422821ab1e63f72a9433ff44634f130738c10782
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68 static
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202 }
203
204 static CORE_ADDR
205 allocate_space_in_inferior (int len)
206 {
207 return value_as_long (value_allocate_space_in_inferior (len));
208 }
209
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
217 {
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = value_address (v2);
258 addr2 -= value_address (v) + value_embedded_offset (v);
259 return value_at (type, addr2);
260 }
261 }
262
263 return NULL;
264 }
265
266 /* Cast one pointer or reference type to another. Both TYPE and
267 the type of ARG2 should be pointer types, or else both should be
268 reference types. Returns the new pointer or reference. */
269
270 struct value *
271 value_cast_pointers (struct type *type, struct value *arg2)
272 {
273 struct type *type1 = check_typedef (type);
274 struct type *type2 = check_typedef (value_type (arg2));
275 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
276 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
277
278 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
279 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
280 && !value_logical_not (arg2))
281 {
282 struct value *v2;
283
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 v2 = coerce_ref (arg2);
286 else
287 v2 = value_ind (arg2);
288 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
289 && !!"Why did coercion fail?");
290 v2 = value_cast_structs (t1, v2);
291 /* At this point we have what we can have, un-dereference if needed. */
292 if (v2)
293 {
294 struct value *v = value_addr (v2);
295 deprecated_set_value_type (v, type);
296 return v;
297 }
298 }
299
300 /* No superclass found, just change the pointer type. */
301 arg2 = value_copy (arg2);
302 deprecated_set_value_type (arg2, type);
303 arg2 = value_change_enclosing_type (arg2, type);
304 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
305 return arg2;
306 }
307
308 /* Cast value ARG2 to type TYPE and return as a value.
309 More general than a C cast: accepts any two types of the same length,
310 and if ARG2 is an lvalue it can be cast into anything at all. */
311 /* In C++, casts may change pointer or object representations. */
312
313 struct value *
314 value_cast (struct type *type, struct value *arg2)
315 {
316 enum type_code code1;
317 enum type_code code2;
318 int scalar;
319 struct type *type2;
320
321 int convert_to_boolean = 0;
322
323 if (value_type (arg2) == type)
324 return arg2;
325
326 code1 = TYPE_CODE (check_typedef (type));
327
328 /* Check if we are casting struct reference to struct reference. */
329 if (code1 == TYPE_CODE_REF)
330 {
331 /* We dereference type; then we recurse and finally
332 we generate value of the given reference. Nothing wrong with
333 that. */
334 struct type *t1 = check_typedef (type);
335 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
336 struct value *val = value_cast (dereftype, arg2);
337 return value_ref (val);
338 }
339
340 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
341
342 if (code2 == TYPE_CODE_REF)
343 /* We deref the value and then do the cast. */
344 return value_cast (type, coerce_ref (arg2));
345
346 CHECK_TYPEDEF (type);
347 code1 = TYPE_CODE (type);
348 arg2 = coerce_ref (arg2);
349 type2 = check_typedef (value_type (arg2));
350
351 /* You can't cast to a reference type. See value_cast_pointers
352 instead. */
353 gdb_assert (code1 != TYPE_CODE_REF);
354
355 /* A cast to an undetermined-length array_type, such as
356 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
357 where N is sizeof(OBJECT)/sizeof(TYPE). */
358 if (code1 == TYPE_CODE_ARRAY)
359 {
360 struct type *element_type = TYPE_TARGET_TYPE (type);
361 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
362 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
363 {
364 struct type *range_type = TYPE_INDEX_TYPE (type);
365 int val_length = TYPE_LENGTH (type2);
366 LONGEST low_bound, high_bound, new_length;
367 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
368 low_bound = 0, high_bound = 0;
369 new_length = val_length / element_length;
370 if (val_length % element_length != 0)
371 warning (_("array element type size does not divide object size in cast"));
372 /* FIXME-type-allocation: need a way to free this type when
373 we are done with it. */
374 range_type = create_range_type ((struct type *) NULL,
375 TYPE_TARGET_TYPE (range_type),
376 low_bound,
377 new_length + low_bound - 1);
378 deprecated_set_value_type (arg2,
379 create_array_type ((struct type *) NULL,
380 element_type,
381 range_type));
382 return arg2;
383 }
384 }
385
386 if (current_language->c_style_arrays
387 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
388 arg2 = value_coerce_array (arg2);
389
390 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
391 arg2 = value_coerce_function (arg2);
392
393 type2 = check_typedef (value_type (arg2));
394 code2 = TYPE_CODE (type2);
395
396 if (code1 == TYPE_CODE_COMPLEX)
397 return cast_into_complex (type, arg2);
398 if (code1 == TYPE_CODE_BOOL)
399 {
400 code1 = TYPE_CODE_INT;
401 convert_to_boolean = 1;
402 }
403 if (code1 == TYPE_CODE_CHAR)
404 code1 = TYPE_CODE_INT;
405 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
406 code2 = TYPE_CODE_INT;
407
408 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
409 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
410 || code2 == TYPE_CODE_RANGE);
411
412 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
413 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
414 && TYPE_NAME (type) != 0)
415 {
416 struct value *v = value_cast_structs (type, arg2);
417 if (v)
418 return v;
419 }
420
421 if (code1 == TYPE_CODE_FLT && scalar)
422 return value_from_double (type, value_as_double (arg2));
423 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
424 {
425 int dec_len = TYPE_LENGTH (type);
426 gdb_byte dec[16];
427
428 if (code2 == TYPE_CODE_FLT)
429 decimal_from_floating (arg2, dec, dec_len);
430 else if (code2 == TYPE_CODE_DECFLOAT)
431 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
432 dec, dec_len);
433 else
434 /* The only option left is an integral type. */
435 decimal_from_integral (arg2, dec, dec_len);
436
437 return value_from_decfloat (type, dec);
438 }
439 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
440 || code1 == TYPE_CODE_RANGE)
441 && (scalar || code2 == TYPE_CODE_PTR
442 || code2 == TYPE_CODE_MEMBERPTR))
443 {
444 LONGEST longest;
445
446 /* When we cast pointers to integers, we mustn't use
447 gdbarch_pointer_to_address to find the address the pointer
448 represents, as value_as_long would. GDB should evaluate
449 expressions just as the compiler would --- and the compiler
450 sees a cast as a simple reinterpretation of the pointer's
451 bits. */
452 if (code2 == TYPE_CODE_PTR)
453 longest = extract_unsigned_integer (value_contents (arg2),
454 TYPE_LENGTH (type2));
455 else
456 longest = value_as_long (arg2);
457 return value_from_longest (type, convert_to_boolean ?
458 (LONGEST) (longest ? 1 : 0) : longest);
459 }
460 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
461 || code2 == TYPE_CODE_ENUM
462 || code2 == TYPE_CODE_RANGE))
463 {
464 /* TYPE_LENGTH (type) is the length of a pointer, but we really
465 want the length of an address! -- we are really dealing with
466 addresses (i.e., gdb representations) not pointers (i.e.,
467 target representations) here.
468
469 This allows things like "print *(int *)0x01000234" to work
470 without printing a misleading message -- which would
471 otherwise occur when dealing with a target having two byte
472 pointers and four byte addresses. */
473
474 int addr_bit = gdbarch_addr_bit (current_gdbarch);
475
476 LONGEST longest = value_as_long (arg2);
477 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
478 {
479 if (longest >= ((LONGEST) 1 << addr_bit)
480 || longest <= -((LONGEST) 1 << addr_bit))
481 warning (_("value truncated"));
482 }
483 return value_from_longest (type, longest);
484 }
485 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
486 && value_as_long (arg2) == 0)
487 {
488 struct value *result = allocate_value (type);
489 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
490 return result;
491 }
492 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
493 && value_as_long (arg2) == 0)
494 {
495 /* The Itanium C++ ABI represents NULL pointers to members as
496 minus one, instead of biasing the normal case. */
497 return value_from_longest (type, -1);
498 }
499 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
500 {
501 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
502 return value_cast_pointers (type, arg2);
503
504 arg2 = value_copy (arg2);
505 deprecated_set_value_type (arg2, type);
506 arg2 = value_change_enclosing_type (arg2, type);
507 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
508 return arg2;
509 }
510 else if (VALUE_LVAL (arg2) == lval_memory)
511 return value_at_lazy (type, value_address (arg2));
512 else if (code1 == TYPE_CODE_VOID)
513 {
514 return value_zero (builtin_type_void, not_lval);
515 }
516 else
517 {
518 error (_("Invalid cast."));
519 return 0;
520 }
521 }
522
523 /* Create a value of type TYPE that is zero, and return it. */
524
525 struct value *
526 value_zero (struct type *type, enum lval_type lv)
527 {
528 struct value *val = allocate_value (type);
529 VALUE_LVAL (val) = lv;
530
531 return val;
532 }
533
534 /* Create a value of numeric type TYPE that is one, and return it. */
535
536 struct value *
537 value_one (struct type *type, enum lval_type lv)
538 {
539 struct type *type1 = check_typedef (type);
540 struct value *val = NULL; /* avoid -Wall warning */
541
542 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
543 {
544 struct value *int_one = value_from_longest (builtin_type_int32, 1);
545 struct value *val;
546 gdb_byte v[16];
547
548 decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int32));
549 val = value_from_decfloat (type, v);
550 }
551 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
552 {
553 val = value_from_double (type, (DOUBLEST) 1);
554 }
555 else if (is_integral_type (type1))
556 {
557 val = value_from_longest (type, (LONGEST) 1);
558 }
559 else
560 {
561 error (_("Not a numeric type."));
562 }
563
564 VALUE_LVAL (val) = lv;
565 return val;
566 }
567
568 /* Return a value with type TYPE located at ADDR.
569
570 Call value_at only if the data needs to be fetched immediately;
571 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
572 value_at_lazy instead. value_at_lazy simply records the address of
573 the data and sets the lazy-evaluation-required flag. The lazy flag
574 is tested in the value_contents macro, which is used if and when
575 the contents are actually required.
576
577 Note: value_at does *NOT* handle embedded offsets; perform such
578 adjustments before or after calling it. */
579
580 struct value *
581 value_at (struct type *type, CORE_ADDR addr)
582 {
583 struct value *val;
584
585 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
586 error (_("Attempt to dereference a generic pointer."));
587
588 val = allocate_value (type);
589
590 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
591
592 VALUE_LVAL (val) = lval_memory;
593 set_value_address (val, addr);
594
595 return val;
596 }
597
598 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
599
600 struct value *
601 value_at_lazy (struct type *type, CORE_ADDR addr)
602 {
603 struct value *val;
604
605 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
606 error (_("Attempt to dereference a generic pointer."));
607
608 val = allocate_value_lazy (type);
609
610 VALUE_LVAL (val) = lval_memory;
611 set_value_address (val, addr);
612
613 return val;
614 }
615
616 /* Called only from the value_contents and value_contents_all()
617 macros, if the current data for a variable needs to be loaded into
618 value_contents(VAL). Fetches the data from the user's process, and
619 clears the lazy flag to indicate that the data in the buffer is
620 valid.
