gdb/
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41 #include "tracepoint.h"
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50
51 extern int overload_debug;
52 /* Local functions. */
53
54 static int typecmp (int staticp, int varargs, int nargs,
55 struct field t1[], struct value *t2[]);
56
57 static struct value *search_struct_field (const char *, struct value *,
58 int, struct type *, int);
59
60 static struct value *search_struct_method (const char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int find_oload_champ_namespace (struct type **, int,
65 const char *, const char *,
66 struct symbol ***,
67 struct badness_vector **,
68 const int no_adl);
69
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 const char *, const char *,
73 int, struct symbol ***,
74 struct badness_vector **, int *,
75 const int no_adl);
76
77 static int find_oload_champ (struct type **, int, int, int,
78 struct fn_field *, struct symbol **,
79 struct badness_vector **);
80
81 static int oload_method_static (int, struct fn_field *, int);
82
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 int, int);
88
89 static struct value *value_struct_elt_for_reference (struct type *,
90 int, struct type *,
91 char *,
92 struct type *,
93 int, enum noside);
94
95 static struct value *value_namespace_elt (const struct type *,
96 char *, int , enum noside);
97
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 char *, int,
100 enum noside);
101
102 static CORE_ADDR allocate_space_in_inferior (int);
103
104 static struct value *cast_into_complex (struct type *, struct value *);
105
106 static struct fn_field *find_method_list (struct value **, const char *,
107 int, struct type *, int *,
108 struct type **, int *);
109
110 void _initialize_valops (void);
111
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114 default. */
115
116 static int auto_abandon = 0;
117 #endif
118
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("Overload resolution in evaluating "
126 "C++ functions is %s.\n"),
127 value);
128 }
129
130 /* Find the address of function name NAME in the inferior. If OBJF_P
131 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 is defined. */
133
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137 struct symbol *sym;
138
139 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (sym != NULL)
141 {
142 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 {
144 error (_("\"%s\" exists in this program but is not a function."),
145 name);
146 }
147
148 if (objf_p)
149 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150
151 return value_of_variable (sym, NULL);
152 }
153 else
154 {
155 struct minimal_symbol *msymbol =
156 lookup_minimal_symbol (name, NULL, NULL);
157
158 if (msymbol != NULL)
159 {
160 struct objfile *objfile = msymbol_objfile (msymbol);
161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162
163 struct type *type;
164 CORE_ADDR maddr;
165 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 type = lookup_function_type (type);
167 type = lookup_pointer_type (type);
168 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169
170 if (objf_p)
171 *objf_p = objfile;
172
173 return value_from_pointer (type, maddr);
174 }
175 else
176 {
177 if (!target_has_execution)
178 error (_("evaluation of this expression "
179 "requires the target program to be active"));
180 else
181 error (_("evaluation of this expression requires the "
182 "program to have a function \"%s\"."),
183 name);
184 }
185 }
186 }
187
188 /* Allocate NBYTES of space in the inferior using the inferior's
189 malloc and return a value that is a pointer to the allocated
190 space. */
191
192 struct value *
193 value_allocate_space_in_inferior (int len)
194 {
195 struct objfile *objf;
196 struct value *val = find_function_in_inferior ("malloc", &objf);
197 struct gdbarch *gdbarch = get_objfile_arch (objf);
198 struct value *blocklen;
199
200 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
201 val = call_function_by_hand (val, 1, &blocklen);
202 if (value_logical_not (val))
203 {
204 if (!target_has_execution)
205 error (_("No memory available to program now: "
206 "you need to start the target first"));
207 else
208 error (_("No memory available to program: call to malloc failed"));
209 }
210 return val;
211 }
212
213 static CORE_ADDR
214 allocate_space_in_inferior (int len)
215 {
216 return value_as_long (value_allocate_space_in_inferior (len));
217 }
218
219 /* Cast struct value VAL to type TYPE and return as a value.
220 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
221 for this to work. Typedef to one of the codes is permitted.
222 Returns NULL if the cast is neither an upcast nor a downcast. */
223
224 static struct value *
225 value_cast_structs (struct type *type, struct value *v2)
226 {
227 struct type *t1;
228 struct type *t2;
229 struct value *v;
230
231 gdb_assert (type != NULL && v2 != NULL);
232
233 t1 = check_typedef (type);
234 t2 = check_typedef (value_type (v2));
235
236 /* Check preconditions. */
237 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t1) == TYPE_CODE_UNION)
239 && !!"Precondition is that type is of STRUCT or UNION kind.");
240 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
241 || TYPE_CODE (t2) == TYPE_CODE_UNION)
242 && !!"Precondition is that value is of STRUCT or UNION kind");
243
244 if (TYPE_NAME (t1) != NULL
245 && TYPE_NAME (t2) != NULL
246 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
247 return NULL;
248
249 /* Upcasting: look in the type of the source to see if it contains the
250 type of the target as a superclass. If so, we'll need to
251 offset the pointer rather than just change its type. */
252 if (TYPE_NAME (t1) != NULL)
253 {
254 v = search_struct_field (type_name_no_tag (t1),
255 v2, 0, t2, 1);
256 if (v)
257 return v;
258 }
259
260 /* Downcasting: look in the type of the target to see if it contains the
261 type of the source as a superclass. If so, we'll need to
262 offset the pointer rather than just change its type. */
263 if (TYPE_NAME (t2) != NULL)
264 {
265 /* Try downcasting using the run-time type of the value. */
266 int full, top, using_enc;
267 struct type *real_type;
268
269 real_type = value_rtti_type (v2, &full, &top, &using_enc);
270 if (real_type)
271 {
272 v = value_full_object (v2, real_type, full, top, using_enc);
273 v = value_at_lazy (real_type, value_address (v));
274
275 /* We might be trying to cast to the outermost enclosing
276 type, in which case search_struct_field won't work. */
277 if (TYPE_NAME (real_type) != NULL
278 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
279 return v;
280
281 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
282 if (v)
283 return v;
284 }
285
286 /* Try downcasting using information from the destination type
287 T2. This wouldn't work properly for classes with virtual
288 bases, but those were handled above. */
289 v = search_struct_field (type_name_no_tag (t2),
290 value_zero (t1, not_lval), 0, t1, 1);
291 if (v)
292 {
293 /* Downcasting is possible (t1 is superclass of v2). */
294 CORE_ADDR addr2 = value_address (v2);
295
296 addr2 -= value_address (v) + value_embedded_offset (v);
297 return value_at (type, addr2);
298 }
299 }
300
301 return NULL;
302 }
303
304 /* Cast one pointer or reference type to another. Both TYPE and
305 the type of ARG2 should be pointer types, or else both should be
306 reference types. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2)
310 {
311 struct type *type1 = check_typedef (type);
312 struct type *type2 = check_typedef (value_type (arg2));
313 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315
316 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318 && !value_logical_not (arg2))
319 {
320 struct value *v2;
321
322 if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 v2 = coerce_ref (arg2);
324 else
325 v2 = value_ind (arg2);
326 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328 v2 = value_cast_structs (t1, v2);
329 /* At this point we have what we can have, un-dereference if needed. */
330 if (v2)
331 {
332 struct value *v = value_addr (v2);
333
334 deprecated_set_value_type (v, type);
335 return v;
336 }
337 }
338
339 /* No superclass found, just change the pointer type. */
340 arg2 = value_copy (arg2);
341 deprecated_set_value_type (arg2, type);
342 set_value_enclosing_type (arg2, type);
343 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
344 return arg2;
345 }
346
347 /* Cast value ARG2 to type TYPE and return as a value.
348 More general than a C cast: accepts any two types of the same length,
349 and if ARG2 is an lvalue it can be cast into anything at all. */
350 /* In C++, casts may change pointer or object representations. */
351
352 struct value *
353 value_cast (struct type *type, struct value *arg2)
354 {
355 enum type_code code1;
356 enum type_code code2;
357 int scalar;
358 struct type *type2;
359
360 int convert_to_boolean = 0;
361
362 if (value_type (arg2) == type)
363 return arg2;
364
365 code1 = TYPE_CODE (check_typedef (type));
366
367 /* Check if we are casting struct reference to struct reference. */
368 if (code1 == TYPE_CODE_REF)
369 {
370 /* We dereference type; then we recurse and finally
371 we generate value of the given reference. Nothing wrong with
372 that. */
373 struct type *t1 = check_typedef (type);
374 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375 struct value *val = value_cast (dereftype, arg2);
376
377 return value_ref (val);
378 }
379
380 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381
382 if (code2 == TYPE_CODE_REF)
383 /* We deref the value and then do the cast. */
384 return value_cast (type, coerce_ref (arg2));
385
386 CHECK_TYPEDEF (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (code1 != TYPE_CODE_REF);
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (code1 == TYPE_CODE_FLT && scalar)
467 return value_from_double (type, value_as_double (arg2));
468 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469 {
470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471 int dec_len = TYPE_LENGTH (type);
472 gdb_byte dec[16];
473
474 if (code2 == TYPE_CODE_FLT)
475 decimal_from_floating (arg2, dec, dec_len, byte_order);
476 else if (code2 == TYPE_CODE_DECFLOAT)
477 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 byte_order, dec, dec_len, byte_order);
479 else
480 /* The only option left is an integral type. */
481 decimal_from_integral (arg2, dec, dec_len, byte_order);
482
483 return value_from_decfloat (type, dec);
484 }
485 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 || code1 == TYPE_CODE_RANGE)
487 && (scalar || code2 == TYPE_CODE_PTR
488 || code2 == TYPE_CODE_MEMBERPTR))
489 {
490 LONGEST longest;
491
492 /* When we cast pointers to integers, we mustn't use
493 gdbarch_pointer_to_address to find the address the pointer
494 represents, as value_as_long would. GDB should evaluate
495 expressions just as the compiler would --- and the compiler
496 sees a cast as a simple reinterpretation of the pointer's
497 bits. */
498 if (code2 == TYPE_CODE_PTR)
499 longest = extract_unsigned_integer
500 (value_contents (arg2), TYPE_LENGTH (type2),
501 gdbarch_byte_order (get_type_arch (type2)));
502 else
503 longest = value_as_long (arg2);
504 return value_from_longest (type, convert_to_boolean ?
505 (LONGEST) (longest ? 1 : 0) : longest);
506 }
507 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 || code2 == TYPE_CODE_ENUM
509 || code2 == TYPE_CODE_RANGE))
510 {
511 /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 want the length of an address! -- we are really dealing with
513 addresses (i.e., gdb representations) not pointers (i.e.,
514 target representations) here.
