3e40a6d4c2fd5852b06a9b57f5d9248cdad6711b
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36 #include "block.h"
37 #include "infcall.h"
38 #include "dictionary.h"
39 #include "cp-support.h"
40
41 #include <errno.h>
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44 #include "cp-support.h"
45 #include "observer.h"
46
47 extern int overload_debug;
48 /* Local functions. */
49
50 static int typecmp (int staticp, int varargs, int nargs,
51 struct field t1[], struct value *t2[]);
52
53 static struct value *search_struct_field (char *, struct value *, int,
54 struct type *, int);
55
56 static struct value *search_struct_method (char *, struct value **,
57 struct value **,
58 int, int *, struct type *);
59
60 static int find_oload_champ_namespace (struct type **arg_types, int nargs,
61 const char *func_name,
62 const char *qualified_name,
63 struct symbol ***oload_syms,
64 struct badness_vector **oload_champ_bv);
65
66 static
67 int find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
68 const char *func_name,
69 const char *qualified_name,
70 int namespace_len,
71 struct symbol ***oload_syms,
72 struct badness_vector **oload_champ_bv,
73 int *oload_champ);
74
75 static int find_oload_champ (struct type **arg_types, int nargs, int method,
76 int num_fns,
77 struct fn_field *fns_ptr,
78 struct symbol **oload_syms,
79 struct badness_vector **oload_champ_bv);
80
81 static int oload_method_static (int method, struct fn_field *fns_ptr,
82 int index);
83
84 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
85
86 static enum
87 oload_classification classify_oload_match (struct badness_vector
88 * oload_champ_bv,
89 int nargs,
90 int static_offset);
91
92 static int check_field_in (struct type *, const char *);
93
94 static struct value *value_struct_elt_for_reference (struct type *domain,
95 int offset,
96 struct type *curtype,
97 char *name,
98 struct type *intype,
99 enum noside noside);
100
101 static struct value *value_namespace_elt (const struct type *curtype,
102 char *name,
103 enum noside noside);
104
105 static struct value *value_maybe_namespace_elt (const struct type *curtype,
106 char *name,
107 enum noside noside);
108
109 static CORE_ADDR allocate_space_in_inferior (int);
110
111 static struct value *cast_into_complex (struct type *, struct value *);
112
113 static struct fn_field *find_method_list (struct value ** argp, char *method,
114 int offset,
115 struct type *type, int *num_fns,
116 struct type **basetype,
117 int *boffset);
118
119 void _initialize_valops (void);
120
121 /* Flag for whether we want to abandon failed expression evals by default. */
122
123 #if 0
124 static int auto_abandon = 0;
125 #endif
126
127 int overload_resolution = 0;
128
129 /* Find the address of function name NAME in the inferior. */
130
131 struct value *
132 find_function_in_inferior (const char *name)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error ("\"%s\" exists in this program but is not a function.",
141 name);
142 }
143 return value_of_variable (sym, NULL);
144 }
145 else
146 {
147 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
148 if (msymbol != NULL)
149 {
150 struct type *type;
151 CORE_ADDR maddr;
152 type = lookup_pointer_type (builtin_type_char);
153 type = lookup_function_type (type);
154 type = lookup_pointer_type (type);
155 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
156 return value_from_pointer (type, maddr);
157 }
158 else
159 {
160 if (!target_has_execution)
161 error ("evaluation of this expression requires the target program to be active");
162 else
163 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
164 }
165 }
166 }
167
168 /* Allocate NBYTES of space in the inferior using the inferior's malloc
169 and return a value that is a pointer to the allocated space. */
170
171 struct value *
172 value_allocate_space_in_inferior (int len)
173 {
174 struct value *blocklen;
175 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
176
177 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
178 val = call_function_by_hand (val, 1, &blocklen);
179 if (value_logical_not (val))
180 {
181 if (!target_has_execution)
182 error ("No memory available to program now: you need to start the target first");
183 else
184 error ("No memory available to program: call to malloc failed");
185 }
186 return val;
187 }
188
189 static CORE_ADDR
190 allocate_space_in_inferior (int len)
191 {
192 return value_as_long (value_allocate_space_in_inferior (len));
193 }
194
195 /* Cast value ARG2 to type TYPE and return as a value.
196 More general than a C cast: accepts any two types of the same length,
197 and if ARG2 is an lvalue it can be cast into anything at all. */
198 /* In C++, casts may change pointer or object representations. */
199
200 struct value *
201 value_cast (struct type *type, struct value *arg2)
202 {
203 enum type_code code1;
204 enum type_code code2;
205 int scalar;
206 struct type *type2;
207
208 int convert_to_boolean = 0;
209
210 if (VALUE_TYPE (arg2) == type)
211 return arg2;
212
213 CHECK_TYPEDEF (type);
214 code1 = TYPE_CODE (type);
215 arg2 = coerce_ref (arg2);
216 type2 = check_typedef (VALUE_TYPE (arg2));
217
218 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
219 is treated like a cast to (TYPE [N])OBJECT,
220 where N is sizeof(OBJECT)/sizeof(TYPE). */
221 if (code1 == TYPE_CODE_ARRAY)
222 {
223 struct type *element_type = TYPE_TARGET_TYPE (type);
224 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
225 if (element_length > 0
226 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
227 {
228 struct type *range_type = TYPE_INDEX_TYPE (type);
229 int val_length = TYPE_LENGTH (type2);
230 LONGEST low_bound, high_bound, new_length;
231 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
232 low_bound = 0, high_bound = 0;
233 new_length = val_length / element_length;
234 if (val_length % element_length != 0)
235 warning ("array element type size does not divide object size in cast");
236 /* FIXME-type-allocation: need a way to free this type when we are
237 done with it. */
238 range_type = create_range_type ((struct type *) NULL,
239 TYPE_TARGET_TYPE (range_type),
240 low_bound,
241 new_length + low_bound - 1);
242 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
243 element_type, range_type);
244 return arg2;
245 }
246 }
247
248 if (current_language->c_style_arrays
249 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
250 arg2 = value_coerce_array (arg2);
251
252 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
253 arg2 = value_coerce_function (arg2);
254
255 type2 = check_typedef (VALUE_TYPE (arg2));
256 code2 = TYPE_CODE (type2);
257
258 if (code1 == TYPE_CODE_COMPLEX)
259 return cast_into_complex (type, arg2);
260 if (code1 == TYPE_CODE_BOOL)
261 {
262 code1 = TYPE_CODE_INT;
263 convert_to_boolean = 1;
264 }
265 if (code1 == TYPE_CODE_CHAR)
266 code1 = TYPE_CODE_INT;
267 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
268 code2 = TYPE_CODE_INT;
269
270 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
271 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
272
273 if (code1 == TYPE_CODE_STRUCT
274 && code2 == TYPE_CODE_STRUCT
275 && TYPE_NAME (type) != 0)
276 {
277 /* Look in the type of the source to see if it contains the
278 type of the target as a superclass. If so, we'll need to
279 offset the object in addition to changing its type. */
280 struct value *v = search_struct_field (type_name_no_tag (type),
281 arg2, 0, type2, 1);
282 if (v)
283 {
284 VALUE_TYPE (v) = type;
285 return v;
286 }
287 }
288 if (code1 == TYPE_CODE_FLT && scalar)
289 return value_from_double (type, value_as_double (arg2));
290 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
291 || code1 == TYPE_CODE_RANGE)
292 && (scalar || code2 == TYPE_CODE_PTR))
293 {
294 LONGEST longest;
295
296 if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */
297 && (code2 == TYPE_CODE_PTR))
298 {
299 unsigned int *ptr;
300 struct value *retvalp;
301
302 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
303 {
304 /* With HP aCC, pointers to data members have a bias */
305 case TYPE_CODE_MEMBER:
306 retvalp = value_from_longest (type, value_as_long (arg2));
307 /* force evaluation */
308 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
309 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
310 return retvalp;
311
312 /* While pointers to methods don't really point to a function */
313 case TYPE_CODE_METHOD:
314 error ("Pointers to methods not supported with HP aCC");
315
316 default:
317 break; /* fall out and go to normal handling */
318 }
319 }
320
321 /* When we cast pointers to integers, we mustn't use
322 POINTER_TO_ADDRESS to find the address the pointer
323 represents, as value_as_long would. GDB should evaluate
324 expressions just as the compiler would --- and the compiler
325 sees a cast as a simple reinterpretation of the pointer's
326 bits. */
327 if (code2 == TYPE_CODE_PTR)
328 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
329 TYPE_LENGTH (type2));
330 else
331 longest = value_as_long (arg2);
332 return value_from_longest (type, convert_to_boolean ?
333 (LONGEST) (longest ? 1 : 0) : longest);
334 }
335 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
336 code2 == TYPE_CODE_ENUM ||
337 code2 == TYPE_CODE_RANGE))
338 {
339 /* TYPE_LENGTH (type) is the length of a pointer, but we really
340 want the length of an address! -- we are really dealing with
341 addresses (i.e., gdb representations) not pointers (i.e.,
342 target representations) here.
343
344 This allows things like "print *(int *)0x01000234" to work
345 without printing a misleading message -- which would
346 otherwise occur when dealing with a target having two byte
347 pointers and four byte addresses. */
348
349 int addr_bit = TARGET_ADDR_BIT;
350
351 LONGEST longest = value_as_long (arg2);
352 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
353 {
354 if (longest >= ((LONGEST) 1 << addr_bit)
355 || longest <= -((LONGEST) 1 << addr_bit))
356 warning ("value truncated");
357 }
358 return value_from_longest (type, longest);
359 }
360 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
361 {
362 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
363 {
364 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
365 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
366 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
367 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
368 && !value_logical_not (arg2))
369 {
370 struct value *v;
371
372 /* Look in the type of the source to see if it contains the
373 type of the target as a superclass. If so, we'll need to
374 offset the pointer rather than just change its type. */
375 if (TYPE_NAME (t1) != NULL)
376 {
377 v = search_struct_field (type_name_no_tag (t1),
378 value_ind (arg2), 0, t2, 1);
379 if (v)
380 {
381 v = value_addr (v);
382 VALUE_TYPE (v) = type;
383 return v;
384 }
385 }
386
387 /* Look in the type of the target to see if it contains the
388 type of the source as a superclass. If so, we'll need to
389 offset the pointer rather than just change its type.