621
622 If the value is zero-length, we avoid calling read_memory, which
623 would abort. We mark the value as fetched anyway -- all 0 bytes of
624 it.
625
626 This function returns a value because it is used in the
627 value_contents macro as part of an expression, where a void would
628 not work. The value is ignored. */
629
630 int
631 value_fetch_lazy (struct value *val)
632 {
633 gdb_assert (value_lazy (val));
634 allocate_value_contents (val);
635 if (VALUE_LVAL (val) == lval_memory)
636 {
637 CORE_ADDR addr = value_address (val);
638 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
639
640 if (length)
641 read_memory (addr, value_contents_all_raw (val), length);
642 }
643 else if (VALUE_LVAL (val) == lval_register)
644 {
645 struct frame_info *frame;
646 int regnum;
647 struct type *type = check_typedef (value_type (val));
648 struct value *new_val = val, *mark = value_mark ();
649
650 /* Offsets are not supported here; lazy register values must
651 refer to the entire register. */
652 gdb_assert (value_offset (val) == 0);
653
654 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
655 {
656 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
657 regnum = VALUE_REGNUM (new_val);
658
659 gdb_assert (frame != NULL);
660
661 /* Convertible register routines are used for multi-register
662 values and for interpretation in different types
663 (e.g. float or int from a double register). Lazy
664 register values should have the register's natural type,
665 so they do not apply. */
666 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
667 regnum, type));
668
669 new_val = get_frame_register_value (frame, regnum);
670 }
671
672 /* If it's still lazy (for instance, a saved register on the
673 stack), fetch it. */
674 if (value_lazy (new_val))
675 value_fetch_lazy (new_val);
676
677 /* If the register was not saved, mark it unavailable. */
678 if (value_optimized_out (new_val))
679 set_value_optimized_out (val, 1);
680 else
681 memcpy (value_contents_raw (val), value_contents (new_val),
682 TYPE_LENGTH (type));
683
684 if (frame_debug)
685 {
686 struct gdbarch *gdbarch;
687 frame = frame_find_by_id (VALUE_FRAME_ID (val));
688 regnum = VALUE_REGNUM (val);
689 gdbarch = get_frame_arch (frame);
690
691 fprintf_unfiltered (gdb_stdlog, "\
692 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
693 frame_relative_level (frame), regnum,
694 user_reg_map_regnum_to_name (gdbarch, regnum));
695
696 fprintf_unfiltered (gdb_stdlog, "->");
697 if (value_optimized_out (new_val))
698 fprintf_unfiltered (gdb_stdlog, " optimized out");
699 else
700 {
701 int i;
702 const gdb_byte *buf = value_contents (new_val);
703
704 if (VALUE_LVAL (new_val) == lval_register)
705 fprintf_unfiltered (gdb_stdlog, " register=%d",
706 VALUE_REGNUM (new_val));
707 else if (VALUE_LVAL (new_val) == lval_memory)
708 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
709 paddr_nz (value_address (new_val)));
710 else
711 fprintf_unfiltered (gdb_stdlog, " computed");
712
713 fprintf_unfiltered (gdb_stdlog, " bytes=");
714 fprintf_unfiltered (gdb_stdlog, "[");
715 for (i = 0; i < register_size (gdbarch, regnum); i++)
716 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
717 fprintf_unfiltered (gdb_stdlog, "]");
718 }
719
720 fprintf_unfiltered (gdb_stdlog, " }\n");
721 }
722
723 /* Dispose of the intermediate values. This prevents
724 watchpoints from trying to watch the saved frame pointer. */
725 value_free_to_mark (mark);
726 }
727 else if (VALUE_LVAL (val) == lval_computed)
728 value_computed_funcs (val)->read (val);
729 else
730 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
731
732 set_value_lazy (val, 0);
733 return 0;
734 }
735
736
737 /* Store the contents of FROMVAL into the location of TOVAL.
738 Return a new value with the location of TOVAL and contents of FROMVAL. */
739
740 struct value *
741 value_assign (struct value *toval, struct value *fromval)
742 {
743 struct type *type;
744 struct value *val;
745 struct frame_id old_frame;
746
747 if (!deprecated_value_modifiable (toval))
748 error (_("Left operand of assignment is not a modifiable lvalue."));
749
750 toval = coerce_ref (toval);
751
752 type = value_type (toval);
753 if (VALUE_LVAL (toval) != lval_internalvar)
754 {
755 toval = value_coerce_to_target (toval);
756 fromval = value_cast (type, fromval);
757 }
758 else
759 {
760 /* Coerce arrays and functions to pointers, except for arrays
761 which only live in GDB's storage. */
762 if (!value_must_coerce_to_target (fromval))
763 fromval = coerce_array (fromval);
764 }
765
766 CHECK_TYPEDEF (type);
767
768 /* Since modifying a register can trash the frame chain, and
769 modifying memory can trash the frame cache, we save the old frame
770 and then restore the new frame afterwards. */
771 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
772
773 switch (VALUE_LVAL (toval))
774 {
775 case lval_internalvar:
776 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
777 val = value_copy (fromval);
778 val = value_change_enclosing_type (val,
779 value_enclosing_type (fromval));
780 set_value_embedded_offset (val, value_embedded_offset (fromval));
781 set_value_pointed_to_offset (val,
782 value_pointed_to_offset (fromval));
783 return val;
784
785 case lval_internalvar_component:
786 set_internalvar_component (VALUE_INTERNALVAR (toval),
787 value_offset (toval),
788 value_bitpos (toval),
789 value_bitsize (toval),
790 fromval);
791 break;
792
793 case lval_memory:
794 {
795 const gdb_byte *dest_buffer;
796 CORE_ADDR changed_addr;
797 int changed_len;
798 gdb_byte buffer[sizeof (LONGEST)];
799
800 if (value_bitsize (toval))
801 {
802 /* We assume that the argument to read_memory is in units
803 of host chars. FIXME: Is that correct? */
804 changed_len = (value_bitpos (toval)
805 + value_bitsize (toval)
806 + HOST_CHAR_BIT - 1)
807 / HOST_CHAR_BIT;
808
809 if (changed_len > (int) sizeof (LONGEST))
810 error (_("Can't handle bitfields which don't fit in a %d bit word."),
811 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
812
813 read_memory (value_address (toval), buffer, changed_len);
814 modify_field (buffer, value_as_long (fromval),
815 value_bitpos (toval), value_bitsize (toval));
816 changed_addr = value_address (toval);
817 dest_buffer = buffer;
818 }
819 else
820 {
821 changed_addr = value_address (toval);
822 changed_len = TYPE_LENGTH (type);
823 dest_buffer = value_contents (fromval);
824 }
825
826 write_memory (changed_addr, dest_buffer, changed_len);
827 if (deprecated_memory_changed_hook)
828 deprecated_memory_changed_hook (changed_addr, changed_len);
829 }
830 break;
831
832 case lval_register:
833 {
834 struct frame_info *frame;
835 struct gdbarch *gdbarch;
836 int value_reg;
837
838 /* Figure out which frame this is in currently. */
839 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
840 value_reg = VALUE_REGNUM (toval);
841
842 if (!frame)
843 error (_("Value being assigned to is no longer active."));
844
845 gdbarch = get_frame_arch (frame);
846 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
847 {
848 /* If TOVAL is a special machine register requiring
849 conversion of program values to a special raw
850 format. */
851 gdbarch_value_to_register (gdbarch, frame,
852 VALUE_REGNUM (toval), type,
853 value_contents (fromval));
854 }
855 else
856 {
857 if (value_bitsize (toval))
858 {
859 int changed_len;
860 gdb_byte buffer[sizeof (LONGEST)];
861
862 changed_len = (value_bitpos (toval)
863 + value_bitsize (toval)
864 + HOST_CHAR_BIT - 1)
865 / HOST_CHAR_BIT;
866
867 if (changed_len > (int) sizeof (LONGEST))
868 error (_("Can't handle bitfields which don't fit in a %d bit word."),
869 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
870
871 get_frame_register_bytes (frame, value_reg,
872 value_offset (toval),
873 changed_len, buffer);
874
875 modify_field (buffer, value_as_long (fromval),
876 value_bitpos (toval),
877 value_bitsize (toval));
878
879 put_frame_register_bytes (frame, value_reg,
880 value_offset (toval),
881 changed_len, buffer);
882 }
883 else
884 {
885 put_frame_register_bytes (frame, value_reg,
886 value_offset (toval),
887 TYPE_LENGTH (type),
888 value_contents (fromval));
889 }
890 }
891
892 if (deprecated_register_changed_hook)
893 deprecated_register_changed_hook (-1);
894 observer_notify_target_changed (&current_target);
895 break;
896 }
897
898 case lval_computed:
899 {
900 struct lval_funcs *funcs = value_computed_funcs (toval);
901
902 funcs->write (toval, fromval);
903 }
904 break;
905
906 default:
907 error (_("Left operand of assignment is not an lvalue."));
908 }
909
910 /* Assigning to the stack pointer, frame pointer, and other
911 (architecture and calling convention specific) registers may
912 cause the frame cache to be out of date. Assigning to memory
913 also can. We just do this on all assignments to registers or
914 memory, for simplicity's sake; I doubt the slowdown matters. */
915 switch (VALUE_LVAL (toval))
916 {
917 case lval_memory:
918 case lval_register:
919
920 reinit_frame_cache ();
921
922 /* Having destroyed the frame cache, restore the selected
923 frame. */
924
925 /* FIXME: cagney/2002-11-02: There has to be a better way of
926 doing this. Instead of constantly saving/restoring the
927 frame. Why not create a get_selected_frame() function that,
928 having saved the selected frame's ID can automatically
929 re-find the previously selected frame automatically. */
930
931 {
932 struct frame_info *fi = frame_find_by_id (old_frame);
933 if (fi != NULL)
934 select_frame (fi);
935 }
936
937 break;
938 default:
939 break;
940 }
941
942 /* If the field does not entirely fill a LONGEST, then zero the sign
943 bits. If the field is signed, and is negative, then sign
944 extend. */
945 if ((value_bitsize (toval) > 0)
946 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
947 {
948 LONGEST fieldval = value_as_long (fromval);
949 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
950
951 fieldval &= valmask;
952 if (!TYPE_UNSIGNED (type)
953 && (fieldval & (valmask ^ (valmask >> 1))))
954 fieldval |= ~valmask;
955
956 fromval = value_from_longest (type, fieldval);
957 }
958
959 val = value_copy (toval);
960 memcpy (value_contents_raw (val), value_contents (fromval),
961 TYPE_LENGTH (type));
962 deprecated_set_value_type (val, type);
963 val = value_change_enclosing_type (val,
964 value_enclosing_type (fromval));
965 set_value_embedded_offset (val, value_embedded_offset (fromval));
966 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
967
968 return val;
969 }
970
971 /* Extend a value VAL to COUNT repetitions of its type. */
972
973 struct value *
974 value_repeat (struct value *arg1, int count)
975 {
976 struct value *val;
977
978 if (VALUE_LVAL (arg1) != lval_memory)
979 error (_("Only values in memory can be extended with '@'."));
980 if (count < 1)
981 error (_("Invalid number %d of repetitions."), count);
982
983 val = allocate_repeat_value (value_enclosing_type (arg1), count);
984
985 read_memory (value_address (arg1),
986 value_contents_all_raw (val),
987 TYPE_LENGTH (value_enclosing_type (val)));
988 VALUE_LVAL (val) = lval_memory;
989 set_value_address (val, value_address (arg1));
990
991 return val;
992 }
993
994 struct value *
995 value_of_variable (struct symbol *var, struct block *b)
996 {
997 struct value *val;
998 struct frame_info *frame;
999
1000 if (!symbol_read_needs_frame (var))
1001 frame = NULL;
1002 else if (!b)
1003 frame = get_selected_frame (_("No frame selected."));
1004 else
1005 {
1006 frame = block_innermost_frame (b);
1007 if (!frame)
1008 {
1009 if (BLOCK_FUNCTION (b)
1010 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1011 error (_("No frame is currently executing in block %s."),
1012 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1013 else
1014 error (_("No frame is currently executing in specified block"));
1015 }
1016 }
1017
1018 val = read_var_value (var, frame);
1019 if (!val)
1020 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1021
1022 return val;
1023 }
1024
1025 struct value *
1026 address_of_variable (struct symbol *var, struct block *b)
1027 {
1028 struct type *type = SYMBOL_TYPE (var);
1029 struct value *val;
1030
1031 /* Evaluate it first; if the result is a memory address, we're fine.
