Approved by Jim Blandy:
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35
36 #include <errno.h>
37 #include "gdb_string.h"
38
39 /* Flag indicating HP compilers were used; needed to correctly handle some
40 value operations with HP aCC code/runtime. */
41 extern int hp_som_som_object_present;
42
43 extern int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
47
48 static CORE_ADDR find_function_addr (value_ptr, struct type **);
49 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
50
51
52 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
53
54 static value_ptr search_struct_field (char *, value_ptr, int,
55 struct type *, int);
56
57 static value_ptr search_struct_method (char *, value_ptr *,
58 value_ptr *,
59 int, int *, struct type *);
60
61 static int check_field_in (struct type *, const char *);
62
63 static CORE_ADDR allocate_space_in_inferior (int);
64
65 static value_ptr cast_into_complex (struct type *, value_ptr);
66
67 static struct fn_field *find_method_list (value_ptr * argp, char *method,
68 int offset, int *static_memfuncp,
69 struct type *type, int *num_fns,
70 struct type **basetype,
71 int *boffset);
72
73 void _initialize_valops (void);
74
75 /* Flag for whether we want to abandon failed expression evals by default. */
76
77 #if 0
78 static int auto_abandon = 0;
79 #endif
80
81 int overload_resolution = 0;
82
83 /* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
87
88 int unwind_on_signal_p = 0;
89 \f
90
91
92 /* Find the address of function name NAME in the inferior. */
93
94 value_ptr
95 find_function_in_inferior (char *name)
96 {
97 register struct symbol *sym;
98 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
99 if (sym != NULL)
100 {
101 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
102 {
103 error ("\"%s\" exists in this program but is not a function.",
104 name);
105 }
106 return value_of_variable (sym, NULL);
107 }
108 else
109 {
110 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
111 if (msymbol != NULL)
112 {
113 struct type *type;
114 CORE_ADDR maddr;
115 type = lookup_pointer_type (builtin_type_char);
116 type = lookup_function_type (type);
117 type = lookup_pointer_type (type);
118 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
119 return value_from_pointer (type, maddr);
120 }
121 else
122 {
123 if (!target_has_execution)
124 error ("evaluation of this expression requires the target program to be active");
125 else
126 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
127 }
128 }
129 }
130
131 /* Allocate NBYTES of space in the inferior using the inferior's malloc
132 and return a value that is a pointer to the allocated space. */
133
134 value_ptr
135 value_allocate_space_in_inferior (int len)
136 {
137 value_ptr blocklen;
138 register value_ptr val = find_function_in_inferior ("malloc");
139
140 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
141 val = call_function_by_hand (val, 1, &blocklen);
142 if (value_logical_not (val))
143 {
144 if (!target_has_execution)
145 error ("No memory available to program now: you need to start the target first");
146 else
147 error ("No memory available to program: call to malloc failed");
148 }
149 return val;
150 }
151
152 static CORE_ADDR
153 allocate_space_in_inferior (int len)
154 {
155 return value_as_long (value_allocate_space_in_inferior (len));
156 }
157
158 /* Cast value ARG2 to type TYPE and return as a value.
159 More general than a C cast: accepts any two types of the same length,
160 and if ARG2 is an lvalue it can be cast into anything at all. */
161 /* In C++, casts may change pointer or object representations. */
162
163 value_ptr
164 value_cast (struct type *type, register value_ptr arg2)
165 {
166 register enum type_code code1;
167 register enum type_code code2;
168 register int scalar;
169 struct type *type2;
170
171 int convert_to_boolean = 0;
172
173 if (VALUE_TYPE (arg2) == type)
174 return arg2;
175
176 CHECK_TYPEDEF (type);
177 code1 = TYPE_CODE (type);
178 COERCE_REF (arg2);
179 type2 = check_typedef (VALUE_TYPE (arg2));
180
181 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
182 is treated like a cast to (TYPE [N])OBJECT,
183 where N is sizeof(OBJECT)/sizeof(TYPE). */
184 if (code1 == TYPE_CODE_ARRAY)
185 {
186 struct type *element_type = TYPE_TARGET_TYPE (type);
187 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
188 if (element_length > 0
189 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
190 {
191 struct type *range_type = TYPE_INDEX_TYPE (type);
192 int val_length = TYPE_LENGTH (type2);
193 LONGEST low_bound, high_bound, new_length;
194 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
195 low_bound = 0, high_bound = 0;
196 new_length = val_length / element_length;
197 if (val_length % element_length != 0)
198 warning ("array element type size does not divide object size in cast");
199 /* FIXME-type-allocation: need a way to free this type when we are
200 done with it. */
201 range_type = create_range_type ((struct type *) NULL,
202 TYPE_TARGET_TYPE (range_type),
203 low_bound,
204 new_length + low_bound - 1);
205 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
206 element_type, range_type);
207 return arg2;
208 }
209 }
210
211 if (current_language->c_style_arrays
212 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
213 arg2 = value_coerce_array (arg2);
214
215 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
216 arg2 = value_coerce_function (arg2);
217
218 type2 = check_typedef (VALUE_TYPE (arg2));
219 COERCE_VARYING_ARRAY (arg2, type2);
220 code2 = TYPE_CODE (type2);
221
222 if (code1 == TYPE_CODE_COMPLEX)
223 return cast_into_complex (type, arg2);
224 if (code1 == TYPE_CODE_BOOL)
225 {
226 code1 = TYPE_CODE_INT;
227 convert_to_boolean = 1;
228 }
229 if (code1 == TYPE_CODE_CHAR)
230 code1 = TYPE_CODE_INT;
231 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
232 code2 = TYPE_CODE_INT;
233
234 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
235 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
236
237 if (code1 == TYPE_CODE_STRUCT
238 && code2 == TYPE_CODE_STRUCT
239 && TYPE_NAME (type) != 0)
240 {
241 /* Look in the type of the source to see if it contains the
242 type of the target as a superclass. If so, we'll need to
243 offset the object in addition to changing its type. */
244 value_ptr v = search_struct_field (type_name_no_tag (type),
245 arg2, 0, type2, 1);
246 if (v)
247 {
248 VALUE_TYPE (v) = type;
249 return v;
250 }
251 }
252 if (code1 == TYPE_CODE_FLT && scalar)
253 return value_from_double (type, value_as_double (arg2));
254 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
255 || code1 == TYPE_CODE_RANGE)
256 && (scalar || code2 == TYPE_CODE_PTR))
257 {
258 LONGEST longest;
259
260 if (hp_som_som_object_present && /* if target compiled by HP aCC */
261 (code2 == TYPE_CODE_PTR))
262 {
263 unsigned int *ptr;
264 value_ptr retvalp;
265
266 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
267 {
268 /* With HP aCC, pointers to data members have a bias */
269 case TYPE_CODE_MEMBER:
270 retvalp = value_from_longest (type, value_as_long (arg2));
271 /* force evaluation */
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284
285 /* When we cast pointers to integers, we mustn't use
286 POINTER_TO_ADDRESS to find the address the pointer
287 represents, as value_as_long would. GDB should evaluate
288 expressions just as the compiler would --- and the compiler
289 sees a cast as a simple reinterpretation of the pointer's
290 bits. */
291 if (code2 == TYPE_CODE_PTR)
292 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
293 TYPE_LENGTH (type2));
294 else
295 longest = value_as_long (arg2);
296 return value_from_longest (type, convert_to_boolean ?
297 (LONGEST) (longest ? 1 : 0) : longest);
298 }
299 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
300 code2 == TYPE_CODE_ENUM ||
301 code2 == TYPE_CODE_RANGE))
302 {
303 /* TYPE_LENGTH (type) is the length of a pointer, but we really
304 want the length of an address! -- we are really dealing with
305 addresses (i.e., gdb representations) not pointers (i.e.,
306 target representations) here.
307
308 This allows things like "print *(int *)0x01000234" to work
309 without printing a misleading message -- which would
310 otherwise occur when dealing with a target having two byte
311 pointers and four byte addresses. */
312
313 int addr_bit = TARGET_ADDR_BIT;
314
315 LONGEST longest = value_as_long (arg2);
316 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
317 {
318 if (longest >= ((LONGEST) 1 << addr_bit)
319 || longest <= -((LONGEST) 1 << addr_bit))
320 warning ("value truncated");
321 }
322 return value_from_longest (type, longest);
323 }
324 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
325 {
326 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
327 {
328 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
329 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
330 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
331 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
332 && !value_logical_not (arg2))
333 {
334 value_ptr v;
335
336 /* Look in the type of the source to see if it contains the
337 type of the target as a superclass. If so, we'll need to
338 offset the pointer rather than just change its type. */
339 if (TYPE_NAME (t1) != NULL)
340 {
341 v = search_struct_field (type_name_no_tag (t1),
342 value_ind (arg2), 0, t2, 1);
343 if (v)
344 {
345 v = value_addr (v);
346 VALUE_TYPE (v) = type;
347 return v;
348 }
349 }
350
351 /* Look in the type of the target to see if it contains the
352 type of the source as a superclass. If so, we'll need to
353 offset the pointer rather than just change its type.
354 FIXME: This fails silently with virtual inheritance. */
355 if (TYPE_NAME (t2) != NULL)
356 {
357 v = search_struct_field (type_name_no_tag (t2),
358 value_zero (t1, not_lval), 0, t1, 1);
359 if (v)
360 {
361 value_ptr v2 = value_ind (arg2);
362 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
363 + VALUE_OFFSET (v);
364
365 /* JYG: adjust the new pointer value and
366 embedded offset. */
367 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
368 VALUE_EMBEDDED_OFFSET (v2) = 0;
369
370 v2 = value_addr (v2);
371 VALUE_TYPE (v2) = type;
372 return v2;
373 }
374 }
375 }
376 /* No superclass found, just fall through to change ptr type. */
377 }
378 VALUE_TYPE (arg2) = type;
379 arg2 = value_change_enclosing_type (arg2, type);
380 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
381 return arg2;
382 }
383 else if (chill_varying_type (type))
384 {
385 struct type *range1, *range2, *eltype1, *eltype2;
386 value_ptr val;
387 int count1, count2;
388 LONGEST low_bound, high_bound;
389 char *valaddr, *valaddr_data;
390 /* For lint warning about eltype2 possibly uninitialized: */
391 eltype2 = NULL;
392 if (code2 == TYPE_CODE_BITSTRING)
393 error ("not implemented: converting bitstring to varying type");
394 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
395 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
396 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
397 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
398 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
399 error ("Invalid conversion to varying type");
400 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
401 range2 = TYPE_FIELD_TYPE (type2, 0);
402 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
403 count1 = -1;
404 else
405 count1 = high_bound - low_bound + 1;
406 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
407 count1 = -1, count2 = 0; /* To force error before */
408 else
409 count2 = high_bound - low_bound + 1;
410 if (count2 > count1)
411 error ("target varying type is too small");
412 val = allocate_value (type);
413 valaddr = VALUE_CONTENTS_RAW (val);
414 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
415 /* Set val's __var_length field to count2. */
416 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
417 count2);
418 /* Set the __var_data field to count2 elements copied from arg2. */
419 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
420 count2 * TYPE_LENGTH (eltype2));
421 /* Zero the rest of the __var_data field of val. */
422 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
423 (count1 - count2) * TYPE_LENGTH (eltype2));
424 return val;
425 }
426 else if (VALUE_LVAL (arg2) == lval_memory)
427 {
428 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
429 VALUE_BFD_SECTION (arg2));
430 }
431 else if (code1 == TYPE_CODE_VOID)
432 {
433 return value_zero (builtin_type_void, not_lval);
434 }
435 else
436 {
437 error ("Invalid cast.");
438 return 0;
439 }
440 }
441
442 /* Create a value of type TYPE that is zero, and return it. */
443
444 value_ptr
445 value_zero (struct type *type, enum lval_type lv)
446 {
447 register value_ptr val = allocate_value (type);
448
449 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
450 VALUE_LVAL (val) = lv;
451
452 return val;
453 }
454
455 /* Return a value with type TYPE located at ADDR.
456
457 Call value_at only if the data needs to be fetched immediately;
458 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
459 value_at_lazy instead. value_at_lazy simply records the address of
460 the data and sets the lazy-evaluation-required flag. The lazy flag
461 is tested in the VALUE_CONTENTS macro, which is used if and when
462 the contents are actually required.
