gdb
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (const char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (const char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **,
67 const int no_adl);
68
69 static
70 int find_oload_champ_namespace_loop (struct type **, int,
71 const char *, const char *,
72 int, struct symbol ***,
73 struct badness_vector **, int *,
74 const int no_adl);
75
76 static int find_oload_champ (struct type **, int, int, int,
77 struct fn_field *, struct symbol **,
78 struct badness_vector **);
79
80 static int oload_method_static (int, struct fn_field *, int);
81
82 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
83
84 static enum
85 oload_classification classify_oload_match (struct badness_vector *,
86 int, int);
87
88 static struct value *value_struct_elt_for_reference (struct type *,
89 int, struct type *,
90 char *,
91 struct type *,
92 int, enum noside);
93
94 static struct value *value_namespace_elt (const struct type *,
95 char *, int , enum noside);
96
97 static struct value *value_maybe_namespace_elt (const struct type *,
98 char *, int,
99 enum noside);
100
101 static CORE_ADDR allocate_space_in_inferior (int);
102
103 static struct value *cast_into_complex (struct type *, struct value *);
104
105 static struct fn_field *find_method_list (struct value **, const char *,
106 int, struct type *, int *,
107 struct type **, int *);
108
109 void _initialize_valops (void);
110
111 #if 0
112 /* Flag for whether we want to abandon failed expression evals by
113 default. */
114
115 static int auto_abandon = 0;
116 #endif
117
118 int overload_resolution = 0;
119 static void
120 show_overload_resolution (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c,
122 const char *value)
123 {
124 fprintf_filtered (file, _("\
125 Overload resolution in evaluating C++ functions is %s.\n"),
126 value);
127 }
128
129 /* Find the address of function name NAME in the inferior. If OBJF_P
130 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
131 is defined. */
132
133 struct value *
134 find_function_in_inferior (const char *name, struct objfile **objf_p)
135 {
136 struct symbol *sym;
137
138 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
139 if (sym != NULL)
140 {
141 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
142 {
143 error (_("\"%s\" exists in this program but is not a function."),
144 name);
145 }
146
147 if (objf_p)
148 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
149
150 return value_of_variable (sym, NULL);
151 }
152 else
153 {
154 struct minimal_symbol *msymbol =
155 lookup_minimal_symbol (name, NULL, NULL);
156
157 if (msymbol != NULL)
158 {
159 struct objfile *objfile = msymbol_objfile (msymbol);
160 struct gdbarch *gdbarch = get_objfile_arch (objfile);
161
162 struct type *type;
163 CORE_ADDR maddr;
164 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
165 type = lookup_function_type (type);
166 type = lookup_pointer_type (type);
167 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
168
169 if (objf_p)
170 *objf_p = objfile;
171
172 return value_from_pointer (type, maddr);
173 }
174 else
175 {
176 if (!target_has_execution)
177 error (_("evaluation of this expression requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
180 }
181 }
182 }
183
184 /* Allocate NBYTES of space in the inferior using the inferior's
185 malloc and return a value that is a pointer to the allocated
186 space. */
187
188 struct value *
189 value_allocate_space_in_inferior (int len)
190 {
191 struct objfile *objf;
192 struct value *val = find_function_in_inferior ("malloc", &objf);
193 struct gdbarch *gdbarch = get_objfile_arch (objf);
194 struct value *blocklen;
195
196 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
197 val = call_function_by_hand (val, 1, &blocklen);
198 if (value_logical_not (val))
199 {
200 if (!target_has_execution)
201 error (_("No memory available to program now: you need to start the target first"));
202 else
203 error (_("No memory available to program: call to malloc failed"));
204 }
205 return val;
206 }
207
208 static CORE_ADDR
209 allocate_space_in_inferior (int len)
210 {
211 return value_as_long (value_allocate_space_in_inferior (len));
212 }
213
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
218
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
221 {
222 struct type *t1;
223 struct type *t2;
224 struct value *v;
225
226 gdb_assert (type != NULL && v2 != NULL);
227
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
230
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
238
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
242 return NULL;
243
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
248 {
249 v = search_struct_field (type_name_no_tag (t1),
250 v2, 0, t2, 1);
251 if (v)
252 return v;
253 }
254
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
259 {
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
263
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
265 if (real_type)
266 {
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), 0, t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. Returns the new pointer or reference. */
302
303 struct value *
304 value_cast_pointers (struct type *type, struct value *arg2)
305 {
306 struct type *type1 = check_typedef (type);
307 struct type *type2 = check_typedef (value_type (arg2));
308 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
309 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
310
311 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
312 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
313 && !value_logical_not (arg2))
314 {
315 struct value *v2;
316
317 if (TYPE_CODE (type2) == TYPE_CODE_REF)
318 v2 = coerce_ref (arg2);
319 else
320 v2 = value_ind (arg2);
321 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
322 && !!"Why did coercion fail?");
323 v2 = value_cast_structs (t1, v2);
324 /* At this point we have what we can have, un-dereference if needed. */
325 if (v2)
326 {
327 struct value *v = value_addr (v2);
328
329 deprecated_set_value_type (v, type);
330 return v;
331 }
332 }
333
334 /* No superclass found, just change the pointer type. */
335 arg2 = value_copy (arg2);
336 deprecated_set_value_type (arg2, type);
337 arg2 = value_change_enclosing_type (arg2, type);
338 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
339 return arg2;
340 }
341
342 /* Cast value ARG2 to type TYPE and return as a value.
343 More general than a C cast: accepts any two types of the same length,
344 and if ARG2 is an lvalue it can be cast into anything at all. */
345 /* In C++, casts may change pointer or object representations. */
346
347 struct value *
348 value_cast (struct type *type, struct value *arg2)
349 {
350 enum type_code code1;
351 enum type_code code2;
352 int scalar;
353 struct type *type2;
354
355 int convert_to_boolean = 0;
356
357 if (value_type (arg2) == type)
358 return arg2;
359
360 code1 = TYPE_CODE (check_typedef (type));
361
362 /* Check if we are casting struct reference to struct reference. */
363 if (code1 == TYPE_CODE_REF)
364 {
365 /* We dereference type; then we recurse and finally
366 we generate value of the given reference. Nothing wrong with
367 that. */
368 struct type *t1 = check_typedef (type);
369 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
370 struct value *val = value_cast (dereftype, arg2);
371
372 return value_ref (val);
373 }
374
375 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
376
377 if (code2 == TYPE_CODE_REF)
378 /* We deref the value and then do the cast. */
379 return value_cast (type, coerce_ref (arg2));
380
381 CHECK_TYPEDEF (type);
382 code1 = TYPE_CODE (type);
383 arg2 = coerce_ref (arg2);
384 type2 = check_typedef (value_type (arg2));
385
386 /* You can't cast to a reference type. See value_cast_pointers
387 instead. */
388 gdb_assert (code1 != TYPE_CODE_REF);
389
390 /* A cast to an undetermined-length array_type, such as
391 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
392 where N is sizeof(OBJECT)/sizeof(TYPE). */
393 if (code1 == TYPE_CODE_ARRAY)
394 {
395 struct type *element_type = TYPE_TARGET_TYPE (type);
396 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
397
398 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
399 {
400 struct type *range_type = TYPE_INDEX_TYPE (type);
401 int val_length = TYPE_LENGTH (type2);
402 LONGEST low_bound, high_bound, new_length;
403
404 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
405 low_bound = 0, high_bound = 0;
406 new_length = val_length / element_length;
407 if (val_length % element_length != 0)
408 warning (_("array element type size does not divide object size in cast"));
409 /* FIXME-type-allocation: need a way to free this type when
410 we are done with it. */
411 range_type = create_range_type ((struct type *) NULL,
412 TYPE_TARGET_TYPE (range_type),
413 low_bound,
414 new_length + low_bound - 1);
415 deprecated_set_value_type (arg2,
416 create_array_type ((struct type *) NULL,
417 element_type,
418 range_type));
419 return arg2;
420 }
421 }
422
423 if (current_language->c_style_arrays
424 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
425 arg2 = value_coerce_array (arg2);
426
427 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
428 arg2 = value_coerce_function (arg2);
429
430 type2 = check_typedef (value_type (arg2));
431 code2 = TYPE_CODE (type2);
432
433 if (code1 == TYPE_CODE_COMPLEX)
434 return cast_into_complex (type, arg2);
435 if (code1 == TYPE_CODE_BOOL)
436 {
437 code1 = TYPE_CODE_INT;
438 convert_to_boolean = 1;
439 }
440 if (code1 == TYPE_CODE_CHAR)
441 code1 = TYPE_CODE_INT;
442 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
443 code2 = TYPE_CODE_INT;
444
445 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
446 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
447 || code2 == TYPE_CODE_RANGE);
448
449 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
450 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
451 && TYPE_NAME (type) != 0)
452 {
453 struct value *v = value_cast_structs (type, arg2);
454
455 if (v)
456 return v;
457 }
458
459 if (code1 == TYPE_CODE_FLT && scalar)
460 return value_from_double (type, value_as_double (arg2));
461 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
462 {
463 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
464 int dec_len = TYPE_LENGTH (type);
465 gdb_byte dec[16];
466
467 if (code2 == TYPE_CODE_FLT)
468 decimal_from_floating (arg2, dec, dec_len, byte_order);
469 else if (code2 == TYPE_CODE_DECFLOAT)
470 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
471 byte_order, dec, dec_len, byte_order);
472 else
473 /* The only option left is an integral type. */
474 decimal_from_integral (arg2, dec, dec_len, byte_order);
475
476 return value_from_decfloat (type, dec);
477 }
478 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
479 || code1 == TYPE_CODE_RANGE)
480 && (scalar || code2 == TYPE_CODE_PTR
481 || code2 == TYPE_CODE_MEMBERPTR))
482 {
483 LONGEST longest;
484
485 /* When we cast pointers to integers, we mustn't use
486 gdbarch_pointer_to_address to find the address the pointer
487 represents, as value_as_long would. GDB should evaluate
488 expressions just as the compiler would --- and the compiler
489 sees a cast as a simple reinterpretation of the pointer's
490 bits. */
491 if (code2 == TYPE_CODE_PTR)
492 longest = extract_unsigned_integer
493 (value_contents (arg2), TYPE_LENGTH (type2),
494 gdbarch_byte_order (get_type_arch (type2)));
495 else
496 longest = value_as_long (arg2);
497 return value_from_longest (type, convert_to_boolean ?
498 (LONGEST) (longest ? 1 : 0) : longest);
499 }
500 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
501 || code2 == TYPE_CODE_ENUM
502 || code2 == TYPE_CODE_RANGE))
503 {
504 /* TYPE_LENGTH (type) is the length of a pointer, but we really
505 want the length of an address! -- we are really dealing with
506 addresses (i.e., gdb representations) not pointers (i.e.,
507 target representations) here.