1032 Lazy evaluation pays off here. */
1033
1034 val = value_of_variable (var, b);
1035
1036 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1037 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1038 {
1039 CORE_ADDR addr = value_address (val);
1040 return value_from_pointer (lookup_pointer_type (type), addr);
1041 }
1042
1043 /* Not a memory address; check what the problem was. */
1044 switch (VALUE_LVAL (val))
1045 {
1046 case lval_register:
1047 {
1048 struct frame_info *frame;
1049 const char *regname;
1050
1051 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1052 gdb_assert (frame);
1053
1054 regname = gdbarch_register_name (get_frame_arch (frame),
1055 VALUE_REGNUM (val));
1056 gdb_assert (regname && *regname);
1057
1058 error (_("Address requested for identifier "
1059 "\"%s\" which is in register $%s"),
1060 SYMBOL_PRINT_NAME (var), regname);
1061 break;
1062 }
1063
1064 default:
1065 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1066 SYMBOL_PRINT_NAME (var));
1067 break;
1068 }
1069
1070 return val;
1071 }
1072
1073 /* Return one if VAL does not live in target memory, but should in order
1074 to operate on it. Otherwise return zero. */
1075
1076 int
1077 value_must_coerce_to_target (struct value *val)
1078 {
1079 struct type *valtype;
1080
1081 /* The only lval kinds which do not live in target memory. */
1082 if (VALUE_LVAL (val) != not_lval
1083 && VALUE_LVAL (val) != lval_internalvar)
1084 return 0;
1085
1086 valtype = check_typedef (value_type (val));
1087
1088 switch (TYPE_CODE (valtype))
1089 {
1090 case TYPE_CODE_ARRAY:
1091 case TYPE_CODE_STRING:
1092 return 1;
1093 default:
1094 return 0;
1095 }
1096 }
1097
1098 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1099 strings are constructed as character arrays in GDB's storage, and this
1100 function copies them to the target. */
1101
1102 struct value *
1103 value_coerce_to_target (struct value *val)
1104 {
1105 LONGEST length;
1106 CORE_ADDR addr;
1107
1108 if (!value_must_coerce_to_target (val))
1109 return val;
1110
1111 length = TYPE_LENGTH (check_typedef (value_type (val)));
1112 addr = allocate_space_in_inferior (length);
1113 write_memory (addr, value_contents (val), length);
1114 return value_at_lazy (value_type (val), addr);
1115 }
1116
1117 /* Given a value which is an array, return a value which is a pointer
1118 to its first element, regardless of whether or not the array has a
1119 nonzero lower bound.
1120
1121 FIXME: A previous comment here indicated that this routine should
1122 be substracting the array's lower bound. It's not clear to me that
1123 this is correct. Given an array subscripting operation, it would
1124 certainly work to do the adjustment here, essentially computing:
1125
1126 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1127
1128 However I believe a more appropriate and logical place to account
1129 for the lower bound is to do so in value_subscript, essentially
1130 computing:
1131
1132 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1133
1134 As further evidence consider what would happen with operations
1135 other than array subscripting, where the caller would get back a
1136 value that had an address somewhere before the actual first element
1137 of the array, and the information about the lower bound would be
1138 lost because of the coercion to pointer type.
1139 */
1140
1141 struct value *
1142 value_coerce_array (struct value *arg1)
1143 {
1144 struct type *type = check_typedef (value_type (arg1));
1145
1146 /* If the user tries to do something requiring a pointer with an
1147 array that has not yet been pushed to the target, then this would
1148 be a good time to do so. */
1149 arg1 = value_coerce_to_target (arg1);
1150
1151 if (VALUE_LVAL (arg1) != lval_memory)
1152 error (_("Attempt to take address of value not located in memory."));
1153
1154 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1155 value_address (arg1));
1156 }
1157
1158 /* Given a value which is a function, return a value which is a pointer
1159 to it. */
1160
1161 struct value *
1162 value_coerce_function (struct value *arg1)
1163 {
1164 struct value *retval;
1165
1166 if (VALUE_LVAL (arg1) != lval_memory)
1167 error (_("Attempt to take address of value not located in memory."));
1168
1169 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1170 value_address (arg1));
1171 return retval;
1172 }
1173
1174 /* Return a pointer value for the object for which ARG1 is the
1175 contents. */
1176
1177 struct value *
1178 value_addr (struct value *arg1)
1179 {
1180 struct value *arg2;
1181
1182 struct type *type = check_typedef (value_type (arg1));
1183 if (TYPE_CODE (type) == TYPE_CODE_REF)
1184 {
1185 /* Copy the value, but change the type from (T&) to (T*). We
1186 keep the same location information, which is efficient, and
1187 allows &(&X) to get the location containing the reference. */
1188 arg2 = value_copy (arg1);
1189 deprecated_set_value_type (arg2,
1190 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1191 return arg2;
1192 }
1193 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1194 return value_coerce_function (arg1);
1195
1196 /* If this is an array that has not yet been pushed to the target,
1197 then this would be a good time to force it to memory. */
1198 arg1 = value_coerce_to_target (arg1);
1199
1200 if (VALUE_LVAL (arg1) != lval_memory)
1201 error (_("Attempt to take address of value not located in memory."));
1202
1203 /* Get target memory address */
1204 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1205 (value_address (arg1)
1206 + value_embedded_offset (arg1)));
1207
1208 /* This may be a pointer to a base subobject; so remember the
1209 full derived object's type ... */
1210 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1211 /* ... and also the relative position of the subobject in the full
1212 object. */
1213 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1214 return arg2;
1215 }
1216
1217 /* Return a reference value for the object for which ARG1 is the
1218 contents. */
1219
1220 struct value *
1221 value_ref (struct value *arg1)
1222 {
1223 struct value *arg2;
1224
1225 struct type *type = check_typedef (value_type (arg1));
1226 if (TYPE_CODE (type) == TYPE_CODE_REF)
1227 return arg1;
1228
1229 arg2 = value_addr (arg1);
1230 deprecated_set_value_type (arg2, lookup_reference_type (type));
1231 return arg2;
1232 }
1233
1234 /* Given a value of a pointer type, apply the C unary * operator to
1235 it. */
1236
1237 struct value *
1238 value_ind (struct value *arg1)
1239 {
1240 struct type *base_type;
1241 struct value *arg2;
1242
1243 arg1 = coerce_array (arg1);
1244
1245 base_type = check_typedef (value_type (arg1));
1246
1247 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1248 {
1249 struct type *enc_type;
1250 /* We may be pointing to something embedded in a larger object.
1251 Get the real type of the enclosing object. */
1252 enc_type = check_typedef (value_enclosing_type (arg1));
1253 enc_type = TYPE_TARGET_TYPE (enc_type);
1254
1255 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1256 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1257 /* For functions, go through find_function_addr, which knows
1258 how to handle function descriptors. */
1259 arg2 = value_at_lazy (enc_type,
1260 find_function_addr (arg1, NULL));
1261 else
1262 /* Retrieve the enclosing object pointed to */
1263 arg2 = value_at_lazy (enc_type,
1264 (value_as_address (arg1)
1265 - value_pointed_to_offset (arg1)));
1266
1267 /* Re-adjust type. */
1268 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1269 /* Add embedding info. */
1270 arg2 = value_change_enclosing_type (arg2, enc_type);
1271 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1272
1273 /* We may be pointing to an object of some derived type. */
1274 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1275 return arg2;
1276 }
1277
1278 error (_("Attempt to take contents of a non-pointer value."));
1279 return 0; /* For lint -- never reached. */
1280 }
1281 \f
1282 /* Create a value for an array by allocating space in GDB, copying
1283 copying the data into that space, and then setting up an array
1284 value.
1285
1286 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1287 is populated from the values passed in ELEMVEC.