463
464 Note: value_at does *NOT* handle embedded offsets; perform such
465 adjustments before or after calling it. */
466
467 value_ptr
468 value_at (struct type *type, CORE_ADDR addr, asection *sect)
469 {
470 register value_ptr val;
471
472 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
473 error ("Attempt to dereference a generic pointer.");
474
475 val = allocate_value (type);
476
477 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
478
479 VALUE_LVAL (val) = lval_memory;
480 VALUE_ADDRESS (val) = addr;
481 VALUE_BFD_SECTION (val) = sect;
482
483 return val;
484 }
485
486 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
487
488 value_ptr
489 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
490 {
491 register value_ptr val;
492
493 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
494 error ("Attempt to dereference a generic pointer.");
495
496 val = allocate_value (type);
497
498 VALUE_LVAL (val) = lval_memory;
499 VALUE_ADDRESS (val) = addr;
500 VALUE_LAZY (val) = 1;
501 VALUE_BFD_SECTION (val) = sect;
502
503 return val;
504 }
505
506 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
507 if the current data for a variable needs to be loaded into
508 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
509 clears the lazy flag to indicate that the data in the buffer is valid.
510
511 If the value is zero-length, we avoid calling read_memory, which would
512 abort. We mark the value as fetched anyway -- all 0 bytes of it.
513
514 This function returns a value because it is used in the VALUE_CONTENTS
515 macro as part of an expression, where a void would not work. The
516 value is ignored. */
517
518 int
519 value_fetch_lazy (register value_ptr val)
520 {
521 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
522 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
523
524 struct type *type = VALUE_TYPE (val);
525 if (length)
526 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
527
528 VALUE_LAZY (val) = 0;
529 return 0;
530 }
531
532
533 /* Store the contents of FROMVAL into the location of TOVAL.
534 Return a new value with the location of TOVAL and contents of FROMVAL. */
535
536 value_ptr
537 value_assign (register value_ptr toval, register value_ptr fromval)
538 {
539 register struct type *type;
540 register value_ptr val;
541 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
542 int use_buffer = 0;
543
544 if (!toval->modifiable)
545 error ("Left operand of assignment is not a modifiable lvalue.");
546
547 COERCE_REF (toval);
548
549 type = VALUE_TYPE (toval);
550 if (VALUE_LVAL (toval) != lval_internalvar)
551 fromval = value_cast (type, fromval);
552 else
553 COERCE_ARRAY (fromval);
554 CHECK_TYPEDEF (type);
555
556 /* If TOVAL is a special machine register requiring conversion
557 of program values to a special raw format,
558 convert FROMVAL's contents now, with result in `raw_buffer',
559 and set USE_BUFFER to the number of bytes to write. */
560
561 if (VALUE_REGNO (toval) >= 0)
562 {
563 int regno = VALUE_REGNO (toval);
564 if (REGISTER_CONVERTIBLE (regno))
565 {
566 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
567 REGISTER_CONVERT_TO_RAW (fromtype, regno,
568 VALUE_CONTENTS (fromval), raw_buffer);
569 use_buffer = REGISTER_RAW_SIZE (regno);
570 }
571 }
572
573 switch (VALUE_LVAL (toval))
574 {
575 case lval_internalvar:
576 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
577 val = value_copy (VALUE_INTERNALVAR (toval)->value);
578 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
579 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
580 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
581 return val;
582
583 case lval_internalvar_component:
584 set_internalvar_component (VALUE_INTERNALVAR (toval),
585 VALUE_OFFSET (toval),
586 VALUE_BITPOS (toval),
587 VALUE_BITSIZE (toval),
588 fromval);
589 break;
590
591 case lval_memory:
592 {
593 char *dest_buffer;
594 CORE_ADDR changed_addr;
595 int changed_len;
596
597 if (VALUE_BITSIZE (toval))
598 {
599 char buffer[sizeof (LONGEST)];
600 /* We assume that the argument to read_memory is in units of
601 host chars. FIXME: Is that correct? */
602 changed_len = (VALUE_BITPOS (toval)
603 + VALUE_BITSIZE (toval)
604 + HOST_CHAR_BIT - 1)
605 / HOST_CHAR_BIT;
606
607 if (changed_len > (int) sizeof (LONGEST))
608 error ("Can't handle bitfields which don't fit in a %d bit word.",
609 sizeof (LONGEST) * HOST_CHAR_BIT);
610
611 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
612 buffer, changed_len);
613 modify_field (buffer, value_as_long (fromval),
614 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
615 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
616 dest_buffer = buffer;
617 }
618 else if (use_buffer)
619 {
620 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
621 changed_len = use_buffer;
622 dest_buffer = raw_buffer;
623 }
624 else
625 {
626 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
627 changed_len = TYPE_LENGTH (type);
628 dest_buffer = VALUE_CONTENTS (fromval);
629 }
630
631 write_memory (changed_addr, dest_buffer, changed_len);
632 if (memory_changed_hook)
633 memory_changed_hook (changed_addr, changed_len);
634 }
635 break;
636
637 case lval_register:
638 if (VALUE_BITSIZE (toval))
639 {
640 char buffer[sizeof (LONGEST)];
641 int len =
642 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
643
644 if (len > (int) sizeof (LONGEST))
645 error ("Can't handle bitfields in registers larger than %d bits.",
646 sizeof (LONGEST) * HOST_CHAR_BIT);
647
648 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
649 > len * HOST_CHAR_BIT)
650 /* Getting this right would involve being very careful about
651 byte order. */
652 error ("Can't assign to bitfields that cross register "
653 "boundaries.");
654
655 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
656 buffer, len);
657 modify_field (buffer, value_as_long (fromval),
658 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
659 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
660 buffer, len);
661 }
662 else if (use_buffer)
663 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
664 raw_buffer, use_buffer);
665 else
666 {
667 /* Do any conversion necessary when storing this type to more
668 than one register. */
669 #ifdef REGISTER_CONVERT_FROM_TYPE
670 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
671 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
672 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 raw_buffer, TYPE_LENGTH (type));
674 #else
675 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
676 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
677 #endif
678 }
679 /* Assigning to the stack pointer, frame pointer, and other
680 (architecture and calling convention specific) registers may
681 cause the frame cache to be out of date. We just do this
682 on all assignments to registers for simplicity; I doubt the slowdown
683 matters. */
684 reinit_frame_cache ();
685 break;
686
687 case lval_reg_frame_relative:
688 {
689 /* value is stored in a series of registers in the frame
690 specified by the structure. Copy that value out, modify
691 it, and copy it back in. */
692 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
693 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
694 int byte_offset = VALUE_OFFSET (toval) % reg_size;
695 int reg_offset = VALUE_OFFSET (toval) / reg_size;
696 int amount_copied;
697
698 /* Make the buffer large enough in all cases. */
699 char *buffer = (char *) alloca (amount_to_copy
700 + sizeof (LONGEST)
701 + MAX_REGISTER_RAW_SIZE);
702
703 int regno;
704 struct frame_info *frame;
705
706 /* Figure out which frame this is in currently. */
707 for (frame = get_current_frame ();
708 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
709 frame = get_prev_frame (frame))
710 ;
711
712 if (!frame)
713 error ("Value being assigned to is no longer active.");
714
715 amount_to_copy += (reg_size - amount_to_copy % reg_size);
716
717 /* Copy it out. */
718 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
719 amount_copied = 0);
720 amount_copied < amount_to_copy;
721 amount_copied += reg_size, regno++)
722 {
723 get_saved_register (buffer + amount_copied,
724 (int *) NULL, (CORE_ADDR *) NULL,
725 frame, regno, (enum lval_type *) NULL);
726 }
727
728 /* Modify what needs to be modified. */
729 if (VALUE_BITSIZE (toval))
730 modify_field (buffer + byte_offset,
731 value_as_long (fromval),
732 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
733 else if (use_buffer)
734 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
735 else
736 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
737 TYPE_LENGTH (type));
738
739 /* Copy it back. */
740 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
741 amount_copied = 0);
742 amount_copied < amount_to_copy;
743 amount_copied += reg_size, regno++)
744 {
745 enum lval_type lval;
746 CORE_ADDR addr;
747 int optim;
748
749 /* Just find out where to put it. */
750 get_saved_register ((char *) NULL,
751 &optim, &addr, frame, regno, &lval);
752
753 if (optim)
754 error ("Attempt to assign to a value that was optimized out.");
755 if (lval == lval_memory)
756 write_memory (addr, buffer + amount_copied, reg_size);
757 else if (lval == lval_register)
758 write_register_bytes (addr, buffer + amount_copied, reg_size);
759 else
760 error ("Attempt to assign to an unmodifiable value.");
761 }
762
763 if (register_changed_hook)
764 register_changed_hook (-1);
765 }
766 break;
767
768
769 default:
770 error ("Left operand of assignment is not an lvalue.");
771 }
772
773 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
774 If the field is signed, and is negative, then sign extend. */
775 if ((VALUE_BITSIZE (toval) > 0)
776 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
777 {
778 LONGEST fieldval = value_as_long (fromval);
779 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
780
781 fieldval &= valmask;
782 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
783 fieldval |= ~valmask;
784
785 fromval = value_from_longest (type, fieldval);
786 }
787
788 val = value_copy (toval);
789 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
790 TYPE_LENGTH (type));
791 VALUE_TYPE (val) = type;
792 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
793 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
794 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
795
796 return val;
797 }
798
799 /* Extend a value VAL to COUNT repetitions of its type. */
800
801 value_ptr
802 value_repeat (value_ptr arg1, int count)
803 {
804 register value_ptr val;
805
806 if (VALUE_LVAL (arg1) != lval_memory)
807 error ("Only values in memory can be extended with '@'.");
808 if (count < 1)
809 error ("Invalid number %d of repetitions.", count);
810
811 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
812
813 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
814 VALUE_CONTENTS_ALL_RAW (val),
815 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
816 VALUE_LVAL (val) = lval_memory;
817 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
818
819 return val;
820 }
821
822 value_ptr
823 value_of_variable (struct symbol *var, struct block *b)
824 {
825 value_ptr val;
826 struct frame_info *frame = NULL;
827
828 if (!b)
829 frame = NULL; /* Use selected frame. */
830 else if (symbol_read_needs_frame (var))
831 {
832 frame = block_innermost_frame (b);
833 if (!frame)
834 {
835 if (BLOCK_FUNCTION (b)
836 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
837 error ("No frame is currently executing in block %s.",
838 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
839 else
840 error ("No frame is currently executing in specified block");
841 }
842 }
843
844 val = read_var_value (var, frame);
845 if (!val)
846 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
847
848 return val;
849 }
850
851 /* Given a value which is an array, return a value which is a pointer to its
852 first element, regardless of whether or not the array has a nonzero lower
853 bound.
854
855 FIXME: A previous comment here indicated that this routine should be
856 substracting the array's lower bound. It's not clear to me that this
857 is correct. Given an array subscripting operation, it would certainly
858 work to do the adjustment here, essentially computing:
859
860 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
861
862 However I believe a more appropriate and logical place to account for
863 the lower bound is to do so in value_subscript, essentially computing:
864
865 (&array[0] + ((index - lowerbound) * sizeof array[0]))
866
867 As further evidence consider what would happen with operations other
868 than array subscripting, where the caller would get back a value that
869 had an address somewhere before the actual first element of the array,
870 and the information about the lower bound would be lost because of
871 the coercion to pointer type.
872 */
873
874 value_ptr
875 value_coerce_array (value_ptr arg1)
876 {
877 register struct type *type = check_typedef (VALUE_TYPE (arg1));
878
879 if (VALUE_LVAL (arg1) != lval_memory)
880 error ("Attempt to take address of value not located in memory.");
881
882 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
883 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
884 }
885
886 /* Given a value which is a function, return a value which is a pointer
887 to it. */
888
889 value_ptr
890 value_coerce_function (value_ptr arg1)
891 {
892 value_ptr retval;
893
894 if (VALUE_LVAL (arg1) != lval_memory)
895 error ("Attempt to take address of value not located in memory.");
896
897 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
898 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
899 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
900 return retval;
901 }
902
903 /* Return a pointer value for the object for which ARG1 is the contents. */
904
905 value_ptr
906 value_addr (value_ptr arg1)
907 {
908 value_ptr arg2;
909
910 struct type *type = check_typedef (VALUE_TYPE (arg1));
911 if (TYPE_CODE (type) == TYPE_CODE_REF)
912 {
913 /* Copy the value, but change the type from (T&) to (T*).
