member function or not is stored.
2415
2416 ERR is an error message to be printed in case the field is not found. */
2417
2418 struct value *
2419 value_struct_elt (struct value **argp, struct value **args,
2420 char *name, int *static_memfuncp, char *err)
2421 {
2422 register struct type *t;
2423 struct value *v;
2424
2425 COERCE_ARRAY (*argp);
2426
2427 t = check_typedef (VALUE_TYPE (*argp));
2428
2429 /* Follow pointers until we get to a non-pointer. */
2430
2431 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2432 {
2433 *argp = value_ind (*argp);
2434 /* Don't coerce fn pointer to fn and then back again! */
2435 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2436 COERCE_ARRAY (*argp);
2437 t = check_typedef (VALUE_TYPE (*argp));
2438 }
2439
2440 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2441 error ("not implemented: member type in value_struct_elt");
2442
2443 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2444 && TYPE_CODE (t) != TYPE_CODE_UNION)
2445 error ("Attempt to extract a component of a value that is not a %s.", err);
2446
2447 /* Assume it's not, unless we see that it is. */
2448 if (static_memfuncp)
2449 *static_memfuncp = 0;
2450
2451 if (!args)
2452 {
2453 /* if there are no arguments ...do this... */
2454
2455 /* Try as a field first, because if we succeed, there
2456 is less work to be done. */
2457 v = search_struct_field (name, *argp, 0, t, 0);
2458 if (v)
2459 return v;
2460
2461 /* C++: If it was not found as a data field, then try to
2462 return it as a pointer to a method. */
2463
2464 if (destructor_name_p (name, t))
2465 error ("Cannot get value of destructor");
2466
2467 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2468
2469 if (v == (struct value *) - 1)
2470 error ("Cannot take address of a method");
2471 else if (v == 0)
2472 {
2473 if (TYPE_NFN_FIELDS (t))
2474 error ("There is no member or method named %s.", name);
2475 else
2476 error ("There is no member named %s.", name);
2477 }
2478 return v;
2479 }
2480
2481 if (destructor_name_p (name, t))
2482 {
2483 if (!args[1])
2484 {
2485 /* Destructors are a special case. */
2486 int m_index, f_index;
2487
2488 v = NULL;
2489 if (get_destructor_fn_field (t, &m_index, &f_index))
2490 {
2491 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2492 f_index, NULL, 0);
2493 }
2494 if (v == NULL)
2495 error ("could not find destructor function named %s.", name);
2496 else
2497 return v;
2498 }
2499 else
2500 {
2501 error ("destructor should not have any argument");
2502 }
2503 }
2504 else
2505 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2506
2507 if (v == (struct value *) - 1)
2508 {
2509 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2510 }
2511 else if (v == 0)
2512 {
2513 /* See if user tried to invoke data as function. If so,
2514 hand it back. If it's not callable (i.e., a pointer to function),
2515 gdb should give an error. */
2516 v = search_struct_field (name, *argp, 0, t, 0);
2517 }
2518
2519 if (!v)
2520 error ("Structure has no component named %s.", name);
2521 return v;
2522 }
2523
2524 /* Search through the methods of an object (and its bases)
2525 * to find a specified method. Return the pointer to the
2526 * fn_field list of overloaded instances.
2527 * Helper function for value_find_oload_list.