1288
1289 The element type of the array is inherited from the type of the
1290 first element, and all elements must have the same size (though we
1291 don't currently enforce any restriction on their types). */
1292
1293 struct value *
1294 value_array (int lowbound, int highbound, struct value **elemvec)
1295 {
1296 int nelem;
1297 int idx;
1298 unsigned int typelength;
1299 struct value *val;
1300 struct type *rangetype;
1301 struct type *arraytype;
1302 CORE_ADDR addr;
1303
1304 /* Validate that the bounds are reasonable and that each of the
1305 elements have the same size. */
1306
1307 nelem = highbound - lowbound + 1;
1308 if (nelem <= 0)
1309 {
1310 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1311 }
1312 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1313 for (idx = 1; idx < nelem; idx++)
1314 {
1315 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1316 {
1317 error (_("array elements must all be the same size"));
1318 }
1319 }
1320
1321 rangetype = create_range_type ((struct type *) NULL,
1322 builtin_type_int32,
1323 lowbound, highbound);
1324 arraytype = create_array_type ((struct type *) NULL,
1325 value_enclosing_type (elemvec[0]),
1326 rangetype);
1327
1328 if (!current_language->c_style_arrays)
1329 {
1330 val = allocate_value (arraytype);
1331 for (idx = 0; idx < nelem; idx++)
1332 {
1333 memcpy (value_contents_all_raw (val) + (idx * typelength),
1334 value_contents_all (elemvec[idx]),
1335 typelength);
1336 }
1337 return val;
1338 }
1339
1340 /* Allocate space to store the array, and then initialize it by
1341 copying in each element. */
1342
1343 val = allocate_value (arraytype);
1344 for (idx = 0; idx < nelem; idx++)
1345 memcpy (value_contents_writeable (val) + (idx * typelength),
1346 value_contents_all (elemvec[idx]),
1347 typelength);
1348 return val;
1349 }
1350
1351 struct value *
1352 value_typed_string (char *ptr, int len, struct type *char_type)
1353 {
1354 struct value *val;
1355 int lowbound = current_language->string_lower_bound;
1356 int highbound = len / TYPE_LENGTH (char_type);
1357 struct type *rangetype = create_range_type ((struct type *) NULL,
1358 builtin_type_int32,
1359 lowbound,
1360 highbound + lowbound - 1);
1361 struct type *stringtype
1362 = create_array_type ((struct type *) NULL, char_type, rangetype);
1363
1364 val = allocate_value (stringtype);
1365 memcpy (value_contents_raw (val), ptr, len);
1366 return val;
1367 }
1368
1369 /* Create a value for a string constant by allocating space in the
1370 inferior, copying the data into that space, and returning the
1371 address with type TYPE_CODE_STRING. PTR points to the string
1372 constant data; LEN is number of characters.
1373
1374 Note that string types are like array of char types with a lower
1375 bound of zero and an upper bound of LEN - 1. Also note that the
1376 string may contain embedded null bytes. */
1377
1378 struct value *
1379 value_string (char *ptr, int len)
1380 {
1381 struct value *val;
1382 int lowbound = current_language->string_lower_bound;
1383 struct type *rangetype = create_range_type ((struct type *) NULL,
1384 builtin_type_int32,
1385 lowbound,
1386 len + lowbound - 1);
1387 struct type *stringtype
1388 = create_string_type ((struct type *) NULL, rangetype);
1389 CORE_ADDR addr;
1390
1391 if (current_language->c_style_arrays == 0)
1392 {
1393 val = allocate_value (stringtype);
1394 memcpy (value_contents_raw (val), ptr, len);
1395 return val;
1396 }
1397
1398
1399 /* Allocate space to store the string in the inferior, and then copy
1400 LEN bytes from PTR in gdb to that address in the inferior. */
1401
1402 addr = allocate_space_in_inferior (len);
1403 write_memory (addr, (gdb_byte *) ptr, len);
1404
1405 val = value_at_lazy (stringtype, addr);
1406 return (val);
1407 }
1408
1409 struct value *
1410 value_bitstring (char *ptr, int len)
1411 {
1412 struct value *val;
1413 struct type *domain_type = create_range_type (NULL,
1414 builtin_type_int32,
1415 0, len - 1);
1416 struct type *type = create_set_type ((struct type *) NULL,
1417 domain_type);
1418 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1419 val = allocate_value (type);
1420 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1421 return val;
1422 }
1423 \f
1424 /* See if we can pass arguments in T2 to a function which takes
1425 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1426 a NULL-terminated vector. If some arguments need coercion of some
1427 sort, then the coerced values are written into T2. Return value is
1428 0 if the arguments could be matched, or the position at which they
1429 differ if not.
1430
1431 STATICP is nonzero if the T1 argument list came from a static
1432 member function. T2 will still include the ``this'' pointer, but
1433 it will be skipped.
1434
1435 For non-static member functions, we ignore the first argument,
1436 which is the type of the instance variable. This is because we
1437 want to handle calls with objects from derived classes. This is
1438 not entirely correct: we should actually check to make sure that a
1439 requested operation is type secure, shouldn't we? FIXME. */
1440
1441 static int
1442 typecmp (int staticp, int varargs, int nargs,
1443 struct field t1[], struct value *t2[])
1444 {
1445 int i;
1446
1447 if (t2 == 0)
1448 internal_error (__FILE__, __LINE__,
1449 _("typecmp: no argument list"));
1450
1451 /* Skip ``this'' argument if applicable. T2 will always include
1452 THIS. */
1453 if (staticp)
1454 t2 ++;
1455
1456 for (i = 0;
1457 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1458 i++)
1459 {
1460 struct type *tt1, *tt2;
1461
1462 if (!t2[i])
1463 return i + 1;
1464
1465 tt1 = check_typedef (t1[i].type);
1466 tt2 = check_typedef (value_type (t2[i]));
1467
1468 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1469 /* We should be doing hairy argument matching, as below. */
1470 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1471 {
1472 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1473 t2[i] = value_coerce_array (t2[i]);
1474 else
1475 t2[i] = value_ref (t2[i]);
1476 continue;
1477 }
1478
1479 /* djb - 20000715 - Until the new type structure is in the
1480 place, and we can attempt things like implicit conversions,
1481 we need to do this so you can take something like a map<const
1482 char *>, and properly access map["hello"], because the
1483 argument to [] will be a reference to a pointer to a char,
1484 and the argument will be a pointer to a char. */
1485 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1486 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1487 {
1488 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1489 }
1490 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1491 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1492 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1493 {
1494 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1495 }
1496 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1497 continue;
1498 /* Array to pointer is a `trivial conversion' according to the
1499 ARM. */
1500
1501 /* We should be doing much hairier argument matching (see
1502 section 13.2 of the ARM), but as a quick kludge, just check
1503 for the same type code. */
1504 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1505 return i + 1;
1506 }
1507 if (varargs || t2[i] == NULL)
1508 return 0;
1509 return i + 1;
1510 }
1511
1512 /* Helper function used by value_struct_elt to recurse through
1513 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1514 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1515 TYPE. If found, return value, else return NULL.
1516
1517 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1518 fields, look for a baseclass named NAME. */
1519
1520 static struct value *
1521 search_struct_field (char *name, struct value *arg1, int offset,
1522 struct type *type, int looking_for_baseclass)
1523 {
1524 int i;
1525 int nbases = TYPE_N_BASECLASSES (type);
1526
1527 CHECK_TYPEDEF (type);
1528
1529 if (!looking_for_baseclass)
1530 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1531 {
1532 char *t_field_name = TYPE_FIELD_NAME (type, i);
1533
1534 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1535 {
1536 struct value *v;
1537 if (field_is_static (&TYPE_FIELD (type, i)))
1538 {
1539 v = value_static_field (type, i);
1540 if (v == 0)
1541 error (_("field %s is nonexistent or has been optimised out"),
1542 name);
1543 }
1544 else
1545 {
1546 v = value_primitive_field (arg1, offset, i, type);
1547 if (v == 0)
1548 error (_("there is no field named %s"), name);
1549 }
1550 return v;
1551 }
1552
1553 if (t_field_name
1554 && (t_field_name[0] == '\0'
1555 || (TYPE_CODE (type) == TYPE_CODE_UNION
1556 && (strcmp_iw (t_field_name, "else") == 0))))
1557 {
1558 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1559 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1560 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1561 {
1562 /* Look for a match through the fields of an anonymous
1563 union, or anonymous struct. C++ provides anonymous
1564 unions.
1565
1566 In the GNU Chill (now deleted from GDB)
1567 implementation of variant record types, each
1568 <alternative field> has an (anonymous) union type,
1569 each member of the union represents a <variant
1570 alternative>. Each <variant alternative> is
1571 represented as a struct, with a member for each
1572 <variant field>. */
1573
1574 struct value *v;
1575 int new_offset = offset;
1576
1577 /* This is pretty gross. In G++, the offset in an
1578 anonymous union is relative to the beginning of the
1579 enclosing struct. In the GNU Chill (now deleted
1580 from GDB) implementation of variant records, the
1581 bitpos is zero in an anonymous union field, so we
1582 have to add the offset of the union here. */
1583 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1584 || (TYPE_NFIELDS (field_type) > 0
1585 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1586 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1587
1588 v = search_struct_field (name, arg1, new_offset,
1589 field_type,
1590 looking_for_baseclass);
1591 if (v)
1592 return v;
1593 }
1594 }
1595 }
1596
1597 for (i = 0; i < nbases; i++)
1598 {
1599 struct value *v;
1600 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1601 /* If we are looking for baseclasses, this is what we get when
1602 we hit them. But it could happen that the base part's member
1603 name is not yet filled in. */
1604 int found_baseclass = (looking_for_baseclass
1605 && TYPE_BASECLASS_NAME (type, i) != NULL
1606 && (strcmp_iw (name,
1607 TYPE_BASECLASS_NAME (type,
1608 i)) == 0));
1609
1610 if (BASETYPE_VIA_VIRTUAL (type, i))
1611 {
1612 int boffset;
1613 struct value *v2;
1614
1615 boffset = baseclass_offset (type, i,
1616 value_contents (arg1) + offset,
1617 value_address (arg1) + offset);
1618 if (boffset == -1)
1619 error (_("virtual baseclass botch"));
1620
1621 /* The virtual base class pointer might have been clobbered
1622 by the user program. Make sure that it still points to a
1623 valid memory location. */
1624
1625 boffset += offset;
1626 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1627 {
1628 CORE_ADDR base_addr;
1629
1630 v2 = allocate_value (basetype);
1631 base_addr = value_address (arg1) + boffset;
1632 if (target_read_memory (base_addr,
1633 value_contents_raw (v2),
1634 TYPE_LENGTH (basetype)) != 0)
1635 error (_("virtual baseclass botch"));
1636 VALUE_LVAL (v2) = lval_memory;
1637 set_value_address (v2, base_addr);
1638 }
1639 else
1640 {
1641 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1642 v2 = allocate_value_lazy (basetype);
1643 else
1644 {
1645 v2 = allocate_value (basetype);
1646 memcpy (value_contents_raw (v2),
1647 value_contents_raw (arg1) + boffset,
1648 TYPE_LENGTH (basetype));
1649 }
1650 set_value_component_location (v2, arg1);
1651 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1652 set_value_offset (v2, value_offset (arg1) + boffset);
1653 }
1654
1655 if (found_baseclass)
1656 return v2;
1657 v = search_struct_field (name, v2, 0,
1658 TYPE_BASECLASS (type, i),
1659 looking_for_baseclass);
1660 }
1661 else if (found_baseclass)
1662 v = value_primitive_field (arg1, offset, i, type);
1663 else
1664 v = search_struct_field (name, arg1,
1665 offset + TYPE_BASECLASS_BITPOS (type,
1666 i) / 8,
1667 basetype, looking_for_baseclass);
1668 if (v)
1669 return v;
1670 }
1671 return NULL;
1672 }
1673
1674 /* Helper function used by value_struct_elt to recurse through
1675 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1676 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1677 TYPE.