914 We keep the same location information, which is efficient,
915 and allows &(&X) to get the location containing the reference. */
916 arg2 = value_copy (arg1);
917 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
918 return arg2;
919 }
920 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
921 return value_coerce_function (arg1);
922
923 if (VALUE_LVAL (arg1) != lval_memory)
924 error ("Attempt to take address of value not located in memory.");
925
926 /* Get target memory address */
927 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
928 (VALUE_ADDRESS (arg1)
929 + VALUE_OFFSET (arg1)
930 + VALUE_EMBEDDED_OFFSET (arg1)));
931
932 /* This may be a pointer to a base subobject; so remember the
933 full derived object's type ... */
934 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
935 /* ... and also the relative position of the subobject in the full object */
936 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
937 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
938 return arg2;
939 }
940
941 /* Given a value of a pointer type, apply the C unary * operator to it. */
942
943 value_ptr
944 value_ind (value_ptr arg1)
945 {
946 struct type *base_type;
947 value_ptr arg2;
948
949 COERCE_ARRAY (arg1);
950
951 base_type = check_typedef (VALUE_TYPE (arg1));
952
953 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
954 error ("not implemented: member types in value_ind");
955
956 /* Allow * on an integer so we can cast it to whatever we want.
957 This returns an int, which seems like the most C-like thing
958 to do. "long long" variables are rare enough that
959 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
960 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
961 return value_at (builtin_type_int,
962 (CORE_ADDR) value_as_long (arg1),
963 VALUE_BFD_SECTION (arg1));
964 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
965 {
966 struct type *enc_type;
967 /* We may be pointing to something embedded in a larger object */
968 /* Get the real type of the enclosing object */
969 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
970 enc_type = TYPE_TARGET_TYPE (enc_type);
971 /* Retrieve the enclosing object pointed to */
972 arg2 = value_at_lazy (enc_type,
973 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
974 VALUE_BFD_SECTION (arg1));
975 /* Re-adjust type */
976 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
977 /* Add embedding info */
978 arg2 = value_change_enclosing_type (arg2, enc_type);
979 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
980
981 /* We may be pointing to an object of some derived type */
982 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
983 return arg2;
984 }
985
986 error ("Attempt to take contents of a non-pointer value.");
987 return 0; /* For lint -- never reached */
988 }
989 \f
990 /* Pushing small parts of stack frames. */
991
992 /* Push one word (the size of object that a register holds). */
993
994 CORE_ADDR
995 push_word (CORE_ADDR sp, ULONGEST word)
996 {
997 register int len = REGISTER_SIZE;
998 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
999
1000 store_unsigned_integer (buffer, len, word);
1001 if (INNER_THAN (1, 2))
1002 {
1003 /* stack grows downward */
1004 sp -= len;
1005 write_memory (sp, buffer, len);
1006 }
1007 else
1008 {
1009 /* stack grows upward */
1010 write_memory (sp, buffer, len);
1011 sp += len;
1012 }
1013
1014 return sp;
1015 }
1016
1017 /* Push LEN bytes with data at BUFFER. */
1018
1019 CORE_ADDR
1020 push_bytes (CORE_ADDR sp, char *buffer, int len)
1021 {
1022 if (INNER_THAN (1, 2))
1023 {
1024 /* stack grows downward */
1025 sp -= len;
1026 write_memory (sp, buffer, len);
1027 }
1028 else
1029 {
1030 /* stack grows upward */
1031 write_memory (sp, buffer, len);
1032 sp += len;
1033 }
1034
1035 return sp;
1036 }
1037
1038 #ifndef PARM_BOUNDARY
1039 #define PARM_BOUNDARY (0)
1040 #endif
1041
1042 /* Push onto the stack the specified value VALUE. Pad it correctly for
1043 it to be an argument to a function. */
1044
1045 static CORE_ADDR
1046 value_push (register CORE_ADDR sp, value_ptr arg)
1047 {
1048 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1049 register int container_len = len;
1050 register int offset;
1051
1052 /* How big is the container we're going to put this value in? */
1053 if (PARM_BOUNDARY)
1054 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1055 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1056
1057 /* Are we going to put it at the high or low end of the container? */
1058 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1059 offset = container_len - len;
1060 else
1061 offset = 0;
1062
1063 if (INNER_THAN (1, 2))
1064 {
1065 /* stack grows downward */
1066 sp -= container_len;
1067 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1068 }
1069 else
1070 {
1071 /* stack grows upward */
1072 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1073 sp += container_len;
1074 }
1075
1076 return sp;
1077 }
1078
1079 #ifndef PUSH_ARGUMENTS
1080 #define PUSH_ARGUMENTS default_push_arguments
1081 #endif
1082
1083 CORE_ADDR
1084 default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1085 int struct_return, CORE_ADDR struct_addr)
1086 {
1087 /* ASSERT ( !struct_return); */
1088 int i;
1089 for (i = nargs - 1; i >= 0; i--)
1090 sp = value_push (sp, args[i]);
1091 return sp;
1092 }
1093
1094
1095 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1096
1097 How you should pass arguments to a function depends on whether it
1098 was defined in K&R style or prototype style. If you define a
1099 function using the K&R syntax that takes a `float' argument, then
1100 callers must pass that argument as a `double'. If you define the
1101 function using the prototype syntax, then you must pass the
1102 argument as a `float', with no promotion.
1103
1104 Unfortunately, on certain older platforms, the debug info doesn't
1105 indicate reliably how each function was defined. A function type's
1106 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1107 defined in prototype style. When calling a function whose
1108 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1109 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1110
1111 For modern targets, it is proper to assume that, if the prototype
1112 flag is clear, that can be trusted: `float' arguments should be
1113 promoted to `double'. You should register the function
1114 `standard_coerce_float_to_double' to get this behavior.
1115
1116 For some older targets, if the prototype flag is clear, that
1117 doesn't tell us anything. So we guess that, if we don't have a
1118 type for the formal parameter (i.e., the first argument to
1119 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1120 otherwise, we should leave it alone. The function
1121 `default_coerce_float_to_double' provides this behavior; it is the
1122 default value, for compatibility with older configurations. */
1123 int
1124 default_coerce_float_to_double (struct type *formal, struct type *actual)
1125 {
1126 return formal == NULL;
1127 }
1128
1129
1130 int
1131 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1132 {
1133 return 1;
1134 }
1135
1136
1137 /* Perform the standard coercions that are specified
1138 for arguments to be passed to C functions.
1139
1140 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1141 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1142
1143 static value_ptr
1144 value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
1145 {
1146 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1147 register struct type *type
1148 = param_type ? check_typedef (param_type) : arg_type;
1149
1150 switch (TYPE_CODE (type))
1151 {
1152 case TYPE_CODE_REF:
1153 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1154 {
1155 arg = value_addr (arg);
1156 VALUE_TYPE (arg) = param_type;
1157 return arg;
1158 }
1159 break;
1160 case TYPE_CODE_INT:
1161 case TYPE_CODE_CHAR:
1162 case TYPE_CODE_BOOL:
1163 case TYPE_CODE_ENUM:
1164 /* If we don't have a prototype, coerce to integer type if necessary. */
1165 if (!is_prototyped)
1166 {
1167 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1168 type = builtin_type_int;
1169 }
1170 /* Currently all target ABIs require at least the width of an integer
1171 type for an argument. We may have to conditionalize the following
1172 type coercion for future targets. */
1173 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1174 type = builtin_type_int;
1175 break;
1176 case TYPE_CODE_FLT:
1177 /* FIXME: We should always convert floats to doubles in the
1178 non-prototyped case. As many debugging formats include
1179 no information about prototyping, we have to live with
1180 COERCE_FLOAT_TO_DOUBLE for now. */
1181 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1182 {
1183 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1184 type = builtin_type_double;
1185 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1186 type = builtin_type_long_double;
1187 }
1188 break;
1189 case TYPE_CODE_FUNC:
1190 type = lookup_pointer_type (type);
1191 break;
1192 case TYPE_CODE_ARRAY:
1193 if (current_language->c_style_arrays)
1194 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1195 break;
1196 case TYPE_CODE_UNDEF:
1197 case TYPE_CODE_PTR:
1198 case TYPE_CODE_STRUCT:
1199 case TYPE_CODE_UNION:
1200 case TYPE_CODE_VOID:
1201 case TYPE_CODE_SET:
1202 case TYPE_CODE_RANGE:
1203 case TYPE_CODE_STRING:
1204 case TYPE_CODE_BITSTRING:
1205 case TYPE_CODE_ERROR:
1206 case TYPE_CODE_MEMBER:
1207 case TYPE_CODE_METHOD:
1208 case TYPE_CODE_COMPLEX:
1209 default:
1210 break;
1211 }
1212
1213 return value_cast (type, arg);
1214 }
1215
1216 /* Determine a function's address and its return type from its value.
1217 Calls error() if the function is not valid for calling. */
1218
1219 static CORE_ADDR
1220 find_function_addr (value_ptr function, struct type **retval_type)
1221 {
1222 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1223 register enum type_code code = TYPE_CODE (ftype);
1224 struct type *value_type;
1225 CORE_ADDR funaddr;
1226
1227 /* If it's a member function, just look at the function
1228 part of it. */
1229
1230 /* Determine address to call. */
1231 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1232 {
1233 funaddr = VALUE_ADDRESS (function);
1234 value_type = TYPE_TARGET_TYPE (ftype);
1235 }
1236 else if (code == TYPE_CODE_PTR)
1237 {
1238 funaddr = value_as_address (function);
1239 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1240 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1241 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1242 {
1243 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1244 value_type = TYPE_TARGET_TYPE (ftype);
1245 }
1246 else
1247 value_type = builtin_type_int;
1248 }
1249 else if (code == TYPE_CODE_INT)
1250 {
1251 /* Handle the case of functions lacking debugging info.
1252 Their values are characters since their addresses are char */
1253 if (TYPE_LENGTH (ftype) == 1)
1254 funaddr = value_as_address (value_addr (function));
1255 else
1256 /* Handle integer used as address of a function. */
1257 funaddr = (CORE_ADDR) value_as_long (function);
1258
1259 value_type = builtin_type_int;
1260 }
1261 else
1262 error ("Invalid data type for function to be called.");
1263
1264 *retval_type = value_type;
1265 return funaddr;
1266 }
1267
1268 /* All this stuff with a dummy frame may seem unnecessarily complicated
1269 (why not just save registers in GDB?). The purpose of pushing a dummy
1270 frame which looks just like a real frame is so that if you call a
1271 function and then hit a breakpoint (get a signal, etc), "backtrace"
1272 will look right. Whether the backtrace needs to actually show the
1273 stack at the time the inferior function was called is debatable, but
1274 it certainly needs to not display garbage. So if you are contemplating
1275 making dummy frames be different from normal frames, consider that. */
1276
1277 /* Perform a function call in the inferior.
1278 ARGS is a vector of values of arguments (NARGS of them).
1279 FUNCTION is a value, the function to be called.
1280 Returns a value representing what the function returned.
1281 May fail to return, if a breakpoint or signal is hit
1282 during the execution of the function.
1283
1284 ARGS is modified to contain coerced values. */
1285
1286 static value_ptr hand_function_call (value_ptr function, int nargs,
1287 value_ptr * args);
1288 static value_ptr
1289 hand_function_call (value_ptr function, int nargs, value_ptr *args)
1290 {
1291 register CORE_ADDR sp;
1292 register int i;
1293 int rc;
1294 CORE_ADDR start_sp;
1295 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1296 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1297 and remove any extra bytes which might exist because ULONGEST is
1298 bigger than REGISTER_SIZE.