390 FIXME: This fails silently with virtual inheritance. */
391 if (TYPE_NAME (t2) != NULL)
392 {
393 v = search_struct_field (type_name_no_tag (t2),
394 value_zero (t1, not_lval), 0, t1, 1);
395 if (v)
396 {
397 CORE_ADDR addr2 = value_as_address (arg2);
398 addr2 -= (VALUE_ADDRESS (v)
399 + VALUE_OFFSET (v)
400 + VALUE_EMBEDDED_OFFSET (v));
401 return value_from_pointer (type, addr2);
402 }
403 }
404 }
405 /* No superclass found, just fall through to change ptr type. */
406 }
407 VALUE_TYPE (arg2) = type;
408 arg2 = value_change_enclosing_type (arg2, type);
409 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
410 return arg2;
411 }
412 else if (VALUE_LVAL (arg2) == lval_memory)
413 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
414 else if (code1 == TYPE_CODE_VOID)
415 {
416 return value_zero (builtin_type_void, not_lval);
417 }
418 else
419 {
420 error ("Invalid cast.");
421 return 0;
422 }
423 }
424
425 /* Create a value of type TYPE that is zero, and return it. */
426
427 struct value *
428 value_zero (struct type *type, enum lval_type lv)
429 {
430 struct value *val = allocate_value (type);
431
432 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
433 VALUE_LVAL (val) = lv;
434
435 return val;
436 }
437
438 /* Return a value with type TYPE located at ADDR.
439
440 Call value_at only if the data needs to be fetched immediately;
441 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
442 value_at_lazy instead. value_at_lazy simply records the address of
443 the data and sets the lazy-evaluation-required flag. The lazy flag
444 is tested in the VALUE_CONTENTS macro, which is used if and when
445 the contents are actually required.
446
447 Note: value_at does *NOT* handle embedded offsets; perform such
448 adjustments before or after calling it. */
449
450 struct value *
451 value_at (struct type *type, CORE_ADDR addr)
452 {
453 struct value *val;
454
455 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
456 error ("Attempt to dereference a generic pointer.");
457
458 val = allocate_value (type);
459
460 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
461
462 VALUE_LVAL (val) = lval_memory;
463 VALUE_ADDRESS (val) = addr;
464
465 return val;
466 }
467
468 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
469
470 struct value *
471 value_at_lazy (struct type *type, CORE_ADDR addr)
472 {
473 struct value *val;
474
475 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
476 error ("Attempt to dereference a generic pointer.");
477
478 val = allocate_value (type);
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_LAZY (val) = 1;
483
484 return val;
485 }
486
487 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
488 if the current data for a variable needs to be loaded into
489 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
490 clears the lazy flag to indicate that the data in the buffer is valid.
491
492 If the value is zero-length, we avoid calling read_memory, which would
493 abort. We mark the value as fetched anyway -- all 0 bytes of it.
494
495 This function returns a value because it is used in the VALUE_CONTENTS
496 macro as part of an expression, where a void would not work. The
497 value is ignored. */
498
499 int
500 value_fetch_lazy (struct value *val)
501 {
502 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
503 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
504
505 struct type *type = VALUE_TYPE (val);
506 if (length)
507 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
508
509 VALUE_LAZY (val) = 0;
510 return 0;
511 }
512
513
514 /* Store the contents of FROMVAL into the location of TOVAL.
515 Return a new value with the location of TOVAL and contents of FROMVAL. */
516
517 struct value *
518 value_assign (struct value *toval, struct value *fromval)
519 {
520 struct type *type;
521 struct value *val;
522 struct frame_id old_frame;
523
524 if (!toval->modifiable)
525 error ("Left operand of assignment is not a modifiable lvalue.");
526
527 toval = coerce_ref (toval);
528
529 type = VALUE_TYPE (toval);
530 if (VALUE_LVAL (toval) != lval_internalvar)
531 fromval = value_cast (type, fromval);
532 else
533 fromval = coerce_array (fromval);
534 CHECK_TYPEDEF (type);
535
536 /* Since modifying a register can trash the frame chain, and modifying memory
537 can trash the frame cache, we save the old frame and then restore the new
538 frame afterwards. */
539 old_frame = get_frame_id (deprecated_selected_frame);
540
541 switch (VALUE_LVAL (toval))
542 {
543 case lval_internalvar:
544 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
545 val = value_copy (VALUE_INTERNALVAR (toval)->value);
546 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
547 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
548 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
549 return val;
550
551 case lval_internalvar_component:
552 set_internalvar_component (VALUE_INTERNALVAR (toval),
553 VALUE_OFFSET (toval),
554 VALUE_BITPOS (toval),
555 VALUE_BITSIZE (toval),
556 fromval);
557 break;
558
559 case lval_memory:
560 {
561 char *dest_buffer;
562 CORE_ADDR changed_addr;
563 int changed_len;
564 char buffer[sizeof (LONGEST)];
565
566 if (VALUE_BITSIZE (toval))
567 {
568 /* We assume that the argument to read_memory is in units of
569 host chars. FIXME: Is that correct? */
570 changed_len = (VALUE_BITPOS (toval)
571 + VALUE_BITSIZE (toval)
572 + HOST_CHAR_BIT - 1)
573 / HOST_CHAR_BIT;
574
575 if (changed_len > (int) sizeof (LONGEST))
576 error ("Can't handle bitfields which don't fit in a %d bit word.",
577 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
578
579 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
580 buffer, changed_len);
581 modify_field (buffer, value_as_long (fromval),
582 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
583 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
584 dest_buffer = buffer;
585 }
586 else
587 {
588 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
589 changed_len = TYPE_LENGTH (type);
590 dest_buffer = VALUE_CONTENTS (fromval);
591 }
592
593 write_memory (changed_addr, dest_buffer, changed_len);
594 if (deprecated_memory_changed_hook)
595 deprecated_memory_changed_hook (changed_addr, changed_len);
596 }
597 break;
598
599 case lval_reg_frame_relative:
600 case lval_register:
601 {
602 struct frame_info *frame;
603 int value_reg;
604
605 /* Figure out which frame this is in currently. */
606 if (VALUE_LVAL (toval) == lval_register)
607 {
608 frame = get_current_frame ();
609 value_reg = VALUE_REGNO (toval);
610 }
611 else
612 {
613 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
614 value_reg = VALUE_FRAME_REGNUM (toval);
615 }
616
617 if (!frame)
618 error ("Value being assigned to is no longer active.");
619
620 if (VALUE_LVAL (toval) == lval_reg_frame_relative
621 && CONVERT_REGISTER_P (VALUE_FRAME_REGNUM (toval), type))
622 {
623 /* If TOVAL is a special machine register requiring
624 conversion of program values to a special raw format. */
625 VALUE_TO_REGISTER (frame, VALUE_FRAME_REGNUM (toval),
626 type, VALUE_CONTENTS (fromval));
627 }
628 else
629 {
630 /* TOVAL is stored in a series of registers in the frame
631 specified by the structure. Copy that value out,
632 modify it, and copy it back in. */
633 int amount_copied;
634 int amount_to_copy;
635 char *buffer;
636 int reg_offset;
637 int byte_offset;
638 int regno;
639
640 /* Locate the first register that falls in the value that
641 needs to be transfered. Compute the offset of the
642 value in that register. */
643 {
644 int offset;
645 for (reg_offset = value_reg, offset = 0;
646 offset + register_size (current_gdbarch, reg_offset) <= VALUE_OFFSET (toval);
647 reg_offset++);
648 byte_offset = VALUE_OFFSET (toval) - offset;
649 }
650
651 /* Compute the number of register aligned values that need
652 to be copied. */
653 if (VALUE_BITSIZE (toval))
654 amount_to_copy = byte_offset + 1;
655 else
656 amount_to_copy = byte_offset + TYPE_LENGTH (type);
657
658 /* And a bounce buffer. Be slightly over generous. */
659 buffer = (char *) alloca (amount_to_copy + MAX_REGISTER_SIZE);
660
661 /* Copy it in. */
662 for (regno = reg_offset, amount_copied = 0;
663 amount_copied < amount_to_copy;
664 amount_copied += register_size (current_gdbarch, regno), regno++)
665 frame_register_read (frame, regno, buffer + amount_copied);
666
667 /* Modify what needs to be modified. */
668 if (VALUE_BITSIZE (toval))
669 modify_field (buffer + byte_offset,
670 value_as_long (fromval),
671 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
672 else
673 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
674 TYPE_LENGTH (type));
675
676 /* Copy it out. */
677 for (regno = reg_offset, amount_copied = 0;
678 amount_copied < amount_to_copy;
679 amount_copied += register_size (current_gdbarch, regno), regno++)
680 put_frame_register (frame, regno, buffer + amount_copied);
681
682 }
683 if (deprecated_register_changed_hook)
684 deprecated_register_changed_hook (-1);
685 observer_notify_target_changed (&current_target);
686 break;
687 }
688
689 default:
690 error ("Left operand of assignment is not an lvalue.");
691 }
692
693 /* Assigning to the stack pointer, frame pointer, and other
694 (architecture and calling convention specific) registers may
695 cause the frame cache to be out of date. Assigning to memory
696 also can. We just do this on all assignments to registers or
697 memory, for simplicity's sake; I doubt the slowdown matters. */
698 switch (VALUE_LVAL (toval))
699 {
700 case lval_memory:
701 case lval_register:
702 case lval_reg_frame_relative:
703
704 reinit_frame_cache ();
705
706 /* Having destoroyed the frame cache, restore the selected frame. */
707
708 /* FIXME: cagney/2002-11-02: There has to be a better way of
709 doing this. Instead of constantly saving/restoring the
710 frame. Why not create a get_selected_frame() function that,
711 having saved the selected frame's ID can automatically
712 re-find the previously selected frame automatically. */
713
714 {
715 struct frame_info *fi = frame_find_by_id (old_frame);
716 if (fi != NULL)
717 select_frame (fi);
718 }
719
720 break;
721 default:
722 break;
723 }
724
725 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
726 If the field is signed, and is negative, then sign extend. */
727 if ((VALUE_BITSIZE (toval) > 0)
728 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
729 {
730 LONGEST fieldval = value_as_long (fromval);
731 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
732
733 fieldval &= valmask;
734 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
735 fieldval |= ~valmask;
736
737 fromval = value_from_longest (type, fieldval);
738 }
739
740 val = value_copy (toval);
741 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
742 TYPE_LENGTH (type));
743 VALUE_TYPE (val) = type;
744 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
745 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
746 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
747
748 return val;
749 }
750
751 /* Extend a value VAL to COUNT repetitions of its type. */
752
753 struct value *
754 value_repeat (struct value *arg1, int count)
755 {
756 struct value *val;
757
758 if (VALUE_LVAL (arg1) != lval_memory)
759 error ("Only values in memory can be extended with '@'.");
760 if (count < 1)
761 error ("Invalid number %d of repetitions.", count);
762
763 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
764
765 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
766 VALUE_CONTENTS_ALL_RAW (val),
767 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
768 VALUE_LVAL (val) = lval_memory;
769 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
770
771 return val;
772 }
773
774 struct value *
775 value_of_variable (struct symbol *var, struct block *b)
776 {
777 struct value *val;
778 struct frame_info *frame = NULL;
779
780 if (!b)
781 frame = NULL; /* Use selected frame. */
782 else if (symbol_read_needs_frame (var))
783 {
784 frame = block_innermost_frame (b);
785 if (!frame)
786 {
787 if (BLOCK_FUNCTION (b)
788 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
789 error ("No frame is currently executing in block %s.",
790 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
791 else
792 error ("No frame is currently executing in specified block");
793 }
794 }
795
796 val = read_var_value (var, frame);
797 if (!val)
798 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
799
800 return val;
801 }
802
803 /* Given a value which is an array, return a value which is a pointer to its
804 first element, regardless of whether or not the array has a nonzero lower
805 bound.