508
509 This allows things like "print *(int *)0x01000234" to work
510 without printing a misleading message -- which would
511 otherwise occur when dealing with a target having two byte
512 pointers and four byte addresses. */
513
514 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
515 LONGEST longest = value_as_long (arg2);
516
517 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
518 {
519 if (longest >= ((LONGEST) 1 << addr_bit)
520 || longest <= -((LONGEST) 1 << addr_bit))
521 warning (_("value truncated"));
522 }
523 return value_from_longest (type, longest);
524 }
525 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
526 && value_as_long (arg2) == 0)
527 {
528 struct value *result = allocate_value (type);
529
530 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
531 return result;
532 }
533 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
535 {
536 /* The Itanium C++ ABI represents NULL pointers to members as
537 minus one, instead of biasing the normal case. */
538 return value_from_longest (type, -1);
539 }
540 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
541 {
542 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
543 return value_cast_pointers (type, arg2);
544
545 arg2 = value_copy (arg2);
546 deprecated_set_value_type (arg2, type);
547 arg2 = value_change_enclosing_type (arg2, type);
548 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
549 return arg2;
550 }
551 else if (VALUE_LVAL (arg2) == lval_memory)
552 return value_at_lazy (type, value_address (arg2));
553 else if (code1 == TYPE_CODE_VOID)
554 {
555 return value_zero (type, not_lval);
556 }
557 else
558 {
559 error (_("Invalid cast."));
560 return 0;
561 }
562 }
563
564 /* The C++ reinterpret_cast operator. */
565
566 struct value *
567 value_reinterpret_cast (struct type *type, struct value *arg)
568 {
569 struct value *result;
570 struct type *real_type = check_typedef (type);
571 struct type *arg_type, *dest_type;
572 int is_ref = 0;
573 enum type_code dest_code, arg_code;
574
575 /* Do reference, function, and array conversion. */
576 arg = coerce_array (arg);
577
578 /* Attempt to preserve the type the user asked for. */
579 dest_type = type;
580
581 /* If we are casting to a reference type, transform
582 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
583 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
584 {
585 is_ref = 1;
586 arg = value_addr (arg);
587 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
588 real_type = lookup_pointer_type (real_type);
589 }
590
591 arg_type = value_type (arg);
592
593 dest_code = TYPE_CODE (real_type);
594 arg_code = TYPE_CODE (arg_type);
595
596 /* We can convert pointer types, or any pointer type to int, or int
597 type to pointer. */
598 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
599 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
600 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
601 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
602 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
603 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
604 || (dest_code == arg_code
605 && (dest_code == TYPE_CODE_PTR
606 || dest_code == TYPE_CODE_METHODPTR
607 || dest_code == TYPE_CODE_MEMBERPTR)))
608 result = value_cast (dest_type, arg);
609 else
610 error (_("Invalid reinterpret_cast"));
611
612 if (is_ref)
613 result = value_cast (type, value_ref (value_ind (result)));
614
615 return result;
616 }
617
618 /* A helper for value_dynamic_cast. This implements the first of two
619 runtime checks: we iterate over all the base classes of the value's
620 class which are equal to the desired class; if only one of these
621 holds the value, then it is the answer. */
622
623 static int
624 dynamic_cast_check_1 (struct type *desired_type,
625 const bfd_byte *contents,
626 CORE_ADDR address,
627 struct type *search_type,
628 CORE_ADDR arg_addr,
629 struct type *arg_type,
630 struct value **result)
631 {
632 int i, result_count = 0;
633
634 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
635 {
636 int offset = baseclass_offset (search_type, i, contents, address);
637
638 if (offset == -1)
639 error (_("virtual baseclass botch"));
640 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
641 {
642 if (address + offset >= arg_addr
643 && address + offset < arg_addr + TYPE_LENGTH (arg_type))
644 {
645 ++result_count;
646 if (!*result)
647 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
648 address + offset);
649 }
650 }
651 else
652 result_count += dynamic_cast_check_1 (desired_type,
653 contents + offset,
654 address + offset,
655 TYPE_BASECLASS (search_type, i),
656 arg_addr,
657 arg_type,
658 result);
659 }
660
661 return result_count;
662 }
663
664 /* A helper for value_dynamic_cast. This implements the second of two
665 runtime checks: we look for a unique public sibling class of the
666 argument's declared class. */
667
668 static int
669 dynamic_cast_check_2 (struct type *desired_type,
670 const bfd_byte *contents,
671 CORE_ADDR address,
672 struct type *search_type,
673 struct value **result)
674 {
675 int i, result_count = 0;
676
677 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
678 {
679 int offset;
680
681 if (! BASETYPE_VIA_PUBLIC (search_type, i))
682 continue;
683
684 offset = baseclass_offset (search_type, i, contents, address);
685 if (offset == -1)
686 error (_("virtual baseclass botch"));
687 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
688 {
689 ++result_count;
690 if (*result == NULL)
691 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
692 address + offset);
693 }
694 else
695 result_count += dynamic_cast_check_2 (desired_type,
696 contents + offset,
697 address + offset,
698 TYPE_BASECLASS (search_type, i),
699 result);
700 }
701
702 return result_count;
703 }
704
705 /* The C++ dynamic_cast operator. */
706
707 struct value *
708 value_dynamic_cast (struct type *type, struct value *arg)
709 {
710 int full, top, using_enc;
711 struct type *resolved_type = check_typedef (type);
712 struct type *arg_type = check_typedef (value_type (arg));
713 struct type *class_type, *rtti_type;
714 struct value *result, *tem, *original_arg = arg;
715 CORE_ADDR addr;
716 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
717
718 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
719 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
720 error (_("Argument to dynamic_cast must be a pointer or reference type"));
721 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
722 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
723 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
724
725 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
726 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
727 {
728 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
729 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
730 && value_as_long (arg) == 0))
731 error (_("Argument to dynamic_cast does not have pointer type"));
732 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
733 {
734 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
735 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
736 error (_("Argument to dynamic_cast does not have pointer to class type"));
737 }
738
739 /* Handle NULL pointers. */
740 if (value_as_long (arg) == 0)
741 return value_zero (type, not_lval);
742
743 arg = value_ind (arg);
744 }
745 else
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
748 error (_("Argument to dynamic_cast does not have class type"));
749 }
750
751 /* If the classes are the same, just return the argument. */
752 if (class_types_same_p (class_type, arg_type))
753 return value_cast (type, arg);
754
755 /* If the target type is a unique base class of the argument's
756 declared type, just cast it. */
757 if (is_ancestor (class_type, arg_type))
758 {
759 if (is_unique_ancestor (class_type, arg))
760 return value_cast (type, original_arg);
761 error (_("Ambiguous dynamic_cast"));
762 }
763
764 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
765 if (! rtti_type)
766 error (_("Couldn't determine value's most derived type for dynamic_cast"));
767
768 /* Compute the most derived object's address. */
769 addr = value_address (arg);
770 if (full)
771 {
772 /* Done. */
773 }
774 else if (using_enc)
775 addr += top;
776 else
777 addr += top + value_embedded_offset (arg);
778
779 /* dynamic_cast<void *> means to return a pointer to the
780 most-derived object. */
781 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
782 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
783 return value_at_lazy (type, addr);
784
785 tem = value_at (type, addr);
786
787 /* The first dynamic check specified in 5.2.7. */
788 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
789 {
790 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
791 return tem;
792 result = NULL;
793 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
794 value_contents (tem), value_address (tem),
795 rtti_type, addr,
796 arg_type,
797 &result) == 1)
798 return value_cast (type,
799 is_ref ? value_ref (result) : value_addr (result));
800 }
801
802 /* The second dynamic check specified in 5.2.7. */
803 result = NULL;
804 if (is_public_ancestor (arg_type, rtti_type)
805 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
806 value_contents (tem), value_address (tem),
807 rtti_type, &result) == 1)
808 return value_cast (type,
809 is_ref ? value_ref (result) : value_addr (result));
810
811 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
812 return value_zero (type, not_lval);
813
814 error (_("dynamic_cast failed"));
815 }
816
817 /* Create a value of type TYPE that is zero, and return it. */
818
819 struct value *
820 value_zero (struct type *type, enum lval_type lv)
821 {
822 struct value *val = allocate_value (type);
823
824 VALUE_LVAL (val) = lv;
825 return val;
826 }
827
828 /* Create a value of numeric type TYPE that is one, and return it. */
829
830 struct value *
831 value_one (struct type *type, enum lval_type lv)
832 {
833 struct type *type1 = check_typedef (type);
834 struct value *val;
835
836 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
837 {
838 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
839 gdb_byte v[16];
840
841 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
842 val = value_from_decfloat (type, v);
843 }
844 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
845 {
846 val = value_from_double (type, (DOUBLEST) 1);
847 }
848 else if (is_integral_type (type1))
849 {
850 val = value_from_longest (type, (LONGEST) 1);
851 }
852 else
853 {
854 error (_("Not a numeric type."));
855 }
856
857 VALUE_LVAL (val) = lv;
858 return val;
859 }
860
861 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
862
863 static struct value *
864 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
865 {
866 struct value *val;
867
868 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
869 error (_("Attempt to dereference a generic pointer."));
870
871 if (lazy)
872 {
873 val = allocate_value_lazy (type);
874 }
875 else
876 {
877 val = allocate_value (type);
878 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
879 }
880
881 VALUE_LVAL (val) = lval_memory;
882 set_value_address (val, addr);
883
884 return val;
885 }
886
887 /* Return a value with type TYPE located at ADDR.
888
889 Call value_at only if the data needs to be fetched immediately;
890 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
891 value_at_lazy instead. value_at_lazy simply records the address of
892 the data and sets the lazy-evaluation-required flag. The lazy flag
893 is tested in the value_contents macro, which is used if and when
894 the contents are actually required.
895
896 Note: value_at does *NOT* handle embedded offsets; perform such
897 adjustments before or after calling it. */
898
899 struct value *
900 value_at (struct type *type, CORE_ADDR addr)
901 {
902 return get_value_at (type, addr, 0);
903 }
904
905 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
906
907 struct value *
908 value_at_lazy (struct type *type, CORE_ADDR addr)
909 {
910 return get_value_at (type, addr, 1);
911 }
912
913 /* Called only from the value_contents and value_contents_all()
914 macros, if the current data for a variable needs to be loaded into
915 value_contents(VAL). Fetches the data from the user's process, and
916 clears the lazy flag to indicate that the data in the buffer is
917 valid.
918
919 If the value is zero-length, we avoid calling read_memory, which
920 would abort. We mark the value as fetched anyway -- all 0 bytes of
921 it.
922
923 This function returns a value because it is used in the
924 value_contents macro as part of an expression, where a void would
925 not work. The value is ignored. */
926
927 int
928 value_fetch_lazy (struct value *val)
929 {
930 gdb_assert (value_lazy (val));
931 allocate_value_contents (val);
932 if (value_bitsize (val))
933 {
934 /* To read a lazy bitfield, read the entire enclosing value. This
935 prevents reading the same block of (possibly volatile) memory once
936 per bitfield. It would be even better to read only the containing
937 word, but we have no way to record that just specific bits of a
938 value have been fetched. */
939 struct type *type = check_typedef (value_type (val));
940 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
941 struct value *parent = value_parent (val);
942 LONGEST offset = value_offset (val);
943 LONGEST num = unpack_bits_as_long (value_type (val),
944 (value_contents_for_printing (parent)
945 + offset),
946 value_bitpos (val),
947 value_bitsize (val));
948 int length = TYPE_LENGTH (type);
949
950 if (!value_bits_valid (val,
951 TARGET_CHAR_BIT * offset + value_bitpos (val),
952 value_bitsize (val)))
953 error (_("value has been optimized out"));
954
955 store_signed_integer (value_contents_raw (val), length, byte_order, num);
956 }
957 else if (VALUE_LVAL (val) == lval_memory)
958 {
959 CORE_ADDR addr = value_address (val);
960 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
961
962 if (length)
963 {
964 if (value_stack (val))
965 read_stack (addr, value_contents_all_raw (val), length);
966 else
967 read_memory (addr, value_contents_all_raw (val), length);
968 }
969 }
970 else if (VALUE_LVAL (val) == lval_register)
971 {
972 struct frame_info *frame;
973 int regnum;
974 struct type *type = check_typedef (value_type (val));
975 struct value *new_val = val, *mark = value_mark ();
976
977 /* Offsets are not supported here; lazy register values must
978 refer to the entire register. */
979 gdb_assert (value_offset (val) == 0);
980
981 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
982 {
983 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
984 regnum = VALUE_REGNUM (new_val);
985
986 gdb_assert (frame != NULL);
987
988 /* Convertible register routines are used for multi-register
989 values and for interpretation in different types
990 (e.g. float or int from a double register). Lazy
991 register values should have the register's natural type,
992 so they do not apply. */
993 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
994 regnum, type));
995
996 new_val = get_frame_register_value (frame, regnum);
997 }
998
999 /* If it's still lazy (for instance, a saved register on the
1000 stack), fetch it. */
1001 if (value_lazy (new_val))
1002 value_fetch_lazy (new_val);
1003
1004 /* If the register was not saved, mark it unavailable. */
1005 if (value_optimized_out (new_val))
1006 set_value_optimized_out (val, 1);
1007 else
1008 memcpy (value_contents_raw (val), value_contents (new_val),
1009 TYPE_LENGTH (type));
1010
1011 if (frame_debug)
1012 {
1013 struct gdbarch *gdbarch;
1014 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1015 regnum = VALUE_REGNUM (val);
1016 gdbarch = get_frame_arch (frame);
1017
1018 fprintf_unfiltered (gdb_stdlog, "\
1019 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
1020 frame_relative_level (frame), regnum,
1021 user_reg_map_regnum_to_name (gdbarch, regnum));
1022
1023 fprintf_unfiltered (gdb_stdlog, "->");
1024 if (value_optimized_out (new_val))
1025 fprintf_unfiltered (gdb_stdlog, " optimized out");
1026 else
1027 {
1028 int i;
1029 const gdb_byte *buf = value_contents (new_val);
1030
1031 if (VALUE_LVAL (new_val) == lval_register)
1032 fprintf_unfiltered (gdb_stdlog, " register=%d",
1033 VALUE_REGNUM (new_val));
1034 else if (VALUE_LVAL (new_val) == lval_memory)
1035 fprintf_unfiltered (gdb_stdlog, " address=%s",
1036 paddress (gdbarch,
1037 value_address (new_val)));
1038 else
1039 fprintf_unfiltered (gdb_stdlog, " computed");
1040
1041 fprintf_unfiltered (gdb_stdlog, " bytes=");
1042 fprintf_unfiltered (gdb_stdlog, "[");
1043 for (i = 0; i < register_size (gdbarch, regnum); i++)
1044 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1045 fprintf_unfiltered (gdb_stdlog, "]");
1046 }
1047
1048 fprintf_unfiltered (gdb_stdlog, " }\n");
1049 }
1050
1051 /* Dispose of the intermediate values. This prevents
1052 watchpoints from trying to watch the saved frame pointer. */
1053 value_free_to_mark (mark);
1054 }
1055 else if (VALUE_LVAL (val) == lval_computed)
1056 value_computed_funcs (val)->read (val);
1057 else
1058 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
1059
1060 set_value_lazy (val, 0);
1061 return 0;
1062 }
1063
1064
1065 /* Store the contents of FROMVAL into the location of TOVAL.