1299
1300 NOTE: This is pretty wierd, as the call dummy is actually a
1301 sequence of instructions. But CISC machines will have
1302 to pack the instructions into REGISTER_SIZE units (and
1303 so will RISC machines for which INSTRUCTION_SIZE is not
1304 REGISTER_SIZE).
1305
1306 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1307 target byte order. */
1308
1309 static ULONGEST *dummy;
1310 int sizeof_dummy1;
1311 char *dummy1;
1312 CORE_ADDR old_sp;
1313 struct type *value_type;
1314 unsigned char struct_return;
1315 CORE_ADDR struct_addr = 0;
1316 struct inferior_status *inf_status;
1317 struct cleanup *old_chain;
1318 CORE_ADDR funaddr;
1319 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1320 CORE_ADDR real_pc;
1321 struct type *param_type = NULL;
1322 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1323 int n_method_args = 0;
1324
1325 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1326 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1327 dummy1 = alloca (sizeof_dummy1);
1328 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1329
1330 if (!target_has_execution)
1331 noprocess ();
1332
1333 inf_status = save_inferior_status (1);
1334 old_chain = make_cleanup_restore_inferior_status (inf_status);
1335
1336 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1337 (and POP_FRAME for restoring them). (At least on most machines)
1338 they are saved on the stack in the inferior. */
1339 PUSH_DUMMY_FRAME;
1340
1341 old_sp = sp = read_sp ();
1342
1343 if (INNER_THAN (1, 2))
1344 {
1345 /* Stack grows down */
1346 sp -= sizeof_dummy1;
1347 start_sp = sp;
1348 }
1349 else
1350 {
1351 /* Stack grows up */
1352 start_sp = sp;
1353 sp += sizeof_dummy1;
1354 }
1355
1356 funaddr = find_function_addr (function, &value_type);
1357 CHECK_TYPEDEF (value_type);
1358
1359 {
1360 struct block *b = block_for_pc (funaddr);
1361 /* If compiled without -g, assume GCC 2. */
1362 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1363 }
1364
1365 /* Are we returning a value using a structure return or a normal
1366 value return? */
1367
1368 struct_return = using_struct_return (function, funaddr, value_type,
1369 using_gcc);
1370
1371 /* Create a call sequence customized for this function
1372 and the number of arguments for it. */
1373 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1374 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1375 REGISTER_SIZE,
1376 (ULONGEST) dummy[i]);
1377
1378 #ifdef GDB_TARGET_IS_HPPA
1379 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1380 value_type, using_gcc);
1381 #else
1382 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1383 value_type, using_gcc);
1384 real_pc = start_sp;
1385 #endif
1386
1387 if (CALL_DUMMY_LOCATION == ON_STACK)
1388 {
1389 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1390 }
1391
1392 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1393 {
1394 /* Convex Unix prohibits executing in the stack segment. */
1395 /* Hope there is empty room at the top of the text segment. */
1396 extern CORE_ADDR text_end;
1397 static int checked = 0;
1398 if (!checked)
1399 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1400 if (read_memory_integer (start_sp, 1) != 0)
1401 error ("text segment full -- no place to put call");
1402 checked = 1;
1403 sp = old_sp;
1404 real_pc = text_end - sizeof_dummy1;
1405 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1406 }
1407
1408 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1409 {
1410 extern CORE_ADDR text_end;
1411 int errcode;
1412 sp = old_sp;
1413 real_pc = text_end;
1414 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1415 if (errcode != 0)
1416 error ("Cannot write text segment -- call_function failed");
1417 }
1418
1419 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1420 {
1421 real_pc = funaddr;
1422 }
1423
1424 #ifdef lint
1425 sp = old_sp; /* It really is used, for some ifdef's... */
1426 #endif
1427
1428 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1429 {
1430 i = 0;
1431 while (TYPE_CODE (TYPE_ARG_TYPES (ftype)[i]) != TYPE_CODE_VOID)
1432 i++;
1433 n_method_args = i;
1434 if (nargs < i)
1435 error ("too few arguments in method call");
1436 }
1437 else if (nargs < TYPE_NFIELDS (ftype))
1438 error ("too few arguments in function call");
1439
1440 for (i = nargs - 1; i >= 0; i--)
1441 {
1442 /* Assume that methods are always prototyped, unless they are off the
1443 end (which we should only be allowing if there is a ``...'').
1444 FIXME. */
1445 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1446 {
1447 if (i < n_method_args)
1448 args[i] = value_arg_coerce (args[i], TYPE_ARG_TYPES (ftype)[i], 1);
1449 else
1450 args[i] = value_arg_coerce (args[i], NULL, 0);
1451 }
1452
1453 /* If we're off the end of the known arguments, do the standard
1454 promotions. FIXME: if we had a prototype, this should only
1455 be allowed if ... were present. */
1456 if (i >= TYPE_NFIELDS (ftype))
1457 args[i] = value_arg_coerce (args[i], NULL, 0);
1458
1459 else
1460 {
1461 param_type = TYPE_FIELD_TYPE (ftype, i);
1462 args[i] = value_arg_coerce (args[i], param_type, TYPE_PROTOTYPED (ftype));
1463 }
1464
1465 /*elz: this code is to handle the case in which the function to be called
1466 has a pointer to function as parameter and the corresponding actual argument
1467 is the address of a function and not a pointer to function variable.
1468 In aCC compiled code, the calls through pointers to functions (in the body
1469 of the function called by hand) are made via $$dyncall_external which
1470 requires some registers setting, this is taken care of if we call
1471 via a function pointer variable, but not via a function address.
1472 In cc this is not a problem. */
1473
1474 if (using_gcc == 0)
1475 if (param_type)
1476 /* if this parameter is a pointer to function */
1477 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1478 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1479 /* elz: FIXME here should go the test about the compiler used
1480 to compile the target. We want to issue the error
1481 message only if the compiler used was HP's aCC.
1482 If we used HP's cc, then there is no problem and no need
1483 to return at this point */
1484 if (using_gcc == 0) /* && compiler == aCC */
1485 /* go see if the actual parameter is a variable of type
1486 pointer to function or just a function */
1487 if (args[i]->lval == not_lval)
1488 {
1489 char *arg_name;
1490 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1491 error ("\
1492 You cannot use function <%s> as argument. \n\
1493 You must use a pointer to function type variable. Command ignored.", arg_name);
1494 }
1495 }
1496
1497 if (REG_STRUCT_HAS_ADDR_P ())
1498 {
1499 /* This is a machine like the sparc, where we may need to pass a
1500 pointer to the structure, not the structure itself. */
1501 for (i = nargs - 1; i >= 0; i--)
1502 {
1503 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1504 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1505 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1506 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1507 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1508 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1509 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1510 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1511 && TYPE_LENGTH (arg_type) > 8)
1512 )
1513 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1514 {
1515 CORE_ADDR addr;
1516 int len; /* = TYPE_LENGTH (arg_type); */
1517 int aligned_len;
1518 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1519 len = TYPE_LENGTH (arg_type);
1520
1521 if (STACK_ALIGN_P ())
1522 /* MVS 11/22/96: I think at least some of this
1523 stack_align code is really broken. Better to let
1524 PUSH_ARGUMENTS adjust the stack in a target-defined
1525 manner. */
1526 aligned_len = STACK_ALIGN (len);
1527 else
1528 aligned_len = len;
1529 if (INNER_THAN (1, 2))
1530 {
1531 /* stack grows downward */
1532 sp -= aligned_len;
1533 /* ... so the address of the thing we push is the
1534 stack pointer after we push it. */
1535 addr = sp;
1536 }
1537 else
1538 {
1539 /* The stack grows up, so the address of the thing
1540 we push is the stack pointer before we push it. */
1541 addr = sp;
1542 sp += aligned_len;
1543 }
1544 /* Push the structure. */
1545 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1546 /* The value we're going to pass is the address of the
1547 thing we just pushed. */
1548 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1549 (LONGEST) addr); */
1550 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1551 addr);
1552 }
1553 }
1554 }
1555
1556
1557 /* Reserve space for the return structure to be written on the
1558 stack, if necessary */
1559
1560 if (struct_return)
1561 {
1562 int len = TYPE_LENGTH (value_type);
1563 if (STACK_ALIGN_P ())
1564 /* MVS 11/22/96: I think at least some of this stack_align
1565 code is really broken. Better to let PUSH_ARGUMENTS adjust
1566 the stack in a target-defined manner. */
1567 len = STACK_ALIGN (len);
1568 if (INNER_THAN (1, 2))
1569 {
1570 /* stack grows downward */
1571 sp -= len;
1572 struct_addr = sp;
1573 }
1574 else
1575 {
1576 /* stack grows upward */
1577 struct_addr = sp;
1578 sp += len;
1579 }
1580 }
1581
1582 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1583 on other architectures. This is because all the alignment is
1584 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1585 in hppa_push_arguments */
1586 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1587 {
1588 /* MVS 11/22/96: I think at least some of this stack_align code
1589 is really broken. Better to let PUSH_ARGUMENTS adjust the
1590 stack in a target-defined manner. */
1591 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1592 {
1593 /* If stack grows down, we must leave a hole at the top. */
1594 int len = 0;
1595
1596 for (i = nargs - 1; i >= 0; i--)
1597 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1598 if (CALL_DUMMY_STACK_ADJUST_P)
1599 len += CALL_DUMMY_STACK_ADJUST;
1600 sp -= STACK_ALIGN (len) - len;
1601 }
1602 }
1603
1604 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1605
1606 if (PUSH_RETURN_ADDRESS_P ())
1607 /* for targets that use no CALL_DUMMY */
1608 /* There are a number of targets now which actually don't write
1609 any CALL_DUMMY instructions into the target, but instead just
1610 save the machine state, push the arguments, and jump directly
1611 to the callee function. Since this doesn't actually involve
1612 executing a JSR/BSR instruction, the return address must be set
1613 up by hand, either by pushing onto the stack or copying into a
1614 return-address register as appropriate. Formerly this has been
1615 done in PUSH_ARGUMENTS, but that's overloading its
1616 functionality a bit, so I'm making it explicit to do it here. */
1617 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1618
1619 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1620 {
1621 /* If stack grows up, we must leave a hole at the bottom, note
1622 that sp already has been advanced for the arguments! */
1623 if (CALL_DUMMY_STACK_ADJUST_P)
1624 sp += CALL_DUMMY_STACK_ADJUST;
1625 sp = STACK_ALIGN (sp);
1626 }
1627
1628 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1629 anything here! */
1630 /* MVS 11/22/96: I think at least some of this stack_align code is
1631 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1632 a target-defined manner. */
1633 if (CALL_DUMMY_STACK_ADJUST_P)
1634 if (INNER_THAN (1, 2))
1635 {
1636 /* stack grows downward */
1637 sp -= CALL_DUMMY_STACK_ADJUST;
1638 }
1639
1640 /* Store the address at which the structure is supposed to be
1641 written. Note that this (and the code which reserved the space
1642 above) assumes that gcc was used to compile this function. Since
1643 it doesn't cost us anything but space and if the function is pcc
1644 it will ignore this value, we will make that assumption.
1645
1646 Also note that on some machines (like the sparc) pcc uses a
1647 convention like gcc's. */
1648
1649 if (struct_return)
1650 STORE_STRUCT_RETURN (struct_addr, sp);
1651
1652 /* Write the stack pointer. This is here because the statements above
1653 might fool with it. On SPARC, this write also stores the register
1654 window into the right place in the new stack frame, which otherwise
1655 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1656 write_sp (sp);
1657
1658 if (SAVE_DUMMY_FRAME_TOS_P ())
1659 SAVE_DUMMY_FRAME_TOS (sp);
1660
1661 {
1662 char *retbuf = (char*) alloca (REGISTER_BYTES);
1663 char *name;
1664 struct symbol *symbol;
1665
1666 name = NULL;
1667 symbol = find_pc_function (funaddr);
1668 if (symbol)
1669 {
1670 name = SYMBOL_SOURCE_NAME (symbol);
1671 }
1672 else
1673 {
1674 /* Try the minimal symbols. */
1675 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1676
1677 if (msymbol)
1678 {
1679 name = SYMBOL_SOURCE_NAME (msymbol);
1680 }
1681 }
1682 if (name == NULL)
1683 {
1684 char format[80];
1685 sprintf (format, "at %s", local_hex_format ());
1686 name = alloca (80);
1687 /* FIXME-32x64: assumes funaddr fits in a long. */
1688 sprintf (name, format, (unsigned long) funaddr);
1689 }
1690
1691 /* Execute the stack dummy routine, calling FUNCTION.
1692 When it is done, discard the empty frame
1693 after storing the contents of all regs into retbuf. */
1694 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1695
1696 if (rc == 1)
1697 {
1698 /* We stopped inside the FUNCTION because of a random signal.