806
807 FIXME: A previous comment here indicated that this routine should be
808 substracting the array's lower bound. It's not clear to me that this
809 is correct. Given an array subscripting operation, it would certainly
810 work to do the adjustment here, essentially computing:
811
812 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
813
814 However I believe a more appropriate and logical place to account for
815 the lower bound is to do so in value_subscript, essentially computing:
816
817 (&array[0] + ((index - lowerbound) * sizeof array[0]))
818
819 As further evidence consider what would happen with operations other
820 than array subscripting, where the caller would get back a value that
821 had an address somewhere before the actual first element of the array,
822 and the information about the lower bound would be lost because of
823 the coercion to pointer type.
824 */
825
826 struct value *
827 value_coerce_array (struct value *arg1)
828 {
829 struct type *type = check_typedef (VALUE_TYPE (arg1));
830
831 if (VALUE_LVAL (arg1) != lval_memory)
832 error ("Attempt to take address of value not located in memory.");
833
834 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
835 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
836 }
837
838 /* Given a value which is a function, return a value which is a pointer
839 to it. */
840
841 struct value *
842 value_coerce_function (struct value *arg1)
843 {
844 struct value *retval;
845
846 if (VALUE_LVAL (arg1) != lval_memory)
847 error ("Attempt to take address of value not located in memory.");
848
849 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
850 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
851 return retval;
852 }
853
854 /* Return a pointer value for the object for which ARG1 is the contents. */
855
856 struct value *
857 value_addr (struct value *arg1)
858 {
859 struct value *arg2;
860
861 struct type *type = check_typedef (VALUE_TYPE (arg1));
862 if (TYPE_CODE (type) == TYPE_CODE_REF)
863 {
864 /* Copy the value, but change the type from (T&) to (T*).
865 We keep the same location information, which is efficient,
866 and allows &(&X) to get the location containing the reference. */
867 arg2 = value_copy (arg1);
868 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
869 return arg2;
870 }
871 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
872 return value_coerce_function (arg1);
873
874 if (VALUE_LVAL (arg1) != lval_memory)
875 error ("Attempt to take address of value not located in memory.");
876
877 /* Get target memory address */
878 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
879 (VALUE_ADDRESS (arg1)
880 + VALUE_OFFSET (arg1)
881 + VALUE_EMBEDDED_OFFSET (arg1)));
882
883 /* This may be a pointer to a base subobject; so remember the
884 full derived object's type ... */
885 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
886 /* ... and also the relative position of the subobject in the full object */
887 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
888 return arg2;
889 }
890
891 /* Given a value of a pointer type, apply the C unary * operator to it. */
892
893 struct value *
894 value_ind (struct value *arg1)
895 {
896 struct type *base_type;
897 struct value *arg2;
898
899 arg1 = coerce_array (arg1);
900
901 base_type = check_typedef (VALUE_TYPE (arg1));
902
903 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
904 error ("not implemented: member types in value_ind");
905
906 /* Allow * on an integer so we can cast it to whatever we want.
907 This returns an int, which seems like the most C-like thing
908 to do. "long long" variables are rare enough that
909 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
910 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
911 return value_at_lazy (builtin_type_int,
912 (CORE_ADDR) value_as_long (arg1));
913 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
914 {
915 struct type *enc_type;
916 /* We may be pointing to something embedded in a larger object */
917 /* Get the real type of the enclosing object */
918 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
919 enc_type = TYPE_TARGET_TYPE (enc_type);
920 /* Retrieve the enclosing object pointed to */
921 arg2 = value_at_lazy (enc_type, (value_as_address (arg1)
922 - VALUE_POINTED_TO_OFFSET (arg1)));
923 /* Re-adjust type */
924 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
925 /* Add embedding info */
926 arg2 = value_change_enclosing_type (arg2, enc_type);
927 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
928
929 /* We may be pointing to an object of some derived type */
930 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
931 return arg2;
932 }
933
934 error ("Attempt to take contents of a non-pointer value.");
935 return 0; /* For lint -- never reached */
936 }
937 \f
938 /* Pushing small parts of stack frames. */
939
940 /* Push one word (the size of object that a register holds). */
941
942 CORE_ADDR
943 push_word (CORE_ADDR sp, ULONGEST word)
944 {
945 int len = DEPRECATED_REGISTER_SIZE;
946 char buffer[MAX_REGISTER_SIZE];
947
948 store_unsigned_integer (buffer, len, word);
949 if (INNER_THAN (1, 2))
950 {
951 /* stack grows downward */
952 sp -= len;
953 write_memory (sp, buffer, len);
954 }
955 else
956 {
957 /* stack grows upward */
958 write_memory (sp, buffer, len);
959 sp += len;
960 }
961
962 return sp;
963 }
964
965 /* Push LEN bytes with data at BUFFER. */
966
967 CORE_ADDR
968 push_bytes (CORE_ADDR sp, char *buffer, int len)
969 {
970 if (INNER_THAN (1, 2))
971 {
972 /* stack grows downward */
973 sp -= len;
974 write_memory (sp, buffer, len);
975 }
976 else
977 {
978 /* stack grows upward */
979 write_memory (sp, buffer, len);
980 sp += len;
981 }
982
983 return sp;
984 }
985
986 /* Create a value for an array by allocating space in the inferior, copying
987 the data into that space, and then setting up an array value.
988
989 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
990 populated from the values passed in ELEMVEC.
991
992 The element type of the array is inherited from the type of the
993 first element, and all elements must have the same size (though we
994 don't currently enforce any restriction on their types). */
995
996 struct value *
997 value_array (int lowbound, int highbound, struct value **elemvec)
998 {
999 int nelem;
1000 int idx;
1001 unsigned int typelength;
1002 struct value *val;
1003 struct type *rangetype;
1004 struct type *arraytype;
1005 CORE_ADDR addr;
1006
1007 /* Validate that the bounds are reasonable and that each of the elements
1008 have the same size. */
1009
1010 nelem = highbound - lowbound + 1;
1011 if (nelem <= 0)
1012 {
1013 error ("bad array bounds (%d, %d)", lowbound, highbound);
1014 }
1015 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1016 for (idx = 1; idx < nelem; idx++)
1017 {
1018 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1019 {
1020 error ("array elements must all be the same size");
1021 }
1022 }
1023
1024 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1025 lowbound, highbound);
1026 arraytype = create_array_type ((struct type *) NULL,
1027 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1028
1029 if (!current_language->c_style_arrays)
1030 {
1031 val = allocate_value (arraytype);
1032 for (idx = 0; idx < nelem; idx++)
1033 {
1034 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1035 VALUE_CONTENTS_ALL (elemvec[idx]),
1036 typelength);
1037 }
1038 return val;
1039 }
1040
1041 /* Allocate space to store the array in the inferior, and then initialize
1042 it by copying in each element. FIXME: Is it worth it to create a
1043 local buffer in which to collect each value and then write all the
1044 bytes in one operation? */
1045
1046 addr = allocate_space_in_inferior (nelem * typelength);
1047 for (idx = 0; idx < nelem; idx++)
1048 {
1049 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1050 typelength);
1051 }
1052
1053 /* Create the array type and set up an array value to be evaluated lazily. */
1054
1055 val = value_at_lazy (arraytype, addr);
1056 return (val);
1057 }
1058
1059 /* Create a value for a string constant by allocating space in the inferior,
1060 copying the data into that space, and returning the address with type
1061 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1062 of characters.
1063 Note that string types are like array of char types with a lower bound of
1064 zero and an upper bound of LEN - 1. Also note that the string may contain
1065 embedded null bytes. */
1066
1067 struct value *
1068 value_string (char *ptr, int len)
1069 {
1070 struct value *val;
1071 int lowbound = current_language->string_lower_bound;
1072 struct type *rangetype = create_range_type ((struct type *) NULL,
1073 builtin_type_int,
1074 lowbound, len + lowbound - 1);
1075 struct type *stringtype
1076 = create_string_type ((struct type *) NULL, rangetype);
1077 CORE_ADDR addr;
1078
1079 if (current_language->c_style_arrays == 0)
1080 {
1081 val = allocate_value (stringtype);
1082 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1083 return val;
1084 }
1085
1086
1087 /* Allocate space to store the string in the inferior, and then
1088 copy LEN bytes from PTR in gdb to that address in the inferior. */
1089
1090 addr = allocate_space_in_inferior (len);
1091 write_memory (addr, ptr, len);
1092
1093 val = value_at_lazy (stringtype, addr);
1094 return (val);
1095 }
1096
1097 struct value *
1098 value_bitstring (char *ptr, int len)
1099 {
1100 struct value *val;
1101 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1102 0, len - 1);
1103 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1104 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1105 val = allocate_value (type);
1106 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1107 return val;
1108 }
1109 \f
1110 /* See if we can pass arguments in T2 to a function which takes arguments
1111 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1112 vector. If some arguments need coercion of some sort, then the coerced
1113 values are written into T2. Return value is 0 if the arguments could be
1114 matched, or the position at which they differ if not.