515
516 This allows things like "print *(int *)0x01000234" to work
517 without printing a misleading message -- which would
518 otherwise occur when dealing with a target having two byte
519 pointers and four byte addresses. */
520
521 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522 LONGEST longest = value_as_long (arg2);
523
524 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 {
526 if (longest >= ((LONGEST) 1 << addr_bit)
527 || longest <= -((LONGEST) 1 << addr_bit))
528 warning (_("value truncated"));
529 }
530 return value_from_longest (type, longest);
531 }
532 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 && value_as_long (arg2) == 0)
534 {
535 struct value *result = allocate_value (type);
536
537 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
538 return result;
539 }
540 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 && value_as_long (arg2) == 0)
542 {
543 /* The Itanium C++ ABI represents NULL pointers to members as
544 minus one, instead of biasing the normal case. */
545 return value_from_longest (type, -1);
546 }
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
548 {
549 /* Widen the scalar to a vector. */
550 struct type *eltype;
551 struct value *val;
552 LONGEST low_bound, high_bound;
553 int i;
554
555 if (!get_array_bounds (type, &low_bound, &high_bound))
556 error (_("Could not determine the vector bounds"));
557
558 eltype = check_typedef (TYPE_TARGET_TYPE (type));
559 arg2 = value_cast (eltype, arg2);
560 val = allocate_value (type);
561
562 for (i = 0; i < high_bound - low_bound + 1; i++)
563 {
564 /* Duplicate the contents of arg2 into the destination vector. */
565 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
566 value_contents_all (arg2), TYPE_LENGTH (eltype));
567 }
568 return val;
569 }
570 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
571 {
572 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
573 return value_cast_pointers (type, arg2);
574
575 arg2 = value_copy (arg2);
576 deprecated_set_value_type (arg2, type);
577 set_value_enclosing_type (arg2, type);
578 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
579 return arg2;
580 }
581 else if (VALUE_LVAL (arg2) == lval_memory)
582 return value_at_lazy (type, value_address (arg2));
583 else if (code1 == TYPE_CODE_VOID)
584 {
585 return value_zero (type, not_lval);
586 }
587 else
588 {
589 error (_("Invalid cast."));
590 return 0;
591 }
592 }
593
594 /* The C++ reinterpret_cast operator. */
595
596 struct value *
597 value_reinterpret_cast (struct type *type, struct value *arg)
598 {
599 struct value *result;
600 struct type *real_type = check_typedef (type);
601 struct type *arg_type, *dest_type;
602 int is_ref = 0;
603 enum type_code dest_code, arg_code;
604
605 /* Do reference, function, and array conversion. */
606 arg = coerce_array (arg);
607
608 /* Attempt to preserve the type the user asked for. */
609 dest_type = type;
610
611 /* If we are casting to a reference type, transform
612 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
613 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
614 {
615 is_ref = 1;
616 arg = value_addr (arg);
617 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
618 real_type = lookup_pointer_type (real_type);
619 }
620
621 arg_type = value_type (arg);
622
623 dest_code = TYPE_CODE (real_type);
624 arg_code = TYPE_CODE (arg_type);
625
626 /* We can convert pointer types, or any pointer type to int, or int
627 type to pointer. */
628 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
629 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
630 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
632 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
634 || (dest_code == arg_code
635 && (dest_code == TYPE_CODE_PTR
636 || dest_code == TYPE_CODE_METHODPTR
637 || dest_code == TYPE_CODE_MEMBERPTR)))
638 result = value_cast (dest_type, arg);
639 else
640 error (_("Invalid reinterpret_cast"));
641
642 if (is_ref)
643 result = value_cast (type, value_ref (value_ind (result)));
644
645 return result;
646 }
647
648 /* A helper for value_dynamic_cast. This implements the first of two
649 runtime checks: we iterate over all the base classes of the value's
650 class which are equal to the desired class; if only one of these
651 holds the value, then it is the answer. */
652
653 static int
654 dynamic_cast_check_1 (struct type *desired_type,
655 const gdb_byte *valaddr,
656 int embedded_offset,
657 CORE_ADDR address,
658 struct value *val,
659 struct type *search_type,
660 CORE_ADDR arg_addr,
661 struct type *arg_type,
662 struct value **result)
663 {
664 int i, result_count = 0;
665
666 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
667 {
668 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
669 address, val);
670
671 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
672 {
673 if (address + embedded_offset + offset >= arg_addr
674 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
675 {
676 ++result_count;
677 if (!*result)
678 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
679 address + embedded_offset + offset);
680 }
681 }
682 else
683 result_count += dynamic_cast_check_1 (desired_type,
684 valaddr,
685 embedded_offset + offset,
686 address, val,
687 TYPE_BASECLASS (search_type, i),
688 arg_addr,
689 arg_type,
690 result);
691 }
692
693 return result_count;
694 }
695
696 /* A helper for value_dynamic_cast. This implements the second of two
697 runtime checks: we look for a unique public sibling class of the
698 argument's declared class. */
699
700 static int
701 dynamic_cast_check_2 (struct type *desired_type,
702 const gdb_byte *valaddr,
703 int embedded_offset,
704 CORE_ADDR address,
705 struct value *val,
706 struct type *search_type,
707 struct value **result)
708 {
709 int i, result_count = 0;
710
711 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
712 {
713 int offset;
714
715 if (! BASETYPE_VIA_PUBLIC (search_type, i))
716 continue;
717
718 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
719 address, val);
720 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
721 {
722 ++result_count;
723 if (*result == NULL)
724 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
725 address + embedded_offset + offset);
726 }
727 else
728 result_count += dynamic_cast_check_2 (desired_type,
729 valaddr,
730 embedded_offset + offset,
731 address, val,
732 TYPE_BASECLASS (search_type, i),
733 result);
734 }
735
736 return result_count;
737 }
738
739 /* The C++ dynamic_cast operator. */
740
741 struct value *
742 value_dynamic_cast (struct type *type, struct value *arg)
743 {
744 int full, top, using_enc;
745 struct type *resolved_type = check_typedef (type);
746 struct type *arg_type = check_typedef (value_type (arg));
747 struct type *class_type, *rtti_type;
748 struct value *result, *tem, *original_arg = arg;
749 CORE_ADDR addr;
750 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
751
752 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
753 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
754 error (_("Argument to dynamic_cast must be a pointer or reference type"));
755 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
756 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
757 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
758
759 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
760 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
761 {
762 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
763 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
764 && value_as_long (arg) == 0))
765 error (_("Argument to dynamic_cast does not have pointer type"));
766 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
767 {
768 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
769 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
770 error (_("Argument to dynamic_cast does "
771 "not have pointer to class type"));
772 }
773
774 /* Handle NULL pointers. */
775 if (value_as_long (arg) == 0)
776 return value_zero (type, not_lval);
777
778 arg = value_ind (arg);
779 }
780 else
781 {
782 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
783 error (_("Argument to dynamic_cast does not have class type"));
784 }
785
786 /* If the classes are the same, just return the argument. */
787 if (class_types_same_p (class_type, arg_type))
788 return value_cast (type, arg);
789
790 /* If the target type is a unique base class of the argument's
791 declared type, just cast it. */
792 if (is_ancestor (class_type, arg_type))
793 {
794 if (is_unique_ancestor (class_type, arg))
795 return value_cast (type, original_arg);
796 error (_("Ambiguous dynamic_cast"));
797 }
798
799 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
800 if (! rtti_type)
801 error (_("Couldn't determine value's most derived type for dynamic_cast"));
802
803 /* Compute the most derived object's address. */
804 addr = value_address (arg);
805 if (full)
806 {
807 /* Done. */
808 }
809 else if (using_enc)
810 addr += top;
811 else
812 addr += top + value_embedded_offset (arg);
813
814 /* dynamic_cast<void *> means to return a pointer to the
815 most-derived object. */
816 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
817 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
818 return value_at_lazy (type, addr);
819
820 tem = value_at (type, addr);
821
822 /* The first dynamic check specified in 5.2.7. */
823 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
824 {
825 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
826 return tem;
827 result = NULL;
828 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, addr,
833 arg_type,
834 &result) == 1)
835 return value_cast (type,
836 is_ref ? value_ref (result) : value_addr (result));
837 }
838
839 /* The second dynamic check specified in 5.2.7. */
840 result = NULL;
841 if (is_public_ancestor (arg_type, rtti_type)
842 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
843 value_contents_for_printing (tem),
844 value_embedded_offset (tem),
845 value_address (tem), tem,
846 rtti_type, &result) == 1)
847 return value_cast (type,
848 is_ref ? value_ref (result) : value_addr (result));
849
850 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
851 return value_zero (type, not_lval);
852
853 error (_("dynamic_cast failed"));
854 }
855
856 /* Create a value of type TYPE that is zero, and return it. */
857
858 struct value *
859 value_zero (struct type *type, enum lval_type lv)
860 {
861 struct value *val = allocate_value (type);
862
863 VALUE_LVAL (val) = lv;
864 return val;
865 }
866
867 /* Create a value of numeric type TYPE that is one, and return it. */
868
869 struct value *
870 value_one (struct type *type, enum lval_type lv)
871 {
872 struct type *type1 = check_typedef (type);
873 struct value *val;
874
875 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
876 {
877 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
878 gdb_byte v[16];
879
880 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
881 val = value_from_decfloat (type, v);
882 }
883 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
884 {
885 val = value_from_double (type, (DOUBLEST) 1);
886 }
887 else if (is_integral_type (type1))
888 {
889 val = value_from_longest (type, (LONGEST) 1);
890 }
891 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
892 {
893 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
894 int i;
895 LONGEST low_bound, high_bound;
896 struct value *tmp;
897
898 if (!get_array_bounds (type1, &low_bound, &high_bound))
899 error (_("Could not determine the vector bounds"));
900
901 val = allocate_value (type);
902 for (i = 0; i < high_bound - low_bound + 1; i++)
903 {
904 tmp = value_one (eltype, lv);
905 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
906 value_contents_all (tmp), TYPE_LENGTH (eltype));
907 }
908 }
909 else
910 {
911 error (_("Not a numeric type."));
912 }
913
914 VALUE_LVAL (val) = lv;
915 return val;
916 }
917
918 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
919
920 static struct value *
921 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
922 {
923 struct value *val;
924
925 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
926 error (_("Attempt to dereference a generic pointer."));
927
928 val = value_from_contents_and_address (type, NULL, addr);
929
930 if (!lazy)
931 value_fetch_lazy (val);
932
933 return val;
934 }
935
936 /* Return a value with type TYPE located at ADDR.
937
938 Call value_at only if the data needs to be fetched immediately;
939 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
940 value_at_lazy instead. value_at_lazy simply records the address of
941 the data and sets the lazy-evaluation-required flag. The lazy flag
942 is tested in the value_contents macro, which is used if and when
943 the contents are actually required.
944
945 Note: value_at does *NOT* handle embedded offsets; perform such
946 adjustments before or after calling it. */
947
948 struct value *
949 value_at (struct type *type, CORE_ADDR addr)
950 {
951 return get_value_at (type, addr, 0);
952 }
953
954 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
955
956 struct value *
957 value_at_lazy (struct type *type, CORE_ADDR addr)
958 {
959 return get_value_at (type, addr, 1);
960 }
961
962 /* Called only from the value_contents and value_contents_all()
963 macros, if the current data for a variable needs to be loaded into
964 value_contents(VAL). Fetches the data from the user's process, and
965 clears the lazy flag to indicate that the data in the buffer is
966 valid.
967
968 If the value is zero-length, we avoid calling read_memory, which
969 would abort. We mark the value as fetched anyway -- all 0 bytes of
970 it.
971
972 This function returns a value because it is used in the
973 value_contents macro as part of an expression, where a void would
974 not work. The value is ignored. */
975
976 int
977 value_fetch_lazy (struct value *val)
978 {
979 gdb_assert (value_lazy (val));
980 allocate_value_contents (val);
981 if (value_bitsize (val))
982 {
983 /* To read a lazy bitfield, read the entire enclosing value. This
984 prevents reading the same block of (possibly volatile) memory once
985 per bitfield. It would be even better to read only the containing
986 word, but we have no way to record that just specific bits of a
987 value have been fetched. */
988 struct type *type = check_typedef (value_type (val));
989 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
990 struct value *parent = value_parent (val);
991 LONGEST offset = value_offset (val);
992 LONGEST num;
993 int length = TYPE_LENGTH (type);
994
995 if (!value_bits_valid (val,
996 TARGET_CHAR_BIT * offset + value_bitpos (val),
997 value_bitsize (val)))
998 error (_("value has been optimized out"));
999
1000 if (!unpack_value_bits_as_long (value_type (val),
1001 value_contents_for_printing (parent),
1002 offset,
1003 value_bitpos (val),
1004 value_bitsize (val), parent, &num))
1005 mark_value_bytes_unavailable (val,
1006 value_embedded_offset (val),
1007 length);
1008 else
1009 store_signed_integer (value_contents_raw (val), length,
1010 byte_order, num);
1011 }
1012 else if (VALUE_LVAL (val) == lval_memory)
1013 {
1014 CORE_ADDR addr = value_address (val);
1015 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1016
1017 if (length)
1018 read_value_memory (val, 0, value_stack (val),
1019 addr, value_contents_all_raw (val), length);
1020 }
1021 else if (VALUE_LVAL (val) == lval_register)
1022 {
1023 struct frame_info *frame;
1024 int regnum;
1025 struct type *type = check_typedef (value_type (val));
1026 struct value *new_val = val, *mark = value_mark ();
1027
1028 /* Offsets are not supported here; lazy register values must
1029 refer to the entire register. */
1030 gdb_assert (value_offset (val) == 0);
1031
1032 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1033 {
1034 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1035 regnum = VALUE_REGNUM (new_val);
1036
1037 gdb_assert (frame != NULL);
1038
1039 /* Convertible register routines are used for multi-register
1040 values and for interpretation in different types
1041 (e.g. float or int from a double register). Lazy
1042 register values should have the register's natural type,
1043 so they do not apply. */
1044 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1045 regnum, type));
1046
1047 new_val = get_frame_register_value (frame, regnum);
1048 }
1049
1050 /* If it's still lazy (for instance, a saved register on the
1051 stack), fetch it. */
1052 if (value_lazy (new_val))
1053 value_fetch_lazy (new_val);
1054
1055 /* If the register was not saved, mark it optimized out. */
1056 if (value_optimized_out (new_val))
1057 set_value_optimized_out (val, 1);
1058 else
1059 {
1060 set_value_lazy (val, 0);
1061 value_contents_copy (val, value_embedded_offset (val),
1062 new_val, value_embedded_offset (new_val),
1063 TYPE_LENGTH (type));
1064 }
1065
1066 if (frame_debug)
1067 {
1068 struct gdbarch *gdbarch;
1069 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1070 regnum = VALUE_REGNUM (val);
1071 gdbarch = get_frame_arch (frame);
1072
1073 fprintf_unfiltered (gdb_stdlog,
1074 "{ value_fetch_lazy "
1075 "(frame=%d,regnum=%d(%s),...) ",
1076 frame_relative_level (frame), regnum,
1077 user_reg_map_regnum_to_name (gdbarch, regnum));
1078
1079 fprintf_unfiltered (gdb_stdlog, "->");
1080 if (value_optimized_out (new_val))
1081 fprintf_unfiltered (gdb_stdlog, " optimized out");
1082 else
1083 {
1084 int i;
1085 const gdb_byte *buf = value_contents (new_val);
1086
1087 if (VALUE_LVAL (new_val) == lval_register)
1088 fprintf_unfiltered (gdb_stdlog, " register=%d",
1089 VALUE_REGNUM (new_val));
1090 else if (VALUE_LVAL (new_val) == lval_memory)
1091 fprintf_unfiltered (gdb_stdlog, " address=%s",
1092 paddress (gdbarch,
1093 value_address (new_val)));
1094 else
1095 fprintf_unfiltered (gdb_stdlog, " computed");
1096
1097 fprintf_unfiltered (gdb_stdlog, " bytes=");
1098 fprintf_unfiltered (gdb_stdlog, "[");
1099 for (i = 0; i < register_size (gdbarch, regnum); i++)
1100 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1101 fprintf_unfiltered (gdb_stdlog, "]");
1102 }
1103
1104 fprintf_unfiltered (gdb_stdlog, " }\n");
1105 }
1106
1107 /* Dispose of the intermediate values. This prevents
1108 watchpoints from trying to watch the saved frame pointer. */
1109 value_free_to_mark (mark);
1110 }
1111 else if (VALUE_LVAL (val) == lval_computed)
1112 value_computed_funcs (val)->read (val);
1113 else if (value_optimized_out (val))
1114 /* Keep it optimized out. */;
1115 else
1116 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1117
1118 set_value_lazy (val, 0);
1119 return 0;
1120 }
1121
1122 void
1123 read_value_memory (struct value *val, int embedded_offset,
1124 int stack, CORE_ADDR memaddr,
1125 gdb_byte *buffer, size_t length)
1126 {
1127 if (length)
1128 {
1129 VEC(mem_range_s) *available_memory;
1130
1131 if (get_traceframe_number () < 0
1132 || !traceframe_available_memory (&available_memory, memaddr, length))
1133 {
1134 if (stack)
1135 read_stack (memaddr, buffer, length);
1136 else
1137 read_memory (memaddr, buffer, length);
1138 }
1139 else
1140 {
1141 struct target_section_table *table;
1142 struct cleanup *old_chain;
1143 CORE_ADDR unavail;
1144 mem_range_s *r;
1145 int i;
1146
1147 /* Fallback to reading from read-only sections. */
1148 table = target_get_section_table (&exec_ops);
1149 available_memory =
1150 section_table_available_memory (available_memory,
1151 memaddr, length,
1152 table->sections,
1153 table->sections_end);
1154
1155 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1156 &available_memory);
1157
1158 normalize_mem_ranges (available_memory);
1159
1160 /* Mark which bytes are unavailable, and read those which
1161 are available. */
1162
1163 unavail = memaddr;
1164
1165 for (i = 0;
1166 VEC_iterate (mem_range_s, available_memory, i, r);
1167 i++)
1168 {
1169 if (mem_ranges_overlap (r->start, r->length,
1170 memaddr, length))
1171 {
1172 CORE_ADDR lo1, hi1, lo2, hi2;
1173 CORE_ADDR start, end;
1174
1175 /* Get the intersection window. */
1176 lo1 = memaddr;
1177 hi1 = memaddr + length;
1178 lo2 = r->start;
1179 hi2 = r->start + r->length;
1180 start = max (lo1, lo2);
1181 end = min (hi1, hi2);
1182
1183 gdb_assert (end - memaddr <= length);
1184
1185 if (start > unavail)
1186 mark_value_bytes_unavailable (val,
1187 (embedded_offset
1188 + unavail - memaddr),
1189 start - unavail);
1190 unavail = end;
1191
1192 read_memory (start, buffer + start - memaddr, end - start);
1193 }
1194 }
1195
1196 if (unavail != memaddr + length)
1197 mark_value_bytes_unavailable (val,
1198 embedded_offset + unavail - memaddr,
1199 (memaddr + length) - unavail);
1200
1201 do_cleanups (old_chain);
1202 }
1203 }
1204 }
1205
1206 /* Store the contents of FROMVAL into the location of TOVAL.