1699 Further execution of the FUNCTION is not allowed. */
1700
1701 if (unwind_on_signal_p)
1702 {
1703 /* The user wants the context restored. */
1704
1705 /* We must get back to the frame we were before the dummy call. */
1706 POP_FRAME;
1707
1708 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1709 a C++ name with arguments and stuff. */
1710 error ("\
1711 The program being debugged was signaled while in a function called from GDB.\n\
1712 GDB has restored the context to what it was before the call.\n\
1713 To change this behavior use \"set unwindonsignal off\"\n\
1714 Evaluation of the expression containing the function (%s) will be abandoned.",
1715 name);
1716 }
1717 else
1718 {
1719 /* The user wants to stay in the frame where we stopped (default).*/
1720
1721 /* If we did the cleanups, we would print a spurious error
1722 message (Unable to restore previously selected frame),
1723 would write the registers from the inf_status (which is
1724 wrong), and would do other wrong things. */
1725 discard_cleanups (old_chain);
1726 discard_inferior_status (inf_status);
1727
1728 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1729 a C++ name with arguments and stuff. */
1730 error ("\
1731 The program being debugged was signaled while in a function called from GDB.\n\
1732 GDB remains in the frame where the signal was received.\n\
1733 To change this behavior use \"set unwindonsignal on\"\n\
1734 Evaluation of the expression containing the function (%s) will be abandoned.",
1735 name);
1736 }
1737 }
1738
1739 if (rc == 2)
1740 {
1741 /* We hit a breakpoint inside the FUNCTION. */
1742
1743 /* If we did the cleanups, we would print a spurious error
1744 message (Unable to restore previously selected frame),
1745 would write the registers from the inf_status (which is
1746 wrong), and would do other wrong things. */
1747 discard_cleanups (old_chain);
1748 discard_inferior_status (inf_status);
1749
1750 /* The following error message used to say "The expression
1751 which contained the function call has been discarded." It
1752 is a hard concept to explain in a few words. Ideally, GDB
1753 would be able to resume evaluation of the expression when
1754 the function finally is done executing. Perhaps someday
1755 this will be implemented (it would not be easy). */
1756
1757 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1758 a C++ name with arguments and stuff. */
1759 error ("\
1760 The program being debugged stopped while in a function called from GDB.\n\
1761 When the function (%s) is done executing, GDB will silently\n\
1762 stop (instead of continuing to evaluate the expression containing\n\
1763 the function call).", name);
1764 }
1765
1766 /* If we get here the called FUNCTION run to completion. */
1767 do_cleanups (old_chain);
1768
1769 /* Figure out the value returned by the function. */
1770 /* elz: I defined this new macro for the hppa architecture only.
1771 this gives us a way to get the value returned by the function from the stack,
1772 at the same address we told the function to put it.
1773 We cannot assume on the pa that r28 still contains the address of the returned
1774 structure. Usually this will be overwritten by the callee.
1775 I don't know about other architectures, so I defined this macro
1776 */
1777
1778 #ifdef VALUE_RETURNED_FROM_STACK
1779 if (struct_return)
1780 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1781 #endif
1782
1783 return value_being_returned (value_type, retbuf, struct_return);
1784 }
1785 }
1786
1787 value_ptr
1788 call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
1789 {
1790 if (CALL_DUMMY_P)
1791 {
1792 return hand_function_call (function, nargs, args);
1793 }
1794 else
1795 {
1796 error ("Cannot invoke functions on this machine.");
1797 }
1798 }
1799 \f
1800
1801
1802 /* Create a value for an array by allocating space in the inferior, copying
1803 the data into that space, and then setting up an array value.
1804
1805 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1806 populated from the values passed in ELEMVEC.
1807
1808 The element type of the array is inherited from the type of the
1809 first element, and all elements must have the same size (though we
1810 don't currently enforce any restriction on their types). */
1811
1812 value_ptr
1813 value_array (int lowbound, int highbound, value_ptr *elemvec)
1814 {
1815 int nelem;
1816 int idx;
1817 unsigned int typelength;
1818 value_ptr val;
1819 struct type *rangetype;
1820 struct type *arraytype;
1821 CORE_ADDR addr;
1822
1823 /* Validate that the bounds are reasonable and that each of the elements
1824 have the same size. */
1825
1826 nelem = highbound - lowbound + 1;
1827 if (nelem <= 0)
1828 {
1829 error ("bad array bounds (%d, %d)", lowbound, highbound);
1830 }
1831 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1832 for (idx = 1; idx < nelem; idx++)
1833 {
1834 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1835 {
1836 error ("array elements must all be the same size");
1837 }
1838 }
1839
1840 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1841 lowbound, highbound);
1842 arraytype = create_array_type ((struct type *) NULL,
1843 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1844
1845 if (!current_language->c_style_arrays)
1846 {
1847 val = allocate_value (arraytype);
1848 for (idx = 0; idx < nelem; idx++)
1849 {
1850 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1851 VALUE_CONTENTS_ALL (elemvec[idx]),
1852 typelength);
1853 }
1854 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1855 return val;
1856 }
1857
1858 /* Allocate space to store the array in the inferior, and then initialize
1859 it by copying in each element. FIXME: Is it worth it to create a
1860 local buffer in which to collect each value and then write all the
1861 bytes in one operation? */
1862
1863 addr = allocate_space_in_inferior (nelem * typelength);
1864 for (idx = 0; idx < nelem; idx++)
1865 {
1866 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1867 typelength);
1868 }
1869
1870 /* Create the array type and set up an array value to be evaluated lazily. */
1871
1872 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1873 return (val);
1874 }
1875
1876 /* Create a value for a string constant by allocating space in the inferior,
1877 copying the data into that space, and returning the address with type
1878 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1879 of characters.
1880 Note that string types are like array of char types with a lower bound of
1881 zero and an upper bound of LEN - 1. Also note that the string may contain
1882 embedded null bytes. */
1883
1884 value_ptr
1885 value_string (char *ptr, int len)
1886 {
1887 value_ptr val;
1888 int lowbound = current_language->string_lower_bound;
1889 struct type *rangetype = create_range_type ((struct type *) NULL,
1890 builtin_type_int,
1891 lowbound, len + lowbound - 1);
1892 struct type *stringtype
1893 = create_string_type ((struct type *) NULL, rangetype);
1894 CORE_ADDR addr;
1895
1896 if (current_language->c_style_arrays == 0)
1897 {
1898 val = allocate_value (stringtype);
1899 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1900 return val;
1901 }
1902
1903
1904 /* Allocate space to store the string in the inferior, and then
1905 copy LEN bytes from PTR in gdb to that address in the inferior. */
1906
1907 addr = allocate_space_in_inferior (len);
1908 write_memory (addr, ptr, len);
1909
1910 val = value_at_lazy (stringtype, addr, NULL);
1911 return (val);
1912 }
1913
1914 value_ptr
1915 value_bitstring (char *ptr, int len)
1916 {
1917 value_ptr val;
1918 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1919 0, len - 1);
1920 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1921 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1922 val = allocate_value (type);
1923 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1924 return val;
1925 }
1926 \f
1927 /* See if we can pass arguments in T2 to a function which takes arguments
1928 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1929 arguments need coercion of some sort, then the coerced values are written
1930 into T2. Return value is 0 if the arguments could be matched, or the
1931 position at which they differ if not.
1932
1933 STATICP is nonzero if the T1 argument list came from a
1934 static member function.
1935
1936 For non-static member functions, we ignore the first argument,
1937 which is the type of the instance variable. This is because we want
1938 to handle calls with objects from derived classes. This is not
1939 entirely correct: we should actually check to make sure that a
1940 requested operation is type secure, shouldn't we? FIXME. */
1941
1942 static int
1943 typecmp (int staticp, struct type *t1[], value_ptr t2[])
1944 {
1945 int i;
1946
1947 if (t2 == 0)
1948 return 1;
1949 if (staticp && t1 == 0)
1950 return t2[1] != 0;
1951 if (t1 == 0)
1952 return 1;
1953 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1954 return 0;
1955 if (t1[!staticp] == 0)
1956 return 0;
1957 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1958 {
1959 struct type *tt1, *tt2;
1960 if (!t2[i])
1961 return i + 1;
1962 tt1 = check_typedef (t1[i]);
1963 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1964 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1965 /* We should be doing hairy argument matching, as below. */
1966 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1967 {
1968 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1969 t2[i] = value_coerce_array (t2[i]);
1970 else
1971 t2[i] = value_addr (t2[i]);
1972 continue;
1973 }
1974
1975 /* djb - 20000715 - Until the new type structure is in the
1976 place, and we can attempt things like implicit conversions,
1977 we need to do this so you can take something like a map<const
1978 char *>, and properly access map["hello"], because the
1979 argument to [] will be a reference to a pointer to a char,
1980 and the argument will be a pointer to a char. */
1981 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1982 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1983 {
1984 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1985 }
1986 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1987 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1988 TYPE_CODE(tt2) == TYPE_CODE_REF)
1989 {
1990 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1991 }
1992 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1993 continue;
1994 /* Array to pointer is a `trivial conversion' according to the ARM. */
1995
1996 /* We should be doing much hairier argument matching (see section 13.2
1997 of the ARM), but as a quick kludge, just check for the same type
1998 code. */
1999 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2000 return i + 1;
2001 }
2002 if (!t1[i])
2003 return 0;
2004 return t2[i] ? i + 1 : 0;
2005 }
2006
2007 /* Helper function used by value_struct_elt to recurse through baseclasses.
2008 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2009 and search in it assuming it has (class) type TYPE.
2010 If found, return value, else return NULL.
2011
2012 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2013 look for a baseclass named NAME. */
2014
2015 static value_ptr
2016 search_struct_field (char *name, register value_ptr arg1, int offset,
2017 register struct type *type, int looking_for_baseclass)
2018 {
2019 int i;
2020 int nbases = TYPE_N_BASECLASSES (type);
2021
2022 CHECK_TYPEDEF (type);
2023
2024 if (!looking_for_baseclass)
2025 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2026 {
2027 char *t_field_name = TYPE_FIELD_NAME (type, i);
2028
2029 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2030 {
2031 value_ptr v;
2032 if (TYPE_FIELD_STATIC (type, i))
2033 v = value_static_field (type, i);
2034 else
2035 v = value_primitive_field (arg1, offset, i, type);
2036 if (v == 0)
2037 error ("there is no field named %s", name);
2038 return v;
2039 }
2040
2041 if (t_field_name
2042 && (t_field_name[0] == '\0'
2043 || (TYPE_CODE (type) == TYPE_CODE_UNION
2044 && (strcmp_iw (t_field_name, "else") == 0))))
2045 {
2046 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2047 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2048 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2049 {
2050 /* Look for a match through the fields of an anonymous union,
2051 or anonymous struct. C++ provides anonymous unions.
2052
2053 In the GNU Chill implementation of variant record types,
2054 each <alternative field> has an (anonymous) union type,
2055 each member of the union represents a <variant alternative>.
2056 Each <variant alternative> is represented as a struct,
2057 with a member for each <variant field>. */
2058
2059 value_ptr v;
2060 int new_offset = offset;
2061
2062 /* This is pretty gross. In G++, the offset in an anonymous
2063 union is relative to the beginning of the enclosing struct.
2064 In the GNU Chill implementation of variant records,
2065 the bitpos is zero in an anonymous union field, so we
2066 have to add the offset of the union here. */
2067 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2068 || (TYPE_NFIELDS (field_type) > 0
2069 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2070 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2071
2072 v = search_struct_field (name, arg1, new_offset, field_type,
2073 looking_for_baseclass);
2074 if (v)
2075 return v;
2076 }
2077 }
2078 }
2079
2080 for (i = 0; i < nbases; i++)
2081 {
2082 value_ptr v;
2083 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2084 /* If we are looking for baseclasses, this is what we get when we
2085 hit them. But it could happen that the base part's member name
2086 is not yet filled in. */
2087 int found_baseclass = (looking_for_baseclass
2088 && TYPE_BASECLASS_NAME (type, i) != NULL
2089 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2090
2091 if (BASETYPE_VIA_VIRTUAL (type, i))
2092 {
2093 int boffset;
2094 value_ptr v2 = allocate_value (basetype);
2095
2096 boffset = baseclass_offset (type, i,
2097 VALUE_CONTENTS (arg1) + offset,
2098 VALUE_ADDRESS (arg1)
2099 + VALUE_OFFSET (arg1) + offset);
2100 if (boffset == -1)
2101 error ("virtual baseclass botch");
2102
2103 /* The virtual base class pointer might have been clobbered by the
2104 user program. Make sure that it still points to a valid memory
2105 location. */
2106
2107 boffset += offset;
2108 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2109 {
2110 CORE_ADDR base_addr;
2111
2112 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2113 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2114 TYPE_LENGTH (basetype)) != 0)
2115 error ("virtual baseclass botch");
2116 VALUE_LVAL (v2) = lval_memory;
2117 VALUE_ADDRESS (v2) = base_addr;
2118 }
2119 else
2120 {
2121 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2122 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2123 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2124 if (VALUE_LAZY (arg1))
2125 VALUE_LAZY (v2) = 1;
2126 else
2127 memcpy (VALUE_CONTENTS_RAW (v2),
2128 VALUE_CONTENTS_RAW (arg1) + boffset,
2129 TYPE_LENGTH (basetype));
2130 }
2131
2132 if (found_baseclass)
2133 return v2;
2134 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2135 looking_for_baseclass);
2136 }
2137 else if (found_baseclass)
2138 v = value_primitive_field (arg1, offset, i, type);
2139 else
2140 v = search_struct_field (name, arg1,
2141 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2142 basetype, looking_for_baseclass);
2143 if (v)
2144 return v;
2145 }
2146 return NULL;
2147 }
2148
2149
2150 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2151 * in an object pointed to by VALADDR (on the host), assumed to be of
2152 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2153 * looking (in case VALADDR is the contents of an enclosing object).