1115
1116 STATICP is nonzero if the T1 argument list came from a
1117 static member function. T2 will still include the ``this'' pointer,
1118 but it will be skipped.
1119
1120 For non-static member functions, we ignore the first argument,
1121 which is the type of the instance variable. This is because we want
1122 to handle calls with objects from derived classes. This is not
1123 entirely correct: we should actually check to make sure that a
1124 requested operation is type secure, shouldn't we? FIXME. */
1125
1126 static int
1127 typecmp (int staticp, int varargs, int nargs,
1128 struct field t1[], struct value *t2[])
1129 {
1130 int i;
1131
1132 if (t2 == 0)
1133 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1134
1135 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1136 if (staticp)
1137 t2 ++;
1138
1139 for (i = 0;
1140 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1141 i++)
1142 {
1143 struct type *tt1, *tt2;
1144
1145 if (!t2[i])
1146 return i + 1;
1147
1148 tt1 = check_typedef (t1[i].type);
1149 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1150
1151 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1152 /* We should be doing hairy argument matching, as below. */
1153 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1154 {
1155 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1156 t2[i] = value_coerce_array (t2[i]);
1157 else
1158 t2[i] = value_addr (t2[i]);
1159 continue;
1160 }
1161
1162 /* djb - 20000715 - Until the new type structure is in the
1163 place, and we can attempt things like implicit conversions,
1164 we need to do this so you can take something like a map<const
1165 char *>, and properly access map["hello"], because the
1166 argument to [] will be a reference to a pointer to a char,
1167 and the argument will be a pointer to a char. */
1168 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1169 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1170 {
1171 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1172 }
1173 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1174 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1175 TYPE_CODE(tt2) == TYPE_CODE_REF)
1176 {
1177 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1178 }
1179 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1180 continue;
1181 /* Array to pointer is a `trivial conversion' according to the ARM. */
1182
1183 /* We should be doing much hairier argument matching (see section 13.2
1184 of the ARM), but as a quick kludge, just check for the same type
1185 code. */
1186 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
1187 return i + 1;
1188 }
1189 if (varargs || t2[i] == NULL)
1190 return 0;
1191 return i + 1;
1192 }
1193
1194 /* Helper function used by value_struct_elt to recurse through baseclasses.
1195 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1196 and search in it assuming it has (class) type TYPE.
1197 If found, return value, else return NULL.
1198
1199 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1200 look for a baseclass named NAME. */
1201
1202 static struct value *
1203 search_struct_field (char *name, struct value *arg1, int offset,
1204 struct type *type, int looking_for_baseclass)
1205 {
1206 int i;
1207 int nbases = TYPE_N_BASECLASSES (type);
1208
1209 CHECK_TYPEDEF (type);
1210
1211 if (!looking_for_baseclass)
1212 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1213 {
1214 char *t_field_name = TYPE_FIELD_NAME (type, i);
1215
1216 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1217 {
1218 struct value *v;
1219 if (TYPE_FIELD_STATIC (type, i))
1220 {
1221 v = value_static_field (type, i);
1222 if (v == 0)
1223 error ("field %s is nonexistent or has been optimised out",
1224 name);
1225 }
1226 else
1227 {
1228 v = value_primitive_field (arg1, offset, i, type);
1229 if (v == 0)
1230 error ("there is no field named %s", name);
1231 }
1232 return v;
1233 }
1234
1235 if (t_field_name
1236 && (t_field_name[0] == '\0'
1237 || (TYPE_CODE (type) == TYPE_CODE_UNION
1238 && (strcmp_iw (t_field_name, "else") == 0))))
1239 {
1240 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1241 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1242 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1243 {
1244 /* Look for a match through the fields of an anonymous union,
1245 or anonymous struct. C++ provides anonymous unions.
1246
1247 In the GNU Chill (now deleted from GDB)
1248 implementation of variant record types, each
1249 <alternative field> has an (anonymous) union type,
1250 each member of the union represents a <variant
1251 alternative>. Each <variant alternative> is
1252 represented as a struct, with a member for each
1253 <variant field>. */
1254
1255 struct value *v;
1256 int new_offset = offset;
1257
1258 /* This is pretty gross. In G++, the offset in an
1259 anonymous union is relative to the beginning of the
1260 enclosing struct. In the GNU Chill (now deleted
1261 from GDB) implementation of variant records, the
1262 bitpos is zero in an anonymous union field, so we
1263 have to add the offset of the union here. */
1264 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1265 || (TYPE_NFIELDS (field_type) > 0
1266 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1267 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1268
1269 v = search_struct_field (name, arg1, new_offset, field_type,
1270 looking_for_baseclass);
1271 if (v)
1272 return v;
1273 }
1274 }
1275 }
1276
1277 for (i = 0; i < nbases; i++)
1278 {
1279 struct value *v;
1280 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1281 /* If we are looking for baseclasses, this is what we get when we
1282 hit them. But it could happen that the base part's member name
1283 is not yet filled in. */
1284 int found_baseclass = (looking_for_baseclass
1285 && TYPE_BASECLASS_NAME (type, i) != NULL
1286 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
1287
1288 if (BASETYPE_VIA_VIRTUAL (type, i))
1289 {
1290 int boffset;
1291 struct value *v2 = allocate_value (basetype);
1292
1293 boffset = baseclass_offset (type, i,
1294 VALUE_CONTENTS (arg1) + offset,
1295 VALUE_ADDRESS (arg1)
1296 + VALUE_OFFSET (arg1) + offset);
1297 if (boffset == -1)
1298 error ("virtual baseclass botch");
1299
1300 /* The virtual base class pointer might have been clobbered by the
1301 user program. Make sure that it still points to a valid memory
1302 location. */
1303
1304 boffset += offset;
1305 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1306 {
1307 CORE_ADDR base_addr;
1308
1309 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
1310 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
1311 TYPE_LENGTH (basetype)) != 0)
1312 error ("virtual baseclass botch");
1313 VALUE_LVAL (v2) = lval_memory;
1314 VALUE_ADDRESS (v2) = base_addr;
1315 }
1316 else
1317 {
1318 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1319 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1320 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
1321 if (VALUE_LAZY (arg1))
1322 VALUE_LAZY (v2) = 1;
1323 else
1324 memcpy (VALUE_CONTENTS_RAW (v2),
1325 VALUE_CONTENTS_RAW (arg1) + boffset,
1326 TYPE_LENGTH (basetype));
1327 }
1328
1329 if (found_baseclass)
1330 return v2;
1331 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1332 looking_for_baseclass);
1333 }
1334 else if (found_baseclass)
1335 v = value_primitive_field (arg1, offset, i, type);
1336 else
1337 v = search_struct_field (name, arg1,
1338 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1339 basetype, looking_for_baseclass);
1340 if (v)
1341 return v;
1342 }
1343 return NULL;
1344 }
1345
1346
1347 /* Return the offset (in bytes) of the virtual base of type BASETYPE
1348 * in an object pointed to by VALADDR (on the host), assumed to be of
1349 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
1350 * looking (in case VALADDR is the contents of an enclosing object).
1351 *
1352 * This routine recurses on the primary base of the derived class because
1353 * the virtual base entries of the primary base appear before the other
1354 * virtual base entries.
1355 *
1356 * If the virtual base is not found, a negative integer is returned.
1357 * The magnitude of the negative integer is the number of entries in
1358 * the virtual table to skip over (entries corresponding to various
1359 * ancestral classes in the chain of primary bases).
1360 *
1361 * Important: This assumes the HP / Taligent C++ runtime
1362 * conventions. Use baseclass_offset() instead to deal with g++
1363 * conventions. */
1364
1365 void
1366 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
1367 int offset, int *boffset_p, int *skip_p)
1368 {
1369 int boffset; /* offset of virtual base */
1370 int index; /* displacement to use in virtual table */
1371 int skip;
1372
1373 struct value *vp;
1374 CORE_ADDR vtbl; /* the virtual table pointer */
1375 struct type *pbc; /* the primary base class */
1376
1377 /* Look for the virtual base recursively in the primary base, first.
1378 * This is because the derived class object and its primary base
1379 * subobject share the primary virtual table. */
1380
1381 boffset = 0;
1382 pbc = TYPE_PRIMARY_BASE (type);
1383 if (pbc)
1384 {
1385 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
1386 if (skip < 0)
1387 {
1388 *boffset_p = boffset;
1389 *skip_p = -1;
1390 return;
1391 }
1392 }
1393 else
1394 skip = 0;
1395
1396
1397 /* Find the index of the virtual base according to HP/Taligent
1398 runtime spec. (Depth-first, left-to-right.) */
1399 index = virtual_base_index_skip_primaries (basetype, type);
1400
1401 if (index < 0)
1402 {
1403 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
1404 *boffset_p = 0;
1405 return;
1406 }
1407
1408 /* pai: FIXME -- 32x64 possible problem */
1409 /* First word (4 bytes) in object layout is the vtable pointer */
1410 vtbl = *(CORE_ADDR *) (valaddr + offset);
1411
1412 /* Before the constructor is invoked, things are usually zero'd out. */
1413 if (vtbl == 0)
1414 error ("Couldn't find virtual table -- object may not be constructed yet.");
1415
1416
1417 /* Find virtual base's offset -- jump over entries for primary base
1418 * ancestors, then use the index computed above. But also adjust by
1419 * HP_ACC_VBASE_START for the vtable slots before the start of the
1420 * virtual base entries. Offset is negative -- virtual base entries
1421 * appear _before_ the address point of the virtual table. */
1422
1423 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
1424 & use long type */
1425
1426 /* epstein : FIXME -- added param for overlay section. May not be correct */
1427 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START));
1428 boffset = value_as_long (vp);
1429 *skip_p = -1;
1430 *boffset_p = boffset;
1431 return;
1432 }
1433
1434
1435 /* Helper function used by value_struct_elt to recurse through baseclasses.
1436 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1437 and search in it assuming it has (class) type TYPE.