1207 Return a new value with the location of TOVAL and contents of FROMVAL. */
1208
1209 struct value *
1210 value_assign (struct value *toval, struct value *fromval)
1211 {
1212 struct type *type;
1213 struct value *val;
1214 struct frame_id old_frame;
1215
1216 if (!deprecated_value_modifiable (toval))
1217 error (_("Left operand of assignment is not a modifiable lvalue."));
1218
1219 toval = coerce_ref (toval);
1220
1221 type = value_type (toval);
1222 if (VALUE_LVAL (toval) != lval_internalvar)
1223 fromval = value_cast (type, fromval);
1224 else
1225 {
1226 /* Coerce arrays and functions to pointers, except for arrays
1227 which only live in GDB's storage. */
1228 if (!value_must_coerce_to_target (fromval))
1229 fromval = coerce_array (fromval);
1230 }
1231
1232 CHECK_TYPEDEF (type);
1233
1234 /* Since modifying a register can trash the frame chain, and
1235 modifying memory can trash the frame cache, we save the old frame
1236 and then restore the new frame afterwards. */
1237 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1238
1239 switch (VALUE_LVAL (toval))
1240 {
1241 case lval_internalvar:
1242 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1243 return value_of_internalvar (get_type_arch (type),
1244 VALUE_INTERNALVAR (toval));
1245
1246 case lval_internalvar_component:
1247 set_internalvar_component (VALUE_INTERNALVAR (toval),
1248 value_offset (toval),
1249 value_bitpos (toval),
1250 value_bitsize (toval),
1251 fromval);
1252 break;
1253
1254 case lval_memory:
1255 {
1256 const gdb_byte *dest_buffer;
1257 CORE_ADDR changed_addr;
1258 int changed_len;
1259 gdb_byte buffer[sizeof (LONGEST)];
1260
1261 if (value_bitsize (toval))
1262 {
1263 struct value *parent = value_parent (toval);
1264
1265 changed_addr = value_address (parent) + value_offset (toval);
1266 changed_len = (value_bitpos (toval)
1267 + value_bitsize (toval)
1268 + HOST_CHAR_BIT - 1)
1269 / HOST_CHAR_BIT;
1270
1271 /* If we can read-modify-write exactly the size of the
1272 containing type (e.g. short or int) then do so. This
1273 is safer for volatile bitfields mapped to hardware
1274 registers. */
1275 if (changed_len < TYPE_LENGTH (type)
1276 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1277 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1278 changed_len = TYPE_LENGTH (type);
1279
1280 if (changed_len > (int) sizeof (LONGEST))
1281 error (_("Can't handle bitfields which "
1282 "don't fit in a %d bit word."),
1283 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1284
1285 read_memory (changed_addr, buffer, changed_len);
1286 modify_field (type, buffer, value_as_long (fromval),
1287 value_bitpos (toval), value_bitsize (toval));
1288 dest_buffer = buffer;
1289 }
1290 else
1291 {
1292 changed_addr = value_address (toval);
1293 changed_len = TYPE_LENGTH (type);
1294 dest_buffer = value_contents (fromval);
1295 }
1296
1297 write_memory (changed_addr, dest_buffer, changed_len);
1298 observer_notify_memory_changed (changed_addr, changed_len,
1299 dest_buffer);
1300 }
1301 break;
1302
1303 case lval_register:
1304 {
1305 struct frame_info *frame;
1306 struct gdbarch *gdbarch;
1307 int value_reg;
1308
1309 /* Figure out which frame this is in currently. */
1310 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1311 value_reg = VALUE_REGNUM (toval);
1312
1313 if (!frame)
1314 error (_("Value being assigned to is no longer active."));
1315
1316 gdbarch = get_frame_arch (frame);
1317 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1318 {
1319 /* If TOVAL is a special machine register requiring
1320 conversion of program values to a special raw
1321 format. */
1322 gdbarch_value_to_register (gdbarch, frame,
1323 VALUE_REGNUM (toval), type,
1324 value_contents (fromval));
1325 }
1326 else
1327 {
1328 if (value_bitsize (toval))
1329 {
1330 struct value *parent = value_parent (toval);
1331 int offset = value_offset (parent) + value_offset (toval);
1332 int changed_len;
1333 gdb_byte buffer[sizeof (LONGEST)];
1334 int optim, unavail;
1335
1336 changed_len = (value_bitpos (toval)
1337 + value_bitsize (toval)
1338 + HOST_CHAR_BIT - 1)
1339 / HOST_CHAR_BIT;
1340
1341 if (changed_len > (int) sizeof (LONGEST))
1342 error (_("Can't handle bitfields which "
1343 "don't fit in a %d bit word."),
1344 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1345
1346 if (!get_frame_register_bytes (frame, value_reg, offset,
1347 changed_len, buffer,
1348 &optim, &unavail))
1349 {
1350 if (optim)
1351 error (_("value has been optimized out"));
1352 if (unavail)
1353 throw_error (NOT_AVAILABLE_ERROR,
1354 _("value is not available"));
1355 }
1356
1357 modify_field (type, buffer, value_as_long (fromval),
1358 value_bitpos (toval), value_bitsize (toval));
1359
1360 put_frame_register_bytes (frame, value_reg, offset,
1361 changed_len, buffer);
1362 }
1363 else
1364 {
1365 put_frame_register_bytes (frame, value_reg,
1366 value_offset (toval),
1367 TYPE_LENGTH (type),
1368 value_contents (fromval));
1369 }
1370 }
1371
1372 if (deprecated_register_changed_hook)
1373 deprecated_register_changed_hook (-1);
1374 observer_notify_target_changed (&current_target);
1375 break;
1376 }
1377
1378 case lval_computed:
1379 {
1380 struct lval_funcs *funcs = value_computed_funcs (toval);
1381
1382 funcs->write (toval, fromval);
1383 }
1384 break;
1385
1386 default:
1387 error (_("Left operand of assignment is not an lvalue."));
1388 }
1389
1390 /* Assigning to the stack pointer, frame pointer, and other
1391 (architecture and calling convention specific) registers may
1392 cause the frame cache to be out of date. Assigning to memory
1393 also can. We just do this on all assignments to registers or
1394 memory, for simplicity's sake; I doubt the slowdown matters. */
1395 switch (VALUE_LVAL (toval))
1396 {
1397 case lval_memory:
1398 case lval_register:
1399 case lval_computed:
1400
1401 reinit_frame_cache ();
1402
1403 /* Having destroyed the frame cache, restore the selected
1404 frame. */
1405
1406 /* FIXME: cagney/2002-11-02: There has to be a better way of
1407 doing this. Instead of constantly saving/restoring the
1408 frame. Why not create a get_selected_frame() function that,
1409 having saved the selected frame's ID can automatically
1410 re-find the previously selected frame automatically. */
1411
1412 {
1413 struct frame_info *fi = frame_find_by_id (old_frame);
1414
1415 if (fi != NULL)
1416 select_frame (fi);
1417 }
1418
1419 break;
1420 default:
1421 break;
1422 }
1423
1424 /* If the field does not entirely fill a LONGEST, then zero the sign
1425 bits. If the field is signed, and is negative, then sign
1426 extend. */
1427 if ((value_bitsize (toval) > 0)
1428 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1429 {
1430 LONGEST fieldval = value_as_long (fromval);
1431 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1432
1433 fieldval &= valmask;
1434 if (!TYPE_UNSIGNED (type)
1435 && (fieldval & (valmask ^ (valmask >> 1))))
1436 fieldval |= ~valmask;
1437
1438 fromval = value_from_longest (type, fieldval);
1439 }
1440
1441 /* The return value is a copy of TOVAL so it shares its location
1442 information, but its contents are updated from FROMVAL. This
1443 implies the returned value is not lazy, even if TOVAL was. */
1444 val = value_copy (toval);
1445 set_value_lazy (val, 0);
1446 memcpy (value_contents_raw (val), value_contents (fromval),
1447 TYPE_LENGTH (type));
1448
1449 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1450 in the case of pointer types. For object types, the enclosing type
1451 and embedded offset must *not* be copied: the target object refered
1452 to by TOVAL retains its original dynamic type after assignment. */
1453 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1454 {
1455 set_value_enclosing_type (val, value_enclosing_type (fromval));
1456 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1457 }
1458
1459 return val;
1460 }
1461
1462 /* Extend a value VAL to COUNT repetitions of its type. */
1463
1464 struct value *
1465 value_repeat (struct value *arg1, int count)
1466 {
1467 struct value *val;
1468
1469 if (VALUE_LVAL (arg1) != lval_memory)
1470 error (_("Only values in memory can be extended with '@'."));
1471 if (count < 1)
1472 error (_("Invalid number %d of repetitions."), count);
1473
1474 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1475
1476 VALUE_LVAL (val) = lval_memory;
1477 set_value_address (val, value_address (arg1));
1478
1479 read_value_memory (val, 0, value_stack (val), value_address (val),
1480 value_contents_all_raw (val),
1481 TYPE_LENGTH (value_enclosing_type (val)));
1482
1483 return val;
1484 }
1485
1486 struct value *
1487 value_of_variable (struct symbol *var, struct block *b)
1488 {
1489 struct value *val;
1490 struct frame_info *frame;
1491
1492 if (!symbol_read_needs_frame (var))
1493 frame = NULL;
1494 else if (!b)
1495 frame = get_selected_frame (_("No frame selected."));
1496 else
1497 {
1498 frame = block_innermost_frame (b);
1499 if (!frame)
1500 {
1501 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1502 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1503 error (_("No frame is currently executing in block %s."),
1504 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1505 else
1506 error (_("No frame is currently executing in specified block"));
1507 }
1508 }
1509
1510 val = read_var_value (var, frame);
1511 if (!val)
1512 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1513
1514 return val;
1515 }
1516
1517 struct value *
1518 address_of_variable (struct symbol *var, struct block *b)
1519 {
1520 struct type *type = SYMBOL_TYPE (var);
1521 struct value *val;
1522
1523 /* Evaluate it first; if the result is a memory address, we're fine.