2154 *
2155 * This routine recurses on the primary base of the derived class because
2156 * the virtual base entries of the primary base appear before the other
2157 * virtual base entries.
2158 *
2159 * If the virtual base is not found, a negative integer is returned.
2160 * The magnitude of the negative integer is the number of entries in
2161 * the virtual table to skip over (entries corresponding to various
2162 * ancestral classes in the chain of primary bases).
2163 *
2164 * Important: This assumes the HP / Taligent C++ runtime
2165 * conventions. Use baseclass_offset() instead to deal with g++
2166 * conventions. */
2167
2168 void
2169 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2170 int offset, int *boffset_p, int *skip_p)
2171 {
2172 int boffset; /* offset of virtual base */
2173 int index; /* displacement to use in virtual table */
2174 int skip;
2175
2176 value_ptr vp;
2177 CORE_ADDR vtbl; /* the virtual table pointer */
2178 struct type *pbc; /* the primary base class */
2179
2180 /* Look for the virtual base recursively in the primary base, first.
2181 * This is because the derived class object and its primary base
2182 * subobject share the primary virtual table. */
2183
2184 boffset = 0;
2185 pbc = TYPE_PRIMARY_BASE (type);
2186 if (pbc)
2187 {
2188 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2189 if (skip < 0)
2190 {
2191 *boffset_p = boffset;
2192 *skip_p = -1;
2193 return;
2194 }
2195 }
2196 else
2197 skip = 0;
2198
2199
2200 /* Find the index of the virtual base according to HP/Taligent
2201 runtime spec. (Depth-first, left-to-right.) */
2202 index = virtual_base_index_skip_primaries (basetype, type);
2203
2204 if (index < 0)
2205 {
2206 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2207 *boffset_p = 0;
2208 return;
2209 }
2210
2211 /* pai: FIXME -- 32x64 possible problem */
2212 /* First word (4 bytes) in object layout is the vtable pointer */
2213 vtbl = *(CORE_ADDR *) (valaddr + offset);
2214
2215 /* Before the constructor is invoked, things are usually zero'd out. */
2216 if (vtbl == 0)
2217 error ("Couldn't find virtual table -- object may not be constructed yet.");
2218
2219
2220 /* Find virtual base's offset -- jump over entries for primary base
2221 * ancestors, then use the index computed above. But also adjust by
2222 * HP_ACC_VBASE_START for the vtable slots before the start of the
2223 * virtual base entries. Offset is negative -- virtual base entries
2224 * appear _before_ the address point of the virtual table. */
2225
2226 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2227 & use long type */
2228
2229 /* epstein : FIXME -- added param for overlay section. May not be correct */
2230 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2231 boffset = value_as_long (vp);
2232 *skip_p = -1;
2233 *boffset_p = boffset;
2234 return;
2235 }
2236
2237
2238 /* Helper function used by value_struct_elt to recurse through baseclasses.
2239 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2240 and search in it assuming it has (class) type TYPE.
2241 If found, return value, else if name matched and args not return (value)-1,
2242 else return NULL. */
2243
2244 static value_ptr
2245 search_struct_method (char *name, register value_ptr *arg1p,
2246 register value_ptr *args, int offset,
2247 int *static_memfuncp, register struct type *type)
2248 {
2249 int i;
2250 value_ptr v;
2251 int name_matched = 0;
2252 char dem_opname[64];
2253
2254 CHECK_TYPEDEF (type);
2255 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2256 {
2257 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2258 /* FIXME! May need to check for ARM demangling here */
2259 if (strncmp (t_field_name, "__", 2) == 0 ||
2260 strncmp (t_field_name, "op", 2) == 0 ||
2261 strncmp (t_field_name, "type", 4) == 0)
2262 {
2263 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2264 t_field_name = dem_opname;
2265 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2266 t_field_name = dem_opname;
2267 }
2268 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2269 {
2270 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2271 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2272 name_matched = 1;
2273
2274 if (j > 0 && args == 0)
2275 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2276 while (j >= 0)
2277 {
2278 if (TYPE_FN_FIELD_STUB (f, j))
2279 check_stub_method (type, i, j);
2280 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2281 TYPE_FN_FIELD_ARGS (f, j), args))
2282 {
2283 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2284 return value_virtual_fn_field (arg1p, f, j, type, offset);
2285 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2286 *static_memfuncp = 1;
2287 v = value_fn_field (arg1p, f, j, type, offset);
2288 if (v != NULL)
2289 return v;
2290 }
2291 j--;
2292 }
2293 }
2294 }
2295
2296 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2297 {
2298 int base_offset;
2299
2300 if (BASETYPE_VIA_VIRTUAL (type, i))
2301 {
2302 if (TYPE_HAS_VTABLE (type))
2303 {
2304 /* HP aCC compiled type, search for virtual base offset
2305 according to HP/Taligent runtime spec. */
2306 int skip;
2307 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2308 VALUE_CONTENTS_ALL (*arg1p),
2309 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2310 &base_offset, &skip);
2311 if (skip >= 0)
2312 error ("Virtual base class offset not found in vtable");
2313 }
2314 else
2315 {
2316 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2317 char *base_valaddr;
2318
2319 /* The virtual base class pointer might have been clobbered by the
2320 user program. Make sure that it still points to a valid memory
2321 location. */
2322
2323 if (offset < 0 || offset >= TYPE_LENGTH (type))
2324 {
2325 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2326 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2327 + VALUE_OFFSET (*arg1p) + offset,
2328 base_valaddr,
2329 TYPE_LENGTH (baseclass)) != 0)
2330 error ("virtual baseclass botch");
2331 }
2332 else
2333 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2334
2335 base_offset =
2336 baseclass_offset (type, i, base_valaddr,
2337 VALUE_ADDRESS (*arg1p)
2338 + VALUE_OFFSET (*arg1p) + offset);
2339 if (base_offset == -1)
2340 error ("virtual baseclass botch");
2341 }
2342 }
2343 else
2344 {
2345 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2346 }
2347 v = search_struct_method (name, arg1p, args, base_offset + offset,
2348 static_memfuncp, TYPE_BASECLASS (type, i));
2349 if (v == (value_ptr) - 1)
2350 {
2351 name_matched = 1;
2352 }
2353 else if (v)
2354 {
2355 /* FIXME-bothner: Why is this commented out? Why is it here? */
2356 /* *arg1p = arg1_tmp; */
2357 return v;
2358 }
2359 }
2360 if (name_matched)
2361 return (value_ptr) - 1;
2362 else
2363 return NULL;
2364 }
2365
2366 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2367 extract the component named NAME from the ultimate target structure/union
2368 and return it as a value with its appropriate type.
2369 ERR is used in the error message if *ARGP's type is wrong.
2370
2371 C++: ARGS is a list of argument types to aid in the selection of
2372 an appropriate method. Also, handle derived types.
2373
2374 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2375 where the truthvalue of whether the function that was resolved was
2376 a static member function or not is stored.
2377
2378 ERR is an error message to be printed in case the field is not found. */
2379
2380 value_ptr
2381 value_struct_elt (register value_ptr *argp, register value_ptr *args,
2382 char *name, int *static_memfuncp, char *err)
2383 {
2384 register struct type *t;
2385 value_ptr v;
2386
2387 COERCE_ARRAY (*argp);
2388
2389 t = check_typedef (VALUE_TYPE (*argp));
2390
2391 /* Follow pointers until we get to a non-pointer. */
2392
2393 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2394 {
2395 *argp = value_ind (*argp);
2396 /* Don't coerce fn pointer to fn and then back again! */
2397 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2398 COERCE_ARRAY (*argp);
2399 t = check_typedef (VALUE_TYPE (*argp));
2400 }
2401
2402 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2403 error ("not implemented: member type in value_struct_elt");
2404
2405 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2406 && TYPE_CODE (t) != TYPE_CODE_UNION)
2407 error ("Attempt to extract a component of a value that is not a %s.", err);
2408
2409 /* Assume it's not, unless we see that it is. */
2410 if (static_memfuncp)
2411 *static_memfuncp = 0;
2412
2413 if (!args)
2414 {
2415 /* if there are no arguments ...do this... */
2416
2417 /* Try as a field first, because if we succeed, there
2418 is less work to be done. */
2419 v = search_struct_field (name, *argp, 0, t, 0);
2420 if (v)
2421 return v;
2422
2423 /* C++: If it was not found as a data field, then try to
2424 return it as a pointer to a method. */
2425
2426 if (destructor_name_p (name, t))
2427 error ("Cannot get value of destructor");
2428
2429 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2430
2431 if (v == (value_ptr) - 1)
2432 error ("Cannot take address of a method");
2433 else if (v == 0)
2434 {
2435 if (TYPE_NFN_FIELDS (t))
2436 error ("There is no member or method named %s.", name);
2437 else
2438 error ("There is no member named %s.", name);
2439 }
2440 return v;
2441 }
2442
2443 if (destructor_name_p (name, t))
2444 {
2445 if (!args[1])
2446 {
2447 /* Destructors are a special case. */
2448 int m_index, f_index;
2449
2450 v = NULL;
2451 if (get_destructor_fn_field (t, &m_index, &f_index))
2452 {
2453 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2454 f_index, NULL, 0);
2455 }
2456 if (v == NULL)
2457 error ("could not find destructor function named %s.", name);
2458 else
2459 return v;
2460 }
2461 else
2462 {
2463 error ("destructor should not have any argument");
2464 }
2465 }
2466 else
2467 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2468
2469 if (v == (value_ptr) - 1)
2470 {
2471 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2472 }
2473 else if (v == 0)
2474 {
2475 /* See if user tried to invoke data as function. If so,
2476 hand it back. If it's not callable (i.e., a pointer to function),
2477 gdb should give an error. */
2478 v = search_struct_field (name, *argp, 0, t, 0);
2479 }
2480
2481 if (!v)
2482 error ("Structure has no component named %s.", name);
2483 return v;
2484 }
2485
2486 /* Search through the methods of an object (and its bases)
2487 * to find a specified method. Return the pointer to the
2488 * fn_field list of overloaded instances.
2489 * Helper function for value_find_oload_list.
2490 * ARGP is a pointer to a pointer to a value (the object)
2491 * METHOD is a string containing the method name
2492 * OFFSET is the offset within the value
2493 * STATIC_MEMFUNCP is set if the method is static
2494 * TYPE is the assumed type of the object
2495 * NUM_FNS is the number of overloaded instances
2496 * BASETYPE is set to the actual type of the subobject where the method is found
2497 * BOFFSET is the offset of the base subobject where the method is found */
2498
2499 static struct fn_field *
2500 find_method_list (value_ptr *argp, char *method, int offset,
2501 int *static_memfuncp, struct type *type, int *num_fns,
2502 struct type **basetype, int *boffset)
2503 {
2504 int i;
2505 struct fn_field *f;
2506 CHECK_TYPEDEF (type);
2507
2508 *num_fns = 0;
2509
2510 /* First check in object itself */
2511 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2512 {
2513 /* pai: FIXME What about operators and type conversions? */
2514 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2515 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2516 {
2517 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2518 *basetype = type;
2519 *boffset = offset;
2520 return TYPE_FN_FIELDLIST1 (type, i);
2521 }
2522 }
2523
2524 /* Not found in object, check in base subobjects */
2525 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2526 {
2527 int base_offset;
2528 if (BASETYPE_VIA_VIRTUAL (type, i))
2529 {
2530 if (TYPE_HAS_VTABLE (type))
2531 {
2532 /* HP aCC compiled type, search for virtual base offset
2533 * according to HP/Taligent runtime spec. */
2534 int skip;
2535 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2536 VALUE_CONTENTS_ALL (*argp),
2537 offset + VALUE_EMBEDDED_OFFSET (*argp),
2538 &base_offset, &skip);
2539 if (skip >= 0)
2540 error ("Virtual base class offset not found in vtable");
2541 }
2542 else
2543 {
2544 /* probably g++ runtime model */
2545 base_offset = VALUE_OFFSET (*argp) + offset;
2546 base_offset =
2547 baseclass_offset (type, i,
2548 VALUE_CONTENTS (*argp) + base_offset,
2549 VALUE_ADDRESS (*argp) + base_offset);
2550 if (base_offset == -1)
2551 error ("virtual baseclass botch");
2552 }
2553 }
2554 else
2555 /* non-virtual base, simply use bit position from debug info */
2556 {
2557 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2558 }
2559 f = find_method_list (argp, method, base_offset + offset,
2560 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2561 if (f)
2562 return f;
2563 }
2564 return NULL;
2565 }
2566
2567 /* Return the list of overloaded methods of a specified name.