1066 Return a new value with the location of TOVAL and contents of FROMVAL. */
1067
1068 struct value *
1069 value_assign (struct value *toval, struct value *fromval)
1070 {
1071 struct type *type;
1072 struct value *val;
1073 struct frame_id old_frame;
1074
1075 if (!deprecated_value_modifiable (toval))
1076 error (_("Left operand of assignment is not a modifiable lvalue."));
1077
1078 toval = coerce_ref (toval);
1079
1080 type = value_type (toval);
1081 if (VALUE_LVAL (toval) != lval_internalvar)
1082 {
1083 toval = value_coerce_to_target (toval);
1084 fromval = value_cast (type, fromval);
1085 }
1086 else
1087 {
1088 /* Coerce arrays and functions to pointers, except for arrays
1089 which only live in GDB's storage. */
1090 if (!value_must_coerce_to_target (fromval))
1091 fromval = coerce_array (fromval);
1092 }
1093
1094 CHECK_TYPEDEF (type);
1095
1096 /* Since modifying a register can trash the frame chain, and
1097 modifying memory can trash the frame cache, we save the old frame
1098 and then restore the new frame afterwards. */
1099 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1100
1101 switch (VALUE_LVAL (toval))
1102 {
1103 case lval_internalvar:
1104 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1105 val = value_copy (fromval);
1106 val = value_change_enclosing_type (val,
1107 value_enclosing_type (fromval));
1108 set_value_embedded_offset (val, value_embedded_offset (fromval));
1109 set_value_pointed_to_offset (val,
1110 value_pointed_to_offset (fromval));
1111 return val;
1112
1113 case lval_internalvar_component:
1114 set_internalvar_component (VALUE_INTERNALVAR (toval),
1115 value_offset (toval),
1116 value_bitpos (toval),
1117 value_bitsize (toval),
1118 fromval);
1119 break;
1120
1121 case lval_memory:
1122 {
1123 const gdb_byte *dest_buffer;
1124 CORE_ADDR changed_addr;
1125 int changed_len;
1126 gdb_byte buffer[sizeof (LONGEST)];
1127
1128 if (value_bitsize (toval))
1129 {
1130 struct value *parent = value_parent (toval);
1131
1132 changed_addr = value_address (parent) + value_offset (toval);
1133 changed_len = (value_bitpos (toval)
1134 + value_bitsize (toval)
1135 + HOST_CHAR_BIT - 1)
1136 / HOST_CHAR_BIT;
1137
1138 /* If we can read-modify-write exactly the size of the
1139 containing type (e.g. short or int) then do so. This
1140 is safer for volatile bitfields mapped to hardware
1141 registers. */
1142 if (changed_len < TYPE_LENGTH (type)
1143 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1144 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1145 changed_len = TYPE_LENGTH (type);
1146
1147 if (changed_len > (int) sizeof (LONGEST))
1148 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1149 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1150
1151 read_memory (changed_addr, buffer, changed_len);
1152 modify_field (type, buffer, value_as_long (fromval),
1153 value_bitpos (toval), value_bitsize (toval));
1154 dest_buffer = buffer;
1155 }
1156 else
1157 {
1158 changed_addr = value_address (toval);
1159 changed_len = TYPE_LENGTH (type);
1160 dest_buffer = value_contents (fromval);
1161 }
1162
1163 write_memory (changed_addr, dest_buffer, changed_len);
1164 observer_notify_memory_changed (changed_addr, changed_len,
1165 dest_buffer);
1166 }
1167 break;
1168
1169 case lval_register:
1170 {
1171 struct frame_info *frame;
1172 struct gdbarch *gdbarch;
1173 int value_reg;
1174
1175 /* Figure out which frame this is in currently. */
1176 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1177 value_reg = VALUE_REGNUM (toval);
1178
1179 if (!frame)
1180 error (_("Value being assigned to is no longer active."));
1181
1182 gdbarch = get_frame_arch (frame);
1183 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1184 {
1185 /* If TOVAL is a special machine register requiring
1186 conversion of program values to a special raw
1187 format. */
1188 gdbarch_value_to_register (gdbarch, frame,
1189 VALUE_REGNUM (toval), type,
1190 value_contents (fromval));
1191 }
1192 else
1193 {
1194 if (value_bitsize (toval))
1195 {
1196 struct value *parent = value_parent (toval);
1197 int offset = value_offset (parent) + value_offset (toval);
1198 int changed_len;
1199 gdb_byte buffer[sizeof (LONGEST)];
1200
1201 changed_len = (value_bitpos (toval)
1202 + value_bitsize (toval)
1203 + HOST_CHAR_BIT - 1)
1204 / HOST_CHAR_BIT;
1205
1206 if (changed_len > (int) sizeof (LONGEST))
1207 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1208 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1209
1210 get_frame_register_bytes (frame, value_reg, offset,
1211 changed_len, buffer);
1212
1213 modify_field (type, buffer, value_as_long (fromval),
1214 value_bitpos (toval), value_bitsize (toval));
1215
1216 put_frame_register_bytes (frame, value_reg, offset,
1217 changed_len, buffer);
1218 }
1219 else
1220 {
1221 put_frame_register_bytes (frame, value_reg,
1222 value_offset (toval),
1223 TYPE_LENGTH (type),
1224 value_contents (fromval));
1225 }
1226 }
1227
1228 if (deprecated_register_changed_hook)
1229 deprecated_register_changed_hook (-1);
1230 observer_notify_target_changed (&current_target);
1231 break;
1232 }
1233
1234 case lval_computed:
1235 {
1236 struct lval_funcs *funcs = value_computed_funcs (toval);
1237
1238 funcs->write (toval, fromval);
1239 }
1240 break;
1241
1242 default:
1243 error (_("Left operand of assignment is not an lvalue."));
1244 }
1245
1246 /* Assigning to the stack pointer, frame pointer, and other
1247 (architecture and calling convention specific) registers may
1248 cause the frame cache to be out of date. Assigning to memory
1249 also can. We just do this on all assignments to registers or
1250 memory, for simplicity's sake; I doubt the slowdown matters. */
1251 switch (VALUE_LVAL (toval))
1252 {
1253 case lval_memory:
1254 case lval_register:
1255 case lval_computed:
1256
1257 reinit_frame_cache ();
1258
1259 /* Having destroyed the frame cache, restore the selected
1260 frame. */
1261
1262 /* FIXME: cagney/2002-11-02: There has to be a better way of
1263 doing this. Instead of constantly saving/restoring the
1264 frame. Why not create a get_selected_frame() function that,
1265 having saved the selected frame's ID can automatically
1266 re-find the previously selected frame automatically. */
1267
1268 {
1269 struct frame_info *fi = frame_find_by_id (old_frame);
1270
1271 if (fi != NULL)
1272 select_frame (fi);
1273 }
1274
1275 break;
1276 default:
1277 break;
1278 }
1279
1280 /* If the field does not entirely fill a LONGEST, then zero the sign
1281 bits. If the field is signed, and is negative, then sign
1282 extend. */
1283 if ((value_bitsize (toval) > 0)
1284 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1285 {
1286 LONGEST fieldval = value_as_long (fromval);
1287 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1288
1289 fieldval &= valmask;
1290 if (!TYPE_UNSIGNED (type)
1291 && (fieldval & (valmask ^ (valmask >> 1))))
1292 fieldval |= ~valmask;
1293
1294 fromval = value_from_longest (type, fieldval);
1295 }
1296
1297 val = value_copy (toval);
1298 memcpy (value_contents_raw (val), value_contents (fromval),
1299 TYPE_LENGTH (type));
1300 deprecated_set_value_type (val, type);
1301 val = value_change_enclosing_type (val,
1302 value_enclosing_type (fromval));
1303 set_value_embedded_offset (val, value_embedded_offset (fromval));
1304 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1305
1306 return val;
1307 }
1308
1309 /* Extend a value VAL to COUNT repetitions of its type. */
1310
1311 struct value *
1312 value_repeat (struct value *arg1, int count)
1313 {
1314 struct value *val;
1315
1316 if (VALUE_LVAL (arg1) != lval_memory)
1317 error (_("Only values in memory can be extended with '@'."));
1318 if (count < 1)
1319 error (_("Invalid number %d of repetitions."), count);
1320
1321 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1322
1323 read_memory (value_address (arg1),
1324 value_contents_all_raw (val),
1325 TYPE_LENGTH (value_enclosing_type (val)));
1326 VALUE_LVAL (val) = lval_memory;
1327 set_value_address (val, value_address (arg1));
1328
1329 return val;
1330 }
1331
1332 struct value *
1333 value_of_variable (struct symbol *var, struct block *b)
1334 {
1335 struct value *val;
1336 struct frame_info *frame;
1337
1338 if (!symbol_read_needs_frame (var))
1339 frame = NULL;
1340 else if (!b)
1341 frame = get_selected_frame (_("No frame selected."));
1342 else
1343 {
1344 frame = block_innermost_frame (b);
1345 if (!frame)
1346 {
1347 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1348 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1349 error (_("No frame is currently executing in block %s."),
1350 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1351 else
1352 error (_("No frame is currently executing in specified block"));
1353 }
1354 }
1355
1356 val = read_var_value (var, frame);
1357 if (!val)
1358 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1359
1360 return val;
1361 }
1362
1363 struct value *
1364 address_of_variable (struct symbol *var, struct block *b)
1365 {
1366 struct type *type = SYMBOL_TYPE (var);
1367 struct value *val;
1368
1369 /* Evaluate it first; if the result is a memory address, we're fine.
1370 Lazy evaluation pays off here. */
1371
1372 val = value_of_variable (var, b);
1373
1374 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1375 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1376 {
1377 CORE_ADDR addr = value_address (val);
1378
1379 return value_from_pointer (lookup_pointer_type (type), addr);
1380 }
1381
1382 /* Not a memory address; check what the problem was. */
1383 switch (VALUE_LVAL (val))
1384 {
1385 case lval_register:
1386 {
1387 struct frame_info *frame;
1388 const char *regname;
1389
1390 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1391 gdb_assert (frame);
1392
1393 regname = gdbarch_register_name (get_frame_arch (frame),
1394 VALUE_REGNUM (val));
1395 gdb_assert (regname && *regname);
1396
1397 error (_("Address requested for identifier "
1398 "\"%s\" which is in register $%s"),
1399 SYMBOL_PRINT_NAME (var), regname);
1400 break;
1401 }
1402
1403 default:
1404 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1405 SYMBOL_PRINT_NAME (var));
1406 break;
1407 }
1408
1409 return val;
1410 }
1411
1412 /* Return one if VAL does not live in target memory, but should in order
1413 to operate on it. Otherwise return zero. */
1414
1415 int
1416 value_must_coerce_to_target (struct value *val)
1417 {
1418 struct type *valtype;
1419
1420 /* The only lval kinds which do not live in target memory. */
1421 if (VALUE_LVAL (val) != not_lval
1422 && VALUE_LVAL (val) != lval_internalvar)
1423 return 0;
1424
1425 valtype = check_typedef (value_type (val));
1426
1427 switch (TYPE_CODE (valtype))
1428 {
1429 case TYPE_CODE_ARRAY:
1430 case TYPE_CODE_STRING:
1431 return 1;
1432 default:
1433 return 0;
1434 }
1435 }
1436
1437 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1438 strings are constructed as character arrays in GDB's storage, and this
1439 function copies them to the target. */
1440
1441 struct value *
1442 value_coerce_to_target (struct value *val)
1443 {
1444 LONGEST length;
1445 CORE_ADDR addr;
1446
1447 if (!value_must_coerce_to_target (val))
1448 return val;
1449
1450 length = TYPE_LENGTH (check_typedef (value_type (val)));
1451 addr = allocate_space_in_inferior (length);
1452 write_memory (addr, value_contents (val), length);
1453 return value_at_lazy (value_type (val), addr);
1454 }
1455
1456 /* Given a value which is an array, return a value which is a pointer
1457 to its first element, regardless of whether or not the array has a
1458 nonzero lower bound.
1459
1460 FIXME: A previous comment here indicated that this routine should
1461 be substracting the array's lower bound. It's not clear to me that
1462 this is correct. Given an array subscripting operation, it would
1463 certainly work to do the adjustment here, essentially computing:
1464
1465 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1466
1467 However I believe a more appropriate and logical place to account
1468 for the lower bound is to do so in value_subscript, essentially
1469 computing:
1470
1471 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1472
1473 As further evidence consider what would happen with operations
1474 other than array subscripting, where the caller would get back a
1475 value that had an address somewhere before the actual first element
1476 of the array, and the information about the lower bound would be
1477 lost because of the coercion to pointer type.