1524 Lazy evaluation pays off here. */
1525
1526 val = value_of_variable (var, b);
1527
1528 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1529 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1530 {
1531 CORE_ADDR addr = value_address (val);
1532
1533 return value_from_pointer (lookup_pointer_type (type), addr);
1534 }
1535
1536 /* Not a memory address; check what the problem was. */
1537 switch (VALUE_LVAL (val))
1538 {
1539 case lval_register:
1540 {
1541 struct frame_info *frame;
1542 const char *regname;
1543
1544 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1545 gdb_assert (frame);
1546
1547 regname = gdbarch_register_name (get_frame_arch (frame),
1548 VALUE_REGNUM (val));
1549 gdb_assert (regname && *regname);
1550
1551 error (_("Address requested for identifier "
1552 "\"%s\" which is in register $%s"),
1553 SYMBOL_PRINT_NAME (var), regname);
1554 break;
1555 }
1556
1557 default:
1558 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1559 SYMBOL_PRINT_NAME (var));
1560 break;
1561 }
1562
1563 return val;
1564 }
1565
1566 /* Return one if VAL does not live in target memory, but should in order
1567 to operate on it. Otherwise return zero. */
1568
1569 int
1570 value_must_coerce_to_target (struct value *val)
1571 {
1572 struct type *valtype;
1573
1574 /* The only lval kinds which do not live in target memory. */
1575 if (VALUE_LVAL (val) != not_lval
1576 && VALUE_LVAL (val) != lval_internalvar)
1577 return 0;
1578
1579 valtype = check_typedef (value_type (val));
1580
1581 switch (TYPE_CODE (valtype))
1582 {
1583 case TYPE_CODE_ARRAY:
1584 return TYPE_VECTOR (valtype) ? 0 : 1;
1585 case TYPE_CODE_STRING:
1586 return 1;
1587 default:
1588 return 0;
1589 }
1590 }
1591
1592 /* Make sure that VAL lives in target memory if it's supposed to. For
1593 instance, strings are constructed as character arrays in GDB's
1594 storage, and this function copies them to the target. */
1595
1596 struct value *
1597 value_coerce_to_target (struct value *val)
1598 {
1599 LONGEST length;
1600 CORE_ADDR addr;
1601
1602 if (!value_must_coerce_to_target (val))
1603 return val;
1604
1605 length = TYPE_LENGTH (check_typedef (value_type (val)));
1606 addr = allocate_space_in_inferior (length);
1607 write_memory (addr, value_contents (val), length);
1608 return value_at_lazy (value_type (val), addr);
1609 }
1610
1611 /* Given a value which is an array, return a value which is a pointer
1612 to its first element, regardless of whether or not the array has a
1613 nonzero lower bound.
1614
1615 FIXME: A previous comment here indicated that this routine should
1616 be substracting the array's lower bound. It's not clear to me that
1617 this is correct. Given an array subscripting operation, it would
1618 certainly work to do the adjustment here, essentially computing:
1619
1620 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1621
1622 However I believe a more appropriate and logical place to account
1623 for the lower bound is to do so in value_subscript, essentially
1624 computing:
1625
1626 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1627
1628 As further evidence consider what would happen with operations
1629 other than array subscripting, where the caller would get back a
1630 value that had an address somewhere before the actual first element
1631 of the array, and the information about the lower bound would be
1632 lost because of the coercion to pointer type. */
1633
1634 struct value *
1635 value_coerce_array (struct value *arg1)
1636 {
1637 struct type *type = check_typedef (value_type (arg1));
1638
1639 /* If the user tries to do something requiring a pointer with an
1640 array that has not yet been pushed to the target, then this would
1641 be a good time to do so. */
1642 arg1 = value_coerce_to_target (arg1);
1643
1644 if (VALUE_LVAL (arg1) != lval_memory)
1645 error (_("Attempt to take address of value not located in memory."));
1646
1647 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1648 value_address (arg1));
1649 }
1650
1651 /* Given a value which is a function, return a value which is a pointer
1652 to it. */
1653
1654 struct value *
1655 value_coerce_function (struct value *arg1)
1656 {
1657 struct value *retval;
1658
1659 if (VALUE_LVAL (arg1) != lval_memory)
1660 error (_("Attempt to take address of value not located in memory."));
1661
1662 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1663 value_address (arg1));
1664 return retval;
1665 }
1666
1667 /* Return a pointer value for the object for which ARG1 is the
1668 contents. */
1669
1670 struct value *
1671 value_addr (struct value *arg1)
1672 {
1673 struct value *arg2;
1674 struct type *type = check_typedef (value_type (arg1));
1675
1676 if (TYPE_CODE (type) == TYPE_CODE_REF)
1677 {
1678 /* Copy the value, but change the type from (T&) to (T*). We
1679 keep the same location information, which is efficient, and
1680 allows &(&X) to get the location containing the reference. */
1681 arg2 = value_copy (arg1);
1682 deprecated_set_value_type (arg2,
1683 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1684 return arg2;
1685 }
1686 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1687 return value_coerce_function (arg1);
1688
1689 /* If this is an array that has not yet been pushed to the target,
1690 then this would be a good time to force it to memory. */
1691 arg1 = value_coerce_to_target (arg1);
1692
1693 if (VALUE_LVAL (arg1) != lval_memory)
1694 error (_("Attempt to take address of value not located in memory."));
1695
1696 /* Get target memory address. */
1697 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1698 (value_address (arg1)
1699 + value_embedded_offset (arg1)));
1700
1701 /* This may be a pointer to a base subobject; so remember the
1702 full derived object's type ... */
1703 set_value_enclosing_type (arg2,
1704 lookup_pointer_type (value_enclosing_type (arg1)));
1705 /* ... and also the relative position of the subobject in the full
1706 object. */
1707 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1708 return arg2;
1709 }
1710
1711 /* Return a reference value for the object for which ARG1 is the
1712 contents. */
1713
1714 struct value *
1715 value_ref (struct value *arg1)
1716 {
1717 struct value *arg2;
1718 struct type *type = check_typedef (value_type (arg1));
1719
1720 if (TYPE_CODE (type) == TYPE_CODE_REF)
1721 return arg1;
1722
1723 arg2 = value_addr (arg1);
1724 deprecated_set_value_type (arg2, lookup_reference_type (type));
1725 return arg2;
1726 }
1727
1728 /* Given a value of a pointer type, apply the C unary * operator to
1729 it. */
1730
1731 struct value *
1732 value_ind (struct value *arg1)
1733 {
1734 struct type *base_type;
1735 struct value *arg2;
1736
1737 arg1 = coerce_array (arg1);
1738
1739 base_type = check_typedef (value_type (arg1));
1740
1741 if (VALUE_LVAL (arg1) == lval_computed)
1742 {
1743 struct lval_funcs *funcs = value_computed_funcs (arg1);
1744
1745 if (funcs->indirect)
1746 {
1747 struct value *result = funcs->indirect (arg1);
1748
1749 if (result)
1750 return result;
1751 }
1752 }
1753
1754 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1755 {
1756 struct type *enc_type;
1757
1758 /* We may be pointing to something embedded in a larger object.
1759 Get the real type of the enclosing object. */
1760 enc_type = check_typedef (value_enclosing_type (arg1));
1761 enc_type = TYPE_TARGET_TYPE (enc_type);
1762
1763 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1764 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1765 /* For functions, go through find_function_addr, which knows
1766 how to handle function descriptors. */
1767 arg2 = value_at_lazy (enc_type,
1768 find_function_addr (arg1, NULL));
1769 else
1770 /* Retrieve the enclosing object pointed to. */
1771 arg2 = value_at_lazy (enc_type,
1772 (value_as_address (arg1)
1773 - value_pointed_to_offset (arg1)));
1774
1775 /* Re-adjust type. */
1776 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1777 /* Add embedding info. */
1778 set_value_enclosing_type (arg2, enc_type);
1779 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1780
1781 /* We may be pointing to an object of some derived type. */
1782 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1783 return arg2;
1784 }
1785
1786 error (_("Attempt to take contents of a non-pointer value."));
1787 return 0; /* For lint -- never reached. */
1788 }
1789 \f
1790 /* Create a value for an array by allocating space in GDB, copying the
1791 data into that space, and then setting up an array value.
1792
1793 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1794 is populated from the values passed in ELEMVEC.
1795
1796 The element type of the array is inherited from the type of the
1797 first element, and all elements must have the same size (though we
1798 don't currently enforce any restriction on their types). */
1799
1800 struct value *
1801 value_array (int lowbound, int highbound, struct value **elemvec)
1802 {
1803 int nelem;
1804 int idx;
1805 unsigned int typelength;
1806 struct value *val;
1807 struct type *arraytype;
1808
1809 /* Validate that the bounds are reasonable and that each of the
1810 elements have the same size. */
1811
1812 nelem = highbound - lowbound + 1;
1813 if (nelem <= 0)
1814 {
1815 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1816 }
1817 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1818 for (idx = 1; idx < nelem; idx++)
1819 {
1820 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1821 {
1822 error (_("array elements must all be the same size"));
1823 }
1824 }
1825
1826 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1827 lowbound, highbound);
1828
1829 if (!current_language->c_style_arrays)
1830 {
1831 val = allocate_value (arraytype);
1832 for (idx = 0; idx < nelem; idx++)
1833 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1834 typelength);
1835 return val;
1836 }
1837
1838 /* Allocate space to store the array, and then initialize it by
1839 copying in each element. */
1840
1841 val = allocate_value (arraytype);
1842 for (idx = 0; idx < nelem; idx++)
1843 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1844 return val;
1845 }
1846
1847 struct value *
1848 value_cstring (char *ptr, int len, struct type *char_type)
1849 {
1850 struct value *val;
1851 int lowbound = current_language->string_lower_bound;
1852 int highbound = len / TYPE_LENGTH (char_type);
1853 struct type *stringtype
1854 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1855
1856 val = allocate_value (stringtype);
1857 memcpy (value_contents_raw (val), ptr, len);
1858 return val;
1859 }
1860
1861 /* Create a value for a string constant by allocating space in the
1862 inferior, copying the data into that space, and returning the
1863 address with type TYPE_CODE_STRING. PTR points to the string
1864 constant data; LEN is number of characters.
1865
1866 Note that string types are like array of char types with a lower
1867 bound of zero and an upper bound of LEN - 1. Also note that the
1868 string may contain embedded null bytes. */
1869
1870 struct value *
1871 value_string (char *ptr, int len, struct type *char_type)
1872 {
1873 struct value *val;
1874 int lowbound = current_language->string_lower_bound;
1875 int highbound = len / TYPE_LENGTH (char_type);
1876 struct type *stringtype
1877 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1878
1879 val = allocate_value (stringtype);
1880 memcpy (value_contents_raw (val), ptr, len);
1881 return val;
1882 }
1883
1884 struct value *
1885 value_bitstring (char *ptr, int len, struct type *index_type)
1886 {
1887 struct value *val;
1888 struct type *domain_type
1889 = create_range_type (NULL, index_type, 0, len - 1);
1890 struct type *type = create_set_type (NULL, domain_type);
1891
1892 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1893 val = allocate_value (type);
1894 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1895 return val;
1896 }
1897 \f
1898 /* See if we can pass arguments in T2 to a function which takes
1899 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1900 a NULL-terminated vector. If some arguments need coercion of some
1901 sort, then the coerced values are written into T2. Return value is
1902 0 if the arguments could be matched, or the position at which they
1903 differ if not.
1904
1905 STATICP is nonzero if the T1 argument list came from a static
1906 member function. T2 will still include the ``this'' pointer, but
1907 it will be skipped.
1908
1909 For non-static member functions, we ignore the first argument,
1910 which is the type of the instance variable. This is because we
1911 want to handle calls with objects from derived classes. This is
1912 not entirely correct: we should actually check to make sure that a
1913 requested operation is type secure, shouldn't we? FIXME. */
1914
1915 static int
1916 typecmp (int staticp, int varargs, int nargs,
1917 struct field t1[], struct value *t2[])
1918 {
1919 int i;
1920
1921 if (t2 == 0)
1922 internal_error (__FILE__, __LINE__,
1923 _("typecmp: no argument list"));
1924
1925 /* Skip ``this'' argument if applicable. T2 will always include
1926 THIS. */
1927 if (staticp)
1928 t2 ++;
1929
1930 for (i = 0;
1931 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1932 i++)
1933 {
1934 struct type *tt1, *tt2;
1935
1936 if (!t2[i])
1937 return i + 1;
1938
1939 tt1 = check_typedef (t1[i].type);
1940 tt2 = check_typedef (value_type (t2[i]));
1941
1942 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1943 /* We should be doing hairy argument matching, as below. */
1944 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1945 == TYPE_CODE (tt2)))
1946 {
1947 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1948 t2[i] = value_coerce_array (t2[i]);
1949 else
1950 t2[i] = value_ref (t2[i]);
1951 continue;
1952 }
1953
1954 /* djb - 20000715 - Until the new type structure is in the
1955 place, and we can attempt things like implicit conversions,
1956 we need to do this so you can take something like a map<const
1957 char *>, and properly access map["hello"], because the
1958 argument to [] will be a reference to a pointer to a char,
1959 and the argument will be a pointer to a char. */
1960 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1961 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1962 {
1963 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1964 }
1965 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1966 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1967 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1968 {
1969 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1970 }
1971 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1972 continue;
1973 /* Array to pointer is a `trivial conversion' according to the
1974 ARM. */
1975
1976 /* We should be doing much hairier argument matching (see
1977 section 13.2 of the ARM), but as a quick kludge, just check
1978 for the same type code. */
1979 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1980 return i + 1;
1981 }
1982 if (varargs || t2[i] == NULL)
1983 return 0;
1984 return i + 1;
1985 }
1986
1987 /* Helper function used by value_struct_elt to recurse through
1988 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1989 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1990 TYPE. If found, return value, else return NULL.