2568 * ARGP is a pointer to a pointer to a value (the object)
2569 * METHOD is the method name
2570 * OFFSET is the offset within the value contents
2571 * STATIC_MEMFUNCP is set if the method is static
2572 * NUM_FNS is the number of overloaded instances
2573 * BASETYPE is set to the type of the base subobject that defines the method
2574 * BOFFSET is the offset of the base subobject which defines the method */
2575
2576 struct fn_field *
2577 value_find_oload_method_list (value_ptr *argp, char *method, int offset,
2578 int *static_memfuncp, int *num_fns,
2579 struct type **basetype, int *boffset)
2580 {
2581 struct type *t;
2582
2583 t = check_typedef (VALUE_TYPE (*argp));
2584
2585 /* code snarfed from value_struct_elt */
2586 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2587 {
2588 *argp = value_ind (*argp);
2589 /* Don't coerce fn pointer to fn and then back again! */
2590 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2591 COERCE_ARRAY (*argp);
2592 t = check_typedef (VALUE_TYPE (*argp));
2593 }
2594
2595 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2596 error ("Not implemented: member type in value_find_oload_lis");
2597
2598 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2599 && TYPE_CODE (t) != TYPE_CODE_UNION)
2600 error ("Attempt to extract a component of a value that is not a struct or union");
2601
2602 /* Assume it's not static, unless we see that it is. */
2603 if (static_memfuncp)
2604 *static_memfuncp = 0;
2605
2606 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2607
2608 }
2609
2610 /* Given an array of argument types (ARGTYPES) (which includes an
2611 entry for "this" in the case of C++ methods), the number of
2612 arguments NARGS, the NAME of a function whether it's a method or
2613 not (METHOD), and the degree of laxness (LAX) in conforming to
2614 overload resolution rules in ANSI C++, find the best function that
2615 matches on the argument types according to the overload resolution
2616 rules.
2617
2618 In the case of class methods, the parameter OBJ is an object value
2619 in which to search for overloaded methods.
2620
2621 In the case of non-method functions, the parameter FSYM is a symbol
2622 corresponding to one of the overloaded functions.
2623
2624 Return value is an integer: 0 -> good match, 10 -> debugger applied
2625 non-standard coercions, 100 -> incompatible.
2626
2627 If a method is being searched for, VALP will hold the value.
2628 If a non-method is being searched for, SYMP will hold the symbol for it.
2629
2630 If a method is being searched for, and it is a static method,
2631 then STATICP will point to a non-zero value.
2632
2633 Note: This function does *not* check the value of
2634 overload_resolution. Caller must check it to see whether overload
2635 resolution is permitted.
2636 */
2637
2638 int
2639 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2640 int lax, value_ptr obj, struct symbol *fsym,
2641 value_ptr *valp, struct symbol **symp, int *staticp)
2642 {
2643 int nparms;
2644 struct type **parm_types;
2645 int champ_nparms = 0;
2646
2647 short oload_champ = -1; /* Index of best overloaded function */
2648 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2649 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2650 short oload_ambig_champ = -1; /* 2nd contender for best match */
2651 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2652 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2653
2654 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2655 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2656
2657 value_ptr temp = obj;
2658 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2659 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2660 int num_fns = 0; /* Number of overloaded instances being considered */
2661 struct type *basetype = NULL;
2662 int boffset;
2663 register int jj;
2664 register int ix;
2665
2666 char *obj_type_name = NULL;
2667 char *func_name = NULL;
2668
2669 /* Get the list of overloaded methods or functions */
2670 if (method)
2671 {
2672 int i;
2673 int len;
2674 struct type *domain;
2675 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2676 /* Hack: evaluate_subexp_standard often passes in a pointer
2677 value rather than the object itself, so try again */
2678 if ((!obj_type_name || !*obj_type_name) &&
2679 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2680 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2681
2682 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2683 staticp,
2684 &num_fns,
2685 &basetype, &boffset);
2686 if (!fns_ptr || !num_fns)
2687 error ("Couldn't find method %s%s%s",
2688 obj_type_name,
2689 (obj_type_name && *obj_type_name) ? "::" : "",
2690 name);
2691 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2692 len = TYPE_NFN_FIELDS (domain);
2693 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2694 give us the info we need directly in the types. We have to
2695 use the method stub conversion to get it. Be aware that this
2696 is by no means perfect, and if you use STABS, please move to
2697 DWARF-2, or something like it, because trying to improve
2698 overloading using STABS is really a waste of time. */
2699 for (i = 0; i < len; i++)
2700 {
2701 int j;
2702 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2703 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2704
2705 for (j = 0; j < len2; j++)
2706 {
2707 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2708 check_stub_method (domain, i, j);
2709 }
2710 }
2711 }
2712 else
2713 {
2714 int i = -1;
2715 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2716
2717 /* If the name is NULL this must be a C-style function.
2718 Just return the same symbol. */
2719 if (!func_name)
2720 {
2721 *symp = fsym;
2722 return 0;
2723 }
2724
2725 oload_syms = make_symbol_overload_list (fsym);
2726 while (oload_syms[++i])
2727 num_fns++;
2728 if (!num_fns)
2729 error ("Couldn't find function %s", func_name);
2730 }
2731
2732 oload_champ_bv = NULL;
2733
2734 /* Consider each candidate in turn */
2735 for (ix = 0; ix < num_fns; ix++)
2736 {
2737 if (method)
2738 {
2739 /* For static member functions, we won't have a this pointer, but nothing
2740 else seems to handle them right now, so we just pretend ourselves */
2741 nparms=0;
2742
2743 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2744 {
2745 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2746 nparms++;
2747 }
2748 }
2749 else
2750 {
2751 /* If it's not a method, this is the proper place */
2752 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2753 }
2754
2755 /* Prepare array of parameter types */
2756 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2757 for (jj = 0; jj < nparms; jj++)
2758 parm_types[jj] = (method
2759 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2760 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2761
2762 /* Compare parameter types to supplied argument types */
2763 bv = rank_function (parm_types, nparms, arg_types, nargs);
2764
2765 if (!oload_champ_bv)
2766 {
2767 oload_champ_bv = bv;
2768 oload_champ = 0;
2769 champ_nparms = nparms;
2770 }
2771 else
2772 /* See whether current candidate is better or worse than previous best */
2773 switch (compare_badness (bv, oload_champ_bv))
2774 {
2775 case 0:
2776 oload_ambiguous = 1; /* top two contenders are equally good */
2777 oload_ambig_champ = ix;
2778 break;
2779 case 1:
2780 oload_ambiguous = 2; /* incomparable top contenders */
2781 oload_ambig_champ = ix;
2782 break;
2783 case 2:
2784 oload_champ_bv = bv; /* new champion, record details */
2785 oload_ambiguous = 0;
2786 oload_champ = ix;
2787 oload_ambig_champ = -1;
2788 champ_nparms = nparms;
2789 break;
2790 case 3:
2791 default:
2792 break;
2793 }
2794 xfree (parm_types);
2795 if (overload_debug)
2796 {
2797 if (method)
2798 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2799 else
2800 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2801 for (jj = 0; jj < nargs; jj++)
2802 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2803 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2804 }
2805 } /* end loop over all candidates */
2806 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2807 if they have the exact same goodness. This is because there is no
2808 way to differentiate based on return type, which we need to in
2809 cases like overloads of .begin() <It's both const and non-const> */
2810 #if 0
2811 if (oload_ambiguous)
2812 {
2813 if (method)
2814 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2815 obj_type_name,
2816 (obj_type_name && *obj_type_name) ? "::" : "",
2817 name);
2818 else
2819 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2820 func_name);
2821 }
2822 #endif
2823
2824 /* Check how bad the best match is */
2825 for (ix = 1; ix <= nargs; ix++)
2826 {
2827 if (oload_champ_bv->rank[ix] >= 100)
2828 oload_incompatible = 1; /* truly mismatched types */
2829
2830 else if (oload_champ_bv->rank[ix] >= 10)
2831 oload_non_standard = 1; /* non-standard type conversions needed */
2832 }
2833 if (oload_incompatible)
2834 {
2835 if (method)
2836 error ("Cannot resolve method %s%s%s to any overloaded instance",
2837 obj_type_name,
2838 (obj_type_name && *obj_type_name) ? "::" : "",
2839 name);
2840 else
2841 error ("Cannot resolve function %s to any overloaded instance",
2842 func_name);
2843 }
2844 else if (oload_non_standard)
2845 {
2846 if (method)
2847 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2848 obj_type_name,
2849 (obj_type_name && *obj_type_name) ? "::" : "",
2850 name);
2851 else
2852 warning ("Using non-standard conversion to match function %s to supplied arguments",
2853 func_name);
2854 }
2855
2856 if (method)
2857 {
2858 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2859 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2860 else
2861 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2862 }
2863 else
2864 {
2865 *symp = oload_syms[oload_champ];
2866 xfree (func_name);
2867 }
2868
2869 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2870 }
2871
2872 /* C++: return 1 is NAME is a legitimate name for the destructor
2873 of type TYPE. If TYPE does not have a destructor, or
2874 if NAME is inappropriate for TYPE, an error is signaled. */
2875 int
2876 destructor_name_p (const char *name, const struct type *type)
2877 {
2878 /* destructors are a special case. */
2879
2880 if (name[0] == '~')
2881 {
2882 char *dname = type_name_no_tag (type);
2883 char *cp = strchr (dname, '<');
2884 unsigned int len;
2885
2886 /* Do not compare the template part for template classes. */
2887 if (cp == NULL)
2888 len = strlen (dname);
2889 else
2890 len = cp - dname;
2891 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2892 error ("name of destructor must equal name of class");
2893 else
2894 return 1;
2895 }
2896 return 0;
2897 }
2898
2899 /* Helper function for check_field: Given TYPE, a structure/union,
2900 return 1 if the component named NAME from the ultimate
2901 target structure/union is defined, otherwise, return 0. */
2902
2903 static int
2904 check_field_in (register struct type *type, const char *name)
2905 {
2906 register int i;
2907
2908 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2909 {
2910 char *t_field_name = TYPE_FIELD_NAME (type, i);
2911 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2912 return 1;
2913 }
2914
2915 /* C++: If it was not found as a data field, then try to
2916 return it as a pointer to a method. */
2917
2918 /* Destructors are a special case. */
2919 if (destructor_name_p (name, type))
2920 {
2921 int m_index, f_index;
2922
2923 return get_destructor_fn_field (type, &m_index, &f_index);
2924 }
2925
2926 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2927 {
2928 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2929 return 1;
2930 }
2931
2932 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2933 if (check_field_in (TYPE_BASECLASS (type, i), name))
2934 return 1;
2935
2936 return 0;
2937 }
2938
2939
2940 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2941 return 1 if the component named NAME from the ultimate
2942 target structure/union is defined, otherwise, return 0. */
2943
2944 int
2945 check_field (register value_ptr arg1, const char *name)
2946 {
2947 register struct type *t;
2948
2949 COERCE_ARRAY (arg1);
2950
2951 t = VALUE_TYPE (arg1);
2952
2953 /* Follow pointers until we get to a non-pointer. */
2954
2955 for (;;)
2956 {
2957 CHECK_TYPEDEF (t);
2958 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2959 break;
2960 t = TYPE_TARGET_TYPE (t);
2961 }
2962
2963 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2964 error ("not implemented: member type in check_field");
2965
2966 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2967 && TYPE_CODE (t) != TYPE_CODE_UNION)
2968 error ("Internal error: `this' is not an aggregate");
2969
2970 return check_field_in (t, name);
2971 }
2972
2973 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2974 return the address of this member as a "pointer to member"
2975 type. If INTYPE is non-null, then it will be the type
2976 of the member we are looking for. This will help us resolve
2977 "pointers to member functions". This function is used
2978 to resolve user expressions of the form "DOMAIN::NAME". */
2979
2980 value_ptr
2981 value_struct_elt_for_reference (struct type *domain, int offset,
2982 struct type *curtype, char *name,
2983 struct type *intype)
2984 {
2985 register struct type *t = curtype;
2986 register int i;
2987 value_ptr v;
2988
2989 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2990 && TYPE_CODE (t) != TYPE_CODE_UNION)
2991 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2992
2993 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2994 {
2995 char *t_field_name = TYPE_FIELD_NAME (t, i);
2996
2997 if (t_field_name && STREQ (t_field_name, name))
2998 {
2999 if (TYPE_FIELD_STATIC (t, i))
3000 {
3001 v = value_static_field (t, i);
3002 if (v == NULL)
3003 error ("Internal error: could not find static variable %s",
3004 name);
3005 return v;
3006 }
3007 if (TYPE_FIELD_PACKED (t, i))
3008 error ("pointers to bitfield members not allowed");
3009
3010 return value_from_longest
3011 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3012 domain)),
3013 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3014 }
3015 }
3016
3017 /* C++: If it was not found as a data field, then try to
3018 return it as a pointer to a method. */
3019
3020 /* Destructors are a special case. */
3021 if (destructor_name_p (name, t))
3022 {
3023 error ("member pointers to destructors not implemented yet");
3024 }
3025
3026 /* Perform all necessary dereferencing. */
3027 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3028 intype = TYPE_TARGET_TYPE (intype);
3029
3030 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3031 {
3032 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3033 char dem_opname[64];
3034
3035 if (strncmp (t_field_name, "__", 2) == 0 ||
3036 strncmp (t_field_name, "op", 2) == 0 ||
3037 strncmp (t_field_name, "type", 4) == 0)
3038 {
3039 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3040 t_field_name = dem_opname;
3041 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3042 t_field_name = dem_opname;
3043 }
3044 if (t_field_name && STREQ (t_field_name, name))
3045 {
3046 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3047 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3048
3049 if (intype == 0 && j > 1)
3050 error ("non-unique member `%s' requires type instantiation", name);
3051 if (intype)
3052 {
3053 while (j--)
3054 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3055 break;
3056 if (j < 0)
3057 error ("no member function matches that type instantiation");
3058 }
3059 else
3060 j = 0;
3061
3062 if (TYPE_FN_FIELD_STUB (f, j))
3063 check_stub_method (t, i, j);
3064 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3065 {
3066 return value_from_longest
3067 (lookup_reference_type
3068 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3069 domain)),
3070 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3071 }
3072 else
3073 {
3074 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3075 0, VAR_NAMESPACE, 0, NULL);
3076 if (s == NULL)
3077 {
3078 v = 0;
3079 }
3080 else
3081 {
3082 v = read_var_value (s, 0);
3083 #if 0
3084 VALUE_TYPE (v) = lookup_reference_type
3085 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3086 domain));
3087 #endif
3088 }
3089 return v;
3090 }
3091 }
3092 }
3093 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3094 {
3095 value_ptr v;
3096 int base_offset;
3097
3098 if (BASETYPE_VIA_VIRTUAL (t, i))
3099 base_offset = 0;
3100 else
3101 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3102 v = value_struct_elt_for_reference (domain,
3103 offset + base_offset,
3104 TYPE_BASECLASS (t, i),
3105 name,
3106 intype);
3107 if (v)
3108 return v;
3109 }
3110 return 0;
3111 }
3112
3113
3114 /* Given a pointer value V, find the real (RTTI) type
3115 of the object it points to.