1478 */
1479
1480 struct value *
1481 value_coerce_array (struct value *arg1)
1482 {
1483 struct type *type = check_typedef (value_type (arg1));
1484
1485 /* If the user tries to do something requiring a pointer with an
1486 array that has not yet been pushed to the target, then this would
1487 be a good time to do so. */
1488 arg1 = value_coerce_to_target (arg1);
1489
1490 if (VALUE_LVAL (arg1) != lval_memory)
1491 error (_("Attempt to take address of value not located in memory."));
1492
1493 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1494 value_address (arg1));
1495 }
1496
1497 /* Given a value which is a function, return a value which is a pointer
1498 to it. */
1499
1500 struct value *
1501 value_coerce_function (struct value *arg1)
1502 {
1503 struct value *retval;
1504
1505 if (VALUE_LVAL (arg1) != lval_memory)
1506 error (_("Attempt to take address of value not located in memory."));
1507
1508 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1509 value_address (arg1));
1510 return retval;
1511 }
1512
1513 /* Return a pointer value for the object for which ARG1 is the
1514 contents. */
1515
1516 struct value *
1517 value_addr (struct value *arg1)
1518 {
1519 struct value *arg2;
1520 struct type *type = check_typedef (value_type (arg1));
1521
1522 if (TYPE_CODE (type) == TYPE_CODE_REF)
1523 {
1524 /* Copy the value, but change the type from (T&) to (T*). We
1525 keep the same location information, which is efficient, and
1526 allows &(&X) to get the location containing the reference. */
1527 arg2 = value_copy (arg1);
1528 deprecated_set_value_type (arg2,
1529 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1530 return arg2;
1531 }
1532 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1533 return value_coerce_function (arg1);
1534
1535 /* If this is an array that has not yet been pushed to the target,
1536 then this would be a good time to force it to memory. */
1537 arg1 = value_coerce_to_target (arg1);
1538
1539 if (VALUE_LVAL (arg1) != lval_memory)
1540 error (_("Attempt to take address of value not located in memory."));
1541
1542 /* Get target memory address */
1543 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1544 (value_address (arg1)
1545 + value_embedded_offset (arg1)));
1546
1547 /* This may be a pointer to a base subobject; so remember the
1548 full derived object's type ... */
1549 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1550 /* ... and also the relative position of the subobject in the full
1551 object. */
1552 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1553 return arg2;
1554 }
1555
1556 /* Return a reference value for the object for which ARG1 is the
1557 contents. */
1558
1559 struct value *
1560 value_ref (struct value *arg1)
1561 {
1562 struct value *arg2;
1563 struct type *type = check_typedef (value_type (arg1));
1564
1565 if (TYPE_CODE (type) == TYPE_CODE_REF)
1566 return arg1;
1567
1568 arg2 = value_addr (arg1);
1569 deprecated_set_value_type (arg2, lookup_reference_type (type));
1570 return arg2;
1571 }
1572
1573 /* Given a value of a pointer type, apply the C unary * operator to
1574 it. */
1575
1576 struct value *
1577 value_ind (struct value *arg1)
1578 {
1579 struct type *base_type;
1580 struct value *arg2;
1581
1582 arg1 = coerce_array (arg1);
1583
1584 base_type = check_typedef (value_type (arg1));
1585
1586 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1587 {
1588 struct type *enc_type;
1589
1590 /* We may be pointing to something embedded in a larger object.
1591 Get the real type of the enclosing object. */
1592 enc_type = check_typedef (value_enclosing_type (arg1));
1593 enc_type = TYPE_TARGET_TYPE (enc_type);
1594
1595 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1596 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1597 /* For functions, go through find_function_addr, which knows
1598 how to handle function descriptors. */
1599 arg2 = value_at_lazy (enc_type,
1600 find_function_addr (arg1, NULL));
1601 else
1602 /* Retrieve the enclosing object pointed to */
1603 arg2 = value_at_lazy (enc_type,
1604 (value_as_address (arg1)
1605 - value_pointed_to_offset (arg1)));
1606
1607 /* Re-adjust type. */
1608 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1609 /* Add embedding info. */
1610 arg2 = value_change_enclosing_type (arg2, enc_type);
1611 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1612
1613 /* We may be pointing to an object of some derived type. */
1614 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1615 return arg2;
1616 }
1617
1618 error (_("Attempt to take contents of a non-pointer value."));
1619 return 0; /* For lint -- never reached. */
1620 }
1621 \f
1622 /* Create a value for an array by allocating space in GDB, copying
1623 copying the data into that space, and then setting up an array
1624 value.
1625
1626 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1627 is populated from the values passed in ELEMVEC.
1628
1629 The element type of the array is inherited from the type of the
1630 first element, and all elements must have the same size (though we
1631 don't currently enforce any restriction on their types). */
1632
1633 struct value *
1634 value_array (int lowbound, int highbound, struct value **elemvec)
1635 {
1636 int nelem;
1637 int idx;
1638 unsigned int typelength;
1639 struct value *val;
1640 struct type *arraytype;
1641
1642 /* Validate that the bounds are reasonable and that each of the
1643 elements have the same size. */
1644
1645 nelem = highbound - lowbound + 1;
1646 if (nelem <= 0)
1647 {
1648 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1649 }
1650 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1651 for (idx = 1; idx < nelem; idx++)
1652 {
1653 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1654 {
1655 error (_("array elements must all be the same size"));
1656 }
1657 }
1658
1659 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1660 lowbound, highbound);
1661
1662 if (!current_language->c_style_arrays)
1663 {
1664 val = allocate_value (arraytype);
1665 for (idx = 0; idx < nelem; idx++)
1666 {
1667 memcpy (value_contents_all_raw (val) + (idx * typelength),
1668 value_contents_all (elemvec[idx]),
1669 typelength);
1670 }
1671 return val;
1672 }
1673
1674 /* Allocate space to store the array, and then initialize it by
1675 copying in each element. */
1676
1677 val = allocate_value (arraytype);
1678 for (idx = 0; idx < nelem; idx++)
1679 memcpy (value_contents_writeable (val) + (idx * typelength),
1680 value_contents_all (elemvec[idx]),
1681 typelength);
1682 return val;
1683 }
1684
1685 struct value *
1686 value_cstring (char *ptr, int len, struct type *char_type)
1687 {
1688 struct value *val;
1689 int lowbound = current_language->string_lower_bound;
1690 int highbound = len / TYPE_LENGTH (char_type);
1691 struct type *stringtype
1692 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1693
1694 val = allocate_value (stringtype);
1695 memcpy (value_contents_raw (val), ptr, len);
1696 return val;
1697 }
1698
1699 /* Create a value for a string constant by allocating space in the
1700 inferior, copying the data into that space, and returning the
1701 address with type TYPE_CODE_STRING. PTR points to the string
1702 constant data; LEN is number of characters.
1703
1704 Note that string types are like array of char types with a lower
1705 bound of zero and an upper bound of LEN - 1. Also note that the
1706 string may contain embedded null bytes. */
1707
1708 struct value *
1709 value_string (char *ptr, int len, struct type *char_type)
1710 {
1711 struct value *val;
1712 int lowbound = current_language->string_lower_bound;
1713 int highbound = len / TYPE_LENGTH (char_type);
1714 struct type *stringtype
1715 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1716
1717 val = allocate_value (stringtype);
1718 memcpy (value_contents_raw (val), ptr, len);
1719 return val;
1720 }
1721
1722 struct value *
1723 value_bitstring (char *ptr, int len, struct type *index_type)
1724 {
1725 struct value *val;
1726 struct type *domain_type
1727 = create_range_type (NULL, index_type, 0, len - 1);
1728 struct type *type = create_set_type (NULL, domain_type);
1729
1730 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1731 val = allocate_value (type);
1732 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1733 return val;
1734 }
1735 \f
1736 /* See if we can pass arguments in T2 to a function which takes
1737 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1738 a NULL-terminated vector. If some arguments need coercion of some
1739 sort, then the coerced values are written into T2. Return value is
1740 0 if the arguments could be matched, or the position at which they
1741 differ if not.
1742
1743 STATICP is nonzero if the T1 argument list came from a static
1744 member function. T2 will still include the ``this'' pointer, but
1745 it will be skipped.
1746
1747 For non-static member functions, we ignore the first argument,
1748 which is the type of the instance variable. This is because we
1749 want to handle calls with objects from derived classes. This is
1750 not entirely correct: we should actually check to make sure that a
1751 requested operation is type secure, shouldn't we? FIXME. */
1752
1753 static int
1754 typecmp (int staticp, int varargs, int nargs,
1755 struct field t1[], struct value *t2[])
1756 {
1757 int i;
1758
1759 if (t2 == 0)
1760 internal_error (__FILE__, __LINE__,
1761 _("typecmp: no argument list"));
1762
1763 /* Skip ``this'' argument if applicable. T2 will always include
1764 THIS. */
1765 if (staticp)
1766 t2 ++;
1767
1768 for (i = 0;
1769 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1770 i++)
1771 {
1772 struct type *tt1, *tt2;
1773
1774 if (!t2[i])
1775 return i + 1;
1776
1777 tt1 = check_typedef (t1[i].type);
1778 tt2 = check_typedef (value_type (t2[i]));
1779
1780 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1781 /* We should be doing hairy argument matching, as below. */
1782 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1783 {
1784 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1785 t2[i] = value_coerce_array (t2[i]);
1786 else
1787 t2[i] = value_ref (t2[i]);
1788 continue;
1789 }
1790
1791 /* djb - 20000715 - Until the new type structure is in the
1792 place, and we can attempt things like implicit conversions,
1793 we need to do this so you can take something like a map<const
1794 char *>, and properly access map["hello"], because the
1795 argument to [] will be a reference to a pointer to a char,
1796 and the argument will be a pointer to a char. */
1797 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1798 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1799 {
1800 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1801 }
1802 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1803 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1804 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1805 {
1806 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1807 }
1808 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1809 continue;
1810 /* Array to pointer is a `trivial conversion' according to the
1811 ARM. */
1812
1813 /* We should be doing much hairier argument matching (see
1814 section 13.2 of the ARM), but as a quick kludge, just check
1815 for the same type code. */
1816 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1817 return i + 1;
1818 }
1819 if (varargs || t2[i] == NULL)
1820 return 0;
1821 return i + 1;
1822 }
1823
1824 /* Helper function used by value_struct_elt to recurse through
1825 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1826 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1827 TYPE. If found, return value, else return NULL.
1828
1829 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1830 fields, look for a baseclass named NAME. */
1831
1832 static struct value *
1833 search_struct_field (const char *name, struct value *arg1, int offset,
1834 struct type *type, int looking_for_baseclass)
1835 {
1836 int i;
1837 int nbases;
1838
1839 CHECK_TYPEDEF (type);
1840 nbases = TYPE_N_BASECLASSES (type);
1841
1842 if (!looking_for_baseclass)
1843 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1844 {
1845 char *t_field_name = TYPE_FIELD_NAME (type, i);
1846
1847 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1848 {
1849 struct value *v;
1850
1851 if (field_is_static (&TYPE_FIELD (type, i)))
1852 {
1853 v = value_static_field (type, i);
1854 if (v == 0)
1855 error (_("field %s is nonexistent or has been optimised out"),
1856 name);
1857 }
1858 else
1859 {
1860 v = value_primitive_field (arg1, offset, i, type);
1861 if (v == 0)
1862 error (_("there is no field named %s"), name);
1863 }
1864 return v;
1865 }
1866
1867 if (t_field_name
1868 && (t_field_name[0] == '\0'
1869 || (TYPE_CODE (type) == TYPE_CODE_UNION
1870 && (strcmp_iw (t_field_name, "else") == 0))))
1871 {
1872 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1873
1874 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1875 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1876 {
1877 /* Look for a match through the fields of an anonymous
1878 union, or anonymous struct. C++ provides anonymous
1879 unions.
