import gdb-1999-10-18 snapshot
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Default to coercing float to double in function calls only when there is
38 no prototype. Otherwise on targets where the debug information is incorrect
39 for either the prototype or non-prototype case, we can force it by defining
40 COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
41
42 #ifndef COERCE_FLOAT_TO_DOUBLE
43 #define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
44 #endif
45
46 /* Flag indicating HP compilers were used; needed to correctly handle some
47 value operations with HP aCC code/runtime. */
48 extern int hp_som_som_object_present;
49
50
51 /* Local functions. */
52
53 static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
54
55 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
56 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
57
58
59 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
60
61 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
62 struct type *, int));
63
64 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
65 value_ptr *,
66 int, int *, struct type *));
67
68 static int check_field_in PARAMS ((struct type *, const char *));
69
70 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
71
72 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
73
74 static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
75
76 void _initialize_valops PARAMS ((void));
77
78 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
79
80 /* Flag for whether we want to abandon failed expression evals by default. */
81
82 #if 0
83 static int auto_abandon = 0;
84 #endif
85
86 int overload_resolution = 0;
87 \f
88
89
90 /* Find the address of function name NAME in the inferior. */
91
92 value_ptr
93 find_function_in_inferior (name)
94 char *name;
95 {
96 register struct symbol *sym;
97 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
98 if (sym != NULL)
99 {
100 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
101 {
102 error ("\"%s\" exists in this program but is not a function.",
103 name);
104 }
105 return value_of_variable (sym, NULL);
106 }
107 else
108 {
109 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
110 if (msymbol != NULL)
111 {
112 struct type *type;
113 LONGEST maddr;
114 type = lookup_pointer_type (builtin_type_char);
115 type = lookup_function_type (type);
116 type = lookup_pointer_type (type);
117 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
118 return value_from_longest (type, maddr);
119 }
120 else
121 {
122 if (!target_has_execution)
123 error ("evaluation of this expression requires the target program to be active");
124 else
125 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
126 }
127 }
128 }
129
130 /* Allocate NBYTES of space in the inferior using the inferior's malloc
131 and return a value that is a pointer to the allocated space. */
132
133 value_ptr
134 value_allocate_space_in_inferior (len)
135 int len;
136 {
137 value_ptr blocklen;
138 register value_ptr val = find_function_in_inferior ("malloc");
139
140 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
141 val = call_function_by_hand (val, 1, &blocklen);
142 if (value_logical_not (val))
143 {
144 if (!target_has_execution)
145 error ("No memory available to program now: you need to start the target first");
146 else
147 error ("No memory available to program: call to malloc failed");
148 }
149 return val;
150 }
151
152 static CORE_ADDR
153 allocate_space_in_inferior (len)
154 int len;
155 {
156 return value_as_long (value_allocate_space_in_inferior (len));
157 }
158
159 /* Cast value ARG2 to type TYPE and return as a value.
160 More general than a C cast: accepts any two types of the same length,
161 and if ARG2 is an lvalue it can be cast into anything at all. */
162 /* In C++, casts may change pointer or object representations. */
163
164 value_ptr
165 value_cast (type, arg2)
166 struct type *type;
167 register value_ptr arg2;
168 {
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
175
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
181 COERCE_REF (arg2);
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
201 warning ("array element type size does not divide object size in cast");
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
240 if (code1 == TYPE_CODE_STRUCT
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
247 value_ptr v = search_struct_field (type_name_no_tag (type),
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
267 value_ptr retvalp;
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
274 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
275 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
276 return retvalp;
277
278 /* While pointers to methods don't really point to a function */
279 case TYPE_CODE_METHOD:
280 error ("Pointers to methods not supported with HP aCC");
281
282 default:
283 break; /* fall out and go to normal handling */
284 }
285 }
286 longest = value_as_long (arg2);
287 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
288 }
289 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
290 {
291 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
292 {
293 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
294 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
295 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
296 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
297 && !value_logical_not (arg2))
298 {
299 value_ptr v;
300
301 /* Look in the type of the source to see if it contains the
302 type of the target as a superclass. If so, we'll need to
303 offset the pointer rather than just change its type. */
304 if (TYPE_NAME (t1) != NULL)
305 {
306 v = search_struct_field (type_name_no_tag (t1),
307 value_ind (arg2), 0, t2, 1);
308 if (v)
309 {
310 v = value_addr (v);
311 VALUE_TYPE (v) = type;
312 return v;
313 }
314 }
315
316 /* Look in the type of the target to see if it contains the
317 type of the source as a superclass. If so, we'll need to
318 offset the pointer rather than just change its type.