1678
1679 If found, return value, else if name matched and args not return
1680 (value) -1, else return NULL. */
1681
1682 static struct value *
1683 search_struct_method (char *name, struct value **arg1p,
1684 struct value **args, int offset,
1685 int *static_memfuncp, struct type *type)
1686 {
1687 int i;
1688 struct value *v;
1689 int name_matched = 0;
1690 char dem_opname[64];
1691
1692 CHECK_TYPEDEF (type);
1693 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1694 {
1695 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1696 /* FIXME! May need to check for ARM demangling here */
1697 if (strncmp (t_field_name, "__", 2) == 0 ||
1698 strncmp (t_field_name, "op", 2) == 0 ||
1699 strncmp (t_field_name, "type", 4) == 0)
1700 {
1701 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1702 t_field_name = dem_opname;
1703 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1704 t_field_name = dem_opname;
1705 }
1706 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1707 {
1708 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1709 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1710 name_matched = 1;
1711
1712 check_stub_method_group (type, i);
1713 if (j > 0 && args == 0)
1714 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1715 else if (j == 0 && args == 0)
1716 {
1717 v = value_fn_field (arg1p, f, j, type, offset);
1718 if (v != NULL)
1719 return v;
1720 }
1721 else
1722 while (j >= 0)
1723 {
1724 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1725 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1726 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1727 TYPE_FN_FIELD_ARGS (f, j), args))
1728 {
1729 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1730 return value_virtual_fn_field (arg1p, f, j,
1731 type, offset);
1732 if (TYPE_FN_FIELD_STATIC_P (f, j)
1733 && static_memfuncp)
1734 *static_memfuncp = 1;
1735 v = value_fn_field (arg1p, f, j, type, offset);
1736 if (v != NULL)
1737 return v;
1738 }
1739 j--;
1740 }
1741 }
1742 }
1743
1744 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1745 {
1746 int base_offset;
1747
1748 if (BASETYPE_VIA_VIRTUAL (type, i))
1749 {
1750 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1751 const gdb_byte *base_valaddr;
1752
1753 /* The virtual base class pointer might have been
1754 clobbered by the user program. Make sure that it
1755 still points to a valid memory location. */
1756
1757 if (offset < 0 || offset >= TYPE_LENGTH (type))
1758 {
1759 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1760 if (target_read_memory (value_address (*arg1p) + offset,
1761 tmp, TYPE_LENGTH (baseclass)) != 0)
1762 error (_("virtual baseclass botch"));
1763 base_valaddr = tmp;
1764 }
1765 else
1766 base_valaddr = value_contents (*arg1p) + offset;
1767
1768 base_offset = baseclass_offset (type, i, base_valaddr,
1769 value_address (*arg1p) + offset);
1770 if (base_offset == -1)
1771 error (_("virtual baseclass botch"));
1772 }
1773 else
1774 {
1775 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1776 }
1777 v = search_struct_method (name, arg1p, args, base_offset + offset,
1778 static_memfuncp, TYPE_BASECLASS (type, i));
1779 if (v == (struct value *) - 1)
1780 {
1781 name_matched = 1;
1782 }
1783 else if (v)
1784 {
1785 /* FIXME-bothner: Why is this commented out? Why is it here? */
1786 /* *arg1p = arg1_tmp; */
1787 return v;
1788 }
1789 }
1790 if (name_matched)
1791 return (struct value *) - 1;
1792 else
1793 return NULL;
1794 }
1795
1796 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1797 extract the component named NAME from the ultimate target
1798 structure/union and return it as a value with its appropriate type.
1799 ERR is used in the error message if *ARGP's type is wrong.
1800
1801 C++: ARGS is a list of argument types to aid in the selection of
1802 an appropriate method. Also, handle derived types.
1803
1804 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1805 where the truthvalue of whether the function that was resolved was
1806 a static member function or not is stored.
1807
1808 ERR is an error message to be printed in case the field is not
1809 found. */
1810
1811 struct value *
1812 value_struct_elt (struct value **argp, struct value **args,
1813 char *name, int *static_memfuncp, char *err)
1814 {
1815 struct type *t;
1816 struct value *v;
1817
1818 *argp = coerce_array (*argp);
1819
1820 t = check_typedef (value_type (*argp));
1821
1822 /* Follow pointers until we get to a non-pointer. */
1823
1824 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1825 {
1826 *argp = value_ind (*argp);
1827 /* Don't coerce fn pointer to fn and then back again! */
1828 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1829 *argp = coerce_array (*argp);
1830 t = check_typedef (value_type (*argp));
1831 }
1832
1833 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1834 && TYPE_CODE (t) != TYPE_CODE_UNION)
1835 error (_("Attempt to extract a component of a value that is not a %s."), err);
1836
1837 /* Assume it's not, unless we see that it is. */
1838 if (static_memfuncp)
1839 *static_memfuncp = 0;
1840
1841 if (!args)
1842 {
1843 /* if there are no arguments ...do this... */
1844
1845 /* Try as a field first, because if we succeed, there is less
1846 work to be done. */
1847 v = search_struct_field (name, *argp, 0, t, 0);
1848 if (v)
1849 return v;
1850
1851 /* C++: If it was not found as a data field, then try to
1852 return it as a pointer to a method. */
1853 v = search_struct_method (name, argp, args, 0,
1854 static_memfuncp, t);
1855
1856 if (v == (struct value *) - 1)
1857 error (_("Cannot take address of method %s."), name);
1858 else if (v == 0)
1859 {
1860 if (TYPE_NFN_FIELDS (t))
1861 error (_("There is no member or method named %s."), name);
1862 else
1863 error (_("There is no member named %s."), name);
1864 }
1865 return v;
1866 }
1867
1868 v = search_struct_method (name, argp, args, 0,
1869 static_memfuncp, t);
1870
1871 if (v == (struct value *) - 1)
1872 {
1873 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1874 }
1875 else if (v == 0)
1876 {
1877 /* See if user tried to invoke data as function. If so, hand it
1878 back. If it's not callable (i.e., a pointer to function),
1879 gdb should give an error. */
1880 v = search_struct_field (name, *argp, 0, t, 0);
1881 /* If we found an ordinary field, then it is not a method call.
1882 So, treat it as if it were a static member function. */
1883 if (v && static_memfuncp)
1884 *static_memfuncp = 1;
1885 }
1886
1887 if (!v)
1888 error (_("Structure has no component named %s."), name);
1889 return v;
1890 }
1891
1892 /* Search through the methods of an object (and its bases) to find a
1893 specified method. Return the pointer to the fn_field list of
1894 overloaded instances.
1895
1896 Helper function for value_find_oload_list.
1897 ARGP is a pointer to a pointer to a value (the object).
1898 METHOD is a string containing the method name.
1899 OFFSET is the offset within the value.
1900 TYPE is the assumed type of the object.
1901 NUM_FNS is the number of overloaded instances.
1902 BASETYPE is set to the actual type of the subobject where the
1903 method is found.
1904 BOFFSET is the offset of the base subobject where the method is found.
1905 */
1906
1907 static struct fn_field *
1908 find_method_list (struct value **argp, char *method,
1909 int offset, struct type *type, int *num_fns,
1910 struct type **basetype, int *boffset)
1911 {
1912 int i;
1913 struct fn_field *f;
1914 CHECK_TYPEDEF (type);
1915
1916 *num_fns = 0;
1917
1918 /* First check in object itself. */
1919 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1920 {
1921 /* pai: FIXME What about operators and type conversions? */
1922 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1923 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1924 {
1925 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1926 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1927
1928 *num_fns = len;
1929 *basetype = type;
1930 *boffset = offset;
1931
1932 /* Resolve any stub methods. */
1933 check_stub_method_group (type, i);
1934
1935 return f;
1936 }
1937 }
1938
1939 /* Not found in object, check in base subobjects. */
1940 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1941 {
1942 int base_offset;
1943 if (BASETYPE_VIA_VIRTUAL (type, i))
1944 {
1945 base_offset = value_offset (*argp) + offset;
1946 base_offset = baseclass_offset (type, i,
1947 value_contents (*argp) + base_offset,
1948 value_address (*argp) + base_offset);
1949 if (base_offset == -1)
1950 error (_("virtual baseclass botch"));
1951 }
1952 else /* Non-virtual base, simply use bit position from debug
1953 info. */
1954 {
1955 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1956 }
1957 f = find_method_list (argp, method, base_offset + offset,
1958 TYPE_BASECLASS (type, i), num_fns,
1959 basetype, boffset);
1960 if (f)
1961 return f;
1962 }
1963 return NULL;
1964 }
1965
1966 /* Return the list of overloaded methods of a specified name.
1967
1968 ARGP is a pointer to a pointer to a value (the object).
1969 METHOD is the method name.
1970 OFFSET is the offset within the value contents.
1971 NUM_FNS is the number of overloaded instances.
1972 BASETYPE is set to the type of the base subobject that defines the
1973 method.
1974 BOFFSET is the offset of the base subobject which defines the method.
1975 */
1976
1977 struct fn_field *
1978 value_find_oload_method_list (struct value **argp, char *method,
1979 int offset, int *num_fns,
1980 struct type **basetype, int *boffset)
1981 {
1982 struct type *t;
1983
1984 t = check_typedef (value_type (*argp));
1985
1986 /* Code snarfed from value_struct_elt. */
1987 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1988 {
1989 *argp = value_ind (*argp);
1990 /* Don't coerce fn pointer to fn and then back again! */
1991 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1992 *argp = coerce_array (*argp);
1993 t = check_typedef (value_type (*argp));
1994 }
1995
1996 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1997 && TYPE_CODE (t) != TYPE_CODE_UNION)
1998 error (_("Attempt to extract a component of a value that is not a struct or union"));
1999
2000 return find_method_list (argp, method, 0, t, num_fns,
2001 basetype, boffset);
2002 }
2003
2004 /* Given an array of argument types (ARGTYPES) (which includes an
2005 entry for "this" in the case of C++ methods), the number of
2006 arguments NARGS, the NAME of a function whether it's a method or
2007 not (METHOD), and the degree of laxness (LAX) in conforming to
2008 overload resolution rules in ANSI C++, find the best function that
2009 matches on the argument types according to the overload resolution
2010 rules.
2011
2012 In the case of class methods, the parameter OBJ is an object value
2013 in which to search for overloaded methods.
2014
2015 In the case of non-method functions, the parameter FSYM is a symbol
2016 corresponding to one of the overloaded functions.
2017
2018 Return value is an integer: 0 -> good match, 10 -> debugger applied
2019 non-standard coercions, 100 -> incompatible.