1880
1881 In the GNU Chill (now deleted from GDB)
1882 implementation of variant record types, each
1883 <alternative field> has an (anonymous) union type,
1884 each member of the union represents a <variant
1885 alternative>. Each <variant alternative> is
1886 represented as a struct, with a member for each
1887 <variant field>. */
1888
1889 struct value *v;
1890 int new_offset = offset;
1891
1892 /* This is pretty gross. In G++, the offset in an
1893 anonymous union is relative to the beginning of the
1894 enclosing struct. In the GNU Chill (now deleted
1895 from GDB) implementation of variant records, the
1896 bitpos is zero in an anonymous union field, so we
1897 have to add the offset of the union here. */
1898 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1899 || (TYPE_NFIELDS (field_type) > 0
1900 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1901 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1902
1903 v = search_struct_field (name, arg1, new_offset,
1904 field_type,
1905 looking_for_baseclass);
1906 if (v)
1907 return v;
1908 }
1909 }
1910 }
1911
1912 for (i = 0; i < nbases; i++)
1913 {
1914 struct value *v;
1915 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1916 /* If we are looking for baseclasses, this is what we get when
1917 we hit them. But it could happen that the base part's member
1918 name is not yet filled in. */
1919 int found_baseclass = (looking_for_baseclass
1920 && TYPE_BASECLASS_NAME (type, i) != NULL
1921 && (strcmp_iw (name,
1922 TYPE_BASECLASS_NAME (type,
1923 i)) == 0));
1924
1925 if (BASETYPE_VIA_VIRTUAL (type, i))
1926 {
1927 int boffset;
1928 struct value *v2;
1929
1930 boffset = baseclass_offset (type, i,
1931 value_contents (arg1) + offset,
1932 value_address (arg1)
1933 + value_embedded_offset (arg1)
1934 + offset);
1935 if (boffset == -1)
1936 error (_("virtual baseclass botch"));
1937
1938 /* The virtual base class pointer might have been clobbered
1939 by the user program. Make sure that it still points to a
1940 valid memory location. */
1941
1942 boffset += value_embedded_offset (arg1) + offset;
1943 if (boffset < 0
1944 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1945 {
1946 CORE_ADDR base_addr;
1947
1948 v2 = allocate_value (basetype);
1949 base_addr = value_address (arg1) + boffset;
1950 if (target_read_memory (base_addr,
1951 value_contents_raw (v2),
1952 TYPE_LENGTH (basetype)) != 0)
1953 error (_("virtual baseclass botch"));
1954 VALUE_LVAL (v2) = lval_memory;
1955 set_value_address (v2, base_addr);
1956 }
1957 else
1958 {
1959 v2 = value_copy (arg1);
1960 deprecated_set_value_type (v2, basetype);
1961 set_value_embedded_offset (v2, boffset);
1962 }
1963
1964 if (found_baseclass)
1965 return v2;
1966 v = search_struct_field (name, v2, 0,
1967 TYPE_BASECLASS (type, i),
1968 looking_for_baseclass);
1969 }
1970 else if (found_baseclass)
1971 v = value_primitive_field (arg1, offset, i, type);
1972 else
1973 v = search_struct_field (name, arg1,
1974 offset + TYPE_BASECLASS_BITPOS (type,
1975 i) / 8,
1976 basetype, looking_for_baseclass);
1977 if (v)
1978 return v;
1979 }
1980 return NULL;
1981 }
1982
1983 /* Helper function used by value_struct_elt to recurse through
1984 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1985 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1986 TYPE.
1987
1988 If found, return value, else if name matched and args not return
1989 (value) -1, else return NULL. */
1990
1991 static struct value *
1992 search_struct_method (const char *name, struct value **arg1p,
1993 struct value **args, int offset,
1994 int *static_memfuncp, struct type *type)
1995 {
1996 int i;
1997 struct value *v;
1998 int name_matched = 0;
1999 char dem_opname[64];
2000
2001 CHECK_TYPEDEF (type);
2002 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2003 {
2004 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2005
2006 /* FIXME! May need to check for ARM demangling here */
2007 if (strncmp (t_field_name, "__", 2) == 0 ||
2008 strncmp (t_field_name, "op", 2) == 0 ||
2009 strncmp (t_field_name, "type", 4) == 0)
2010 {
2011 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2012 t_field_name = dem_opname;
2013 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2014 t_field_name = dem_opname;
2015 }
2016 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2017 {
2018 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2019 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2020
2021 name_matched = 1;
2022 check_stub_method_group (type, i);
2023 if (j > 0 && args == 0)
2024 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
2025 else if (j == 0 && args == 0)
2026 {
2027 v = value_fn_field (arg1p, f, j, type, offset);
2028 if (v != NULL)
2029 return v;
2030 }
2031 else
2032 while (j >= 0)
2033 {
2034 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2035 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2036 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2037 TYPE_FN_FIELD_ARGS (f, j), args))
2038 {
2039 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2040 return value_virtual_fn_field (arg1p, f, j,
2041 type, offset);
2042 if (TYPE_FN_FIELD_STATIC_P (f, j)
2043 && static_memfuncp)
2044 *static_memfuncp = 1;
2045 v = value_fn_field (arg1p, f, j, type, offset);
2046 if (v != NULL)
2047 return v;
2048 }
2049 j--;
2050 }
2051 }
2052 }
2053
2054 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2055 {
2056 int base_offset;
2057
2058 if (BASETYPE_VIA_VIRTUAL (type, i))
2059 {
2060 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2061 const gdb_byte *base_valaddr;
2062
2063 /* The virtual base class pointer might have been
2064 clobbered by the user program. Make sure that it
2065 still points to a valid memory location. */
2066
2067 if (offset < 0 || offset >= TYPE_LENGTH (type))
2068 {
2069 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2070
2071 if (target_read_memory (value_address (*arg1p) + offset,
2072 tmp, TYPE_LENGTH (baseclass)) != 0)
2073 error (_("virtual baseclass botch"));
2074 base_valaddr = tmp;
2075 }
2076 else
2077 base_valaddr = value_contents (*arg1p) + offset;
2078
2079 base_offset = baseclass_offset (type, i, base_valaddr,
2080 value_address (*arg1p) + offset);
2081 if (base_offset == -1)
2082 error (_("virtual baseclass botch"));
2083 }
2084 else
2085 {
2086 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2087 }
2088 v = search_struct_method (name, arg1p, args, base_offset + offset,
2089 static_memfuncp, TYPE_BASECLASS (type, i));
2090 if (v == (struct value *) - 1)
2091 {
2092 name_matched = 1;
2093 }
2094 else if (v)
2095 {
2096 /* FIXME-bothner: Why is this commented out? Why is it here? */
2097 /* *arg1p = arg1_tmp; */
2098 return v;
2099 }
2100 }
2101 if (name_matched)
2102 return (struct value *) - 1;
2103 else
2104 return NULL;
2105 }
2106
2107 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2108 extract the component named NAME from the ultimate target
2109 structure/union and return it as a value with its appropriate type.
2110 ERR is used in the error message if *ARGP's type is wrong.
2111
2112 C++: ARGS is a list of argument types to aid in the selection of
2113 an appropriate method. Also, handle derived types.
2114
2115 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2116 where the truthvalue of whether the function that was resolved was
2117 a static member function or not is stored.
2118
2119 ERR is an error message to be printed in case the field is not
2120 found. */
2121
2122 struct value *
2123 value_struct_elt (struct value **argp, struct value **args,
2124 const char *name, int *static_memfuncp, const char *err)
2125 {
2126 struct type *t;
2127 struct value *v;
2128
2129 *argp = coerce_array (*argp);
2130
2131 t = check_typedef (value_type (*argp));
2132
2133 /* Follow pointers until we get to a non-pointer. */
2134
2135 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2136 {
2137 *argp = value_ind (*argp);
2138 /* Don't coerce fn pointer to fn and then back again! */
2139 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2140 *argp = coerce_array (*argp);
2141 t = check_typedef (value_type (*argp));
2142 }
2143
2144 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2145 && TYPE_CODE (t) != TYPE_CODE_UNION)
2146 error (_("Attempt to extract a component of a value that is not a %s."), err);
2147
2148 /* Assume it's not, unless we see that it is. */
2149 if (static_memfuncp)
2150 *static_memfuncp = 0;
2151
2152 if (!args)
2153 {
2154 /* if there are no arguments ...do this... */
2155
2156 /* Try as a field first, because if we succeed, there is less
2157 work to be done. */
2158 v = search_struct_field (name, *argp, 0, t, 0);
2159 if (v)
2160 return v;
2161
2162 /* C++: If it was not found as a data field, then try to
2163 return it as a pointer to a method. */
2164 v = search_struct_method (name, argp, args, 0,
2165 static_memfuncp, t);
2166
2167 if (v == (struct value *) - 1)
2168 error (_("Cannot take address of method %s."), name);
2169 else if (v == 0)
2170 {
2171 if (TYPE_NFN_FIELDS (t))
2172 error (_("There is no member or method named %s."), name);
2173 else
2174 error (_("There is no member named %s."), name);
2175 }
2176 return v;
2177 }
2178
2179 v = search_struct_method (name, argp, args, 0,
2180 static_memfuncp, t);
2181
2182 if (v == (struct value *) - 1)
2183 {
2184 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
2185 }
2186 else if (v == 0)
2187 {
2188 /* See if user tried to invoke data as function. If so, hand it
2189 back. If it's not callable (i.e., a pointer to function),
2190 gdb should give an error. */
2191 v = search_struct_field (name, *argp, 0, t, 0);
2192 /* If we found an ordinary field, then it is not a method call.
2193 So, treat it as if it were a static member function. */
2194 if (v && static_memfuncp)
2195 *static_memfuncp = 1;
2196 }
2197
2198 if (!v)
2199 error (_("Structure has no component named %s."), name);
2200 return v;
2201 }
2202
2203 /* Search through the methods of an object (and its bases) to find a
2204 specified method. Return the pointer to the fn_field list of
2205 overloaded instances.
2206
2207 Helper function for value_find_oload_list.
2208 ARGP is a pointer to a pointer to a value (the object).
2209 METHOD is a string containing the method name.
2210 OFFSET is the offset within the value.
2211 TYPE is the assumed type of the object.
2212 NUM_FNS is the number of overloaded instances.
2213 BASETYPE is set to the actual type of the subobject where the
2214 method is found.
2215 BOFFSET is the offset of the base subobject where the method is found.
2216 */
2217
2218 static struct fn_field *
2219 find_method_list (struct value **argp, const char *method,
2220 int offset, struct type *type, int *num_fns,
2221 struct type **basetype, int *boffset)
2222 {
2223 int i;
2224 struct fn_field *f;
2225 CHECK_TYPEDEF (type);
2226
2227 *num_fns = 0;
2228
2229 /* First check in object itself. */
2230 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2231 {
2232 /* pai: FIXME What about operators and type conversions? */
2233 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2234
2235 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2236 {
2237 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2238 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2239
2240 *num_fns = len;
2241 *basetype = type;
2242 *boffset = offset;
2243
2244 /* Resolve any stub methods. */
2245 check_stub_method_group (type, i);
2246
2247 return f;
2248 }
2249 }
2250
2251 /* Not found in object, check in base subobjects. */
2252 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2253 {
2254 int base_offset;
2255
2256 if (BASETYPE_VIA_VIRTUAL (type, i))
2257 {
2258 base_offset = value_offset (*argp) + offset;
2259 base_offset = baseclass_offset (type, i,
2260 value_contents (*argp) + base_offset,
2261 value_address (*argp) + base_offset);
2262 if (base_offset == -1)
2263 error (_("virtual baseclass botch"));
2264 }
2265 else /* Non-virtual base, simply use bit position from debug
2266 info. */
2267 {
2268 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2269 }
2270 f = find_method_list (argp, method, base_offset + offset,
2271 TYPE_BASECLASS (type, i), num_fns,
2272 basetype, boffset);
2273 if (f)
2274 return f;
2275 }
2276 return NULL;
2277 }
2278
2279 /* Return the list of overloaded methods of a specified name.
2280
2281 ARGP is a pointer to a pointer to a value (the object).
2282 METHOD is the method name.
2283 OFFSET is the offset within the value contents.
2284 NUM_FNS is the number of overloaded instances.
2285 BASETYPE is set to the type of the base subobject that defines the
2286 method.
2287 BOFFSET is the offset of the base subobject which defines the method.
2288 */
2289
2290 struct fn_field *
2291 value_find_oload_method_list (struct value **argp, const char *method,
2292 int offset, int *num_fns,
2293 struct type **basetype, int *boffset)
2294 {
2295 struct type *t;
2296
2297 t = check_typedef (value_type (*argp));
2298
2299 /* Code snarfed from value_struct_elt. */
2300 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2301 {
2302 *argp = value_ind (*argp);
2303 /* Don't coerce fn pointer to fn and then back again! */
2304 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2305 *argp = coerce_array (*argp);
2306 t = check_typedef (value_type (*argp));
2307 }
2308
2309 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2310 && TYPE_CODE (t) != TYPE_CODE_UNION)
2311 error (_("Attempt to extract a component of a value that is not a struct or union"));
2312
2313 return find_method_list (argp, method, 0, t, num_fns,
2314 basetype, boffset);
2315 }
2316
2317 /* Given an array of argument types (ARGTYPES) (which includes an
2318 entry for "this" in the case of C++ methods), the number of
2319 arguments NARGS, the NAME of a function whether it's a method or
2320 not (METHOD), and the degree of laxness (LAX) in conforming to
2321 overload resolution rules in ANSI C++, find the best function that
2322 matches on the argument types according to the overload resolution
2323 rules.