1438 If found, return value, else if name matched and args not return (value)-1,
1439 else return NULL. */
1440
1441 static struct value *
1442 search_struct_method (char *name, struct value **arg1p,
1443 struct value **args, int offset,
1444 int *static_memfuncp, struct type *type)
1445 {
1446 int i;
1447 struct value *v;
1448 int name_matched = 0;
1449 char dem_opname[64];
1450
1451 CHECK_TYPEDEF (type);
1452 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1453 {
1454 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1455 /* FIXME! May need to check for ARM demangling here */
1456 if (strncmp (t_field_name, "__", 2) == 0 ||
1457 strncmp (t_field_name, "op", 2) == 0 ||
1458 strncmp (t_field_name, "type", 4) == 0)
1459 {
1460 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1461 t_field_name = dem_opname;
1462 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1463 t_field_name = dem_opname;
1464 }
1465 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1466 {
1467 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1468 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1469 name_matched = 1;
1470
1471 check_stub_method_group (type, i);
1472 if (j > 0 && args == 0)
1473 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
1474 else if (j == 0 && args == 0)
1475 {
1476 v = value_fn_field (arg1p, f, j, type, offset);
1477 if (v != NULL)
1478 return v;
1479 }
1480 else
1481 while (j >= 0)
1482 {
1483 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1484 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1485 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1486 TYPE_FN_FIELD_ARGS (f, j), args))
1487 {
1488 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1489 return value_virtual_fn_field (arg1p, f, j, type, offset);
1490 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1491 *static_memfuncp = 1;
1492 v = value_fn_field (arg1p, f, j, type, offset);
1493 if (v != NULL)
1494 return v;
1495 }
1496 j--;
1497 }
1498 }
1499 }
1500
1501 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1502 {
1503 int base_offset;
1504
1505 if (BASETYPE_VIA_VIRTUAL (type, i))
1506 {
1507 if (TYPE_HAS_VTABLE (type))
1508 {
1509 /* HP aCC compiled type, search for virtual base offset
1510 according to HP/Taligent runtime spec. */
1511 int skip;
1512 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1513 VALUE_CONTENTS_ALL (*arg1p),
1514 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
1515 &base_offset, &skip);
1516 if (skip >= 0)
1517 error ("Virtual base class offset not found in vtable");
1518 }
1519 else
1520 {
1521 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1522 char *base_valaddr;
1523
1524 /* The virtual base class pointer might have been clobbered by the
1525 user program. Make sure that it still points to a valid memory
1526 location. */
1527
1528 if (offset < 0 || offset >= TYPE_LENGTH (type))
1529 {
1530 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
1531 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1532 + VALUE_OFFSET (*arg1p) + offset,
1533 base_valaddr,
1534 TYPE_LENGTH (baseclass)) != 0)
1535 error ("virtual baseclass botch");
1536 }
1537 else
1538 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
1539
1540 base_offset =
1541 baseclass_offset (type, i, base_valaddr,
1542 VALUE_ADDRESS (*arg1p)
1543 + VALUE_OFFSET (*arg1p) + offset);
1544 if (base_offset == -1)
1545 error ("virtual baseclass botch");
1546 }
1547 }
1548 else
1549 {
1550 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1551 }
1552 v = search_struct_method (name, arg1p, args, base_offset + offset,
1553 static_memfuncp, TYPE_BASECLASS (type, i));
1554 if (v == (struct value *) - 1)
1555 {
1556 name_matched = 1;
1557 }
1558 else if (v)
1559 {
1560 /* FIXME-bothner: Why is this commented out? Why is it here? */
1561 /* *arg1p = arg1_tmp; */
1562 return v;
1563 }
1564 }
1565 if (name_matched)
1566 return (struct value *) - 1;
1567 else
1568 return NULL;
1569 }
1570
1571 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1572 extract the component named NAME from the ultimate target structure/union
1573 and return it as a value with its appropriate type.
1574 ERR is used in the error message if *ARGP's type is wrong.
1575
1576 C++: ARGS is a list of argument types to aid in the selection of
1577 an appropriate method. Also, handle derived types.
1578
1579 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1580 where the truthvalue of whether the function that was resolved was
1581 a static member function or not is stored.
1582
1583 ERR is an error message to be printed in case the field is not found. */
1584
1585 struct value *
1586 value_struct_elt (struct value **argp, struct value **args,
1587 char *name, int *static_memfuncp, char *err)
1588 {
1589 struct type *t;
1590 struct value *v;
1591
1592 *argp = coerce_array (*argp);
1593
1594 t = check_typedef (VALUE_TYPE (*argp));
1595
1596 /* Follow pointers until we get to a non-pointer. */
1597
1598 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1599 {
1600 *argp = value_ind (*argp);
1601 /* Don't coerce fn pointer to fn and then back again! */
1602 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1603 *argp = coerce_array (*argp);
1604 t = check_typedef (VALUE_TYPE (*argp));
1605 }
1606
1607 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1608 error ("not implemented: member type in value_struct_elt");
1609
1610 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1611 && TYPE_CODE (t) != TYPE_CODE_UNION)
1612 error ("Attempt to extract a component of a value that is not a %s.", err);
1613
1614 /* Assume it's not, unless we see that it is. */
1615 if (static_memfuncp)
1616 *static_memfuncp = 0;
1617
1618 if (!args)
1619 {
1620 /* if there are no arguments ...do this... */
1621
1622 /* Try as a field first, because if we succeed, there
1623 is less work to be done. */
1624 v = search_struct_field (name, *argp, 0, t, 0);
1625 if (v)
1626 return v;
1627
1628 /* C++: If it was not found as a data field, then try to
1629 return it as a pointer to a method. */
1630
1631 if (destructor_name_p (name, t))
1632 error ("Cannot get value of destructor");
1633
1634 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1635
1636 if (v == (struct value *) - 1)
1637 error ("Cannot take address of a method");
1638 else if (v == 0)
1639 {
1640 if (TYPE_NFN_FIELDS (t))
1641 error ("There is no member or method named %s.", name);
1642 else
1643 error ("There is no member named %s.", name);
1644 }
1645 return v;
1646 }
1647
1648 if (destructor_name_p (name, t))
1649 {
1650 if (!args[1])
1651 {
1652 /* Destructors are a special case. */
1653 int m_index, f_index;
1654
1655 v = NULL;
1656 if (get_destructor_fn_field (t, &m_index, &f_index))
1657 {
1658 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
1659 f_index, NULL, 0);
1660 }
1661 if (v == NULL)
1662 error ("could not find destructor function named %s.", name);
1663 else
1664 return v;
1665 }
1666 else
1667 {
1668 error ("destructor should not have any argument");
1669 }
1670 }
1671 else
1672 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1673
1674 if (v == (struct value *) - 1)
1675 {
1676 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
1677 }
1678 else if (v == 0)
1679 {
1680 /* See if user tried to invoke data as function. If so,
1681 hand it back. If it's not callable (i.e., a pointer to function),
1682 gdb should give an error. */
1683 v = search_struct_field (name, *argp, 0, t, 0);
1684 }
1685
1686 if (!v)
1687 error ("Structure has no component named %s.", name);
1688 return v;
1689 }
1690
1691 /* Search through the methods of an object (and its bases)
1692 * to find a specified method. Return the pointer to the
1693 * fn_field list of overloaded instances.
1694 * Helper function for value_find_oload_list.
1695 * ARGP is a pointer to a pointer to a value (the object)
1696 * METHOD is a string containing the method name
1697 * OFFSET is the offset within the value
1698 * TYPE is the assumed type of the object
1699 * NUM_FNS is the number of overloaded instances
1700 * BASETYPE is set to the actual type of the subobject where the method is found
1701 * BOFFSET is the offset of the base subobject where the method is found */
1702
1703 static struct fn_field *
1704 find_method_list (struct value **argp, char *method, int offset,
1705 struct type *type, int *num_fns,
1706 struct type **basetype, int *boffset)
1707 {
1708 int i;
1709 struct fn_field *f;
1710 CHECK_TYPEDEF (type);
1711
1712 *num_fns = 0;
1713
1714 /* First check in object itself */
1715 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1716 {
1717 /* pai: FIXME What about operators and type conversions? */
1718 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1719 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1720 {
1721 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1722 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1723
1724 *num_fns = len;
1725 *basetype = type;
1726 *boffset = offset;
1727
1728 /* Resolve any stub methods. */
1729 check_stub_method_group (type, i);
1730
1731 return f;
1732 }
1733 }
1734
1735 /* Not found in object, check in base subobjects */
1736 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1737 {
1738 int base_offset;
1739 if (BASETYPE_VIA_VIRTUAL (type, i))
1740 {
1741 if (TYPE_HAS_VTABLE (type))
1742 {
1743 /* HP aCC compiled type, search for virtual base offset
1744 * according to HP/Taligent runtime spec. */
1745 int skip;
1746 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1747 VALUE_CONTENTS_ALL (*argp),
1748 offset + VALUE_EMBEDDED_OFFSET (*argp),
1749 &base_offset, &skip);
1750 if (skip >= 0)
1751 error ("Virtual base class offset not found in vtable");
1752 }
1753 else
1754 {
1755 /* probably g++ runtime model */
1756 base_offset = VALUE_OFFSET (*argp) + offset;
1757 base_offset =
1758 baseclass_offset (type, i,
1759 VALUE_CONTENTS (*argp) + base_offset,
1760 VALUE_ADDRESS (*argp) + base_offset);
1761 if (base_offset == -1)
1762 error ("virtual baseclass botch");
1763 }
1764 }
1765 else
1766 /* non-virtual base, simply use bit position from debug info */
1767 {
1768 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1769 }
1770 f = find_method_list (argp, method, base_offset + offset,
1771 TYPE_BASECLASS (type, i), num_fns, basetype,
1772 boffset);
1773 if (f)
1774 return f;
1775 }
1776 return NULL;
1777 }
1778
1779 /* Return the list of overloaded methods of a specified name.