2528 * ARGP is a pointer to a pointer to a value (the object)
2529 * METHOD is a string containing the method name
2530 * OFFSET is the offset within the value
2531 * TYPE is the assumed type of the object
2532 * NUM_FNS is the number of overloaded instances
2533 * BASETYPE is set to the actual type of the subobject where the method is found
2534 * BOFFSET is the offset of the base subobject where the method is found */
2535
2536 static struct fn_field *
2537 find_method_list (struct value **argp, char *method, int offset,
2538 struct type *type, int *num_fns,
2539 struct type **basetype, int *boffset)
2540 {
2541 int i;
2542 struct fn_field *f;
2543 CHECK_TYPEDEF (type);
2544
2545 *num_fns = 0;
2546
2547 /* First check in object itself */
2548 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2549 {
2550 /* pai: FIXME What about operators and type conversions? */
2551 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2552 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2553 {
2554 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2555 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2556
2557 *num_fns = len;
2558 *basetype = type;
2559 *boffset = offset;
2560
2561 /* Resolve any stub methods. */
2562 check_stub_method_group (type, i);
2563
2564 return f;
2565 }
2566 }
2567
2568 /* Not found in object, check in base subobjects */
2569 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2570 {
2571 int base_offset;
2572 if (BASETYPE_VIA_VIRTUAL (type, i))
2573 {
2574 if (TYPE_HAS_VTABLE (type))
2575 {
2576 /* HP aCC compiled type, search for virtual base offset
2577 * according to HP/Taligent runtime spec. */
2578 int skip;
2579 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2580 VALUE_CONTENTS_ALL (*argp),
2581 offset + VALUE_EMBEDDED_OFFSET (*argp),
2582 &base_offset, &skip);
2583 if (skip >= 0)
2584 error ("Virtual base class offset not found in vtable");
2585 }
2586 else
2587 {
2588 /* probably g++ runtime model */
2589 base_offset = VALUE_OFFSET (*argp) + offset;
2590 base_offset =
2591 baseclass_offset (type, i,
2592 VALUE_CONTENTS (*argp) + base_offset,
2593 VALUE_ADDRESS (*argp) + base_offset);
2594 if (base_offset == -1)
2595 error ("virtual baseclass botch");
2596 }
2597 }
2598 else
2599 /* non-virtual base, simply use bit position from debug info */
2600 {
2601 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2602 }
2603 f = find_method_list (argp, method, base_offset + offset,
2604 TYPE_BASECLASS (type, i), num_fns, basetype,
2605 boffset);
2606 if (f)
2607 return f;
2608 }
2609 return NULL;
2610 }
2611
2612 /* Return the list of overloaded methods of a specified name.
2613 * ARGP is a pointer to a pointer to a value (the object)
2614 * METHOD is the method name
2615 * OFFSET is the offset within the value contents
2616 * NUM_FNS is the number of overloaded instances
2617 * BASETYPE is set to the type of the base subobject that defines the method
2618 * BOFFSET is the offset of the base subobject which defines the method */
2619
2620 struct fn_field *
2621 value_find_oload_method_list (struct value **argp, char *method, int offset,
2622 int *num_fns, struct type **basetype,
2623 int *boffset)
2624 {
2625 struct type *t;
2626
2627 t = check_typedef (VALUE_TYPE (*argp));
2628
2629 /* code snarfed from value_struct_elt */
2630 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2631 {
2632 *argp = value_ind (*argp);
2633 /* Don't coerce fn pointer to fn and then back again! */
2634 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2635 COERCE_ARRAY (*argp);
2636 t = check_typedef (VALUE_TYPE (*argp));
2637 }
2638
2639 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2640 error ("Not implemented: member type in value_find_oload_lis");
2641
2642 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2643 && TYPE_CODE (t) != TYPE_CODE_UNION)
2644 error ("Attempt to extract a component of a value that is not a struct or union");
2645
2646 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2647 }
2648
2649 /* Given an array of argument types (ARGTYPES) (which includes an
2650 entry for "this" in the case of C++ methods), the number of
2651 arguments NARGS, the NAME of a function whether it's a method or
2652 not (METHOD), and the degree of laxness (LAX) in conforming to
2653 overload resolution rules in ANSI C++, find the best function that
2654 matches on the argument types according to the overload resolution
2655 rules.
2656
2657 In the case of class methods, the parameter OBJ is an object value
2658 in which to search for overloaded methods.
2659
2660 In the case of non-method functions, the parameter FSYM is a symbol
2661 corresponding to one of the overloaded functions.
2662
2663 Return value is an integer: 0 -> good match, 10 -> debugger applied
2664 non-standard coercions, 100 -> incompatible.
2665
2666 If a method is being searched for, VALP will hold the value.
2667 If a non-method is being searched for, SYMP will hold the symbol for it.
2668
2669 If a method is being searched for, and it is a static method,
2670 then STATICP will point to a non-zero value.
2671
2672 Note: This function does *not* check the value of
2673 overload_resolution. Caller must check it to see whether overload
2674 resolution is permitted.