2324
2325 METHOD can be one of three values:
2326 NON_METHOD for non-member functions.
2327 METHOD: for member functions.
2328 BOTH: used for overload resolution of operators where the
2329 candidates are expected to be either member or non member
2330 functions. In this case the first argument ARGTYPES
2331 (representing 'this') is expected to be a reference to the
2332 target object, and will be dereferenced when attempting the
2333 non-member search.
2334
2335 In the case of class methods, the parameter OBJ is an object value
2336 in which to search for overloaded methods.
2337
2338 In the case of non-method functions, the parameter FSYM is a symbol
2339 corresponding to one of the overloaded functions.
2340
2341 Return value is an integer: 0 -> good match, 10 -> debugger applied
2342 non-standard coercions, 100 -> incompatible.
2343
2344 If a method is being searched for, VALP will hold the value.
2345 If a non-method is being searched for, SYMP will hold the symbol
2346 for it.
2347
2348 If a method is being searched for, and it is a static method,
2349 then STATICP will point to a non-zero value.
2350
2351 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2352 ADL overload candidates when performing overload resolution for a fully
2353 qualified name.
2354
2355 Note: This function does *not* check the value of
2356 overload_resolution. Caller must check it to see whether overload
2357 resolution is permitted.
2358 */
2359
2360 int
2361 find_overload_match (struct type **arg_types, int nargs,
2362 const char *name, enum oload_search_type method,
2363 int lax, struct value **objp, struct symbol *fsym,
2364 struct value **valp, struct symbol **symp,
2365 int *staticp, const int no_adl)
2366 {
2367 struct value *obj = (objp ? *objp : NULL);
2368 /* Index of best overloaded function. */
2369 int func_oload_champ = -1;
2370 int method_oload_champ = -1;
2371
2372 /* The measure for the current best match. */
2373 struct badness_vector *method_badness = NULL;
2374 struct badness_vector *func_badness = NULL;
2375
2376 struct value *temp = obj;
2377 /* For methods, the list of overloaded methods. */
2378 struct fn_field *fns_ptr = NULL;
2379 /* For non-methods, the list of overloaded function symbols. */
2380 struct symbol **oload_syms = NULL;
2381 /* Number of overloaded instances being considered. */
2382 int num_fns = 0;
2383 struct type *basetype = NULL;
2384 int boffset;
2385
2386 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2387
2388 const char *obj_type_name = NULL;
2389 const char *func_name = NULL;
2390 enum oload_classification match_quality;
2391 enum oload_classification method_match_quality = INCOMPATIBLE;
2392 enum oload_classification func_match_quality = INCOMPATIBLE;
2393
2394 /* Get the list of overloaded methods or functions. */
2395 if (method == METHOD || method == BOTH)
2396 {
2397 gdb_assert (obj);
2398
2399 /* OBJ may be a pointer value rather than the object itself. */
2400 obj = coerce_ref (obj);
2401 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2402 obj = coerce_ref (value_ind (obj));
2403 obj_type_name = TYPE_NAME (value_type (obj));
2404
2405 /* First check whether this is a data member, e.g. a pointer to
2406 a function. */
2407 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2408 {
2409 *valp = search_struct_field (name, obj, 0,
2410 check_typedef (value_type (obj)), 0);
2411 if (*valp)
2412 {
2413 *staticp = 1;
2414 return 0;
2415 }
2416 }
2417
2418 /* Retrieve the list of methods with the name NAME. */
2419 fns_ptr = value_find_oload_method_list (&temp, name,
2420 0, &num_fns,
2421 &basetype, &boffset);
2422 /* If this is a method only search, and no methods were found
2423 the search has faild. */
2424 if (method == METHOD && (!fns_ptr || !num_fns))
2425 error (_("Couldn't find method %s%s%s"),
2426 obj_type_name,
2427 (obj_type_name && *obj_type_name) ? "::" : "",
2428 name);
2429 /* If we are dealing with stub method types, they should have
2430 been resolved by find_method_list via
2431 value_find_oload_method_list above. */
2432 if (fns_ptr)
2433 {
2434 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2435 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2436 num_fns, fns_ptr,
2437 oload_syms, &method_badness);
2438
2439 method_match_quality =
2440 classify_oload_match (method_badness, nargs,
2441 oload_method_static (method, fns_ptr,
2442 method_oload_champ));
2443
2444 make_cleanup (xfree, method_badness);
2445 }
2446
2447 }
2448
2449 if (method == NON_METHOD || method == BOTH)
2450 {
2451 const char *qualified_name = NULL;
2452
2453 /* If the the overload match is being search for both
2454 as a method and non member function, the first argument
2455 must now be dereferenced. */
2456 if (method == BOTH)
2457 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2458
2459 if (fsym)
2460 {
2461 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2462
2463 /* If we have a function with a C++ name, try to extract just
2464 the function part. Do not try this for non-functions (e.g.
2465 function pointers). */
2466 if (qualified_name
2467 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) == TYPE_CODE_FUNC)
2468 {
2469 char *temp;
2470
2471 temp = cp_func_name (qualified_name);
2472
2473 /* If cp_func_name did not remove anything, the name of the
2474 symbol did not include scope or argument types - it was
2475 probably a C-style function. */
2476 if (temp)
2477 {
2478 make_cleanup (xfree, temp);
2479 if (strcmp (temp, qualified_name) == 0)
2480 func_name = NULL;
2481 else
2482 func_name = temp;
2483 }
2484 }
2485 }
2486 else
2487 {
2488 func_name = name;
2489 qualified_name = name;
2490 }
2491
2492 /* If there was no C++ name, this must be a C-style function or
2493 not a function at all. Just return the same symbol. Do the
2494 same if cp_func_name fails for some reason. */
2495 if (func_name == NULL)
2496 {
2497 *symp = fsym;
2498 return 0;
2499 }
2500
2501 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2502 func_name,
2503 qualified_name,
2504 &oload_syms,
2505 &func_badness,
2506 no_adl);
2507
2508 if (func_oload_champ >= 0)
2509 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2510
2511 make_cleanup (xfree, oload_syms);
2512 make_cleanup (xfree, func_badness);
2513 }
2514
2515 /* Did we find a match ? */
2516 if (method_oload_champ == -1 && func_oload_champ == -1)
2517 error (_("No symbol \"%s\" in current context."), name);
2518
2519 /* If we have found both a method match and a function
2520 match, find out which one is better, and calculate match
2521 quality. */
2522 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2523 {
2524 switch (compare_badness (func_badness, method_badness))
2525 {
2526 case 0: /* Top two contenders are equally good. */
2527 /* FIXME: GDB does not support the general ambiguous
2528 case. All candidates should be collected and presented
2529 the the user. */
2530 error (_("Ambiguous overload resolution"));
2531 break;
2532 case 1: /* Incomparable top contenders. */
2533 /* This is an error incompatible candidates
2534 should not have been proposed. */
2535 error (_("Internal error: incompatible overload candidates proposed"));
2536 break;
2537 case 2: /* Function champion. */
2538 method_oload_champ = -1;
2539 match_quality = func_match_quality;
2540 break;
2541 case 3: /* Method champion. */
2542 func_oload_champ = -1;
2543 match_quality = method_match_quality;
2544 break;
2545 default:
2546 error (_("Internal error: unexpected overload comparison result"));
2547 break;
2548 }
2549 }
2550 else
2551 {
2552 /* We have either a method match or a function match. */
2553 if (method_oload_champ >= 0)
2554 match_quality = method_match_quality;
2555 else
2556 match_quality = func_match_quality;
2557 }
2558
2559 if (match_quality == INCOMPATIBLE)
2560 {
2561 if (method == METHOD)
2562 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2563 obj_type_name,
2564 (obj_type_name && *obj_type_name) ? "::" : "",
2565 name);
2566 else
2567 error (_("Cannot resolve function %s to any overloaded instance"),
2568 func_name);
2569 }
2570 else if (match_quality == NON_STANDARD)
2571 {
2572 if (method == METHOD)
2573 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2574 obj_type_name,
2575 (obj_type_name && *obj_type_name) ? "::" : "",
2576 name);
2577 else
2578 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2579 func_name);
2580 }
2581
2582 if (staticp != NULL)
2583 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2584
2585 if (method_oload_champ >= 0)
2586 {
2587 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2588 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2589 basetype, boffset);
2590 else
2591 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2592 basetype, boffset);
2593 }
2594 else
2595 *symp = oload_syms[func_oload_champ];
2596
2597 if (objp)
2598 {
2599 struct type *temp_type = check_typedef (value_type (temp));
2600 struct type *obj_type = check_typedef (value_type (*objp));
2601
2602 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2603 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2604 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2605 {
2606 temp = value_addr (temp);
2607 }
2608 *objp = temp;
2609 }
2610
2611 do_cleanups (all_cleanups);
2612
2613 switch (match_quality)
2614 {
2615 case INCOMPATIBLE:
2616 return 100;
2617 case NON_STANDARD:
2618 return 10;
2619 default: /* STANDARD */
2620 return 0;
2621 }
2622 }
2623
2624 /* Find the best overload match, searching for FUNC_NAME in namespaces
2625 contained in QUALIFIED_NAME until it either finds a good match or
2626 runs out of namespaces. It stores the overloaded functions in
2627 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2628 calling function is responsible for freeing *OLOAD_SYMS and
2629 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2630 performned. */
2631
2632 static int
2633 find_oload_champ_namespace (struct type **arg_types, int nargs,
2634 const char *func_name,
2635 const char *qualified_name,
2636 struct symbol ***oload_syms,
2637 struct badness_vector **oload_champ_bv,
2638 const int no_adl)
2639 {
2640 int oload_champ;
2641
2642 find_oload_champ_namespace_loop (arg_types, nargs,
2643 func_name,
2644 qualified_name, 0,
2645 oload_syms, oload_champ_bv,
2646 &oload_champ,
2647 no_adl);
2648
2649 return oload_champ;
2650 }
2651
2652 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2653 how deep we've looked for namespaces, and the champ is stored in
2654 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2655 if it isn't. Other arguments are the same as in
2656 find_oload_champ_namespace
2657
2658 It is the caller's responsibility to free *OLOAD_SYMS and
2659 *OLOAD_CHAMP_BV. */
2660
2661 static int
2662 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2663 const char *func_name,
2664 const char *qualified_name,
2665 int namespace_len,
2666 struct symbol ***oload_syms,
2667 struct badness_vector **oload_champ_bv,
2668 int *oload_champ,
2669 const int no_adl)
2670 {
2671 int next_namespace_len = namespace_len;
2672 int searched_deeper = 0;
2673 int num_fns = 0;
2674 struct cleanup *old_cleanups;
2675 int new_oload_champ;
2676 struct symbol **new_oload_syms;
2677 struct badness_vector *new_oload_champ_bv;
2678 char *new_namespace;
2679
2680 if (next_namespace_len != 0)
2681 {
2682 gdb_assert (qualified_name[next_namespace_len] == ':');
2683 next_namespace_len += 2;
2684 }
2685 next_namespace_len +=
2686 cp_find_first_component (qualified_name + next_namespace_len);
2687
2688 /* Initialize these to values that can safely be xfree'd. */
2689 *oload_syms = NULL;
2690 *oload_champ_bv = NULL;
2691
2692 /* First, see if we have a deeper namespace we can search in.
2693 If we get a good match there, use it. */
2694
2695 if (qualified_name[next_namespace_len] == ':')
2696 {
2697 searched_deeper = 1;
2698
2699 if (find_oload_champ_namespace_loop (arg_types, nargs,
2700 func_name, qualified_name,
2701 next_namespace_len,
2702 oload_syms, oload_champ_bv,
2703 oload_champ, no_adl))
2704 {
2705 return 1;
2706 }
2707 };
2708
2709 /* If we reach here, either we're in the deepest namespace or we
2710 didn't find a good match in a deeper namespace. But, in the
2711 latter case, we still have a bad match in a deeper namespace;
2712 note that we might not find any match at all in the current
2713 namespace. (There's always a match in the deepest namespace,
2714 because this overload mechanism only gets called if there's a
2715 function symbol to start off with.) */
2716
2717 old_cleanups = make_cleanup (xfree, *oload_syms);
2718 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2719 new_namespace = alloca (namespace_len + 1);
2720 strncpy (new_namespace, qualified_name, namespace_len);
2721 new_namespace[namespace_len] = '\0';
2722 new_oload_syms = make_symbol_overload_list (func_name,
2723 new_namespace);
2724
2725 /* If we have reached the deepest level perform argument
2726 determined lookup. */
2727 if (!searched_deeper && !no_adl)
2728 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2729
2730 while (new_oload_syms[num_fns])
2731 ++num_fns;
2732
2733 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2734 NULL, new_oload_syms,
2735 &new_oload_champ_bv);
2736
2737 /* Case 1: We found a good match. Free earlier matches (if any),
2738 and return it. Case 2: We didn't find a good match, but we're
2739 not the deepest function. Then go with the bad match that the
2740 deeper function found. Case 3: We found a bad match, and we're
2741 the deepest function. Then return what we found, even though
2742 it's a bad match. */
2743
2744 if (new_oload_champ != -1
2745 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2746 {
2747 *oload_syms = new_oload_syms;
2748 *oload_champ = new_oload_champ;
2749 *oload_champ_bv = new_oload_champ_bv;
2750 do_cleanups (old_cleanups);
2751 return 1;
2752 }
2753 else if (searched_deeper)
2754 {
2755 xfree (new_oload_syms);
2756 xfree (new_oload_champ_bv);
2757 discard_cleanups (old_cleanups);
2758 return 0;
2759 }
2760 else
2761 {
2762 *oload_syms = new_oload_syms;
2763 *oload_champ = new_oload_champ;
2764 *oload_champ_bv = new_oload_champ_bv;
2765 discard_cleanups (old_cleanups);
2766 return 0;
2767 }
2768 }
2769
2770 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2771 the best match from among the overloaded methods or functions
2772 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2773 The number of methods/functions in the list is given by NUM_FNS.