3116 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3117 and refer to the values computed for the object pointed to. */
3118
3119 struct type *
3120 value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
3121 {
3122 value_ptr target;
3123
3124 target = value_ind (v);
3125
3126 return value_rtti_type (target, full, top, using_enc);
3127 }
3128
3129 /* Given a value pointed to by ARGP, check its real run-time type, and
3130 if that is different from the enclosing type, create a new value
3131 using the real run-time type as the enclosing type (and of the same
3132 type as ARGP) and return it, with the embedded offset adjusted to
3133 be the correct offset to the enclosed object
3134 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3135 parameters, computed by value_rtti_type(). If these are available,
3136 they can be supplied and a second call to value_rtti_type() is avoided.
3137 (Pass RTYPE == NULL if they're not available */
3138
3139 value_ptr
3140 value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
3141 int xusing_enc)
3142 {
3143 struct type *real_type;
3144 int full = 0;
3145 int top = -1;
3146 int using_enc = 0;
3147 value_ptr new_val;
3148
3149 if (rtype)
3150 {
3151 real_type = rtype;
3152 full = xfull;
3153 top = xtop;
3154 using_enc = xusing_enc;
3155 }
3156 else
3157 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3158
3159 /* If no RTTI data, or if object is already complete, do nothing */
3160 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3161 return argp;
3162
3163 /* If we have the full object, but for some reason the enclosing
3164 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3165 if (full)
3166 {
3167 argp = value_change_enclosing_type (argp, real_type);
3168 return argp;
3169 }
3170
3171 /* Check if object is in memory */
3172 if (VALUE_LVAL (argp) != lval_memory)
3173 {
3174 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3175
3176 return argp;
3177 }
3178
3179 /* All other cases -- retrieve the complete object */
3180 /* Go back by the computed top_offset from the beginning of the object,
3181 adjusting for the embedded offset of argp if that's what value_rtti_type
3182 used for its computation. */
3183 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3184 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3185 VALUE_BFD_SECTION (argp));
3186 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3187 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3188 return new_val;
3189 }
3190
3191
3192
3193
3194 /* C++: return the value of the class instance variable, if one exists.
3195 Flag COMPLAIN signals an error if the request is made in an
3196 inappropriate context. */
3197
3198 value_ptr
3199 value_of_this (int complain)
3200 {
3201 struct symbol *func, *sym;
3202 struct block *b;
3203 int i;
3204 static const char funny_this[] = "this";
3205 value_ptr this;
3206
3207 if (selected_frame == 0)
3208 {
3209 if (complain)
3210 error ("no frame selected");
3211 else
3212 return 0;
3213 }
3214
3215 func = get_frame_function (selected_frame);
3216 if (!func)
3217 {
3218 if (complain)
3219 error ("no `this' in nameless context");
3220 else
3221 return 0;
3222 }
3223
3224 b = SYMBOL_BLOCK_VALUE (func);
3225 i = BLOCK_NSYMS (b);
3226 if (i <= 0)
3227 {
3228 if (complain)
3229 error ("no args, no `this'");
3230 else
3231 return 0;
3232 }
3233
3234 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3235 symbol instead of the LOC_ARG one (if both exist). */
3236 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3237 if (sym == NULL)
3238 {
3239 if (complain)
3240 error ("current stack frame not in method");
3241 else
3242 return NULL;
3243 }
3244
3245 this = read_var_value (sym, selected_frame);
3246 if (this == 0 && complain)
3247 error ("`this' argument at unknown address");
3248 return this;
3249 }
3250
3251 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3252 long, starting at LOWBOUND. The result has the same lower bound as
3253 the original ARRAY. */
3254
3255 value_ptr
3256 value_slice (value_ptr array, int lowbound, int length)
3257 {
3258 struct type *slice_range_type, *slice_type, *range_type;
3259 LONGEST lowerbound, upperbound, offset;
3260 value_ptr slice;
3261 struct type *array_type;
3262 array_type = check_typedef (VALUE_TYPE (array));
3263 COERCE_VARYING_ARRAY (array, array_type);
3264 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3265 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3266 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3267 error ("cannot take slice of non-array");
3268 range_type = TYPE_INDEX_TYPE (array_type);
3269 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3270 error ("slice from bad array or bitstring");
3271 if (lowbound < lowerbound || length < 0
3272 || lowbound + length - 1 > upperbound
3273 /* Chill allows zero-length strings but not arrays. */
3274 || (current_language->la_language == language_chill
3275 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3276 error ("slice out of range");
3277 /* FIXME-type-allocation: need a way to free this type when we are
3278 done with it. */
3279 slice_range_type = create_range_type ((struct type *) NULL,
3280 TYPE_TARGET_TYPE (range_type),
3281 lowbound, lowbound + length - 1);
3282 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3283 {
3284 int i;
3285 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3286 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3287 slice = value_zero (slice_type, not_lval);
3288 for (i = 0; i < length; i++)
3289 {
3290 int element = value_bit_index (array_type,
3291 VALUE_CONTENTS (array),
3292 lowbound + i);
3293 if (element < 0)
3294 error ("internal error accessing bitstring");
3295 else if (element > 0)
3296 {
3297 int j = i % TARGET_CHAR_BIT;
3298 if (BITS_BIG_ENDIAN)
3299 j = TARGET_CHAR_BIT - 1 - j;
3300 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3301 }
3302 }
3303 /* We should set the address, bitssize, and bitspos, so the clice
3304 can be used on the LHS, but that may require extensions to
3305 value_assign. For now, just leave as a non_lval. FIXME. */
3306 }
3307 else
3308 {
3309 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3310 offset
3311 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3312 slice_type = create_array_type ((struct type *) NULL, element_type,
3313 slice_range_type);
3314 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3315 slice = allocate_value (slice_type);
3316 if (VALUE_LAZY (array))
3317 VALUE_LAZY (slice) = 1;
3318 else
3319 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3320 TYPE_LENGTH (slice_type));
3321 if (VALUE_LVAL (array) == lval_internalvar)
3322 VALUE_LVAL (slice) = lval_internalvar_component;
3323 else
3324 VALUE_LVAL (slice) = VALUE_LVAL (array);
3325 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3326 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3327 }
3328 return slice;
3329 }
3330
3331 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3332 value as a fixed-length array. */
3333
3334 value_ptr
3335 varying_to_slice (value_ptr varray)
3336 {
3337 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3338 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3339 VALUE_CONTENTS (varray)
3340 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3341 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3342 }
3343
3344 /* Create a value for a FORTRAN complex number. Currently most of
3345 the time values are coerced to COMPLEX*16 (i.e. a complex number
3346 composed of 2 doubles. This really should be a smarter routine
3347 that figures out precision inteligently as opposed to assuming
3348 doubles. FIXME: fmb */
3349
3350 value_ptr
3351 value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
3352 {
3353 register value_ptr val;
3354 struct type *real_type = TYPE_TARGET_TYPE (type);
3355
3356 val = allocate_value (type);
3357 arg1 = value_cast (real_type, arg1);
3358 arg2 = value_cast (real_type, arg2);
3359
3360 memcpy (VALUE_CONTENTS_RAW (val),
3361 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3362 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3363 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3364 return val;
3365 }
3366
3367 /* Cast a value into the appropriate complex data type. */
3368
3369 static value_ptr
3370 cast_into_complex (struct type *type, register value_ptr val)
3371 {
3372 struct type *real_type = TYPE_TARGET_TYPE (type);
3373 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3374 {
3375 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3376 value_ptr re_val = allocate_value (val_real_type);
3377 value_ptr im_val = allocate_value (val_real_type);
3378
3379 memcpy (VALUE_CONTENTS_RAW (re_val),
3380 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3381 memcpy (VALUE_CONTENTS_RAW (im_val),
3382 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3383 TYPE_LENGTH (val_real_type));
3384
3385 return value_literal_complex (re_val, im_val, type);
3386 }
3387 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3388 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3389 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3390 else
3391 error ("cannot cast non-number to complex");
3392 }
3393
3394 void
3395 _initialize_valops (void)
3396 {
3397 #if 0
3398 add_show_from_set
3399 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3400 "Set automatic abandonment of expressions upon failure.",
3401 &setlist),
3402 &showlist);
3403 #endif
3404
3405 add_show_from_set
3406 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3407 "Set overload resolution in evaluating C++ functions.",
3408 &setlist),
3409 &showlist);
3410 overload_resolution = 1;
3411
3412 add_show_from_set (
3413 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3414 (char *) &unwind_on_signal_p,
3415 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3416 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3417 is received while in a function called from gdb (call dummy). If set, gdb\n\
3418 unwinds the stack and restore the context to what as it was before the call.\n\
3419 The default is to stop in the frame where the signal was received.", &setlist),
3420 &showlist);
3421 }
This page took 0.099782 seconds and 4 git commands to generate.