2675 */
2676
2677 int
2678 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2679 int lax, struct value **objp, struct symbol *fsym,
2680 struct value **valp, struct symbol **symp, int *staticp)
2681 {
2682 int nparms;
2683 struct type **parm_types;
2684 int champ_nparms = 0;
2685 struct value *obj = (objp ? *objp : NULL);
2686
2687 short oload_champ = -1; /* Index of best overloaded function */
2688 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2689 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2690 short oload_ambig_champ = -1; /* 2nd contender for best match */
2691 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2692 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2693
2694 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2695 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2696
2697 struct value *temp = obj;
2698 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2699 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2700 int num_fns = 0; /* Number of overloaded instances being considered */
2701 struct type *basetype = NULL;
2702 int boffset;
2703 register int jj;
2704 register int ix;
2705 int static_offset;
2706 struct cleanup *cleanups = NULL;
2707
2708 char *obj_type_name = NULL;
2709 char *func_name = NULL;
2710
2711 /* Get the list of overloaded methods or functions */
2712 if (method)
2713 {
2714 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2715 /* Hack: evaluate_subexp_standard often passes in a pointer
2716 value rather than the object itself, so try again */
2717 if ((!obj_type_name || !*obj_type_name) &&
2718 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2719 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2720
2721 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2722 &num_fns,
2723 &basetype, &boffset);
2724 if (!fns_ptr || !num_fns)
2725 error ("Couldn't find method %s%s%s",
2726 obj_type_name,
2727 (obj_type_name && *obj_type_name) ? "::" : "",
2728 name);
2729 /* If we are dealing with stub method types, they should have
2730 been resolved by find_method_list via value_find_oload_method_list
2731 above. */
2732 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2733 }
2734 else
2735 {
2736 int i = -1;
2737 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2738
2739 /* If the name is NULL this must be a C-style function.
2740 Just return the same symbol. */
2741 if (!func_name)
2742 {
2743 *symp = fsym;
2744 return 0;
2745 }
2746
2747 oload_syms = make_symbol_overload_list (fsym);
2748 cleanups = make_cleanup (xfree, oload_syms);
2749 while (oload_syms[++i])
2750 num_fns++;
2751 if (!num_fns)
2752 error ("Couldn't find function %s", func_name);
2753 }
2754
2755 oload_champ_bv = NULL;
2756
2757 /* Consider each candidate in turn */
2758 for (ix = 0; ix < num_fns; ix++)
2759 {
2760 static_offset = 0;
2761 if (method)
2762 {
2763 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2764 static_offset = 1;
2765 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2766 }
2767 else
2768 {
2769 /* If it's not a method, this is the proper place */
2770 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2771 }
2772
2773 /* Prepare array of parameter types */
2774 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2775 for (jj = 0; jj < nparms; jj++)
2776 parm_types[jj] = (method
2777 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2778 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2779
2780 /* Compare parameter types to supplied argument types. Skip THIS for
2781 static methods. */
2782 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2783 nargs - static_offset);
2784
2785 if (!oload_champ_bv)
2786 {
2787 oload_champ_bv = bv;
2788 oload_champ = 0;
2789 champ_nparms = nparms;
2790 }
2791 else
2792 /* See whether current candidate is better or worse than previous best */
2793 switch (compare_badness (bv, oload_champ_bv))
2794 {
2795 case 0:
2796 oload_ambiguous = 1; /* top two contenders are equally good */
2797 oload_ambig_champ = ix;
2798 break;
2799 case 1:
2800 oload_ambiguous = 2; /* incomparable top contenders */
2801 oload_ambig_champ = ix;
2802 break;
2803 case 2:
2804 oload_champ_bv = bv; /* new champion, record details */
2805 oload_ambiguous = 0;
2806 oload_champ = ix;
2807 oload_ambig_champ = -1;
2808 champ_nparms = nparms;
2809 break;
2810 case 3:
2811 default:
2812 break;
2813 }
2814 xfree (parm_types);
2815 if (overload_debug)
2816 {
2817 if (method)
2818 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2819 else
2820 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2821 for (jj = 0; jj < nargs - static_offset; jj++)
2822 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2823 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2824 }
2825 } /* end loop over all candidates */
2826 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2827 if they have the exact same goodness. This is because there is no
2828 way to differentiate based on return type, which we need to in