1991
1992 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1993 fields, look for a baseclass named NAME. */
1994
1995 static struct value *
1996 search_struct_field (const char *name, struct value *arg1, int offset,
1997 struct type *type, int looking_for_baseclass)
1998 {
1999 int i;
2000 int nbases;
2001
2002 CHECK_TYPEDEF (type);
2003 nbases = TYPE_N_BASECLASSES (type);
2004
2005 if (!looking_for_baseclass)
2006 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2007 {
2008 char *t_field_name = TYPE_FIELD_NAME (type, i);
2009
2010 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2011 {
2012 struct value *v;
2013
2014 if (field_is_static (&TYPE_FIELD (type, i)))
2015 {
2016 v = value_static_field (type, i);
2017 if (v == 0)
2018 error (_("field %s is nonexistent or "
2019 "has been optimized out"),
2020 name);
2021 }
2022 else
2023 {
2024 v = value_primitive_field (arg1, offset, i, type);
2025 if (v == 0)
2026 error (_("there is no field named %s"), name);
2027 }
2028 return v;
2029 }
2030
2031 if (t_field_name
2032 && (t_field_name[0] == '\0'
2033 || (TYPE_CODE (type) == TYPE_CODE_UNION
2034 && (strcmp_iw (t_field_name, "else") == 0))))
2035 {
2036 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2037
2038 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2039 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2040 {
2041 /* Look for a match through the fields of an anonymous
2042 union, or anonymous struct. C++ provides anonymous
2043 unions.
2044
2045 In the GNU Chill (now deleted from GDB)
2046 implementation of variant record types, each
2047 <alternative field> has an (anonymous) union type,
2048 each member of the union represents a <variant
2049 alternative>. Each <variant alternative> is
2050 represented as a struct, with a member for each
2051 <variant field>. */
2052
2053 struct value *v;
2054 int new_offset = offset;
2055
2056 /* This is pretty gross. In G++, the offset in an
2057 anonymous union is relative to the beginning of the
2058 enclosing struct. In the GNU Chill (now deleted
2059 from GDB) implementation of variant records, the
2060 bitpos is zero in an anonymous union field, so we
2061 have to add the offset of the union here. */
2062 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2063 || (TYPE_NFIELDS (field_type) > 0
2064 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2065 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2066
2067 v = search_struct_field (name, arg1, new_offset,
2068 field_type,
2069 looking_for_baseclass);
2070 if (v)
2071 return v;
2072 }
2073 }
2074 }
2075
2076 for (i = 0; i < nbases; i++)
2077 {
2078 struct value *v;
2079 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2080 /* If we are looking for baseclasses, this is what we get when
2081 we hit them. But it could happen that the base part's member
2082 name is not yet filled in. */
2083 int found_baseclass = (looking_for_baseclass
2084 && TYPE_BASECLASS_NAME (type, i) != NULL
2085 && (strcmp_iw (name,
2086 TYPE_BASECLASS_NAME (type,
2087 i)) == 0));
2088
2089 if (BASETYPE_VIA_VIRTUAL (type, i))
2090 {
2091 int boffset;
2092 struct value *v2;
2093
2094 boffset = baseclass_offset (type, i,
2095 value_contents_for_printing (arg1),
2096 value_embedded_offset (arg1) + offset,
2097 value_address (arg1),
2098 arg1);
2099
2100 /* The virtual base class pointer might have been clobbered
2101 by the user program. Make sure that it still points to a
2102 valid memory location. */
2103
2104 boffset += value_embedded_offset (arg1) + offset;
2105 if (boffset < 0
2106 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2107 {
2108 CORE_ADDR base_addr;
2109
2110 v2 = allocate_value (basetype);
2111 base_addr = value_address (arg1) + boffset;
2112 if (target_read_memory (base_addr,
2113 value_contents_raw (v2),
2114 TYPE_LENGTH (basetype)) != 0)
2115 error (_("virtual baseclass botch"));
2116 VALUE_LVAL (v2) = lval_memory;
2117 set_value_address (v2, base_addr);
2118 }
2119 else
2120 {
2121 v2 = value_copy (arg1);
2122 deprecated_set_value_type (v2, basetype);
2123 set_value_embedded_offset (v2, boffset);
2124 }
2125
2126 if (found_baseclass)
2127 return v2;
2128 v = search_struct_field (name, v2, 0,
2129 TYPE_BASECLASS (type, i),
2130 looking_for_baseclass);
2131 }
2132 else if (found_baseclass)
2133 v = value_primitive_field (arg1, offset, i, type);
2134 else
2135 v = search_struct_field (name, arg1,
2136 offset + TYPE_BASECLASS_BITPOS (type,
2137 i) / 8,
2138 basetype, looking_for_baseclass);
2139 if (v)
2140 return v;
2141 }
2142 return NULL;
2143 }
2144
2145 /* Helper function used by value_struct_elt to recurse through
2146 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2147 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2148 TYPE.
2149
2150 If found, return value, else if name matched and args not return
2151 (value) -1, else return NULL. */
2152
2153 static struct value *
2154 search_struct_method (const char *name, struct value **arg1p,
2155 struct value **args, int offset,
2156 int *static_memfuncp, struct type *type)
2157 {
2158 int i;
2159 struct value *v;
2160 int name_matched = 0;
2161 char dem_opname[64];
2162
2163 CHECK_TYPEDEF (type);
2164 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2165 {
2166 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2167
2168 /* FIXME! May need to check for ARM demangling here. */
2169 if (strncmp (t_field_name, "__", 2) == 0 ||
2170 strncmp (t_field_name, "op", 2) == 0 ||
2171 strncmp (t_field_name, "type", 4) == 0)
2172 {
2173 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2174 t_field_name = dem_opname;
2175 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2176 t_field_name = dem_opname;
2177 }
2178 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2179 {
2180 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2181 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2182
2183 name_matched = 1;
2184 check_stub_method_group (type, i);
2185 if (j > 0 && args == 0)
2186 error (_("cannot resolve overloaded method "
2187 "`%s': no arguments supplied"), name);
2188 else if (j == 0 && args == 0)
2189 {
2190 v = value_fn_field (arg1p, f, j, type, offset);
2191 if (v != NULL)
2192 return v;
2193 }
2194 else
2195 while (j >= 0)
2196 {
2197 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2198 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2199 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2200 TYPE_FN_FIELD_ARGS (f, j), args))
2201 {
2202 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2203 return value_virtual_fn_field (arg1p, f, j,
2204 type, offset);
2205 if (TYPE_FN_FIELD_STATIC_P (f, j)
2206 && static_memfuncp)
2207 *static_memfuncp = 1;
2208 v = value_fn_field (arg1p, f, j, type, offset);
2209 if (v != NULL)
2210 return v;
2211 }
2212 j--;
2213 }
2214 }
2215 }
2216
2217 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2218 {
2219 int base_offset;
2220 int skip = 0;
2221 int this_offset;
2222
2223 if (BASETYPE_VIA_VIRTUAL (type, i))
2224 {
2225 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2226 struct value *base_val;
2227 const gdb_byte *base_valaddr;
2228
2229 /* The virtual base class pointer might have been
2230 clobbered by the user program. Make sure that it
2231 still points to a valid memory location. */
2232
2233 if (offset < 0 || offset >= TYPE_LENGTH (type))
2234 {
2235 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2236 CORE_ADDR address = value_address (*arg1p);
2237
2238 if (target_read_memory (address + offset,
2239 tmp, TYPE_LENGTH (baseclass)) != 0)
2240 error (_("virtual baseclass botch"));
2241
2242 base_val = value_from_contents_and_address (baseclass,
2243 tmp,
2244 address + offset);
2245 base_valaddr = value_contents_for_printing (base_val);
2246 this_offset = 0;
2247 }
2248 else
2249 {
2250 base_val = *arg1p;
2251 base_valaddr = value_contents_for_printing (*arg1p);
2252 this_offset = offset;
2253 }
2254
2255 base_offset = baseclass_offset (type, i, base_valaddr,
2256 this_offset, value_address (base_val),
2257 base_val);
2258 }
2259 else
2260 {
2261 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2262 }
2263 v = search_struct_method (name, arg1p, args, base_offset + offset,
2264 static_memfuncp, TYPE_BASECLASS (type, i));
2265 if (v == (struct value *) - 1)
2266 {
2267 name_matched = 1;
2268 }
2269 else if (v)
2270 {
2271 /* FIXME-bothner: Why is this commented out? Why is it here? */
2272 /* *arg1p = arg1_tmp; */
2273 return v;
2274 }
2275 }
2276 if (name_matched)
2277 return (struct value *) - 1;
2278 else
2279 return NULL;
2280 }
2281
2282 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2283 extract the component named NAME from the ultimate target
2284 structure/union and return it as a value with its appropriate type.
2285 ERR is used in the error message if *ARGP's type is wrong.
2286
2287 C++: ARGS is a list of argument types to aid in the selection of
2288 an appropriate method. Also, handle derived types.
2289
2290 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2291 where the truthvalue of whether the function that was resolved was
2292 a static member function or not is stored.
2293
2294 ERR is an error message to be printed in case the field is not
2295 found. */
2296
2297 struct value *
2298 value_struct_elt (struct value **argp, struct value **args,
2299 const char *name, int *static_memfuncp, const char *err)
2300 {
2301 struct type *t;
2302 struct value *v;
2303
2304 *argp = coerce_array (*argp);
2305
2306 t = check_typedef (value_type (*argp));
2307
2308 /* Follow pointers until we get to a non-pointer. */
2309
2310 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2311 {
2312 *argp = value_ind (*argp);
2313 /* Don't coerce fn pointer to fn and then back again! */
2314 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2315 *argp = coerce_array (*argp);
2316 t = check_typedef (value_type (*argp));
2317 }
2318
2319 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2320 && TYPE_CODE (t) != TYPE_CODE_UNION)
2321 error (_("Attempt to extract a component of a value that is not a %s."),
2322 err);
2323
2324 /* Assume it's not, unless we see that it is. */
2325 if (static_memfuncp)
2326 *static_memfuncp = 0;
2327
2328 if (!args)
2329 {
2330 /* if there are no arguments ...do this... */
2331
2332 /* Try as a field first, because if we succeed, there is less
2333 work to be done. */
2334 v = search_struct_field (name, *argp, 0, t, 0);
2335 if (v)
2336 return v;
2337
2338 /* C++: If it was not found as a data field, then try to
2339 return it as a pointer to a method. */
2340 v = search_struct_method (name, argp, args, 0,
2341 static_memfuncp, t);
2342
2343 if (v == (struct value *) - 1)
2344 error (_("Cannot take address of method %s."), name);
2345 else if (v == 0)
2346 {
2347 if (TYPE_NFN_FIELDS (t))
2348 error (_("There is no member or method named %s."), name);
2349 else
2350 error (_("There is no member named %s."), name);
2351 }
2352 return v;
2353 }
2354
2355 v = search_struct_method (name, argp, args, 0,
2356 static_memfuncp, t);
2357
2358 if (v == (struct value *) - 1)
2359 {
2360 error (_("One of the arguments you tried to pass to %s could not "
2361 "be converted to what the function wants."), name);
2362 }
2363 else if (v == 0)
2364 {
2365 /* See if user tried to invoke data as function. If so, hand it
2366 back. If it's not callable (i.e., a pointer to function),
2367 gdb should give an error. */
2368 v = search_struct_field (name, *argp, 0, t, 0);
2369 /* If we found an ordinary field, then it is not a method call.
2370 So, treat it as if it were a static member function. */
2371 if (v && static_memfuncp)
2372 *static_memfuncp = 1;
2373 }
2374
2375 if (!v)
2376 throw_error (NOT_FOUND_ERROR,
2377 _("Structure has no component named %s."), name);
2378 return v;
2379 }
2380
2381 /* Search through the methods of an object (and its bases) to find a
2382 specified method. Return the pointer to the fn_field list of
2383 overloaded instances.
2384
2385 Helper function for value_find_oload_list.
2386 ARGP is a pointer to a pointer to a value (the object).
2387 METHOD is a string containing the method name.
2388 OFFSET is the offset within the value.
2389 TYPE is the assumed type of the object.
2390 NUM_FNS is the number of overloaded instances.
2391 BASETYPE is set to the actual type of the subobject where the
2392 method is found.
2393 BOFFSET is the offset of the base subobject where the method is found. */
2394
2395 static struct fn_field *
2396 find_method_list (struct value **argp, const char *method,
2397 int offset, struct type *type, int *num_fns,
2398 struct type **basetype, int *boffset)
2399 {
2400 int i;
2401 struct fn_field *f;
2402 CHECK_TYPEDEF (type);
2403
2404 *num_fns = 0;
2405
2406 /* First check in object itself. */
2407 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2408 {
2409 /* pai: FIXME What about operators and type conversions? */
2410 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2411
2412 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2413 {
2414 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2415 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2416
2417 *num_fns = len;
2418 *basetype = type;
2419 *boffset = offset;
2420
2421 /* Resolve any stub methods. */
2422 check_stub_method_group (type, i);
2423
2424 return f;
2425 }
2426 }
2427
2428 /* Not found in object, check in base subobjects. */
2429 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2430 {
2431 int base_offset;
2432
2433 if (BASETYPE_VIA_VIRTUAL (type, i))
2434 {
2435 base_offset = baseclass_offset (type, i,
2436 value_contents_for_printing (*argp),
2437 value_offset (*argp) + offset,
2438 value_address (*argp), *argp);
2439 }
2440 else /* Non-virtual base, simply use bit position from debug
2441 info. */
2442 {
2443 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2444 }
2445 f = find_method_list (argp, method, base_offset + offset,
2446 TYPE_BASECLASS (type, i), num_fns,
2447 basetype, boffset);
2448 if (f)
2449 return f;
2450 }
2451 return NULL;
2452 }
2453
2454 /* Return the list of overloaded methods of a specified name.
2455
2456 ARGP is a pointer to a pointer to a value (the object).
2457 METHOD is the method name.
2458 OFFSET is the offset within the value contents.
2459 NUM_FNS is the number of overloaded instances.
2460 BASETYPE is set to the type of the base subobject that defines the
2461 method.