2020
2021 If a method is being searched for, VALP will hold the value.
2022 If a non-method is being searched for, SYMP will hold the symbol
2023 for it.
2024
2025 If a method is being searched for, and it is a static method,
2026 then STATICP will point to a non-zero value.
2027
2028 Note: This function does *not* check the value of
2029 overload_resolution. Caller must check it to see whether overload
2030 resolution is permitted.
2031 */
2032
2033 int
2034 find_overload_match (struct type **arg_types, int nargs,
2035 char *name, int method, int lax,
2036 struct value **objp, struct symbol *fsym,
2037 struct value **valp, struct symbol **symp,
2038 int *staticp)
2039 {
2040 struct value *obj = (objp ? *objp : NULL);
2041 /* Index of best overloaded function. */
2042 int oload_champ;
2043 /* The measure for the current best match. */
2044 struct badness_vector *oload_champ_bv = NULL;
2045 struct value *temp = obj;
2046 /* For methods, the list of overloaded methods. */
2047 struct fn_field *fns_ptr = NULL;
2048 /* For non-methods, the list of overloaded function symbols. */
2049 struct symbol **oload_syms = NULL;
2050 /* Number of overloaded instances being considered. */
2051 int num_fns = 0;
2052 struct type *basetype = NULL;
2053 int boffset;
2054 int ix;
2055 int static_offset;
2056 struct cleanup *old_cleanups = NULL;
2057
2058 const char *obj_type_name = NULL;
2059 char *func_name = NULL;
2060 enum oload_classification match_quality;
2061
2062 /* Get the list of overloaded methods or functions. */
2063 if (method)
2064 {
2065 gdb_assert (obj);
2066 obj_type_name = TYPE_NAME (value_type (obj));
2067 /* Hack: evaluate_subexp_standard often passes in a pointer
2068 value rather than the object itself, so try again. */
2069 if ((!obj_type_name || !*obj_type_name)
2070 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2071 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2072
2073 fns_ptr = value_find_oload_method_list (&temp, name,
2074 0, &num_fns,
2075 &basetype, &boffset);
2076 if (!fns_ptr || !num_fns)
2077 error (_("Couldn't find method %s%s%s"),
2078 obj_type_name,
2079 (obj_type_name && *obj_type_name) ? "::" : "",
2080 name);
2081 /* If we are dealing with stub method types, they should have
2082 been resolved by find_method_list via
2083 value_find_oload_method_list above. */
2084 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2085 oload_champ = find_oload_champ (arg_types, nargs, method,
2086 num_fns, fns_ptr,
2087 oload_syms, &oload_champ_bv);
2088 }
2089 else
2090 {
2091 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2092
2093 /* If we have a C++ name, try to extract just the function
2094 part. */
2095 if (qualified_name)
2096 func_name = cp_func_name (qualified_name);
2097
2098 /* If there was no C++ name, this must be a C-style function.
2099 Just return the same symbol. Do the same if cp_func_name
2100 fails for some reason. */
2101 if (func_name == NULL)
2102 {
2103 *symp = fsym;
2104 return 0;
2105 }
2106
2107 old_cleanups = make_cleanup (xfree, func_name);
2108 make_cleanup (xfree, oload_syms);
2109 make_cleanup (xfree, oload_champ_bv);
2110
2111 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2112 func_name,
2113 qualified_name,
2114 &oload_syms,
2115 &oload_champ_bv);
2116 }
2117
2118 /* Check how bad the best match is. */
2119
2120 match_quality =
2121 classify_oload_match (oload_champ_bv, nargs,
2122 oload_method_static (method, fns_ptr,
2123 oload_champ));
2124
2125 if (match_quality == INCOMPATIBLE)
2126 {
2127 if (method)
2128 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2129 obj_type_name,
2130 (obj_type_name && *obj_type_name) ? "::" : "",
2131 name);
2132 else
2133 error (_("Cannot resolve function %s to any overloaded instance"),
2134 func_name);
2135 }
2136 else if (match_quality == NON_STANDARD)
2137 {
2138 if (method)
2139 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2140 obj_type_name,
2141 (obj_type_name && *obj_type_name) ? "::" : "",
2142 name);
2143 else
2144 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2145 func_name);
2146 }
2147
2148 if (method)
2149 {
2150 if (staticp != NULL)
2151 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2152 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2153 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2154 basetype, boffset);
2155 else
2156 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2157 basetype, boffset);
2158 }
2159 else
2160 {
2161 *symp = oload_syms[oload_champ];
2162 }
2163
2164 if (objp)
2165 {
2166 struct type *temp_type = check_typedef (value_type (temp));
2167 struct type *obj_type = check_typedef (value_type (*objp));
2168 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2169 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2170 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2171 {
2172 temp = value_addr (temp);
2173 }
2174 *objp = temp;
2175 }
2176 if (old_cleanups != NULL)
2177 do_cleanups (old_cleanups);
2178
2179 switch (match_quality)
2180 {
2181 case INCOMPATIBLE:
2182 return 100;
2183 case NON_STANDARD:
2184 return 10;
2185 default: /* STANDARD */
2186 return 0;
2187 }
2188 }
2189
2190 /* Find the best overload match, searching for FUNC_NAME in namespaces
2191 contained in QUALIFIED_NAME until it either finds a good match or
2192 runs out of namespaces. It stores the overloaded functions in
2193 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2194 calling function is responsible for freeing *OLOAD_SYMS and
2195 *OLOAD_CHAMP_BV. */
2196
2197 static int
2198 find_oload_champ_namespace (struct type **arg_types, int nargs,
2199 const char *func_name,
2200 const char *qualified_name,
2201 struct symbol ***oload_syms,
2202 struct badness_vector **oload_champ_bv)
2203 {
2204 int oload_champ;
2205
2206 find_oload_champ_namespace_loop (arg_types, nargs,
2207 func_name,
2208 qualified_name, 0,
2209 oload_syms, oload_champ_bv,
2210 &oload_champ);
2211
2212 return oload_champ;
2213 }
2214
2215 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2216 how deep we've looked for namespaces, and the champ is stored in
2217 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2218 if it isn't.
2219
2220 It is the caller's responsibility to free *OLOAD_SYMS and
2221 *OLOAD_CHAMP_BV. */
2222
2223 static int
2224 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2225 const char *func_name,
2226 const char *qualified_name,
2227 int namespace_len,
2228 struct symbol ***oload_syms,
2229 struct badness_vector **oload_champ_bv,
2230 int *oload_champ)
2231 {
2232 int next_namespace_len = namespace_len;
2233 int searched_deeper = 0;
2234 int num_fns = 0;
2235 struct cleanup *old_cleanups;
2236 int new_oload_champ;
2237 struct symbol **new_oload_syms;
2238 struct badness_vector *new_oload_champ_bv;
2239 char *new_namespace;
2240
2241 if (next_namespace_len != 0)
2242 {
2243 gdb_assert (qualified_name[next_namespace_len] == ':');
2244 next_namespace_len += 2;
2245 }
2246 next_namespace_len +=
2247 cp_find_first_component (qualified_name + next_namespace_len);
2248
2249 /* Initialize these to values that can safely be xfree'd. */
2250 *oload_syms = NULL;
2251 *oload_champ_bv = NULL;
2252
2253 /* First, see if we have a deeper namespace we can search in.
2254 If we get a good match there, use it. */
2255
2256 if (qualified_name[next_namespace_len] == ':')
2257 {
2258 searched_deeper = 1;
2259
2260 if (find_oload_champ_namespace_loop (arg_types, nargs,
2261 func_name, qualified_name,
2262 next_namespace_len,
2263 oload_syms, oload_champ_bv,
2264 oload_champ))
2265 {
2266 return 1;
2267 }
2268 };
2269
2270 /* If we reach here, either we're in the deepest namespace or we
2271 didn't find a good match in a deeper namespace. But, in the
2272 latter case, we still have a bad match in a deeper namespace;
2273 note that we might not find any match at all in the current
2274 namespace. (There's always a match in the deepest namespace,
2275 because this overload mechanism only gets called if there's a
2276 function symbol to start off with.) */
2277
2278 old_cleanups = make_cleanup (xfree, *oload_syms);
2279 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2280 new_namespace = alloca (namespace_len + 1);
2281 strncpy (new_namespace, qualified_name, namespace_len);
2282 new_namespace[namespace_len] = '\0';
2283 new_oload_syms = make_symbol_overload_list (func_name,
2284 new_namespace);
2285 while (new_oload_syms[num_fns])
2286 ++num_fns;
2287
2288 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2289 NULL, new_oload_syms,
2290 &new_oload_champ_bv);
2291
2292 /* Case 1: We found a good match. Free earlier matches (if any),
2293 and return it. Case 2: We didn't find a good match, but we're
2294 not the deepest function. Then go with the bad match that the
2295 deeper function found. Case 3: We found a bad match, and we're
2296 the deepest function. Then return what we found, even though
2297 it's a bad match. */
2298
2299 if (new_oload_champ != -1
2300 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2301 {
2302 *oload_syms = new_oload_syms;
2303 *oload_champ = new_oload_champ;
2304 *oload_champ_bv = new_oload_champ_bv;
2305 do_cleanups (old_cleanups);
2306 return 1;
2307 }
2308 else if (searched_deeper)
2309 {
2310 xfree (new_oload_syms);
2311 xfree (new_oload_champ_bv);
2312 discard_cleanups (old_cleanups);
2313 return 0;
2314 }
2315 else
2316 {
2317 gdb_assert (new_oload_champ != -1);
2318 *oload_syms = new_oload_syms;
2319 *oload_champ = new_oload_champ;
2320 *oload_champ_bv = new_oload_champ_bv;
2321 discard_cleanups (old_cleanups);
2322 return 0;
2323 }
2324 }
2325
2326 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2327 the best match from among the overloaded methods or functions
2328 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2329 The number of methods/functions in the list is given by NUM_FNS.
2330 Return the index of the best match; store an indication of the
2331 quality of the match in OLOAD_CHAMP_BV.