2829 cases like overloads of .begin() <It's both const and non-const> */
2830 #if 0
2831 if (oload_ambiguous)
2832 {
2833 if (method)
2834 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2835 obj_type_name,
2836 (obj_type_name && *obj_type_name) ? "::" : "",
2837 name);
2838 else
2839 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2840 func_name);
2841 }
2842 #endif
2843
2844 /* Check how bad the best match is. */
2845 static_offset = 0;
2846 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2847 static_offset = 1;
2848 for (ix = 1; ix <= nargs - static_offset; ix++)
2849 {
2850 if (oload_champ_bv->rank[ix] >= 100)
2851 oload_incompatible = 1; /* truly mismatched types */
2852
2853 else if (oload_champ_bv->rank[ix] >= 10)
2854 oload_non_standard = 1; /* non-standard type conversions needed */
2855 }
2856 if (oload_incompatible)
2857 {
2858 if (method)
2859 error ("Cannot resolve method %s%s%s to any overloaded instance",
2860 obj_type_name,
2861 (obj_type_name && *obj_type_name) ? "::" : "",
2862 name);
2863 else
2864 error ("Cannot resolve function %s to any overloaded instance",
2865 func_name);
2866 }
2867 else if (oload_non_standard)
2868 {
2869 if (method)
2870 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2871 obj_type_name,
2872 (obj_type_name && *obj_type_name) ? "::" : "",
2873 name);
2874 else
2875 warning ("Using non-standard conversion to match function %s to supplied arguments",
2876 func_name);
2877 }
2878
2879 if (method)
2880 {
2881 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2882 *staticp = 1;
2883 else if (staticp)
2884 *staticp = 0;
2885 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2886 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2887 else
2888 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2889 }
2890 else
2891 {
2892 *symp = oload_syms[oload_champ];
2893 xfree (func_name);
2894 }
2895
2896 if (objp)
2897 {
2898 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2899 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2900 {
2901 temp = value_addr (temp);
2902 }
2903 *objp = temp;
2904 }
2905 if (cleanups != NULL)
2906 do_cleanups (cleanups);
2907
2908 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2909 }
2910
2911 /* C++: return 1 is NAME is a legitimate name for the destructor
2912 of type TYPE. If TYPE does not have a destructor, or
2913 if NAME is inappropriate for TYPE, an error is signaled. */
2914 int
2915 destructor_name_p (const char *name, const struct type *type)
2916 {
2917 /* destructors are a special case. */
2918
2919 if (name[0] == '~')
2920 {
2921 char *dname = type_name_no_tag (type);
2922 char *cp = strchr (dname, '<');
2923 unsigned int len;
2924
2925 /* Do not compare the template part for template classes. */
2926 if (cp == NULL)
2927 len = strlen (dname);
2928 else
2929 len = cp - dname;
2930 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2931 error ("name of destructor must equal name of class");
2932 else
2933 return 1;
2934 }
2935 return 0;
2936 }
2937
2938 /* Helper function for check_field: Given TYPE, a structure/union,
2939 return 1 if the component named NAME from the ultimate
2940 target structure/union is defined, otherwise, return 0. */
2941
2942 static int
2943 check_field_in (register struct type *type, const char *name)
2944 {
2945 register int i;
2946
2947 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2948 {
2949 char *t_field_name = TYPE_FIELD_NAME (type, i);
2950 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2951 return 1;
2952 }
2953
2954 /* C++: If it was not found as a data field, then try to
2955 return it as a pointer to a method. */
2956
2957 /* Destructors are a special case. */
2958 if (destructor_name_p (name, type))
2959 {
2960 int m_index, f_index;
2961
2962 return get_destructor_fn_field (type, &m_index, &f_index);
2963 }
2964
2965 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2966 {
2967 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2968 return 1;
2969 }
2970
2971 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2972 if (check_field_in (TYPE_BASECLASS (type, i), name))
2973 return 1;
2974
2975 return 0;
2976 }
2977
2978
2979 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2980 return 1 if the component named NAME from the ultimate
2981 target structure/union is defined, otherwise, return 0. */
2982
2983 int
2984 check_field (struct value *arg1, const char *name)
2985 {
2986 register struct type *t;
2987
2988 COERCE_ARRAY (arg1);
2989
2990 t = VALUE_TYPE (arg1);
2991
2992 /* Follow pointers until we get to a non-pointer. */
2993
2994 for (;;)
2995 {
2996 CHECK_TYPEDEF (t);
2997 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2998 break;
2999 t = TYPE_TARGET_TYPE (t);
3000 }
3001
3002 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3003 error ("not implemented: member type in check_field");
3004
3005 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3006 && TYPE_CODE (t) != TYPE_CODE_UNION)
3007 error ("Internal error: `this' is not an aggregate");
3008