2462 BOFFSET is the offset of the base subobject which defines the method. */
2463
2464 struct fn_field *
2465 value_find_oload_method_list (struct value **argp, const char *method,
2466 int offset, int *num_fns,
2467 struct type **basetype, int *boffset)
2468 {
2469 struct type *t;
2470
2471 t = check_typedef (value_type (*argp));
2472
2473 /* Code snarfed from value_struct_elt. */
2474 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2475 {
2476 *argp = value_ind (*argp);
2477 /* Don't coerce fn pointer to fn and then back again! */
2478 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2479 *argp = coerce_array (*argp);
2480 t = check_typedef (value_type (*argp));
2481 }
2482
2483 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2484 && TYPE_CODE (t) != TYPE_CODE_UNION)
2485 error (_("Attempt to extract a component of a "
2486 "value that is not a struct or union"));
2487
2488 return find_method_list (argp, method, 0, t, num_fns,
2489 basetype, boffset);
2490 }
2491
2492 /* Given an array of argument types (ARGTYPES) (which includes an
2493 entry for "this" in the case of C++ methods), the number of
2494 arguments NARGS, the NAME of a function whether it's a method or
2495 not (METHOD), and the degree of laxness (LAX) in conforming to
2496 overload resolution rules in ANSI C++, find the best function that
2497 matches on the argument types according to the overload resolution
2498 rules.
2499
2500 METHOD can be one of three values:
2501 NON_METHOD for non-member functions.
2502 METHOD: for member functions.
2503 BOTH: used for overload resolution of operators where the
2504 candidates are expected to be either member or non member
2505 functions. In this case the first argument ARGTYPES
2506 (representing 'this') is expected to be a reference to the
2507 target object, and will be dereferenced when attempting the
2508 non-member search.
2509
2510 In the case of class methods, the parameter OBJ is an object value
2511 in which to search for overloaded methods.
2512
2513 In the case of non-method functions, the parameter FSYM is a symbol
2514 corresponding to one of the overloaded functions.
2515
2516 Return value is an integer: 0 -> good match, 10 -> debugger applied
2517 non-standard coercions, 100 -> incompatible.
2518
2519 If a method is being searched for, VALP will hold the value.
2520 If a non-method is being searched for, SYMP will hold the symbol
2521 for it.
2522
2523 If a method is being searched for, and it is a static method,
2524 then STATICP will point to a non-zero value.
2525
2526 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2527 ADL overload candidates when performing overload resolution for a fully
2528 qualified name.
2529
2530 Note: This function does *not* check the value of
2531 overload_resolution. Caller must check it to see whether overload
2532 resolution is permitted. */
2533
2534 int
2535 find_overload_match (struct type **arg_types, int nargs,
2536 const char *name, enum oload_search_type method,
2537 int lax, struct value **objp, struct symbol *fsym,
2538 struct value **valp, struct symbol **symp,
2539 int *staticp, const int no_adl)
2540 {
2541 struct value *obj = (objp ? *objp : NULL);
2542 /* Index of best overloaded function. */
2543 int func_oload_champ = -1;
2544 int method_oload_champ = -1;
2545
2546 /* The measure for the current best match. */
2547 struct badness_vector *method_badness = NULL;
2548 struct badness_vector *func_badness = NULL;
2549
2550 struct value *temp = obj;
2551 /* For methods, the list of overloaded methods. */
2552 struct fn_field *fns_ptr = NULL;
2553 /* For non-methods, the list of overloaded function symbols. */
2554 struct symbol **oload_syms = NULL;
2555 /* Number of overloaded instances being considered. */
2556 int num_fns = 0;
2557 struct type *basetype = NULL;
2558 int boffset;
2559
2560 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2561
2562 const char *obj_type_name = NULL;
2563 const char *func_name = NULL;
2564 enum oload_classification match_quality;
2565 enum oload_classification method_match_quality = INCOMPATIBLE;
2566 enum oload_classification func_match_quality = INCOMPATIBLE;
2567
2568 /* Get the list of overloaded methods or functions. */
2569 if (method == METHOD || method == BOTH)
2570 {
2571 gdb_assert (obj);
2572
2573 /* OBJ may be a pointer value rather than the object itself. */
2574 obj = coerce_ref (obj);
2575 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2576 obj = coerce_ref (value_ind (obj));
2577 obj_type_name = TYPE_NAME (value_type (obj));
2578
2579 /* First check whether this is a data member, e.g. a pointer to
2580 a function. */
2581 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2582 {
2583 *valp = search_struct_field (name, obj, 0,
2584 check_typedef (value_type (obj)), 0);
2585 if (*valp)
2586 {
2587 *staticp = 1;
2588 return 0;
2589 }
2590 }
2591
2592 /* Retrieve the list of methods with the name NAME. */
2593 fns_ptr = value_find_oload_method_list (&temp, name,
2594 0, &num_fns,
2595 &basetype, &boffset);
2596 /* If this is a method only search, and no methods were found
2597 the search has faild. */
2598 if (method == METHOD && (!fns_ptr || !num_fns))
2599 error (_("Couldn't find method %s%s%s"),
2600 obj_type_name,
2601 (obj_type_name && *obj_type_name) ? "::" : "",
2602 name);
2603 /* If we are dealing with stub method types, they should have
2604 been resolved by find_method_list via
2605 value_find_oload_method_list above. */
2606 if (fns_ptr)
2607 {
2608 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2609 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2610 num_fns, fns_ptr,
2611 oload_syms, &method_badness);
2612
2613 method_match_quality =
2614 classify_oload_match (method_badness, nargs,
2615 oload_method_static (method, fns_ptr,
2616 method_oload_champ));
2617
2618 make_cleanup (xfree, method_badness);
2619 }
2620
2621 }
2622
2623 if (method == NON_METHOD || method == BOTH)
2624 {
2625 const char *qualified_name = NULL;
2626
2627 /* If the overload match is being search for both as a method
2628 and non member function, the first argument must now be
2629 dereferenced. */
2630 if (method == BOTH)
2631 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2632
2633 if (fsym)
2634 {
2635 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2636
2637 /* If we have a function with a C++ name, try to extract just
2638 the function part. Do not try this for non-functions (e.g.
2639 function pointers). */
2640 if (qualified_name
2641 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2642 == TYPE_CODE_FUNC)
2643 {
2644 char *temp;
2645
2646 temp = cp_func_name (qualified_name);
2647
2648 /* If cp_func_name did not remove anything, the name of the
2649 symbol did not include scope or argument types - it was
2650 probably a C-style function. */
2651 if (temp)
2652 {
2653 make_cleanup (xfree, temp);
2654 if (strcmp (temp, qualified_name) == 0)
2655 func_name = NULL;
2656 else
2657 func_name = temp;
2658 }
2659 }
2660 }
2661 else
2662 {
2663 func_name = name;
2664 qualified_name = name;
2665 }
2666
2667 /* If there was no C++ name, this must be a C-style function or
2668 not a function at all. Just return the same symbol. Do the
2669 same if cp_func_name fails for some reason. */
2670 if (func_name == NULL)
2671 {
2672 *symp = fsym;
2673 return 0;
2674 }
2675
2676 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2677 func_name,
2678 qualified_name,
2679 &oload_syms,
2680 &func_badness,
2681 no_adl);
2682
2683 if (func_oload_champ >= 0)
2684 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2685
2686 make_cleanup (xfree, oload_syms);
2687 make_cleanup (xfree, func_badness);
2688 }
2689
2690 /* Did we find a match ? */
2691 if (method_oload_champ == -1 && func_oload_champ == -1)
2692 throw_error (NOT_FOUND_ERROR,
2693 _("No symbol \"%s\" in current context."),
2694 name);
2695
2696 /* If we have found both a method match and a function
2697 match, find out which one is better, and calculate match
2698 quality. */
2699 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2700 {
2701 switch (compare_badness (func_badness, method_badness))
2702 {
2703 case 0: /* Top two contenders are equally good. */
2704 /* FIXME: GDB does not support the general ambiguous case.
2705 All candidates should be collected and presented the
2706 user. */
2707 error (_("Ambiguous overload resolution"));
2708 break;
2709 case 1: /* Incomparable top contenders. */
2710 /* This is an error incompatible candidates
2711 should not have been proposed. */
2712 error (_("Internal error: incompatible "
2713 "overload candidates proposed"));
2714 break;
2715 case 2: /* Function champion. */
2716 method_oload_champ = -1;
2717 match_quality = func_match_quality;
2718 break;
2719 case 3: /* Method champion. */
2720 func_oload_champ = -1;
2721 match_quality = method_match_quality;
2722 break;
2723 default:
2724 error (_("Internal error: unexpected overload comparison result"));
2725 break;
2726 }
2727 }
2728 else
2729 {
2730 /* We have either a method match or a function match. */
2731 if (method_oload_champ >= 0)
2732 match_quality = method_match_quality;
2733 else
2734 match_quality = func_match_quality;
2735 }
2736
2737 if (match_quality == INCOMPATIBLE)
2738 {
2739 if (method == METHOD)
2740 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2741 obj_type_name,
2742 (obj_type_name && *obj_type_name) ? "::" : "",
2743 name);
2744 else
2745 error (_("Cannot resolve function %s to any overloaded instance"),
2746 func_name);
2747 }
2748 else if (match_quality == NON_STANDARD)
2749 {
2750 if (method == METHOD)
2751 warning (_("Using non-standard conversion to match "
2752 "method %s%s%s to supplied arguments"),
2753 obj_type_name,
2754 (obj_type_name && *obj_type_name) ? "::" : "",
2755 name);
2756 else
2757 warning (_("Using non-standard conversion to match "
2758 "function %s to supplied arguments"),
2759 func_name);
2760 }
2761
2762 if (staticp != NULL)
2763 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2764
2765 if (method_oload_champ >= 0)
2766 {
2767 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2768 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2769 basetype, boffset);
2770 else
2771 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2772 basetype, boffset);
2773 }
2774 else
2775 *symp = oload_syms[func_oload_champ];
2776
2777 if (objp)
2778 {
2779 struct type *temp_type = check_typedef (value_type (temp));
2780 struct type *obj_type = check_typedef (value_type (*objp));
2781
2782 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2783 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2784 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2785 {
2786 temp = value_addr (temp);
2787 }
2788 *objp = temp;
2789 }
2790
2791 do_cleanups (all_cleanups);
2792
2793 switch (match_quality)
2794 {
2795 case INCOMPATIBLE:
2796 return 100;
2797 case NON_STANDARD:
2798 return 10;
2799 default: /* STANDARD */
2800 return 0;
2801 }
2802 }
2803
2804 /* Find the best overload match, searching for FUNC_NAME in namespaces
2805 contained in QUALIFIED_NAME until it either finds a good match or
2806 runs out of namespaces. It stores the overloaded functions in
2807 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2808 calling function is responsible for freeing *OLOAD_SYMS and
2809 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2810 performned. */
2811
2812 static int
2813 find_oload_champ_namespace (struct type **arg_types, int nargs,
2814 const char *func_name,
2815 const char *qualified_name,
2816 struct symbol ***oload_syms,
2817 struct badness_vector **oload_champ_bv,
2818 const int no_adl)
2819 {
2820 int oload_champ;
2821
2822 find_oload_champ_namespace_loop (arg_types, nargs,
2823 func_name,
2824 qualified_name, 0,
2825 oload_syms, oload_champ_bv,
2826 &oload_champ,
2827 no_adl);
2828
2829 return oload_champ;
2830 }
2831
2832 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2833 how deep we've looked for namespaces, and the champ is stored in
2834 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2835 if it isn't. Other arguments are the same as in
2836 find_oload_champ_namespace
2837
2838 It is the caller's responsibility to free *OLOAD_SYMS and
2839 *OLOAD_CHAMP_BV. */
2840
2841 static int
2842 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2843 const char *func_name,
2844 const char *qualified_name,
2845 int namespace_len,
2846 struct symbol ***oload_syms,
2847 struct badness_vector **oload_champ_bv,
2848 int *oload_champ,
2849 const int no_adl)
2850 {
2851 int next_namespace_len = namespace_len;
2852 int searched_deeper = 0;
2853 int num_fns = 0;
2854 struct cleanup *old_cleanups;
2855 int new_oload_champ;
2856 struct symbol **new_oload_syms;
2857 struct badness_vector *new_oload_champ_bv;
2858 char *new_namespace;
2859
2860 if (next_namespace_len != 0)
2861 {
2862 gdb_assert (qualified_name[next_namespace_len] == ':');
2863 next_namespace_len += 2;
2864 }
2865 next_namespace_len +=
2866 cp_find_first_component (qualified_name + next_namespace_len);
2867
2868 /* Initialize these to values that can safely be xfree'd. */
2869 *oload_syms = NULL;
2870 *oload_champ_bv = NULL;
2871
2872 /* First, see if we have a deeper namespace we can search in.