1780 * ARGP is a pointer to a pointer to a value (the object)
1781 * METHOD is the method name
1782 * OFFSET is the offset within the value contents
1783 * NUM_FNS is the number of overloaded instances
1784 * BASETYPE is set to the type of the base subobject that defines the method
1785 * BOFFSET is the offset of the base subobject which defines the method */
1786
1787 struct fn_field *
1788 value_find_oload_method_list (struct value **argp, char *method, int offset,
1789 int *num_fns, struct type **basetype,
1790 int *boffset)
1791 {
1792 struct type *t;
1793
1794 t = check_typedef (VALUE_TYPE (*argp));
1795
1796 /* code snarfed from value_struct_elt */
1797 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1798 {
1799 *argp = value_ind (*argp);
1800 /* Don't coerce fn pointer to fn and then back again! */
1801 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1802 *argp = coerce_array (*argp);
1803 t = check_typedef (VALUE_TYPE (*argp));
1804 }
1805
1806 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1807 error ("Not implemented: member type in value_find_oload_lis");
1808
1809 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1810 && TYPE_CODE (t) != TYPE_CODE_UNION)
1811 error ("Attempt to extract a component of a value that is not a struct or union");
1812
1813 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
1814 }
1815
1816 /* Given an array of argument types (ARGTYPES) (which includes an
1817 entry for "this" in the case of C++ methods), the number of
1818 arguments NARGS, the NAME of a function whether it's a method or
1819 not (METHOD), and the degree of laxness (LAX) in conforming to
1820 overload resolution rules in ANSI C++, find the best function that
1821 matches on the argument types according to the overload resolution
1822 rules.
1823
1824 In the case of class methods, the parameter OBJ is an object value
1825 in which to search for overloaded methods.
1826
1827 In the case of non-method functions, the parameter FSYM is a symbol
1828 corresponding to one of the overloaded functions.
1829
1830 Return value is an integer: 0 -> good match, 10 -> debugger applied
1831 non-standard coercions, 100 -> incompatible.
1832
1833 If a method is being searched for, VALP will hold the value.
1834 If a non-method is being searched for, SYMP will hold the symbol for it.
1835
1836 If a method is being searched for, and it is a static method,
1837 then STATICP will point to a non-zero value.
1838
1839 Note: This function does *not* check the value of
1840 overload_resolution. Caller must check it to see whether overload
1841 resolution is permitted.
1842 */
1843
1844 int
1845 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
1846 int lax, struct value **objp, struct symbol *fsym,
1847 struct value **valp, struct symbol **symp, int *staticp)
1848 {
1849 struct value *obj = (objp ? *objp : NULL);
1850
1851 int oload_champ; /* Index of best overloaded function */
1852
1853 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
1854
1855 struct value *temp = obj;
1856 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
1857 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
1858 int num_fns = 0; /* Number of overloaded instances being considered */
1859 struct type *basetype = NULL;
1860 int boffset;
1861 int ix;
1862 int static_offset;
1863 struct cleanup *old_cleanups = NULL;
1864
1865 const char *obj_type_name = NULL;
1866 char *func_name = NULL;
1867 enum oload_classification match_quality;
1868
1869 /* Get the list of overloaded methods or functions */
1870 if (method)
1871 {
1872 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
1873 /* Hack: evaluate_subexp_standard often passes in a pointer
1874 value rather than the object itself, so try again */
1875 if ((!obj_type_name || !*obj_type_name) &&
1876 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
1877 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
1878
1879 fns_ptr = value_find_oload_method_list (&temp, name, 0,
1880 &num_fns,
1881 &basetype, &boffset);
1882 if (!fns_ptr || !num_fns)
1883 error ("Couldn't find method %s%s%s",
1884 obj_type_name,
1885 (obj_type_name && *obj_type_name) ? "::" : "",
1886 name);
1887 /* If we are dealing with stub method types, they should have
1888 been resolved by find_method_list via value_find_oload_method_list
1889 above. */
1890 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1891 oload_champ = find_oload_champ (arg_types, nargs, method, num_fns,
1892 fns_ptr, oload_syms, &oload_champ_bv);
1893 }
1894 else
1895 {
1896 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1897 func_name = cp_func_name (qualified_name);
1898
1899 /* If the name is NULL this must be a C-style function.
1900 Just return the same symbol. */
1901 if (func_name == NULL)
1902 {
1903 *symp = fsym;
1904 return 0;
1905 }
1906
1907 old_cleanups = make_cleanup (xfree, func_name);
1908 make_cleanup (xfree, oload_syms);
1909 make_cleanup (xfree, oload_champ_bv);
1910
1911 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1912 func_name,
1913 qualified_name,
1914 &oload_syms,
1915 &oload_champ_bv);
1916 }
1917
1918 /* Check how bad the best match is. */
1919
1920 match_quality
1921 = classify_oload_match (oload_champ_bv, nargs,
1922 oload_method_static (method, fns_ptr,
1923 oload_champ));
1924
1925 if (match_quality == INCOMPATIBLE)
1926 {
1927 if (method)
1928 error ("Cannot resolve method %s%s%s to any overloaded instance",
1929 obj_type_name,
1930 (obj_type_name && *obj_type_name) ? "::" : "",
1931 name);
1932 else
1933 error ("Cannot resolve function %s to any overloaded instance",
1934 func_name);
1935 }
1936 else if (match_quality == NON_STANDARD)
1937 {
1938 if (method)
1939 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
1940 obj_type_name,
1941 (obj_type_name && *obj_type_name) ? "::" : "",
1942 name);
1943 else
1944 warning ("Using non-standard conversion to match function %s to supplied arguments",
1945 func_name);
1946 }
1947
1948 if (method)
1949 {
1950 if (staticp != NULL)
1951 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1952 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1953 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1954 else
1955 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1956 }
1957 else
1958 {
1959 *symp = oload_syms[oload_champ];
1960 }
1961
1962 if (objp)
1963 {
1964 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
1965 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
1966 {
1967 temp = value_addr (temp);
1968 }
1969 *objp = temp;
1970 }
1971 if (old_cleanups != NULL)
1972 do_cleanups (old_cleanups);
1973
1974 switch (match_quality)
1975 {
1976 case INCOMPATIBLE:
1977 return 100;
1978 case NON_STANDARD:
1979 return 10;
1980 default: /* STANDARD */
1981 return 0;
1982 }
1983 }
1984
1985 /* Find the best overload match, searching for FUNC_NAME in namespaces
1986 contained in QUALIFIED_NAME until it either finds a good match or
1987 runs out of namespaces. It stores the overloaded functions in
1988 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1989 calling function is responsible for freeing *OLOAD_SYMS and
1990 *OLOAD_CHAMP_BV. */
1991
1992 static int
1993 find_oload_champ_namespace (struct type **arg_types, int nargs,
1994 const char *func_name,
1995 const char *qualified_name,
1996 struct symbol ***oload_syms,
1997 struct badness_vector **oload_champ_bv)
1998 {
1999 int oload_champ;
2000
2001 find_oload_champ_namespace_loop (arg_types, nargs,
2002 func_name,
2003 qualified_name, 0,
2004 oload_syms, oload_champ_bv,
2005 &oload_champ);
2006
2007 return oload_champ;
2008 }
2009
2010 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2011 how deep we've looked for namespaces, and the champ is stored in
2012 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2013 if it isn't.
2014
2015 It is the caller's responsibility to free *OLOAD_SYMS and
2016 *OLOAD_CHAMP_BV. */
2017
2018 static int
2019 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2020 const char *func_name,
2021 const char *qualified_name,
2022 int namespace_len,
2023 struct symbol ***oload_syms,
2024 struct badness_vector **oload_champ_bv,
2025 int *oload_champ)
2026 {
2027 int next_namespace_len = namespace_len;
2028 int searched_deeper = 0;
2029 int num_fns = 0;
2030 struct cleanup *old_cleanups;
2031 int new_oload_champ;
2032 struct symbol **new_oload_syms;
2033 struct badness_vector *new_oload_champ_bv;
2034 char *new_namespace;
2035
2036 if (next_namespace_len != 0)
2037 {
2038 gdb_assert (qualified_name[next_namespace_len] == ':');
2039 next_namespace_len += 2;
2040 }
2041 next_namespace_len
2042 += cp_find_first_component (qualified_name + next_namespace_len);
2043
2044 /* Initialize these to values that can safely be xfree'd. */
2045 *oload_syms = NULL;
2046 *oload_champ_bv = NULL;
2047
2048 /* First, see if we have a deeper namespace we can search in. If we
2049 get a good match there, use it. */
2050
2051 if (qualified_name[next_namespace_len] == ':')
2052 {
2053 searched_deeper = 1;
2054
2055 if (find_oload_champ_namespace_loop (arg_types, nargs,
2056 func_name, qualified_name,
2057 next_namespace_len,
2058 oload_syms, oload_champ_bv,
2059 oload_champ))
2060 {
2061 return 1;
2062 }
2063 };
2064
2065 /* If we reach here, either we're in the deepest namespace or we
2066 didn't find a good match in a deeper namespace. But, in the
2067 latter case, we still have a bad match in a deeper namespace;
2068 note that we might not find any match at all in the current
2069 namespace. (There's always a match in the deepest namespace,
2070 because this overload mechanism only gets called if there's a
2071 function symbol to start off with.) */
2072
2073 old_cleanups = make_cleanup (xfree, *oload_syms);
2074 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2075 new_namespace = alloca (namespace_len + 1);
2076 strncpy (new_namespace, qualified_name, namespace_len);
2077 new_namespace[namespace_len] = '\0';
2078 new_oload_syms = make_symbol_overload_list (func_name,
2079 new_namespace);
2080 while (new_oload_syms[num_fns])
2081 ++num_fns;
2082
2083 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2084 NULL, new_oload_syms,
2085 &new_oload_champ_bv);
2086
2087 /* Case 1: We found a good match. Free earlier matches (if any),
2088 and return it. Case 2: We didn't find a good match, but we're
2089 not the deepest function. Then go with the bad match that the
2090 deeper function found. Case 3: We found a bad match, and we're
2091 the deepest function. Then return what we found, even though
2092 it's a bad match. */
2093
2094 if (new_oload_champ != -1
2095 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2096 {
2097 *oload_syms = new_oload_syms;
2098 *oload_champ = new_oload_champ;
2099 *oload_champ_bv = new_oload_champ_bv;
2100 do_cleanups (old_cleanups);
2101 return 1;
2102 }
2103 else if (searched_deeper)
2104 {
2105 xfree (new_oload_syms);
2106 xfree (new_oload_champ_bv);
2107 discard_cleanups (old_cleanups);
2108 return 0;
2109 }
2110 else
2111 {
2112 gdb_assert (new_oload_champ != -1);
2113 *oload_syms = new_oload_syms;
2114 *oload_champ = new_oload_champ;
2115 *oload_champ_bv = new_oload_champ_bv;
2116 discard_cleanups (old_cleanups);
2117 return 0;
2118 }
2119 }
2120
2121 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2122 the best match from among the overloaded methods or functions
2123 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2124 The number of methods/functions in the list is given by NUM_FNS.