3009 return check_field_in (t, name);
3010 }
3011
3012 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3013 return the address of this member as a "pointer to member"
3014 type. If INTYPE is non-null, then it will be the type
3015 of the member we are looking for. This will help us resolve
3016 "pointers to member functions". This function is used
3017 to resolve user expressions of the form "DOMAIN::NAME". */
3018
3019 struct value *
3020 value_struct_elt_for_reference (struct type *domain, int offset,
3021 struct type *curtype, char *name,
3022 struct type *intype)
3023 {
3024 register struct type *t = curtype;
3025 register int i;
3026 struct value *v;
3027
3028 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3029 && TYPE_CODE (t) != TYPE_CODE_UNION)
3030 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3031
3032 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3033 {
3034 char *t_field_name = TYPE_FIELD_NAME (t, i);
3035
3036 if (t_field_name && STREQ (t_field_name, name))
3037 {
3038 if (TYPE_FIELD_STATIC (t, i))
3039 {
3040 v = value_static_field (t, i);
3041 if (v == NULL)
3042 error ("static field %s has been optimized out",
3043 name);
3044 return v;
3045 }
3046 if (TYPE_FIELD_PACKED (t, i))
3047 error ("pointers to bitfield members not allowed");
3048
3049 return value_from_longest
3050 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3051 domain)),
3052 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3053 }
3054 }
3055
3056 /* C++: If it was not found as a data field, then try to
3057 return it as a pointer to a method. */
3058
3059 /* Destructors are a special case. */
3060 if (destructor_name_p (name, t))
3061 {
3062 error ("member pointers to destructors not implemented yet");
3063 }
3064
3065 /* Perform all necessary dereferencing. */
3066 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3067 intype = TYPE_TARGET_TYPE (intype);
3068
3069 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3070 {
3071 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3072 char dem_opname[64];
3073
3074 if (strncmp (t_field_name, "__", 2) == 0 ||
3075 strncmp (t_field_name, "op", 2) == 0 ||
3076 strncmp (t_field_name, "type", 4) == 0)
3077 {
3078 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3079 t_field_name = dem_opname;
3080 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3081 t_field_name = dem_opname;
3082 }
3083 if (t_field_name && STREQ (t_field_name, name))
3084 {
3085 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3086 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3087
3088 check_stub_method_group (t, i);
3089
3090 if (intype == 0 && j > 1)
3091 error ("non-unique member `%s' requires type instantiation", name);
3092 if (intype)
3093 {
3094 while (j--)
3095 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3096 break;
3097 if (j < 0)
3098 error ("no member function matches that type instantiation");
3099 }
3100 else
3101 j = 0;
3102
3103 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3104 {
3105 return value_from_longest
3106 (lookup_reference_type
3107 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3108 domain)),
3109 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3110 }
3111 else
3112 {
3113 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3114 0, VAR_NAMESPACE, 0, NULL);
3115 if (s == NULL)
3116 {
3117 v = 0;
3118 }
3119 else
3120 {
3121 v = read_var_value (s, 0);
3122 #if 0
3123 VALUE_TYPE (v) = lookup_reference_type
3124 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3125 domain));
3126 #endif
3127 }
3128 return v;
3129 }
3130 }
3131 }
3132 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3133 {
3134 struct value *v;
3135 int base_offset;
3136
3137 if (BASETYPE_VIA_VIRTUAL (t, i))
3138 base_offset = 0;
3139 else
3140 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3141 v = value_struct_elt_for_reference (domain,
3142 offset + base_offset,
3143 TYPE_BASECLASS (t, i),
3144 name,
3145 intype);
3146 if (v)
3147 return v;
3148 }
3149 return 0;
3150 }
3151
3152
3153 /* Given a pointer value V, find the real (RTTI) type
3154 of the object it points to.
3155 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3156 and refer to the values computed for the object pointed to. */
3157
3158 struct type *
3159 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3160 {
3161 struct value *target;
3162
3163 target = value_ind (v);
3164
3165 return value_rtti_type (target, full, top, using_enc);
3166 }
3167
3168 /* Given a value pointed to by ARGP, check its real run-time type, and
3169 if that is different from the enclosing type, create a new value
3170 using the real run-time type as the enclosing type (and of the same
3171 type as ARGP) and return it, with the embedded offset adjusted to
3172 be the correct offset to the enclosed object
3173 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3174 parameters, computed by value_rtti_type(). If these are available,
3175 they can be supplied and a second call to value_rtti_type() is avoided.