2873 If we get a good match there, use it. */
2874
2875 if (qualified_name[next_namespace_len] == ':')
2876 {
2877 searched_deeper = 1;
2878
2879 if (find_oload_champ_namespace_loop (arg_types, nargs,
2880 func_name, qualified_name,
2881 next_namespace_len,
2882 oload_syms, oload_champ_bv,
2883 oload_champ, no_adl))
2884 {
2885 return 1;
2886 }
2887 };
2888
2889 /* If we reach here, either we're in the deepest namespace or we
2890 didn't find a good match in a deeper namespace. But, in the
2891 latter case, we still have a bad match in a deeper namespace;
2892 note that we might not find any match at all in the current
2893 namespace. (There's always a match in the deepest namespace,
2894 because this overload mechanism only gets called if there's a
2895 function symbol to start off with.) */
2896
2897 old_cleanups = make_cleanup (xfree, *oload_syms);
2898 make_cleanup (xfree, *oload_champ_bv);
2899 new_namespace = alloca (namespace_len + 1);
2900 strncpy (new_namespace, qualified_name, namespace_len);
2901 new_namespace[namespace_len] = '\0';
2902 new_oload_syms = make_symbol_overload_list (func_name,
2903 new_namespace);
2904
2905 /* If we have reached the deepest level perform argument
2906 determined lookup. */
2907 if (!searched_deeper && !no_adl)
2908 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2909
2910 while (new_oload_syms[num_fns])
2911 ++num_fns;
2912
2913 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2914 NULL, new_oload_syms,
2915 &new_oload_champ_bv);
2916
2917 /* Case 1: We found a good match. Free earlier matches (if any),
2918 and return it. Case 2: We didn't find a good match, but we're
2919 not the deepest function. Then go with the bad match that the
2920 deeper function found. Case 3: We found a bad match, and we're
2921 the deepest function. Then return what we found, even though
2922 it's a bad match. */
2923
2924 if (new_oload_champ != -1
2925 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2926 {
2927 *oload_syms = new_oload_syms;
2928 *oload_champ = new_oload_champ;
2929 *oload_champ_bv = new_oload_champ_bv;
2930 do_cleanups (old_cleanups);
2931 return 1;
2932 }
2933 else if (searched_deeper)
2934 {
2935 xfree (new_oload_syms);
2936 xfree (new_oload_champ_bv);
2937 discard_cleanups (old_cleanups);
2938 return 0;
2939 }
2940 else
2941 {
2942 *oload_syms = new_oload_syms;
2943 *oload_champ = new_oload_champ;
2944 *oload_champ_bv = new_oload_champ_bv;
2945 do_cleanups (old_cleanups);
2946 return 0;
2947 }
2948 }
2949
2950 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2951 the best match from among the overloaded methods or functions
2952 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2953 The number of methods/functions in the list is given by NUM_FNS.
2954 Return the index of the best match; store an indication of the
2955 quality of the match in OLOAD_CHAMP_BV.
2956
2957 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2958
2959 static int
2960 find_oload_champ (struct type **arg_types, int nargs, int method,
2961 int num_fns, struct fn_field *fns_ptr,
2962 struct symbol **oload_syms,
2963 struct badness_vector **oload_champ_bv)
2964 {
2965 int ix;
2966 /* A measure of how good an overloaded instance is. */
2967 struct badness_vector *bv;
2968 /* Index of best overloaded function. */
2969 int oload_champ = -1;
2970 /* Current ambiguity state for overload resolution. */
2971 int oload_ambiguous = 0;
2972 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2973
2974 *oload_champ_bv = NULL;
2975
2976 /* Consider each candidate in turn. */
2977 for (ix = 0; ix < num_fns; ix++)
2978 {
2979 int jj;
2980 int static_offset = oload_method_static (method, fns_ptr, ix);
2981 int nparms;
2982 struct type **parm_types;
2983
2984 if (method)
2985 {
2986 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2987 }
2988 else
2989 {
2990 /* If it's not a method, this is the proper place. */
2991 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2992 }
2993
2994 /* Prepare array of parameter types. */
2995 parm_types = (struct type **)
2996 xmalloc (nparms * (sizeof (struct type *)));
2997 for (jj = 0; jj < nparms; jj++)
2998 parm_types[jj] = (method
2999 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3000 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3001 jj));
3002
3003 /* Compare parameter types to supplied argument types. Skip
3004 THIS for static methods. */
3005 bv = rank_function (parm_types, nparms,
3006 arg_types + static_offset,
3007 nargs - static_offset);
3008
3009 if (!*oload_champ_bv)
3010 {
3011 *oload_champ_bv = bv;
3012 oload_champ = 0;
3013 }
3014 else /* See whether current candidate is better or worse than
3015 previous best. */
3016 switch (compare_badness (bv, *oload_champ_bv))
3017 {
3018 case 0: /* Top two contenders are equally good. */
3019 oload_ambiguous = 1;
3020 break;
3021 case 1: /* Incomparable top contenders. */
3022 oload_ambiguous = 2;
3023 break;
3024 case 2: /* New champion, record details. */
3025 *oload_champ_bv = bv;
3026 oload_ambiguous = 0;
3027 oload_champ = ix;
3028 break;
3029 case 3:
3030 default:
3031 break;
3032 }
3033 xfree (parm_types);
3034 if (overload_debug)
3035 {
3036 if (method)
3037 fprintf_filtered (gdb_stderr,
3038 "Overloaded method instance %s, # of parms %d\n",
3039 fns_ptr[ix].physname, nparms);
3040 else
3041 fprintf_filtered (gdb_stderr,
3042 "Overloaded function instance "
3043 "%s # of parms %d\n",
3044 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3045 nparms);
3046 for (jj = 0; jj < nargs - static_offset; jj++)
3047 fprintf_filtered (gdb_stderr,
3048 "...Badness @ %d : %d\n",
3049 jj, bv->rank[jj].rank);
3050 fprintf_filtered (gdb_stderr, "Overload resolution "
3051 "champion is %d, ambiguous? %d\n",
3052 oload_champ, oload_ambiguous);
3053 }
3054 }
3055
3056 return oload_champ;
3057 }
3058
3059 /* Return 1 if we're looking at a static method, 0 if we're looking at
3060 a non-static method or a function that isn't a method. */
3061
3062 static int
3063 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3064 {
3065 if (method && fns_ptr && index >= 0
3066 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3067 return 1;
3068 else
3069 return 0;
3070 }
3071
3072 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3073
3074 static enum oload_classification
3075 classify_oload_match (struct badness_vector *oload_champ_bv,
3076 int nargs,
3077 int static_offset)
3078 {
3079 int ix;
3080
3081 for (ix = 1; ix <= nargs - static_offset; ix++)
3082 {
3083 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3084 or worse return INCOMPATIBLE. */
3085 if (compare_ranks (oload_champ_bv->rank[ix],
3086 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3087 return INCOMPATIBLE; /* Truly mismatched types. */
3088 /* Otherwise If this conversion is as bad as
3089 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3090 else if (compare_ranks (oload_champ_bv->rank[ix],
3091 NS_POINTER_CONVERSION_BADNESS) <= 0)
3092 return NON_STANDARD; /* Non-standard type conversions
3093 needed. */
3094 }
3095
3096 return STANDARD; /* Only standard conversions needed. */
3097 }
3098
3099 /* C++: return 1 is NAME is a legitimate name for the destructor of
3100 type TYPE. If TYPE does not have a destructor, or if NAME is
3101 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3102 have CHECK_TYPEDEF applied, this function will apply it itself. */
3103
3104 int
3105 destructor_name_p (const char *name, struct type *type)
3106 {
3107 if (name[0] == '~')
3108 {
3109 const char *dname = type_name_no_tag_or_error (type);
3110 const char *cp = strchr (dname, '<');
3111 unsigned int len;
3112
3113 /* Do not compare the template part for template classes. */
3114 if (cp == NULL)
3115 len = strlen (dname);
3116 else
3117 len = cp - dname;
3118 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3119 error (_("name of destructor must equal name of class"));
3120 else
3121 return 1;
3122 }
3123 return 0;
3124 }
3125
3126 /* Given TYPE, a structure/union,
3127 return 1 if the component named NAME from the ultimate target
3128 structure/union is defined, otherwise, return 0. */
3129
3130 int
3131 check_field (struct type *type, const char *name)
3132 {
3133 int i;
3134
3135 /* The type may be a stub. */
3136 CHECK_TYPEDEF (type);
3137
3138 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3139 {
3140 char *t_field_name = TYPE_FIELD_NAME (type, i);
3141
3142 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3143 return 1;
3144 }
3145
3146 /* C++: If it was not found as a data field, then try to return it
3147 as a pointer to a method. */
3148
3149 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3150 {
3151 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3152 return 1;
3153 }
3154
3155 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3156 if (check_field (TYPE_BASECLASS (type, i), name))
3157 return 1;
3158
3159 return 0;
3160 }
3161
3162 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3163 return the appropriate member (or the address of the member, if
3164 WANT_ADDRESS). This function is used to resolve user expressions
3165 of the form "DOMAIN::NAME". For more details on what happens, see
3166 the comment before value_struct_elt_for_reference. */
3167
3168 struct value *
3169 value_aggregate_elt (struct type *curtype, char *name,
3170 struct type *expect_type, int want_address,
3171 enum noside noside)
3172 {
3173 switch (TYPE_CODE (curtype))
3174 {
3175 case TYPE_CODE_STRUCT:
3176 case TYPE_CODE_UNION:
3177 return value_struct_elt_for_reference (curtype, 0, curtype,
3178 name, expect_type,
3179 want_address, noside);
3180 case TYPE_CODE_NAMESPACE:
3181 return value_namespace_elt (curtype, name,
3182 want_address, noside);
3183 default:
3184 internal_error (__FILE__, __LINE__,
3185 _("non-aggregate type in value_aggregate_elt"));
3186 }
3187 }
3188
3189 /* Compares the two method/function types T1 and T2 for "equality"
3190 with respect to the methods' parameters. If the types of the
3191 two parameter lists are the same, returns 1; 0 otherwise. This
3192 comparison may ignore any artificial parameters in T1 if
3193 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3194 the first artificial parameter in T1, assumed to be a 'this' pointer.
3195
3196 The type T2 is expected to have come from make_params (in eval.c). */
3197
3198 static int
3199 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3200 {
3201 int start = 0;
3202
3203 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3204 ++start;
3205
3206 /* If skipping artificial fields, find the first real field
3207 in T1. */
3208 if (skip_artificial)
3209 {
3210 while (start < TYPE_NFIELDS (t1)
3211 && TYPE_FIELD_ARTIFICIAL (t1, start))
3212 ++start;
3213 }
3214
3215 /* Now compare parameters. */
3216
3217 /* Special case: a method taking void. T1 will contain no
3218 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3219 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3220 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3221 return 1;
3222
3223 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3224 {
3225 int i;
3226
3227 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3228 {
3229 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3230 TYPE_FIELD_TYPE (t2, i)),
3231 EXACT_MATCH_BADNESS) != 0)
3232 return 0;
3233 }
3234
3235 return 1;
3236 }
3237
3238 return 0;
3239 }
3240
3241 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3242 return the address of this member as a "pointer to member" type.
3243 If INTYPE is non-null, then it will be the type of the member we
3244 are looking for. This will help us resolve "pointers to member
3245 functions". This function is used to resolve user expressions of
3246 the form "DOMAIN::NAME". */
3247
3248 static struct value *
3249 value_struct_elt_for_reference (struct type *domain, int offset,
3250 struct type *curtype, char *name,
3251 struct type *intype,
3252 int want_address,
3253 enum noside noside)
3254 {
3255 struct type *t = curtype;
3256 int i;
3257 struct value *v, *result;
3258
3259 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3260 && TYPE_CODE (t) != TYPE_CODE_UNION)
3261 error (_("Internal error: non-aggregate type "
3262 "to value_struct_elt_for_reference"));
3263
3264 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3265 {
3266 char *t_field_name = TYPE_FIELD_NAME (t, i);
3267
3268 if (t_field_name && strcmp (t_field_name, name) == 0)
3269 {
3270 if (field_is_static (&TYPE_FIELD (t, i)))
3271 {
3272 v = value_static_field (t, i);
3273 if (v == NULL)
3274 error (_("static field %s has been optimized out"),
3275 name);
3276 if (want_address)
3277 v = value_addr (v);
3278 return v;
3279 }
3280 if (TYPE_FIELD_PACKED (t, i))
3281 error (_("pointers to bitfield members not allowed"));
3282
3283 if (want_address)
3284 return value_from_longest
3285 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3286 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3287 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3288 return allocate_value (TYPE_FIELD_TYPE (t, i));
3289 else
3290 error (_("Cannot reference non-static field \"%s\""), name);
3291 }
3292 }
3293
3294 /* C++: If it was not found as a data field, then try to return it
3295 as a pointer to a method. */
3296
3297 /* Perform all necessary dereferencing. */
3298 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3299 intype = TYPE_TARGET_TYPE (intype);
3300
3301 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3302 {
3303 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3304 char dem_opname[64];
3305
3306 if (strncmp (t_field_name, "__", 2) == 0
3307 || strncmp (t_field_name, "op", 2) == 0
3308 || strncmp (t_field_name, "type", 4) == 0)
3309 {
3310 if (cplus_demangle_opname (t_field_name,
3311 dem_opname, DMGL_ANSI))
3312 t_field_name = dem_opname;
3313 else if (cplus_demangle_opname (t_field_name,
3314 dem_opname, 0))
3315 t_field_name = dem_opname;
3316 }
3317 if (t_field_name && strcmp (t_field_name, name) == 0)
3318 {
3319 int j;
3320 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3321 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3322
3323 check_stub_method_group (t, i);
3324
3325 if (intype)
3326 {
3327 for (j = 0; j < len; ++j)
3328 {
3329 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3330 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3331 intype, 1))
3332 break;
3333 }
3334
3335 if (j == len)
3336 error (_("no member function matches "
3337 "that type instantiation"));
3338 }
3339 else
3340 {
3341 int ii;
3342
3343 j = -1;
3344 for (ii = 0; ii < len; ++ii)
3345 {
3346 /* Skip artificial methods. This is necessary if,
3347 for example, the user wants to "print
3348 subclass::subclass" with only one user-defined
3349 constructor. There is no ambiguity in this case.