319 FIXME: This fails silently with virtual inheritance. */
320 if (TYPE_NAME (t2) != NULL)
321 {
322 v = search_struct_field (type_name_no_tag (t2),
323 value_zero (t1, not_lval), 0, t1, 1);
324 if (v)
325 {
326 value_ptr v2 = value_ind (arg2);
327 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
328 + VALUE_OFFSET (v);
329 v2 = value_addr (v2);
330 VALUE_TYPE (v2) = type;
331 return v2;
332 }
333 }
334 }
335 /* No superclass found, just fall through to change ptr type. */
336 }
337 VALUE_TYPE (arg2) = type;
338 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
339 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
340 return arg2;
341 }
342 else if (chill_varying_type (type))
343 {
344 struct type *range1, *range2, *eltype1, *eltype2;
345 value_ptr val;
346 int count1, count2;
347 LONGEST low_bound, high_bound;
348 char *valaddr, *valaddr_data;
349 /* For lint warning about eltype2 possibly uninitialized: */
350 eltype2 = NULL;
351 if (code2 == TYPE_CODE_BITSTRING)
352 error ("not implemented: converting bitstring to varying type");
353 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
354 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
355 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
356 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
357 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
358 error ("Invalid conversion to varying type");
359 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
360 range2 = TYPE_FIELD_TYPE (type2, 0);
361 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
362 count1 = -1;
363 else
364 count1 = high_bound - low_bound + 1;
365 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
366 count1 = -1, count2 = 0; /* To force error before */
367 else
368 count2 = high_bound - low_bound + 1;
369 if (count2 > count1)
370 error ("target varying type is too small");
371 val = allocate_value (type);
372 valaddr = VALUE_CONTENTS_RAW (val);
373 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
374 /* Set val's __var_length field to count2. */
375 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
376 count2);
377 /* Set the __var_data field to count2 elements copied from arg2. */
378 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
379 count2 * TYPE_LENGTH (eltype2));
380 /* Zero the rest of the __var_data field of val. */
381 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
382 (count1 - count2) * TYPE_LENGTH (eltype2));
383 return val;
384 }
385 else if (VALUE_LVAL (arg2) == lval_memory)
386 {
387 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
388 VALUE_BFD_SECTION (arg2));
389 }
390 else if (code1 == TYPE_CODE_VOID)
391 {
392 return value_zero (builtin_type_void, not_lval);
393 }
394 else
395 {
396 error ("Invalid cast.");
397 return 0;
398 }
399 }
400
401 /* Create a value of type TYPE that is zero, and return it. */
402
403 value_ptr
404 value_zero (type, lv)
405 struct type *type;
406 enum lval_type lv;
407 {
408 register value_ptr val = allocate_value (type);
409
410 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
411 VALUE_LVAL (val) = lv;
412
413 return val;
414 }
415
416 /* Return a value with type TYPE located at ADDR.
417
418 Call value_at only if the data needs to be fetched immediately;
419 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
420 value_at_lazy instead. value_at_lazy simply records the address of
421 the data and sets the lazy-evaluation-required flag. The lazy flag
422 is tested in the VALUE_CONTENTS macro, which is used if and when
423 the contents are actually required.
424
425 Note: value_at does *NOT* handle embedded offsets; perform such
426 adjustments before or after calling it. */
427
428 value_ptr
429 value_at (type, addr, sect)
430 struct type *type;
431 CORE_ADDR addr;
432 asection *sect;
433 {
434 register value_ptr val;
435
436 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
437 error ("Attempt to dereference a generic pointer.");
438
439 val = allocate_value (type);
440
441 if (GDB_TARGET_IS_D10V
442 && TYPE_CODE (type) == TYPE_CODE_PTR
443 && TYPE_TARGET_TYPE (type)
444 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
445 {
446 /* pointer to function */
447 unsigned long num;
448 unsigned short snum;
449 snum = read_memory_unsigned_integer (addr, 2);
450 num = D10V_MAKE_IADDR (snum);
451 store_address (VALUE_CONTENTS_RAW (val), 4, num);
452 }
453 else if (GDB_TARGET_IS_D10V
454 && TYPE_CODE (type) == TYPE_CODE_PTR)
455 {
456 /* pointer to data */
457 unsigned long num;
458 unsigned short snum;
459 snum = read_memory_unsigned_integer (addr, 2);
460 num = D10V_MAKE_DADDR (snum);
461 store_address (VALUE_CONTENTS_RAW (val), 4, num);
462 }
463 else
464 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
465
466 VALUE_LVAL (val) = lval_memory;
467 VALUE_ADDRESS (val) = addr;
468 VALUE_BFD_SECTION (val) = sect;
469
470 return val;
471 }
472
473 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
474
475 value_ptr
476 value_at_lazy (type, addr, sect)
477 struct type *type;
478 CORE_ADDR addr;
479 asection *sect;
480 {
481 register value_ptr val;
482
483 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
484 error ("Attempt to dereference a generic pointer.");
485
486 val = allocate_value (type);
487
488 VALUE_LVAL (val) = lval_memory;
489 VALUE_ADDRESS (val) = addr;
490 VALUE_LAZY (val) = 1;
491 VALUE_BFD_SECTION (val) = sect;
492
493 return val;
494 }
495
496 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
497 if the current data for a variable needs to be loaded into
498 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
499 clears the lazy flag to indicate that the data in the buffer is valid.