3176 (Pass RTYPE == NULL if they're not available */
3177
3178 struct value *
3179 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3180 int xusing_enc)
3181 {
3182 struct type *real_type;
3183 int full = 0;
3184 int top = -1;
3185 int using_enc = 0;
3186 struct value *new_val;
3187
3188 if (rtype)
3189 {
3190 real_type = rtype;
3191 full = xfull;
3192 top = xtop;
3193 using_enc = xusing_enc;
3194 }
3195 else
3196 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3197
3198 /* If no RTTI data, or if object is already complete, do nothing */
3199 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3200 return argp;
3201
3202 /* If we have the full object, but for some reason the enclosing
3203 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3204 if (full)
3205 {
3206 argp = value_change_enclosing_type (argp, real_type);
3207 return argp;
3208 }
3209
3210 /* Check if object is in memory */
3211 if (VALUE_LVAL (argp) != lval_memory)
3212 {
3213 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3214
3215 return argp;
3216 }
3217
3218 /* All other cases -- retrieve the complete object */
3219 /* Go back by the computed top_offset from the beginning of the object,
3220 adjusting for the embedded offset of argp if that's what value_rtti_type
3221 used for its computation. */
3222 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3223 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3224 VALUE_BFD_SECTION (argp));
3225 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3226 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3227 return new_val;
3228 }
3229
3230
3231
3232
3233 /* Return the value of the local variable, if one exists.
3234 Flag COMPLAIN signals an error if the request is made in an
3235 inappropriate context. */
3236
3237 struct value *
3238 value_of_local (const char *name, int complain)
3239 {
3240 struct symbol *func, *sym;
3241 struct block *b;
3242 int i;
3243 struct value * ret;
3244
3245 if (deprecated_selected_frame == 0)
3246 {
3247 if (complain)
3248 error ("no frame selected");
3249 else
3250 return 0;
3251 }
3252
3253 func = get_frame_function (deprecated_selected_frame);
3254 if (!func)
3255 {
3256 if (complain)
3257 error ("no `%s' in nameless context", name);
3258 else
3259 return 0;
3260 }
3261
3262 b = SYMBOL_BLOCK_VALUE (func);
3263 i = BLOCK_NSYMS (b);
3264 if (i <= 0)
3265 {
3266 if (complain)
3267 error ("no args, no `%s'", name);
3268 else
3269 return 0;
3270 }
3271
3272 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3273 symbol instead of the LOC_ARG one (if both exist). */
3274 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
3275 if (sym == NULL)
3276 {
3277 if (complain)
3278 error ("current stack frame does not contain a variable named `%s'", name);
3279 else
3280 return NULL;
3281 }
3282
3283 ret = read_var_value (sym, deprecated_selected_frame);
3284 if (ret == 0 && complain)
3285 error ("`%s' argument unreadable", name);
3286 return ret;
3287 }
3288
3289 /* C++/Objective-C: return the value of the class instance variable,
3290 if one exists. Flag COMPLAIN signals an error if the request is
3291 made in an inappropriate context. */
3292
3293 struct value *
3294 value_of_this (int complain)
3295 {
3296 if (current_language->la_language == language_objc)
3297 return value_of_local ("self", complain);
3298 else
3299 return value_of_local ("this", complain);
3300 }
3301
3302 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3303 long, starting at LOWBOUND. The result has the same lower bound as
3304 the original ARRAY. */
3305
3306 struct value *
3307 value_slice (struct value *array, int lowbound, int length)
3308 {
3309 struct type *slice_range_type, *slice_type, *range_type;
3310 LONGEST lowerbound, upperbound;
3311 struct value *slice;
3312 struct type *array_type;
3313 array_type = check_typedef (VALUE_TYPE (array));
3314 COERCE_VARYING_ARRAY (array, array_type);
3315 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3316 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3317 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3318 error ("cannot take slice of non-array");
3319 range_type = TYPE_INDEX_TYPE (array_type);
3320 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3321 error ("slice from bad array or bitstring");
3322 if (lowbound < lowerbound || length < 0
3323 || lowbound + length - 1 > upperbound)
3324 error ("slice out of range");
3325 /* FIXME-type-allocation: need a way to free this type when we are
3326 done with it. */
3327 slice_range_type = create_range_type ((struct type *) NULL,
3328 TYPE_TARGET_TYPE (range_type),
3329 lowbound, lowbound + length - 1);
3330 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3331 {
3332 int i;
3333 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3334 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3335 slice = value_zero (slice_type, not_lval);
3336 for (i = 0; i < length; i++)
3337 {
3338 int element = value_bit_index (array_type,