2774 Return the index of the best match; store an indication of the
2775 quality of the match in OLOAD_CHAMP_BV.
2776
2777 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2778
2779 static int
2780 find_oload_champ (struct type **arg_types, int nargs, int method,
2781 int num_fns, struct fn_field *fns_ptr,
2782 struct symbol **oload_syms,
2783 struct badness_vector **oload_champ_bv)
2784 {
2785 int ix;
2786 /* A measure of how good an overloaded instance is. */
2787 struct badness_vector *bv;
2788 /* Index of best overloaded function. */
2789 int oload_champ = -1;
2790 /* Current ambiguity state for overload resolution. */
2791 int oload_ambiguous = 0;
2792 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2793
2794 *oload_champ_bv = NULL;
2795
2796 /* Consider each candidate in turn. */
2797 for (ix = 0; ix < num_fns; ix++)
2798 {
2799 int jj;
2800 int static_offset = oload_method_static (method, fns_ptr, ix);
2801 int nparms;
2802 struct type **parm_types;
2803
2804 if (method)
2805 {
2806 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2807 }
2808 else
2809 {
2810 /* If it's not a method, this is the proper place. */
2811 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2812 }
2813
2814 /* Prepare array of parameter types. */
2815 parm_types = (struct type **)
2816 xmalloc (nparms * (sizeof (struct type *)));
2817 for (jj = 0; jj < nparms; jj++)
2818 parm_types[jj] = (method
2819 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2820 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2821 jj));
2822
2823 /* Compare parameter types to supplied argument types. Skip
2824 THIS for static methods. */
2825 bv = rank_function (parm_types, nparms,
2826 arg_types + static_offset,
2827 nargs - static_offset);
2828
2829 if (!*oload_champ_bv)
2830 {
2831 *oload_champ_bv = bv;
2832 oload_champ = 0;
2833 }
2834 else /* See whether current candidate is better or worse than
2835 previous best. */
2836 switch (compare_badness (bv, *oload_champ_bv))
2837 {
2838 case 0: /* Top two contenders are equally good. */
2839 oload_ambiguous = 1;
2840 break;
2841 case 1: /* Incomparable top contenders. */
2842 oload_ambiguous = 2;
2843 break;
2844 case 2: /* New champion, record details. */
2845 *oload_champ_bv = bv;
2846 oload_ambiguous = 0;
2847 oload_champ = ix;
2848 break;
2849 case 3:
2850 default:
2851 break;
2852 }
2853 xfree (parm_types);
2854 if (overload_debug)
2855 {
2856 if (method)
2857 fprintf_filtered (gdb_stderr,
2858 "Overloaded method instance %s, # of parms %d\n",
2859 fns_ptr[ix].physname, nparms);
2860 else
2861 fprintf_filtered (gdb_stderr,
2862 "Overloaded function instance %s # of parms %d\n",
2863 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2864 nparms);
2865 for (jj = 0; jj < nargs - static_offset; jj++)
2866 fprintf_filtered (gdb_stderr,
2867 "...Badness @ %d : %d\n",
2868 jj, bv->rank[jj]);
2869 fprintf_filtered (gdb_stderr,
2870 "Overload resolution champion is %d, ambiguous? %d\n",
2871 oload_champ, oload_ambiguous);
2872 }
2873 }
2874
2875 return oload_champ;
2876 }
2877
2878 /* Return 1 if we're looking at a static method, 0 if we're looking at
2879 a non-static method or a function that isn't a method. */
2880
2881 static int
2882 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2883 {
2884 if (method && fns_ptr && index >= 0
2885 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2886 return 1;
2887 else
2888 return 0;
2889 }
2890
2891 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2892
2893 static enum oload_classification
2894 classify_oload_match (struct badness_vector *oload_champ_bv,
2895 int nargs,
2896 int static_offset)
2897 {
2898 int ix;
2899
2900 for (ix = 1; ix <= nargs - static_offset; ix++)
2901 {
2902 if (oload_champ_bv->rank[ix] >= 100)
2903 return INCOMPATIBLE; /* Truly mismatched types. */
2904 else if (oload_champ_bv->rank[ix] >= 10)
2905 return NON_STANDARD; /* Non-standard type conversions
2906 needed. */
2907 }
2908
2909 return STANDARD; /* Only standard conversions needed. */
2910 }
2911
2912 /* C++: return 1 is NAME is a legitimate name for the destructor of
2913 type TYPE. If TYPE does not have a destructor, or if NAME is
2914 inappropriate for TYPE, an error is signaled. */
2915 int
2916 destructor_name_p (const char *name, const struct type *type)
2917 {
2918 if (name[0] == '~')
2919 {
2920 char *dname = type_name_no_tag (type);
2921 char *cp = strchr (dname, '<');
2922 unsigned int len;
2923
2924 /* Do not compare the template part for template classes. */
2925 if (cp == NULL)
2926 len = strlen (dname);
2927 else
2928 len = cp - dname;
2929 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2930 error (_("name of destructor must equal name of class"));
2931 else
2932 return 1;
2933 }
2934 return 0;
2935 }
2936
2937 /* Given TYPE, a structure/union,
2938 return 1 if the component named NAME from the ultimate target
2939 structure/union is defined, otherwise, return 0. */
2940
2941 int
2942 check_field (struct type *type, const char *name)
2943 {
2944 int i;
2945
2946 /* The type may be a stub. */
2947 CHECK_TYPEDEF (type);
2948
2949 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2950 {
2951 char *t_field_name = TYPE_FIELD_NAME (type, i);
2952
2953 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2954 return 1;
2955 }
2956
2957 /* C++: If it was not found as a data field, then try to return it
2958 as a pointer to a method. */
2959
2960 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2961 {
2962 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2963 return 1;
2964 }
2965
2966 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2967 if (check_field (TYPE_BASECLASS (type, i), name))
2968 return 1;
2969
2970 return 0;
2971 }
2972
2973 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2974 return the appropriate member (or the address of the member, if
2975 WANT_ADDRESS). This function is used to resolve user expressions
2976 of the form "DOMAIN::NAME". For more details on what happens, see
2977 the comment before value_struct_elt_for_reference. */
2978
2979 struct value *
2980 value_aggregate_elt (struct type *curtype, char *name,
2981 struct type *expect_type, int want_address,
2982 enum noside noside)
2983 {
2984 switch (TYPE_CODE (curtype))
2985 {
2986 case TYPE_CODE_STRUCT:
2987 case TYPE_CODE_UNION:
2988 return value_struct_elt_for_reference (curtype, 0, curtype,
2989 name, expect_type,
2990 want_address, noside);
2991 case TYPE_CODE_NAMESPACE:
2992 return value_namespace_elt (curtype, name,
2993 want_address, noside);
2994 default:
2995 internal_error (__FILE__, __LINE__,
2996 _("non-aggregate type in value_aggregate_elt"));
2997 }
2998 }
2999
3000 /* Compares the two method/function types T1 and T2 for "equality"
3001 with respect to the the methods' parameters. If the types of the
3002 two parameter lists are the same, returns 1; 0 otherwise. This
3003 comparison may ignore any artificial parameters in T1 if
3004 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3005 the first artificial parameter in T1, assumed to be a 'this' pointer.
3006
3007 The type T2 is expected to have come from make_params (in eval.c). */
3008
3009 static int
3010 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3011 {
3012 int start = 0;
3013
3014 if (TYPE_FIELD_ARTIFICIAL (t1, 0))
3015 ++start;
3016
3017 /* If skipping artificial fields, find the first real field
3018 in T1. */
3019 if (skip_artificial)
3020 {
3021 while (start < TYPE_NFIELDS (t1)
3022 && TYPE_FIELD_ARTIFICIAL (t1, start))
3023 ++start;
3024 }
3025
3026 /* Now compare parameters */
3027
3028 /* Special case: a method taking void. T1 will contain no
3029 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3030 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3031 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3032 return 1;
3033
3034 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3035 {
3036 int i;
3037
3038 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3039 {
3040 if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3041 TYPE_FIELD_TYPE (t2, i))
3042 != 0)
3043 return 0;
3044 }
3045
3046 return 1;
3047 }
3048
3049 return 0;
3050 }
3051
3052 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3053 return the address of this member as a "pointer to member" type.
3054 If INTYPE is non-null, then it will be the type of the member we
3055 are looking for. This will help us resolve "pointers to member
3056 functions". This function is used to resolve user expressions of
3057 the form "DOMAIN::NAME". */
3058
3059 static struct value *
3060 value_struct_elt_for_reference (struct type *domain, int offset,
3061 struct type *curtype, char *name,
3062 struct type *intype,
3063 int want_address,
3064 enum noside noside)
3065 {
3066 struct type *t = curtype;
3067 int i;
3068 struct value *v, *result;
3069
3070 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3071 && TYPE_CODE (t) != TYPE_CODE_UNION)
3072 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
3073
3074 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3075 {
3076 char *t_field_name = TYPE_FIELD_NAME (t, i);
3077
3078 if (t_field_name && strcmp (t_field_name, name) == 0)
3079 {
3080 if (field_is_static (&TYPE_FIELD (t, i)))
3081 {
3082 v = value_static_field (t, i);
3083 if (v == NULL)
3084 error (_("static field %s has been optimized out"),
3085 name);
3086 if (want_address)
3087 v = value_addr (v);
3088 return v;
3089 }
3090 if (TYPE_FIELD_PACKED (t, i))
3091 error (_("pointers to bitfield members not allowed"));
3092
3093 if (want_address)
3094 return value_from_longest
3095 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3096 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3097 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3098 return allocate_value (TYPE_FIELD_TYPE (t, i));
3099 else
3100 error (_("Cannot reference non-static field \"%s\""), name);
3101 }
3102 }
3103
3104 /* C++: If it was not found as a data field, then try to return it
3105 as a pointer to a method. */
3106
3107 /* Perform all necessary dereferencing. */
3108 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3109 intype = TYPE_TARGET_TYPE (intype);
3110
3111 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3112 {
3113 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3114 char dem_opname[64];
3115
3116 if (strncmp (t_field_name, "__", 2) == 0
3117 || strncmp (t_field_name, "op", 2) == 0
3118 || strncmp (t_field_name, "type", 4) == 0)
3119 {
3120 if (cplus_demangle_opname (t_field_name,
3121 dem_opname, DMGL_ANSI))
3122 t_field_name = dem_opname;
3123 else if (cplus_demangle_opname (t_field_name,
3124 dem_opname, 0))
3125 t_field_name = dem_opname;
3126 }
3127 if (t_field_name && strcmp (t_field_name, name) == 0)
3128 {
3129 int j;
3130 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3131 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3132
3133 check_stub_method_group (t, i);
3134
3135 if (intype)
3136 {
3137 for (j = 0; j < len; ++j)
3138 {
3139 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3140 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
3141 break;
3142 }
3143
3144 if (j == len)
3145 error (_("no member function matches that type instantiation"));
3146 }
3147 else
3148 {
3149 int ii;
3150
3151 j = -1;
3152 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3153 ++ii)
3154 {
3155 /* Skip artificial methods. This is necessary if,
3156 for example, the user wants to "print
3157 subclass::subclass" with only one user-defined
3158 constructor. There is no ambiguity in this
3159 case. */
3160 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3161 continue;
3162
3163 /* Desired method is ambiguous if more than one
3164 method is defined. */
3165 if (j != -1)
3166 error (_("non-unique member `%s' requires type instantiation"), name);
3167
3168 j = ii;
3169 }
3170 }
3171
3172 if (TYPE_FN_FIELD_STATIC_P (f, j))
3173 {
3174 struct symbol *s =
3175 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3176 0, VAR_DOMAIN, 0);
3177
3178 if (s == NULL)
3179 return NULL;
3180
3181 if (want_address)
3182 return value_addr (read_var_value (s, 0));
3183 else
3184 return read_var_value (s, 0);
3185 }
3186
3187 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3188 {
3189 if (want_address)
3190 {
3191 result = allocate_value
3192 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3193 cplus_make_method_ptr (value_type (result),
3194 value_contents_writeable (result),
3195 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3196 }
3197 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3198 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3199 else
3200 error (_("Cannot reference virtual member function \"%s\""),
3201 name);
3202 }
3203 else
3204 {
3205 struct symbol *s =
3206 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3207 0, VAR_DOMAIN, 0);
3208
3209 if (s == NULL)
3210 return NULL;
3211
3212 v = read_var_value (s, 0);
3213 if (!want_address)
3214 result = v;
3215 else
3216 {
3217 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3218 cplus_make_method_ptr (value_type (result),
3219 value_contents_writeable (result),
3220 value_address (v), 0);
3221 }
3222 }
3223 return result;
3224 }
3225 }
3226 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3227 {
3228 struct value *v;
3229 int base_offset;
3230
3231 if (BASETYPE_VIA_VIRTUAL (t, i))
3232 base_offset = 0;
3233 else
3234 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3235 v = value_struct_elt_for_reference (domain,
3236 offset + base_offset,
3237 TYPE_BASECLASS (t, i),
3238 name, intype,
3239 want_address, noside);
3240 if (v)
3241 return v;
3242 }
3243
3244 /* As a last chance, pretend that CURTYPE is a namespace, and look
3245 it up that way; this (frequently) works for types nested inside
3246 classes. */
3247
3248 return value_maybe_namespace_elt (curtype, name,
3249 want_address, noside);
3250 }
3251
3252 /* C++: Return the member NAME of the namespace given by the type
3253 CURTYPE. */
3254
3255 static struct value *
3256 value_namespace_elt (const struct type *curtype,
3257 char *name, int want_address,
3258 enum noside noside)
3259 {
3260 struct value *retval = value_maybe_namespace_elt (curtype, name,
3261 want_address,
3262 noside);
3263
3264 if (retval == NULL)
3265 error (_("No symbol \"%s\" in namespace \"%s\"."),
3266 name, TYPE_TAG_NAME (curtype));
3267
3268 return retval;
3269 }
3270
3271 /* A helper function used by value_namespace_elt and
3272 value_struct_elt_for_reference. It looks up NAME inside the
3273 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3274 is a class and NAME refers to a type in CURTYPE itself (as opposed
3275 to, say, some base class of CURTYPE). */
3276
3277 static struct value *
3278 value_maybe_namespace_elt (const struct type *curtype,
3279 char *name, int want_address,
3280 enum noside noside)
3281 {
3282 const char *namespace_name = TYPE_TAG_NAME (curtype);
3283 struct symbol *sym;
3284 struct value *result;
3285
3286 sym = cp_lookup_symbol_namespace (namespace_name, name,
3287 get_selected_block (0),
3288 VAR_DOMAIN);
3289
3290 if (sym == NULL)
3291 return NULL;
3292 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3293 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3294 result = allocate_value (SYMBOL_TYPE (sym));
3295 else
3296 result = value_of_variable (sym, get_selected_block (0));
3297
3298 if (result && want_address)
3299 result = value_addr (result);
3300
3301 return result;
3302 }
3303
3304 /* Given a pointer value V, find the real (RTTI) type of the object it
3305 points to.