3350 We are careful here to allow artificial methods
3351 if they are the unique result. */
3352 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3353 {
3354 if (j == -1)
3355 j = ii;
3356 continue;
3357 }
3358
3359 /* Desired method is ambiguous if more than one
3360 method is defined. */
3361 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3362 error (_("non-unique member `%s' requires "
3363 "type instantiation"), name);
3364
3365 j = ii;
3366 }
3367
3368 if (j == -1)
3369 error (_("no matching member function"));
3370 }
3371
3372 if (TYPE_FN_FIELD_STATIC_P (f, j))
3373 {
3374 struct symbol *s =
3375 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3376 0, VAR_DOMAIN, 0);
3377
3378 if (s == NULL)
3379 return NULL;
3380
3381 if (want_address)
3382 return value_addr (read_var_value (s, 0));
3383 else
3384 return read_var_value (s, 0);
3385 }
3386
3387 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3388 {
3389 if (want_address)
3390 {
3391 result = allocate_value
3392 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3393 cplus_make_method_ptr (value_type (result),
3394 value_contents_writeable (result),
3395 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3396 }
3397 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3398 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3399 else
3400 error (_("Cannot reference virtual member function \"%s\""),
3401 name);
3402 }
3403 else
3404 {
3405 struct symbol *s =
3406 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3407 0, VAR_DOMAIN, 0);
3408
3409 if (s == NULL)
3410 return NULL;
3411
3412 v = read_var_value (s, 0);
3413 if (!want_address)
3414 result = v;
3415 else
3416 {
3417 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3418 cplus_make_method_ptr (value_type (result),
3419 value_contents_writeable (result),
3420 value_address (v), 0);
3421 }
3422 }
3423 return result;
3424 }
3425 }
3426 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3427 {
3428 struct value *v;
3429 int base_offset;
3430
3431 if (BASETYPE_VIA_VIRTUAL (t, i))
3432 base_offset = 0;
3433 else
3434 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3435 v = value_struct_elt_for_reference (domain,
3436 offset + base_offset,
3437 TYPE_BASECLASS (t, i),
3438 name, intype,
3439 want_address, noside);
3440 if (v)
3441 return v;
3442 }
3443
3444 /* As a last chance, pretend that CURTYPE is a namespace, and look
3445 it up that way; this (frequently) works for types nested inside
3446 classes. */
3447
3448 return value_maybe_namespace_elt (curtype, name,
3449 want_address, noside);
3450 }
3451
3452 /* C++: Return the member NAME of the namespace given by the type
3453 CURTYPE. */
3454
3455 static struct value *
3456 value_namespace_elt (const struct type *curtype,
3457 char *name, int want_address,
3458 enum noside noside)
3459 {
3460 struct value *retval = value_maybe_namespace_elt (curtype, name,
3461 want_address,
3462 noside);
3463
3464 if (retval == NULL)
3465 error (_("No symbol \"%s\" in namespace \"%s\"."),
3466 name, TYPE_TAG_NAME (curtype));
3467
3468 return retval;
3469 }
3470
3471 /* A helper function used by value_namespace_elt and
3472 value_struct_elt_for_reference. It looks up NAME inside the
3473 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3474 is a class and NAME refers to a type in CURTYPE itself (as opposed
3475 to, say, some base class of CURTYPE). */
3476
3477 static struct value *
3478 value_maybe_namespace_elt (const struct type *curtype,
3479 char *name, int want_address,
3480 enum noside noside)
3481 {
3482 const char *namespace_name = TYPE_TAG_NAME (curtype);
3483 struct symbol *sym;
3484 struct value *result;
3485
3486 sym = cp_lookup_symbol_namespace (namespace_name, name,
3487 get_selected_block (0), VAR_DOMAIN);
3488
3489 if (sym == NULL)
3490 {
3491 char *concatenated_name = alloca (strlen (namespace_name) + 2
3492 + strlen (name) + 1);
3493
3494 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3495 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3496 }
3497
3498 if (sym == NULL)
3499 return NULL;
3500 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3501 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3502 result = allocate_value (SYMBOL_TYPE (sym));
3503 else
3504 result = value_of_variable (sym, get_selected_block (0));
3505
3506 if (result && want_address)
3507 result = value_addr (result);
3508
3509 return result;
3510 }
3511
3512 /* Given a pointer value V, find the real (RTTI) type of the object it
3513 points to.
3514
3515 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3516 and refer to the values computed for the object pointed to. */
3517
3518 struct type *
3519 value_rtti_target_type (struct value *v, int *full,
3520 int *top, int *using_enc)
3521 {
3522 struct value *target;
3523
3524 target = value_ind (v);
3525
3526 return value_rtti_type (target, full, top, using_enc);
3527 }
3528
3529 /* Given a value pointed to by ARGP, check its real run-time type, and
3530 if that is different from the enclosing type, create a new value
3531 using the real run-time type as the enclosing type (and of the same
3532 type as ARGP) and return it, with the embedded offset adjusted to
3533 be the correct offset to the enclosed object. RTYPE is the type,
3534 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3535 by value_rtti_type(). If these are available, they can be supplied
3536 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3537 NULL if they're not available. */
3538
3539 struct value *
3540 value_full_object (struct value *argp,
3541 struct type *rtype,
3542 int xfull, int xtop,
3543 int xusing_enc)
3544 {
3545 struct type *real_type;
3546 int full = 0;
3547 int top = -1;
3548 int using_enc = 0;
3549 struct value *new_val;
3550
3551 if (rtype)
3552 {
3553 real_type = rtype;
3554 full = xfull;
3555 top = xtop;
3556 using_enc = xusing_enc;
3557 }
3558 else
3559 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3560
3561 /* If no RTTI data, or if object is already complete, do nothing. */
3562 if (!real_type || real_type == value_enclosing_type (argp))
3563 return argp;
3564
3565 /* If we have the full object, but for some reason the enclosing
3566 type is wrong, set it. */
3567 /* pai: FIXME -- sounds iffy */
3568 if (full)
3569 {
3570 argp = value_copy (argp);
3571 set_value_enclosing_type (argp, real_type);
3572 return argp;
3573 }
3574
3575 /* Check if object is in memory. */
3576 if (VALUE_LVAL (argp) != lval_memory)
3577 {
3578 warning (_("Couldn't retrieve complete object of RTTI "
3579 "type %s; object may be in register(s)."),
3580 TYPE_NAME (real_type));
3581
3582 return argp;
3583 }
3584
3585 /* All other cases -- retrieve the complete object. */
3586 /* Go back by the computed top_offset from the beginning of the
3587 object, adjusting for the embedded offset of argp if that's what
3588 value_rtti_type used for its computation. */
3589 new_val = value_at_lazy (real_type, value_address (argp) - top +
3590 (using_enc ? 0 : value_embedded_offset (argp)));
3591 deprecated_set_value_type (new_val, value_type (argp));
3592 set_value_embedded_offset (new_val, (using_enc
3593 ? top + value_embedded_offset (argp)
3594 : top));
3595 return new_val;
3596 }
3597
3598
3599 /* Return the value of the local variable, if one exists.
3600 Flag COMPLAIN signals an error if the request is made in an
3601 inappropriate context. */
3602
3603 struct value *
3604 value_of_local (const char *name, int complain)
3605 {
3606 struct symbol *func, *sym;
3607 struct block *b;
3608 struct value * ret;
3609 struct frame_info *frame;
3610
3611 if (complain)
3612 frame = get_selected_frame (_("no frame selected"));
3613 else
3614 {
3615 frame = deprecated_safe_get_selected_frame ();
3616 if (frame == 0)
3617 return 0;
3618 }
3619
3620 func = get_frame_function (frame);
3621 if (!func)
3622 {
3623 if (complain)
3624 error (_("no `%s' in nameless context"), name);
3625 else
3626 return 0;
3627 }
3628
3629 b = SYMBOL_BLOCK_VALUE (func);
3630 if (dict_empty (BLOCK_DICT (b)))
3631 {
3632 if (complain)
3633 error (_("no args, no `%s'"), name);
3634 else
3635 return 0;
3636 }
3637
3638 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3639 symbol instead of the LOC_ARG one (if both exist). */
3640 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3641 if (sym == NULL)
3642 {
3643 if (complain)
3644 error (_("current stack frame does not contain a variable named `%s'"),
3645 name);
3646 else
3647 return NULL;
3648 }
3649
3650 ret = read_var_value (sym, frame);
3651 if (ret == 0 && complain)
3652 error (_("`%s' argument unreadable"), name);
3653 return ret;
3654 }
3655
3656 /* C++/Objective-C: return the value of the class instance variable,
3657 if one exists. Flag COMPLAIN signals an error if the request is
3658 made in an inappropriate context. */
3659
3660 struct value *
3661 value_of_this (int complain)
3662 {
3663 if (!current_language->la_name_of_this)
3664 return 0;
3665 return value_of_local (current_language->la_name_of_this, complain);
3666 }
3667
3668 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3669 elements long, starting at LOWBOUND. The result has the same lower
3670 bound as the original ARRAY. */
3671
3672 struct value *
3673 value_slice (struct value *array, int lowbound, int length)
3674 {
3675 struct type *slice_range_type, *slice_type, *range_type;
3676 LONGEST lowerbound, upperbound;
3677 struct value *slice;
3678 struct type *array_type;
3679
3680 array_type = check_typedef (value_type (array));
3681 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3682 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3683 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3684 error (_("cannot take slice of non-array"));
3685
3686 range_type = TYPE_INDEX_TYPE (array_type);
3687 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3688 error (_("slice from bad array or bitstring"));
3689
3690 if (lowbound < lowerbound || length < 0
3691 || lowbound + length - 1 > upperbound)
3692 error (_("slice out of range"));
3693
3694 /* FIXME-type-allocation: need a way to free this type when we are
3695 done with it. */
3696 slice_range_type = create_range_type ((struct type *) NULL,
3697 TYPE_TARGET_TYPE (range_type),
3698 lowbound,
3699 lowbound + length - 1);
3700 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3701 {
3702 int i;
3703
3704 slice_type = create_set_type ((struct type *) NULL,
3705 slice_range_type);
3706 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3707 slice = value_zero (slice_type, not_lval);
3708
3709 for (i = 0; i < length; i++)
3710 {
3711 int element = value_bit_index (array_type,
3712 value_contents (array),
3713 lowbound + i);
3714
3715 if (element < 0)
3716 error (_("internal error accessing bitstring"));
3717 else if (element > 0)
3718 {
3719 int j = i % TARGET_CHAR_BIT;
3720
3721 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3722 j = TARGET_CHAR_BIT - 1 - j;
3723 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3724 }
3725 }
3726 /* We should set the address, bitssize, and bitspos, so the
3727 slice can be used on the LHS, but that may require extensions
3728 to value_assign. For now, just leave as a non_lval.
3729 FIXME. */
3730 }
3731 else
3732 {
3733 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3734 LONGEST offset =
3735 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3736
3737 slice_type = create_array_type ((struct type *) NULL,
3738 element_type,
3739 slice_range_type);
3740 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3741
3742 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3743 slice = allocate_value_lazy (slice_type);
3744 else
3745 {
3746 slice = allocate_value (slice_type);
3747 value_contents_copy (slice, 0, array, offset,
3748 TYPE_LENGTH (slice_type));
3749 }
3750
3751 set_value_component_location (slice, array);
3752 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3753 set_value_offset (slice, value_offset (array) + offset);
3754 }
3755 return slice;
3756 }
3757
3758 /* Create a value for a FORTRAN complex number. Currently most of the
3759 time values are coerced to COMPLEX*16 (i.e. a complex number
3760 composed of 2 doubles. This really should be a smarter routine
3761 that figures out precision inteligently as opposed to assuming
3762 doubles. FIXME: fmb */
3763
3764 struct value *
3765 value_literal_complex (struct value *arg1,
3766 struct value *arg2,
3767 struct type *type)
3768 {
3769 struct value *val;
3770 struct type *real_type = TYPE_TARGET_TYPE (type);
3771
3772 val = allocate_value (type);
3773 arg1 = value_cast (real_type, arg1);
3774 arg2 = value_cast (real_type, arg2);
3775
3776 memcpy (value_contents_raw (val),
3777 value_contents (arg1), TYPE_LENGTH (real_type));
3778 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3779 value_contents (arg2), TYPE_LENGTH (real_type));
3780 return val;
3781 }
3782
3783 /* Cast a value into the appropriate complex data type. */
3784
3785 static struct value *
3786 cast_into_complex (struct type *type, struct value *val)
3787 {
3788 struct type *real_type = TYPE_TARGET_TYPE (type);
3789
3790 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3791 {
3792 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3793 struct value *re_val = allocate_value (val_real_type);
3794 struct value *im_val = allocate_value (val_real_type);
3795
3796 memcpy (value_contents_raw (re_val),
3797 value_contents (val), TYPE_LENGTH (val_real_type));
3798 memcpy (value_contents_raw (im_val),
3799 value_contents (val) + TYPE_LENGTH (val_real_type),
3800 TYPE_LENGTH (val_real_type));
3801
3802 return value_literal_complex (re_val, im_val, type);
3803 }
3804 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3805 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3806 return value_literal_complex (val,
3807 value_zero (real_type, not_lval),
3808 type);
3809 else
3810 error (_("cannot cast non-number to complex"));
3811 }
3812
3813 void
3814 _initialize_valops (void)
3815 {
3816 add_setshow_boolean_cmd ("overload-resolution", class_support,
3817 &overload_resolution, _("\
3818 Set overload resolution in evaluating C++ functions."), _("\
3819 Show overload resolution in evaluating C++ functions."),
3820 NULL, NULL,
3821 show_overload_resolution,
3822 &setlist, &showlist);
3823 overload_resolution = 1;
3824 }
This page took 0.196958 seconds and 4 git commands to generate.