3339 VALUE_CONTENTS (array),
3340 lowbound + i);
3341 if (element < 0)
3342 error ("internal error accessing bitstring");
3343 else if (element > 0)
3344 {
3345 int j = i % TARGET_CHAR_BIT;
3346 if (BITS_BIG_ENDIAN)
3347 j = TARGET_CHAR_BIT - 1 - j;
3348 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3349 }
3350 }
3351 /* We should set the address, bitssize, and bitspos, so the clice
3352 can be used on the LHS, but that may require extensions to
3353 value_assign. For now, just leave as a non_lval. FIXME. */
3354 }
3355 else
3356 {
3357 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3358 LONGEST offset
3359 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3360 slice_type = create_array_type ((struct type *) NULL, element_type,
3361 slice_range_type);
3362 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3363 slice = allocate_value (slice_type);
3364 if (VALUE_LAZY (array))
3365 VALUE_LAZY (slice) = 1;
3366 else
3367 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3368 TYPE_LENGTH (slice_type));
3369 if (VALUE_LVAL (array) == lval_internalvar)
3370 VALUE_LVAL (slice) = lval_internalvar_component;
3371 else
3372 VALUE_LVAL (slice) = VALUE_LVAL (array);
3373 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3374 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3375 }
3376 return slice;
3377 }
3378
3379 /* Create a value for a FORTRAN complex number. Currently most of
3380 the time values are coerced to COMPLEX*16 (i.e. a complex number
3381 composed of 2 doubles. This really should be a smarter routine
3382 that figures out precision inteligently as opposed to assuming
3383 doubles. FIXME: fmb */
3384
3385 struct value *
3386 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3387 {
3388 struct value *val;
3389 struct type *real_type = TYPE_TARGET_TYPE (type);
3390
3391 val = allocate_value (type);
3392 arg1 = value_cast (real_type, arg1);
3393 arg2 = value_cast (real_type, arg2);
3394
3395 memcpy (VALUE_CONTENTS_RAW (val),
3396 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3397 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3398 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3399 return val;
3400 }
3401
3402 /* Cast a value into the appropriate complex data type. */
3403
3404 static struct value *
3405 cast_into_complex (struct type *type, struct value *val)
3406 {
3407 struct type *real_type = TYPE_TARGET_TYPE (type);
3408 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3409 {
3410 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3411 struct value *re_val = allocate_value (val_real_type);
3412 struct value *im_val = allocate_value (val_real_type);
3413
3414 memcpy (VALUE_CONTENTS_RAW (re_val),
3415 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3416 memcpy (VALUE_CONTENTS_RAW (im_val),
3417 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3418 TYPE_LENGTH (val_real_type));
3419
3420 return value_literal_complex (re_val, im_val, type);
3421 }
3422 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3423 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3424 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3425 else
3426 error ("cannot cast non-number to complex");
3427 }
3428
3429 void
3430 _initialize_valops (void)
3431 {
3432 #if 0
3433 add_show_from_set
3434 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3435 "Set automatic abandonment of expressions upon failure.",
3436 &setlist),
3437 &showlist);
3438 #endif
3439
3440 add_show_from_set
3441 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3442 "Set overload resolution in evaluating C++ functions.",
3443 &setlist),
3444 &showlist);
3445 overload_resolution = 1;
3446
3447 add_show_from_set (
3448 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3449 (char *) &unwind_on_signal_p,
3450 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3451 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3452 is received while in a function called from gdb (call dummy). If set, gdb\n\
3453 unwinds the stack and restore the context to what as it was before the call.\n\
3454 The default is to stop in the frame where the signal was received.", &setlist),
3455 &showlist);
3456
3457 add_show_from_set
3458 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3459 (char *) &coerce_float_to_double,
3460 "Set coercion of floats to doubles when calling functions\n"
3461 "Variables of type float should generally be converted to doubles before\n"
3462 "calling an unprototyped function, and left alone when calling a prototyped\n"
3463 "function. However, some older debug info formats do not provide enough\n"
3464 "information to determine that a function is prototyped. If this flag is\n"
3465 "set, GDB will perform the conversion for a function it considers\n"
3466 "unprototyped.\n"
3467 "The default is to perform the conversion.\n",
3468 &setlist),
3469 &showlist);
3470 coerce_float_to_double = 1;
3471 }
This page took 0.102114 seconds and 3 git commands to generate.