3306
3307 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3308 and refer to the values computed for the object pointed to. */
3309
3310 struct type *
3311 value_rtti_target_type (struct value *v, int *full,
3312 int *top, int *using_enc)
3313 {
3314 struct value *target;
3315
3316 target = value_ind (v);
3317
3318 return value_rtti_type (target, full, top, using_enc);
3319 }
3320
3321 /* Given a value pointed to by ARGP, check its real run-time type, and
3322 if that is different from the enclosing type, create a new value
3323 using the real run-time type as the enclosing type (and of the same
3324 type as ARGP) and return it, with the embedded offset adjusted to
3325 be the correct offset to the enclosed object. RTYPE is the type,
3326 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3327 by value_rtti_type(). If these are available, they can be supplied
3328 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3329 NULL if they're not available. */
3330
3331 struct value *
3332 value_full_object (struct value *argp,
3333 struct type *rtype,
3334 int xfull, int xtop,
3335 int xusing_enc)
3336 {
3337 struct type *real_type;
3338 int full = 0;
3339 int top = -1;
3340 int using_enc = 0;
3341 struct value *new_val;
3342
3343 if (rtype)
3344 {
3345 real_type = rtype;
3346 full = xfull;
3347 top = xtop;
3348 using_enc = xusing_enc;
3349 }
3350 else
3351 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3352
3353 /* If no RTTI data, or if object is already complete, do nothing. */
3354 if (!real_type || real_type == value_enclosing_type (argp))
3355 return argp;
3356
3357 /* If we have the full object, but for some reason the enclosing
3358 type is wrong, set it. */
3359 /* pai: FIXME -- sounds iffy */
3360 if (full)
3361 {
3362 argp = value_change_enclosing_type (argp, real_type);
3363 return argp;
3364 }
3365
3366 /* Check if object is in memory */
3367 if (VALUE_LVAL (argp) != lval_memory)
3368 {
3369 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
3370 TYPE_NAME (real_type));
3371
3372 return argp;
3373 }
3374
3375 /* All other cases -- retrieve the complete object. */
3376 /* Go back by the computed top_offset from the beginning of the
3377 object, adjusting for the embedded offset of argp if that's what
3378 value_rtti_type used for its computation. */
3379 new_val = value_at_lazy (real_type, value_address (argp) - top +
3380 (using_enc ? 0 : value_embedded_offset (argp)));
3381 deprecated_set_value_type (new_val, value_type (argp));
3382 set_value_embedded_offset (new_val, (using_enc
3383 ? top + value_embedded_offset (argp)
3384 : top));
3385 return new_val;
3386 }
3387
3388
3389 /* Return the value of the local variable, if one exists.
3390 Flag COMPLAIN signals an error if the request is made in an
3391 inappropriate context. */
3392
3393 struct value *
3394 value_of_local (const char *name, int complain)
3395 {
3396 struct symbol *func, *sym;
3397 struct block *b;
3398 struct value * ret;
3399 struct frame_info *frame;
3400
3401 if (complain)
3402 frame = get_selected_frame (_("no frame selected"));
3403 else
3404 {
3405 frame = deprecated_safe_get_selected_frame ();
3406 if (frame == 0)
3407 return 0;
3408 }
3409
3410 func = get_frame_function (frame);
3411 if (!func)
3412 {
3413 if (complain)
3414 error (_("no `%s' in nameless context"), name);
3415 else
3416 return 0;
3417 }
3418
3419 b = SYMBOL_BLOCK_VALUE (func);
3420 if (dict_empty (BLOCK_DICT (b)))
3421 {
3422 if (complain)
3423 error (_("no args, no `%s'"), name);
3424 else
3425 return 0;
3426 }
3427
3428 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3429 symbol instead of the LOC_ARG one (if both exist). */
3430 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3431 if (sym == NULL)
3432 {
3433 if (complain)
3434 error (_("current stack frame does not contain a variable named `%s'"),
3435 name);
3436 else
3437 return NULL;
3438 }
3439
3440 ret = read_var_value (sym, frame);
3441 if (ret == 0 && complain)
3442 error (_("`%s' argument unreadable"), name);
3443 return ret;
3444 }
3445
3446 /* C++/Objective-C: return the value of the class instance variable,
3447 if one exists. Flag COMPLAIN signals an error if the request is
3448 made in an inappropriate context. */
3449
3450 struct value *
3451 value_of_this (int complain)
3452 {
3453 if (!current_language->la_name_of_this)
3454 return 0;
3455 return value_of_local (current_language->la_name_of_this, complain);
3456 }
3457
3458 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3459 elements long, starting at LOWBOUND. The result has the same lower
3460 bound as the original ARRAY. */
3461
3462 struct value *
3463 value_slice (struct value *array, int lowbound, int length)
3464 {
3465 struct type *slice_range_type, *slice_type, *range_type;
3466 LONGEST lowerbound, upperbound;
3467 struct value *slice;
3468 struct type *array_type;
3469
3470 array_type = check_typedef (value_type (array));
3471 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3472 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3473 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3474 error (_("cannot take slice of non-array"));
3475
3476 range_type = TYPE_INDEX_TYPE (array_type);
3477 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3478 error (_("slice from bad array or bitstring"));
3479
3480 if (lowbound < lowerbound || length < 0
3481 || lowbound + length - 1 > upperbound)
3482 error (_("slice out of range"));
3483
3484 /* FIXME-type-allocation: need a way to free this type when we are
3485 done with it. */
3486 slice_range_type = create_range_type ((struct type *) NULL,
3487 TYPE_TARGET_TYPE (range_type),
3488 lowbound,
3489 lowbound + length - 1);
3490 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3491 {
3492 int i;
3493
3494 slice_type = create_set_type ((struct type *) NULL,
3495 slice_range_type);
3496 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3497 slice = value_zero (slice_type, not_lval);
3498
3499 for (i = 0; i < length; i++)
3500 {
3501 int element = value_bit_index (array_type,
3502 value_contents (array),
3503 lowbound + i);
3504
3505 if (element < 0)
3506 error (_("internal error accessing bitstring"));
3507 else if (element > 0)
3508 {
3509 int j = i % TARGET_CHAR_BIT;
3510
3511 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3512 j = TARGET_CHAR_BIT - 1 - j;
3513 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3514 }
3515 }
3516 /* We should set the address, bitssize, and bitspos, so the
3517 slice can be used on the LHS, but that may require extensions
3518 to value_assign. For now, just leave as a non_lval.
3519 FIXME. */
3520 }
3521 else
3522 {
3523 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3524 LONGEST offset =
3525 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3526
3527 slice_type = create_array_type ((struct type *) NULL,
3528 element_type,
3529 slice_range_type);
3530 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3531
3532 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3533 slice = allocate_value_lazy (slice_type);
3534 else
3535 {
3536 slice = allocate_value (slice_type);
3537 memcpy (value_contents_writeable (slice),
3538 value_contents (array) + offset,
3539 TYPE_LENGTH (slice_type));
3540 }
3541
3542 set_value_component_location (slice, array);
3543 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3544 set_value_offset (slice, value_offset (array) + offset);
3545 }
3546 return slice;
3547 }
3548
3549 /* Create a value for a FORTRAN complex number. Currently most of the
3550 time values are coerced to COMPLEX*16 (i.e. a complex number
3551 composed of 2 doubles. This really should be a smarter routine
3552 that figures out precision inteligently as opposed to assuming
3553 doubles. FIXME: fmb */
3554
3555 struct value *
3556 value_literal_complex (struct value *arg1,
3557 struct value *arg2,
3558 struct type *type)
3559 {
3560 struct value *val;
3561 struct type *real_type = TYPE_TARGET_TYPE (type);
3562
3563 val = allocate_value (type);
3564 arg1 = value_cast (real_type, arg1);
3565 arg2 = value_cast (real_type, arg2);
3566
3567 memcpy (value_contents_raw (val),
3568 value_contents (arg1), TYPE_LENGTH (real_type));
3569 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3570 value_contents (arg2), TYPE_LENGTH (real_type));
3571 return val;
3572 }
3573
3574 /* Cast a value into the appropriate complex data type. */
3575
3576 static struct value *
3577 cast_into_complex (struct type *type, struct value *val)
3578 {
3579 struct type *real_type = TYPE_TARGET_TYPE (type);
3580
3581 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3582 {
3583 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3584 struct value *re_val = allocate_value (val_real_type);
3585 struct value *im_val = allocate_value (val_real_type);
3586
3587 memcpy (value_contents_raw (re_val),
3588 value_contents (val), TYPE_LENGTH (val_real_type));
3589 memcpy (value_contents_raw (im_val),
3590 value_contents (val) + TYPE_LENGTH (val_real_type),
3591 TYPE_LENGTH (val_real_type));
3592
3593 return value_literal_complex (re_val, im_val, type);
3594 }
3595 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3596 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3597 return value_literal_complex (val,
3598 value_zero (real_type, not_lval),
3599 type);
3600 else
3601 error (_("cannot cast non-number to complex"));
3602 }
3603
3604 void
3605 _initialize_valops (void)
3606 {
3607 add_setshow_boolean_cmd ("overload-resolution", class_support,
3608 &overload_resolution, _("\
3609 Set overload resolution in evaluating C++ functions."), _("\
3610 Show overload resolution in evaluating C++ functions."),
3611 NULL, NULL,
3612 show_overload_resolution,
3613 &setlist, &showlist);
3614 overload_resolution = 1;
3615 }
This page took 0.104048 seconds and 4 git commands to generate.