2332
2333 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2334
2335 static int
2336 find_oload_champ (struct type **arg_types, int nargs, int method,
2337 int num_fns, struct fn_field *fns_ptr,
2338 struct symbol **oload_syms,
2339 struct badness_vector **oload_champ_bv)
2340 {
2341 int ix;
2342 /* A measure of how good an overloaded instance is. */
2343 struct badness_vector *bv;
2344 /* Index of best overloaded function. */
2345 int oload_champ = -1;
2346 /* Current ambiguity state for overload resolution. */
2347 int oload_ambiguous = 0;
2348 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2349
2350 *oload_champ_bv = NULL;
2351
2352 /* Consider each candidate in turn. */
2353 for (ix = 0; ix < num_fns; ix++)
2354 {
2355 int jj;
2356 int static_offset = oload_method_static (method, fns_ptr, ix);
2357 int nparms;
2358 struct type **parm_types;
2359
2360 if (method)
2361 {
2362 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2363 }
2364 else
2365 {
2366 /* If it's not a method, this is the proper place. */
2367 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2368 }
2369
2370 /* Prepare array of parameter types. */
2371 parm_types = (struct type **)
2372 xmalloc (nparms * (sizeof (struct type *)));
2373 for (jj = 0; jj < nparms; jj++)
2374 parm_types[jj] = (method
2375 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2376 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2377 jj));
2378
2379 /* Compare parameter types to supplied argument types. Skip
2380 THIS for static methods. */
2381 bv = rank_function (parm_types, nparms,
2382 arg_types + static_offset,
2383 nargs - static_offset);
2384
2385 if (!*oload_champ_bv)
2386 {
2387 *oload_champ_bv = bv;
2388 oload_champ = 0;
2389 }
2390 else /* See whether current candidate is better or worse than
2391 previous best. */
2392 switch (compare_badness (bv, *oload_champ_bv))
2393 {
2394 case 0: /* Top two contenders are equally good. */
2395 oload_ambiguous = 1;
2396 break;
2397 case 1: /* Incomparable top contenders. */
2398 oload_ambiguous = 2;
2399 break;
2400 case 2: /* New champion, record details. */
2401 *oload_champ_bv = bv;
2402 oload_ambiguous = 0;
2403 oload_champ = ix;
2404 break;
2405 case 3:
2406 default:
2407 break;
2408 }
2409 xfree (parm_types);
2410 if (overload_debug)
2411 {
2412 if (method)
2413 fprintf_filtered (gdb_stderr,
2414 "Overloaded method instance %s, # of parms %d\n",
2415 fns_ptr[ix].physname, nparms);
2416 else
2417 fprintf_filtered (gdb_stderr,
2418 "Overloaded function instance %s # of parms %d\n",
2419 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2420 nparms);
2421 for (jj = 0; jj < nargs - static_offset; jj++)
2422 fprintf_filtered (gdb_stderr,
2423 "...Badness @ %d : %d\n",
2424 jj, bv->rank[jj]);
2425 fprintf_filtered (gdb_stderr,
2426 "Overload resolution champion is %d, ambiguous? %d\n",
2427 oload_champ, oload_ambiguous);
2428 }
2429 }
2430
2431 return oload_champ;
2432 }
2433
2434 /* Return 1 if we're looking at a static method, 0 if we're looking at
2435 a non-static method or a function that isn't a method. */
2436
2437 static int
2438 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2439 {
2440 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2441 return 1;
2442 else
2443 return 0;
2444 }
2445
2446 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2447
2448 static enum oload_classification
2449 classify_oload_match (struct badness_vector *oload_champ_bv,
2450 int nargs,
2451 int static_offset)
2452 {
2453 int ix;
2454
2455 for (ix = 1; ix <= nargs - static_offset; ix++)
2456 {
2457 if (oload_champ_bv->rank[ix] >= 100)
2458 return INCOMPATIBLE; /* Truly mismatched types. */
2459 else if (oload_champ_bv->rank[ix] >= 10)
2460 return NON_STANDARD; /* Non-standard type conversions
2461 needed. */
2462 }
2463
2464 return STANDARD; /* Only standard conversions needed. */
2465 }
2466
2467 /* C++: return 1 is NAME is a legitimate name for the destructor of
2468 type TYPE. If TYPE does not have a destructor, or if NAME is
2469 inappropriate for TYPE, an error is signaled. */
2470 int
2471 destructor_name_p (const char *name, const struct type *type)
2472 {
2473 if (name[0] == '~')
2474 {
2475 char *dname = type_name_no_tag (type);
2476 char *cp = strchr (dname, '<');
2477 unsigned int len;
2478
2479 /* Do not compare the template part for template classes. */
2480 if (cp == NULL)
2481 len = strlen (dname);
2482 else
2483 len = cp - dname;
2484 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2485 error (_("name of destructor must equal name of class"));
2486 else
2487 return 1;
2488 }
2489 return 0;
2490 }
2491
2492 /* Given TYPE, a structure/union,
2493 return 1 if the component named NAME from the ultimate target
2494 structure/union is defined, otherwise, return 0. */
2495
2496 int
2497 check_field (struct type *type, const char *name)
2498 {
2499 int i;
2500
2501 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2502 {
2503 char *t_field_name = TYPE_FIELD_NAME (type, i);
2504 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2505 return 1;
2506 }
2507
2508 /* C++: If it was not found as a data field, then try to return it
2509 as a pointer to a method. */
2510
2511 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2512 {
2513 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2514 return 1;
2515 }
2516
2517 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2518 if (check_field (TYPE_BASECLASS (type, i), name))
2519 return 1;
2520
2521 return 0;
2522 }
2523
2524 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2525 return the appropriate member (or the address of the member, if
2526 WANT_ADDRESS). This function is used to resolve user expressions
2527 of the form "DOMAIN::NAME". For more details on what happens, see
2528 the comment before value_struct_elt_for_reference. */
2529
2530 struct value *
2531 value_aggregate_elt (struct type *curtype,
2532 char *name, int want_address,
2533 enum noside noside)
2534 {
2535 switch (TYPE_CODE (curtype))
2536 {
2537 case TYPE_CODE_STRUCT:
2538 case TYPE_CODE_UNION:
2539 return value_struct_elt_for_reference (curtype, 0, curtype,
2540 name, NULL,
2541 want_address, noside);
2542 case TYPE_CODE_NAMESPACE:
2543 return value_namespace_elt (curtype, name,
2544 want_address, noside);
2545 default:
2546 internal_error (__FILE__, __LINE__,
2547 _("non-aggregate type in value_aggregate_elt"));
2548 }
2549 }
2550
2551 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2552 return the address of this member as a "pointer to member" type.
2553 If INTYPE is non-null, then it will be the type of the member we
2554 are looking for. This will help us resolve "pointers to member
2555 functions". This function is used to resolve user expressions of
2556 the form "DOMAIN::NAME". */
2557
2558 static struct value *
2559 value_struct_elt_for_reference (struct type *domain, int offset,
2560 struct type *curtype, char *name,
2561 struct type *intype,
2562 int want_address,
2563 enum noside noside)
2564 {
2565 struct type *t = curtype;
2566 int i;
2567 struct value *v, *result;
2568
2569 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2570 && TYPE_CODE (t) != TYPE_CODE_UNION)
2571 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2572
2573 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2574 {
2575 char *t_field_name = TYPE_FIELD_NAME (t, i);
2576
2577 if (t_field_name && strcmp (t_field_name, name) == 0)
2578 {
2579 if (field_is_static (&TYPE_FIELD (t, i)))
2580 {
2581 v = value_static_field (t, i);
2582 if (v == NULL)
2583 error (_("static field %s has been optimized out"),
2584 name);
2585 if (want_address)
2586 v = value_addr (v);
2587 return v;
2588 }
2589 if (TYPE_FIELD_PACKED (t, i))
2590 error (_("pointers to bitfield members not allowed"));
2591
2592 if (want_address)
2593 return value_from_longest
2594 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2595 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2596 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2597 return allocate_value (TYPE_FIELD_TYPE (t, i));
2598 else
2599 error (_("Cannot reference non-static field \"%s\""), name);
2600 }
2601 }
2602
2603 /* C++: If it was not found as a data field, then try to return it
2604 as a pointer to a method. */
2605
2606 /* Perform all necessary dereferencing. */
2607 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2608 intype = TYPE_TARGET_TYPE (intype);
2609
2610 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2611 {
2612 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2613 char dem_opname[64];
2614
2615 if (strncmp (t_field_name, "__", 2) == 0
2616 || strncmp (t_field_name, "op", 2) == 0
2617 || strncmp (t_field_name, "type", 4) == 0)
2618 {
2619 if (cplus_demangle_opname (t_field_name,
2620 dem_opname, DMGL_ANSI))
2621 t_field_name = dem_opname;
2622 else if (cplus_demangle_opname (t_field_name,
2623 dem_opname, 0))
2624 t_field_name = dem_opname;
2625 }
2626 if (t_field_name && strcmp (t_field_name, name) == 0)
2627 {
2628 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2629 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2630
2631 check_stub_method_group (t, i);
2632
2633 if (intype == 0 && j > 1)
2634 error (_("non-unique member `%s' requires type instantiation"), name);
2635 if (intype)
2636 {
2637 while (j--)
2638 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2639 break;
2640 if (j < 0)
2641 error (_("no member function matches that type instantiation"));
2642 }
2643 else
2644 j = 0;
2645
2646 if (TYPE_FN_FIELD_STATIC_P (f, j))
2647 {
2648 struct symbol *s =
2649 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2650 0, VAR_DOMAIN, 0);
2651 if (s == NULL)
2652 return NULL;
2653
2654 if (want_address)
2655 return value_addr (read_var_value (s, 0));
2656 else
2657 return read_var_value (s, 0);
2658 }
2659
2660 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2661 {
2662 if (want_address)
2663 {
2664 result = allocate_value
2665 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2666 cplus_make_method_ptr (value_type (result),
2667 value_contents_writeable (result),
2668 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2669 }
2670 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2671 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2672 else
2673 error (_("Cannot reference virtual member function \"%s\""),
2674 name);
2675 }
2676 else
2677 {
2678 struct symbol *s =
2679 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2680 0, VAR_DOMAIN, 0);
2681 if (s == NULL)
2682 return NULL;
2683
2684 v = read_var_value (s, 0);
2685 if (!want_address)
2686 result = v;
2687 else
2688 {
2689 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2690 cplus_make_method_ptr (value_type (result),
2691 value_contents_writeable (result),
2692 value_address (v), 0);
2693 }
2694 }
2695 return result;
2696 }
2697 }
2698 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2699 {
2700 struct value *v;
2701 int base_offset;
2702
2703 if (BASETYPE_VIA_VIRTUAL (t, i))
2704 base_offset = 0;
2705 else
2706 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2707 v = value_struct_elt_for_reference (domain,
2708 offset + base_offset,
2709 TYPE_BASECLASS (t, i),
2710 name, intype,
2711 want_address, noside);
2712 if (v)
2713 return v;
2714 }
2715
2716 /* As a last chance, pretend that CURTYPE is a namespace, and look
2717 it up that way; this (frequently) works for types nested inside
2718 classes. */
2719
2720 return value_maybe_namespace_elt (curtype, name,
2721 want_address, noside);
2722 }
2723
2724 /* C++: Return the member NAME of the namespace given by the type
2725 CURTYPE. */
2726
2727 static struct value *
2728 value_namespace_elt (const struct type *curtype,
2729 char *name, int want_address,
2730 enum noside noside)
2731 {
2732 struct value *retval = value_maybe_namespace_elt (curtype, name,
2733 want_address,
2734 noside);
2735
2736 if (retval == NULL)
2737 error (_("No symbol \"%s\" in namespace \"%s\"."),
2738 name, TYPE_TAG_NAME (curtype));
2739
2740 return retval;
2741 }
2742
2743 /* A helper function used by value_namespace_elt and
2744 value_struct_elt_for_reference. It looks up NAME inside the
2745 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2746 is a class and NAME refers to a type in CURTYPE itself (as opposed
2747 to, say, some base class of CURTYPE). */
2748
2749 static struct value *
2750 value_maybe_namespace_elt (const struct type *curtype,
2751 char *name, int want_address,
2752 enum noside noside)
2753 {
2754 const char *namespace_name = TYPE_TAG_NAME (curtype);
2755 struct symbol *sym;
2756 struct value *result;
2757
2758 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2759 get_selected_block (0),
2760 VAR_DOMAIN);
2761
2762 if (sym == NULL)
2763 return NULL;
2764 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2765 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2766 result = allocate_value (SYMBOL_TYPE (sym));
2767 else
2768 result = value_of_variable (sym, get_selected_block (0));
2769
2770 if (result && want_address)
2771 result = value_addr (result);
2772
2773 return result;
2774 }
2775
2776 /* Given a pointer value V, find the real (RTTI) type of the object it
2777 points to.