2125 Return the index of the best match; store an indication of the
2126 quality of the match in OLOAD_CHAMP_BV.
2127
2128 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2129
2130 static int
2131 find_oload_champ (struct type **arg_types, int nargs, int method,
2132 int num_fns, struct fn_field *fns_ptr,
2133 struct symbol **oload_syms,
2134 struct badness_vector **oload_champ_bv)
2135 {
2136 int ix;
2137 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2138 int oload_champ = -1; /* Index of best overloaded function */
2139 int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2140 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2141
2142 *oload_champ_bv = NULL;
2143
2144 /* Consider each candidate in turn */
2145 for (ix = 0; ix < num_fns; ix++)
2146 {
2147 int jj;
2148 int static_offset = oload_method_static (method, fns_ptr, ix);
2149 int nparms;
2150 struct type **parm_types;
2151
2152 if (method)
2153 {
2154 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2155 }
2156 else
2157 {
2158 /* If it's not a method, this is the proper place */
2159 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2160 }
2161
2162 /* Prepare array of parameter types */
2163 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2164 for (jj = 0; jj < nparms; jj++)
2165 parm_types[jj] = (method
2166 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2167 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2168
2169 /* Compare parameter types to supplied argument types. Skip THIS for
2170 static methods. */
2171 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2172 nargs - static_offset);
2173
2174 if (!*oload_champ_bv)
2175 {
2176 *oload_champ_bv = bv;
2177 oload_champ = 0;
2178 }
2179 else
2180 /* See whether current candidate is better or worse than previous best */
2181 switch (compare_badness (bv, *oload_champ_bv))
2182 {
2183 case 0:
2184 oload_ambiguous = 1; /* top two contenders are equally good */
2185 break;
2186 case 1:
2187 oload_ambiguous = 2; /* incomparable top contenders */
2188 break;
2189 case 2:
2190 *oload_champ_bv = bv; /* new champion, record details */
2191 oload_ambiguous = 0;
2192 oload_champ = ix;
2193 break;
2194 case 3:
2195 default:
2196 break;
2197 }
2198 xfree (parm_types);
2199 if (overload_debug)
2200 {
2201 if (method)
2202 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2203 else
2204 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2205 for (jj = 0; jj < nargs - static_offset; jj++)
2206 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2207 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2208 }
2209 }
2210
2211 return oload_champ;
2212 }
2213
2214 /* Return 1 if we're looking at a static method, 0 if we're looking at
2215 a non-static method or a function that isn't a method. */
2216
2217 static int
2218 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2219 {
2220 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2221 return 1;
2222 else
2223 return 0;
2224 }
2225
2226 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2227
2228 static enum oload_classification
2229 classify_oload_match (struct badness_vector *oload_champ_bv,
2230 int nargs,
2231 int static_offset)
2232 {
2233 int ix;
2234
2235 for (ix = 1; ix <= nargs - static_offset; ix++)
2236 {
2237 if (oload_champ_bv->rank[ix] >= 100)
2238 return INCOMPATIBLE; /* truly mismatched types */
2239 else if (oload_champ_bv->rank[ix] >= 10)
2240 return NON_STANDARD; /* non-standard type conversions needed */
2241 }
2242
2243 return STANDARD; /* Only standard conversions needed. */
2244 }
2245
2246 /* C++: return 1 is NAME is a legitimate name for the destructor
2247 of type TYPE. If TYPE does not have a destructor, or
2248 if NAME is inappropriate for TYPE, an error is signaled. */
2249 int
2250 destructor_name_p (const char *name, const struct type *type)
2251 {
2252 /* destructors are a special case. */
2253
2254 if (name[0] == '~')
2255 {
2256 char *dname = type_name_no_tag (type);
2257 char *cp = strchr (dname, '<');
2258 unsigned int len;
2259
2260 /* Do not compare the template part for template classes. */
2261 if (cp == NULL)
2262 len = strlen (dname);
2263 else
2264 len = cp - dname;
2265 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2266 error ("name of destructor must equal name of class");
2267 else
2268 return 1;
2269 }
2270 return 0;
2271 }
2272
2273 /* Helper function for check_field: Given TYPE, a structure/union,
2274 return 1 if the component named NAME from the ultimate
2275 target structure/union is defined, otherwise, return 0. */
2276
2277 static int
2278 check_field_in (struct type *type, const char *name)
2279 {
2280 int i;
2281
2282 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2283 {
2284 char *t_field_name = TYPE_FIELD_NAME (type, i);
2285 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2286 return 1;
2287 }
2288
2289 /* C++: If it was not found as a data field, then try to
2290 return it as a pointer to a method. */
2291
2292 /* Destructors are a special case. */
2293 if (destructor_name_p (name, type))
2294 {
2295 int m_index, f_index;
2296
2297 return get_destructor_fn_field (type, &m_index, &f_index);
2298 }
2299
2300 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2301 {
2302 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2303 return 1;
2304 }
2305
2306 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2307 if (check_field_in (TYPE_BASECLASS (type, i), name))
2308 return 1;
2309
2310 return 0;
2311 }
2312
2313
2314 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2315 return 1 if the component named NAME from the ultimate
2316 target structure/union is defined, otherwise, return 0. */
2317
2318 int
2319 check_field (struct value *arg1, const char *name)
2320 {
2321 struct type *t;
2322
2323 arg1 = coerce_array (arg1);
2324
2325 t = VALUE_TYPE (arg1);
2326
2327 /* Follow pointers until we get to a non-pointer. */
2328
2329 for (;;)
2330 {
2331 CHECK_TYPEDEF (t);
2332 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2333 break;
2334 t = TYPE_TARGET_TYPE (t);
2335 }
2336
2337 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2338 error ("not implemented: member type in check_field");
2339
2340 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2341 && TYPE_CODE (t) != TYPE_CODE_UNION)
2342 error ("Internal error: `this' is not an aggregate");
2343
2344 return check_field_in (t, name);
2345 }
2346
2347 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2348 return the appropriate member. This function is used to resolve
2349 user expressions of the form "DOMAIN::NAME". For more details on
2350 what happens, see the comment before
2351 value_struct_elt_for_reference. */
2352
2353 struct value *
2354 value_aggregate_elt (struct type *curtype,
2355 char *name,
2356 enum noside noside)
2357 {
2358 switch (TYPE_CODE (curtype))
2359 {
2360 case TYPE_CODE_STRUCT:
2361 case TYPE_CODE_UNION:
2362 return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL,
2363 noside);
2364 case TYPE_CODE_NAMESPACE:
2365 return value_namespace_elt (curtype, name, noside);
2366 default:
2367 internal_error (__FILE__, __LINE__,
2368 "non-aggregate type in value_aggregate_elt");
2369 }
2370 }
2371
2372 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2373 return the address of this member as a "pointer to member"
2374 type. If INTYPE is non-null, then it will be the type
2375 of the member we are looking for. This will help us resolve
2376 "pointers to member functions". This function is used
2377 to resolve user expressions of the form "DOMAIN::NAME". */
2378
2379 static struct value *
2380 value_struct_elt_for_reference (struct type *domain, int offset,
2381 struct type *curtype, char *name,
2382 struct type *intype,
2383 enum noside noside)
2384 {
2385 struct type *t = curtype;
2386 int i;
2387 struct value *v;
2388
2389 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2390 && TYPE_CODE (t) != TYPE_CODE_UNION)
2391 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2392
2393 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2394 {
2395 char *t_field_name = TYPE_FIELD_NAME (t, i);
2396
2397 if (t_field_name && strcmp (t_field_name, name) == 0)
2398 {
2399 if (TYPE_FIELD_STATIC (t, i))
2400 {
2401 v = value_static_field (t, i);
2402 if (v == NULL)
2403 error ("static field %s has been optimized out",
2404 name);
2405 return v;
2406 }
2407 if (TYPE_FIELD_PACKED (t, i))
2408 error ("pointers to bitfield members not allowed");
2409
2410 return value_from_longest
2411 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2412 domain)),
2413 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2414 }
2415 }
2416
2417 /* C++: If it was not found as a data field, then try to
2418 return it as a pointer to a method. */
2419
2420 /* Destructors are a special case. */
2421 if (destructor_name_p (name, t))
2422 {
2423 error ("member pointers to destructors not implemented yet");
2424 }
2425
2426 /* Perform all necessary dereferencing. */
2427 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2428 intype = TYPE_TARGET_TYPE (intype);
2429
2430 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2431 {
2432 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2433 char dem_opname[64];
2434
2435 if (strncmp (t_field_name, "__", 2) == 0 ||
2436 strncmp (t_field_name, "op", 2) == 0 ||
2437 strncmp (t_field_name, "type", 4) == 0)
2438 {
2439 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2440 t_field_name = dem_opname;
2441 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2442 t_field_name = dem_opname;
2443 }
2444 if (t_field_name && strcmp (t_field_name, name) == 0)
2445 {
2446 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2447 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2448
2449 check_stub_method_group (t, i);
2450
2451 if (intype == 0 && j > 1)
2452 error ("non-unique member `%s' requires type instantiation", name);
2453 if (intype)
2454 {
2455 while (j--)
2456 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2457 break;
2458 if (j < 0)
2459 error ("no member function matches that type instantiation");
2460 }
2461 else
2462 j = 0;
2463
2464 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2465 {
2466 return value_from_longest
2467 (lookup_reference_type
2468 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2469 domain)),
2470 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2471 }
2472 else
2473 {
2474 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2475 0, VAR_DOMAIN, 0, NULL);
2476 if (s == NULL)
2477 {
2478 v = 0;
2479 }
2480 else
2481 {
2482 v = read_var_value (s, 0);
2483 #if 0
2484 VALUE_TYPE (v) = lookup_reference_type
2485 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2486 domain));
2487 #endif
2488 }
2489 return v;
2490 }
2491 }
2492 }
2493 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2494 {
2495 struct value *v;
2496 int base_offset;
2497
2498 if (BASETYPE_VIA_VIRTUAL (t, i))
2499 base_offset = 0;
2500 else
2501 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2502 v = value_struct_elt_for_reference (domain,
2503 offset + base_offset,
2504 TYPE_BASECLASS (t, i),
2505 name,
2506 intype,
2507 noside);
2508 if (v)
2509 return v;
2510 }
2511
2512 /* As a last chance, pretend that CURTYPE is a namespace, and look
2513 it up that way; this (frequently) works for types nested inside
2514 classes. */
2515
2516 return value_maybe_namespace_elt (curtype, name, noside);
2517 }
2518
2519 /* C++: Return the member NAME of the namespace given by the type
2520 CURTYPE. */
2521
2522 static struct value *
2523 value_namespace_elt (const struct type *curtype,
2524 char *name,
2525 enum noside noside)
2526 {
2527 struct value *retval = value_maybe_namespace_elt (curtype, name,
2528 noside);
2529
2530 if (retval == NULL)
2531 error ("No symbol \"%s\" in namespace \"%s\".", name,
2532 TYPE_TAG_NAME (curtype));
2533
2534 return retval;
2535 }
2536
2537 /* A helper function used by value_namespace_elt and
2538 value_struct_elt_for_reference. It looks up NAME inside the
2539 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2540 is a class and NAME refers to a type in CURTYPE itself (as opposed
2541 to, say, some base class of CURTYPE). */
2542
2543 static struct value *
2544 value_maybe_namespace_elt (const struct type *curtype,
2545 char *name,
2546 enum noside noside)
2547 {
2548 const char *namespace_name = TYPE_TAG_NAME (curtype);
2549 struct symbol *sym;
2550
2551 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2552 get_selected_block (0), VAR_DOMAIN,
2553 NULL);
2554
2555 if (sym == NULL)
2556 return NULL;
2557 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2558 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2559 return allocate_value (SYMBOL_TYPE (sym));
2560 else
2561 return value_of_variable (sym, get_selected_block (0));
2562 }
2563
2564 /* Given a pointer value V, find the real (RTTI) type
2565 of the object it points to.