2778
2779 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2780 and refer to the values computed for the object pointed to. */
2781
2782 struct type *
2783 value_rtti_target_type (struct value *v, int *full,
2784 int *top, int *using_enc)
2785 {
2786 struct value *target;
2787
2788 target = value_ind (v);
2789
2790 return value_rtti_type (target, full, top, using_enc);
2791 }
2792
2793 /* Given a value pointed to by ARGP, check its real run-time type, and
2794 if that is different from the enclosing type, create a new value
2795 using the real run-time type as the enclosing type (and of the same
2796 type as ARGP) and return it, with the embedded offset adjusted to
2797 be the correct offset to the enclosed object. RTYPE is the type,
2798 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2799 by value_rtti_type(). If these are available, they can be supplied
2800 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2801 NULL if they're not available. */
2802
2803 struct value *
2804 value_full_object (struct value *argp,
2805 struct type *rtype,
2806 int xfull, int xtop,
2807 int xusing_enc)
2808 {
2809 struct type *real_type;
2810 int full = 0;
2811 int top = -1;
2812 int using_enc = 0;
2813 struct value *new_val;
2814
2815 if (rtype)
2816 {
2817 real_type = rtype;
2818 full = xfull;
2819 top = xtop;
2820 using_enc = xusing_enc;
2821 }
2822 else
2823 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2824
2825 /* If no RTTI data, or if object is already complete, do nothing. */
2826 if (!real_type || real_type == value_enclosing_type (argp))
2827 return argp;
2828
2829 /* If we have the full object, but for some reason the enclosing
2830 type is wrong, set it. */
2831 /* pai: FIXME -- sounds iffy */
2832 if (full)
2833 {
2834 argp = value_change_enclosing_type (argp, real_type);
2835 return argp;
2836 }
2837
2838 /* Check if object is in memory */
2839 if (VALUE_LVAL (argp) != lval_memory)
2840 {
2841 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2842 TYPE_NAME (real_type));
2843
2844 return argp;
2845 }
2846
2847 /* All other cases -- retrieve the complete object. */
2848 /* Go back by the computed top_offset from the beginning of the
2849 object, adjusting for the embedded offset of argp if that's what
2850 value_rtti_type used for its computation. */
2851 new_val = value_at_lazy (real_type, value_address (argp) - top +
2852 (using_enc ? 0 : value_embedded_offset (argp)));
2853 deprecated_set_value_type (new_val, value_type (argp));
2854 set_value_embedded_offset (new_val, (using_enc
2855 ? top + value_embedded_offset (argp)
2856 : top));
2857 return new_val;
2858 }
2859
2860
2861 /* Return the value of the local variable, if one exists.
2862 Flag COMPLAIN signals an error if the request is made in an
2863 inappropriate context. */
2864
2865 struct value *
2866 value_of_local (const char *name, int complain)
2867 {
2868 struct symbol *func, *sym;
2869 struct block *b;
2870 struct value * ret;
2871 struct frame_info *frame;
2872
2873 if (complain)
2874 frame = get_selected_frame (_("no frame selected"));
2875 else
2876 {
2877 frame = deprecated_safe_get_selected_frame ();
2878 if (frame == 0)
2879 return 0;
2880 }
2881
2882 func = get_frame_function (frame);
2883 if (!func)
2884 {
2885 if (complain)
2886 error (_("no `%s' in nameless context"), name);
2887 else
2888 return 0;
2889 }
2890
2891 b = SYMBOL_BLOCK_VALUE (func);
2892 if (dict_empty (BLOCK_DICT (b)))
2893 {
2894 if (complain)
2895 error (_("no args, no `%s'"), name);
2896 else
2897 return 0;
2898 }
2899
2900 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2901 symbol instead of the LOC_ARG one (if both exist). */
2902 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2903 if (sym == NULL)
2904 {
2905 if (complain)
2906 error (_("current stack frame does not contain a variable named `%s'"),
2907 name);
2908 else
2909 return NULL;
2910 }
2911
2912 ret = read_var_value (sym, frame);
2913 if (ret == 0 && complain)
2914 error (_("`%s' argument unreadable"), name);
2915 return ret;
2916 }
2917
2918 /* C++/Objective-C: return the value of the class instance variable,
2919 if one exists. Flag COMPLAIN signals an error if the request is
2920 made in an inappropriate context. */
2921
2922 struct value *
2923 value_of_this (int complain)
2924 {
2925 if (!current_language->la_name_of_this)
2926 return 0;
2927 return value_of_local (current_language->la_name_of_this, complain);
2928 }
2929
2930 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2931 elements long, starting at LOWBOUND. The result has the same lower
2932 bound as the original ARRAY. */
2933
2934 struct value *
2935 value_slice (struct value *array, int lowbound, int length)
2936 {
2937 struct type *slice_range_type, *slice_type, *range_type;
2938 LONGEST lowerbound, upperbound;
2939 struct value *slice;
2940 struct type *array_type;
2941
2942 array_type = check_typedef (value_type (array));
2943 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2944 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2945 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2946 error (_("cannot take slice of non-array"));
2947
2948 range_type = TYPE_INDEX_TYPE (array_type);
2949 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2950 error (_("slice from bad array or bitstring"));
2951
2952 if (lowbound < lowerbound || length < 0
2953 || lowbound + length - 1 > upperbound)
2954 error (_("slice out of range"));
2955
2956 /* FIXME-type-allocation: need a way to free this type when we are
2957 done with it. */
2958 slice_range_type = create_range_type ((struct type *) NULL,
2959 TYPE_TARGET_TYPE (range_type),
2960 lowbound,
2961 lowbound + length - 1);
2962 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2963 {
2964 int i;
2965
2966 slice_type = create_set_type ((struct type *) NULL,
2967 slice_range_type);
2968 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2969 slice = value_zero (slice_type, not_lval);
2970
2971 for (i = 0; i < length; i++)
2972 {
2973 int element = value_bit_index (array_type,
2974 value_contents (array),
2975 lowbound + i);
2976 if (element < 0)
2977 error (_("internal error accessing bitstring"));
2978 else if (element > 0)
2979 {
2980 int j = i % TARGET_CHAR_BIT;
2981 if (gdbarch_bits_big_endian (current_gdbarch))
2982 j = TARGET_CHAR_BIT - 1 - j;
2983 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2984 }
2985 }
2986 /* We should set the address, bitssize, and bitspos, so the
2987 slice can be used on the LHS, but that may require extensions
2988 to value_assign. For now, just leave as a non_lval.
2989 FIXME. */
2990 }
2991 else
2992 {
2993 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2994 LONGEST offset =
2995 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2996
2997 slice_type = create_array_type ((struct type *) NULL,
2998 element_type,
2999 slice_range_type);
3000 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3001
3002 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3003 slice = allocate_value_lazy (slice_type);
3004 else
3005 {
3006 slice = allocate_value (slice_type);
3007 memcpy (value_contents_writeable (slice),
3008 value_contents (array) + offset,
3009 TYPE_LENGTH (slice_type));
3010 }
3011
3012 set_value_component_location (slice, array);
3013 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3014 set_value_offset (slice, value_offset (array) + offset);
3015 }
3016 return slice;
3017 }
3018
3019 /* Create a value for a FORTRAN complex number. Currently most of the
3020 time values are coerced to COMPLEX*16 (i.e. a complex number
3021 composed of 2 doubles. This really should be a smarter routine
3022 that figures out precision inteligently as opposed to assuming
3023 doubles. FIXME: fmb */
3024
3025 struct value *
3026 value_literal_complex (struct value *arg1,
3027 struct value *arg2,
3028 struct type *type)
3029 {
3030 struct value *val;
3031 struct type *real_type = TYPE_TARGET_TYPE (type);
3032
3033 val = allocate_value (type);
3034 arg1 = value_cast (real_type, arg1);
3035 arg2 = value_cast (real_type, arg2);
3036
3037 memcpy (value_contents_raw (val),
3038 value_contents (arg1), TYPE_LENGTH (real_type));
3039 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3040 value_contents (arg2), TYPE_LENGTH (real_type));
3041 return val;
3042 }
3043
3044 /* Cast a value into the appropriate complex data type. */
3045
3046 static struct value *
3047 cast_into_complex (struct type *type, struct value *val)
3048 {
3049 struct type *real_type = TYPE_TARGET_TYPE (type);
3050
3051 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3052 {
3053 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3054 struct value *re_val = allocate_value (val_real_type);
3055 struct value *im_val = allocate_value (val_real_type);
3056
3057 memcpy (value_contents_raw (re_val),
3058 value_contents (val), TYPE_LENGTH (val_real_type));
3059 memcpy (value_contents_raw (im_val),
3060 value_contents (val) + TYPE_LENGTH (val_real_type),
3061 TYPE_LENGTH (val_real_type));
3062
3063 return value_literal_complex (re_val, im_val, type);
3064 }
3065 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3066 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3067 return value_literal_complex (val,
3068 value_zero (real_type, not_lval),
3069 type);
3070 else
3071 error (_("cannot cast non-number to complex"));
3072 }
3073
3074 void
3075 _initialize_valops (void)
3076 {
3077 add_setshow_boolean_cmd ("overload-resolution", class_support,
3078 &overload_resolution, _("\
3079 Set overload resolution in evaluating C++ functions."), _("\
3080 Show overload resolution in evaluating C++ functions."),
3081 NULL, NULL,
3082 show_overload_resolution,
3083 &setlist, &showlist);
3084 overload_resolution = 1;
3085 }
This page took 0.131818 seconds and 3 git commands to generate.