2566 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2567 and refer to the values computed for the object pointed to. */
2568
2569 struct type *
2570 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
2571 {
2572 struct value *target;
2573
2574 target = value_ind (v);
2575
2576 return value_rtti_type (target, full, top, using_enc);
2577 }
2578
2579 /* Given a value pointed to by ARGP, check its real run-time type, and
2580 if that is different from the enclosing type, create a new value
2581 using the real run-time type as the enclosing type (and of the same
2582 type as ARGP) and return it, with the embedded offset adjusted to
2583 be the correct offset to the enclosed object
2584 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
2585 parameters, computed by value_rtti_type(). If these are available,
2586 they can be supplied and a second call to value_rtti_type() is avoided.
2587 (Pass RTYPE == NULL if they're not available */
2588
2589 struct value *
2590 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
2591 int xusing_enc)
2592 {
2593 struct type *real_type;
2594 int full = 0;
2595 int top = -1;
2596 int using_enc = 0;
2597 struct value *new_val;
2598
2599 if (rtype)
2600 {
2601 real_type = rtype;
2602 full = xfull;
2603 top = xtop;
2604 using_enc = xusing_enc;
2605 }
2606 else
2607 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2608
2609 /* If no RTTI data, or if object is already complete, do nothing */
2610 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
2611 return argp;
2612
2613 /* If we have the full object, but for some reason the enclosing
2614 type is wrong, set it *//* pai: FIXME -- sounds iffy */
2615 if (full)
2616 {
2617 argp = value_change_enclosing_type (argp, real_type);
2618 return argp;
2619 }
2620
2621 /* Check if object is in memory */
2622 if (VALUE_LVAL (argp) != lval_memory)
2623 {
2624 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
2625
2626 return argp;
2627 }
2628
2629 /* All other cases -- retrieve the complete object */
2630 /* Go back by the computed top_offset from the beginning of the object,
2631 adjusting for the embedded offset of argp if that's what value_rtti_type
2632 used for its computation. */
2633 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2634 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)));
2635 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
2636 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
2637 return new_val;
2638 }
2639
2640
2641
2642
2643 /* Return the value of the local variable, if one exists.
2644 Flag COMPLAIN signals an error if the request is made in an
2645 inappropriate context. */
2646
2647 struct value *
2648 value_of_local (const char *name, int complain)
2649 {
2650 struct symbol *func, *sym;
2651 struct block *b;
2652 struct value * ret;
2653
2654 if (deprecated_selected_frame == 0)
2655 {
2656 if (complain)
2657 error ("no frame selected");
2658 else
2659 return 0;
2660 }
2661
2662 func = get_frame_function (deprecated_selected_frame);
2663 if (!func)
2664 {
2665 if (complain)
2666 error ("no `%s' in nameless context", name);
2667 else
2668 return 0;
2669 }
2670
2671 b = SYMBOL_BLOCK_VALUE (func);
2672 if (dict_empty (BLOCK_DICT (b)))
2673 {
2674 if (complain)
2675 error ("no args, no `%s'", name);
2676 else
2677 return 0;
2678 }
2679
2680 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2681 symbol instead of the LOC_ARG one (if both exist). */
2682 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2683 if (sym == NULL)
2684 {
2685 if (complain)
2686 error ("current stack frame does not contain a variable named `%s'", name);
2687 else
2688 return NULL;
2689 }
2690
2691 ret = read_var_value (sym, deprecated_selected_frame);
2692 if (ret == 0 && complain)
2693 error ("`%s' argument unreadable", name);
2694 return ret;
2695 }
2696
2697 /* C++/Objective-C: return the value of the class instance variable,
2698 if one exists. Flag COMPLAIN signals an error if the request is
2699 made in an inappropriate context. */
2700
2701 struct value *
2702 value_of_this (int complain)
2703 {
2704 if (current_language->la_language == language_objc)
2705 return value_of_local ("self", complain);
2706 else
2707 return value_of_local ("this", complain);
2708 }
2709
2710 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2711 long, starting at LOWBOUND. The result has the same lower bound as
2712 the original ARRAY. */
2713
2714 struct value *
2715 value_slice (struct value *array, int lowbound, int length)
2716 {
2717 struct type *slice_range_type, *slice_type, *range_type;
2718 LONGEST lowerbound, upperbound;
2719 struct value *slice;
2720 struct type *array_type;
2721 array_type = check_typedef (VALUE_TYPE (array));
2722 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2723 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2724 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2725 error ("cannot take slice of non-array");
2726 range_type = TYPE_INDEX_TYPE (array_type);
2727 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2728 error ("slice from bad array or bitstring");
2729 if (lowbound < lowerbound || length < 0
2730 || lowbound + length - 1 > upperbound)
2731 error ("slice out of range");
2732 /* FIXME-type-allocation: need a way to free this type when we are
2733 done with it. */
2734 slice_range_type = create_range_type ((struct type *) NULL,
2735 TYPE_TARGET_TYPE (range_type),
2736 lowbound, lowbound + length - 1);
2737 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2738 {
2739 int i;
2740 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
2741 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2742 slice = value_zero (slice_type, not_lval);
2743 for (i = 0; i < length; i++)
2744 {
2745 int element = value_bit_index (array_type,
2746 VALUE_CONTENTS (array),
2747 lowbound + i);
2748 if (element < 0)
2749 error ("internal error accessing bitstring");
2750 else if (element > 0)
2751 {
2752 int j = i % TARGET_CHAR_BIT;
2753 if (BITS_BIG_ENDIAN)
2754 j = TARGET_CHAR_BIT - 1 - j;
2755 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2756 }
2757 }
2758 /* We should set the address, bitssize, and bitspos, so the clice
2759 can be used on the LHS, but that may require extensions to
2760 value_assign. For now, just leave as a non_lval. FIXME. */
2761 }
2762 else
2763 {
2764 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2765 LONGEST offset
2766 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2767 slice_type = create_array_type ((struct type *) NULL, element_type,
2768 slice_range_type);
2769 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2770 slice = allocate_value (slice_type);
2771 if (VALUE_LAZY (array))
2772 VALUE_LAZY (slice) = 1;
2773 else
2774 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
2775 TYPE_LENGTH (slice_type));
2776 if (VALUE_LVAL (array) == lval_internalvar)
2777 VALUE_LVAL (slice) = lval_internalvar_component;
2778 else
2779 VALUE_LVAL (slice) = VALUE_LVAL (array);
2780 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2781 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
2782 }
2783 return slice;
2784 }
2785
2786 /* Create a value for a FORTRAN complex number. Currently most of
2787 the time values are coerced to COMPLEX*16 (i.e. a complex number
2788 composed of 2 doubles. This really should be a smarter routine
2789 that figures out precision inteligently as opposed to assuming
2790 doubles. FIXME: fmb */
2791
2792 struct value *
2793 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
2794 {
2795 struct value *val;
2796 struct type *real_type = TYPE_TARGET_TYPE (type);
2797
2798 val = allocate_value (type);
2799 arg1 = value_cast (real_type, arg1);
2800 arg2 = value_cast (real_type, arg2);
2801
2802 memcpy (VALUE_CONTENTS_RAW (val),
2803 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
2804 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
2805 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
2806 return val;
2807 }
2808
2809 /* Cast a value into the appropriate complex data type. */
2810
2811 static struct value *
2812 cast_into_complex (struct type *type, struct value *val)
2813 {
2814 struct type *real_type = TYPE_TARGET_TYPE (type);
2815 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
2816 {
2817 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
2818 struct value *re_val = allocate_value (val_real_type);
2819 struct value *im_val = allocate_value (val_real_type);
2820
2821 memcpy (VALUE_CONTENTS_RAW (re_val),
2822 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
2823 memcpy (VALUE_CONTENTS_RAW (im_val),
2824 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
2825 TYPE_LENGTH (val_real_type));
2826
2827 return value_literal_complex (re_val, im_val, type);
2828 }
2829 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
2830 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
2831 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2832 else
2833 error ("cannot cast non-number to complex");
2834 }
2835
2836 void
2837 _initialize_valops (void)
2838 {
2839 #if 0
2840 deprecated_add_show_from_set
2841 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
2842 "Set automatic abandonment of expressions upon failure.",
2843 &setlist),
2844 &showlist);
2845 #endif
2846
2847 deprecated_add_show_from_set
2848 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
2849 "Set overload resolution in evaluating C++ functions.",
2850 &setlist),
2851 &showlist);
2852 overload_resolution = 1;
2853 }
This page took 0.082117 seconds and 3 git commands to generate.