500
501 If the value is zero-length, we avoid calling read_memory, which would
502 abort. We mark the value as fetched anyway -- all 0 bytes of it.
503
504 This function returns a value because it is used in the VALUE_CONTENTS
505 macro as part of an expression, where a void would not work. The
506 value is ignored. */
507
508 int
509 value_fetch_lazy (val)
510 register value_ptr val;
511 {
512 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
513 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
514
515 struct type *type = VALUE_TYPE (val);
516 if (GDB_TARGET_IS_D10V
517 && TYPE_CODE (type) == TYPE_CODE_PTR
518 && TYPE_TARGET_TYPE (type)
519 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
520 {
521 /* pointer to function */
522 unsigned long num;
523 unsigned short snum;
524 snum = read_memory_unsigned_integer (addr, 2);
525 num = D10V_MAKE_IADDR (snum);
526 store_address (VALUE_CONTENTS_RAW (val), 4, num);
527 }
528 else if (GDB_TARGET_IS_D10V
529 && TYPE_CODE (type) == TYPE_CODE_PTR)
530 {
531 /* pointer to data */
532 unsigned long num;
533 unsigned short snum;
534 snum = read_memory_unsigned_integer (addr, 2);
535 num = D10V_MAKE_DADDR (snum);
536 store_address (VALUE_CONTENTS_RAW (val), 4, num);
537 }
538 else if (length)
539 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
540 VALUE_BFD_SECTION (val));
541 VALUE_LAZY (val) = 0;
542 return 0;
543 }
544
545
546 /* Store the contents of FROMVAL into the location of TOVAL.
547 Return a new value with the location of TOVAL and contents of FROMVAL. */
548
549 value_ptr
550 value_assign (toval, fromval)
551 register value_ptr toval, fromval;
552 {
553 register struct type *type;
554 register value_ptr val;
555 char raw_buffer[MAX_REGISTER_RAW_SIZE];
556 int use_buffer = 0;
557
558 if (!toval->modifiable)
559 error ("Left operand of assignment is not a modifiable lvalue.");
560
561 COERCE_REF (toval);
562
563 type = VALUE_TYPE (toval);
564 if (VALUE_LVAL (toval) != lval_internalvar)
565 fromval = value_cast (type, fromval);
566 else
567 COERCE_ARRAY (fromval);
568 CHECK_TYPEDEF (type);
569
570 /* If TOVAL is a special machine register requiring conversion
571 of program values to a special raw format,
572 convert FROMVAL's contents now, with result in `raw_buffer',
573 and set USE_BUFFER to the number of bytes to write. */
574
575 if (VALUE_REGNO (toval) >= 0)
576 {
577 int regno = VALUE_REGNO (toval);
578 if (REGISTER_CONVERTIBLE (regno))
579 {
580 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
581 REGISTER_CONVERT_TO_RAW (fromtype, regno,
582 VALUE_CONTENTS (fromval), raw_buffer);
583 use_buffer = REGISTER_RAW_SIZE (regno);
584 }
585 }
586
587 switch (VALUE_LVAL (toval))
588 {
589 case lval_internalvar:
590 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
591 val = value_copy (VALUE_INTERNALVAR (toval)->value);
592 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
593 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
594 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
595 return val;
596
597 case lval_internalvar_component:
598 set_internalvar_component (VALUE_INTERNALVAR (toval),
599 VALUE_OFFSET (toval),
600 VALUE_BITPOS (toval),
601 VALUE_BITSIZE (toval),
602 fromval);
603 break;
604
605 case lval_memory:
606 {
607 char *dest_buffer;
608 CORE_ADDR changed_addr;
609 int changed_len;
610
611 if (VALUE_BITSIZE (toval))
612 {
613 char buffer[sizeof (LONGEST)];
614 /* We assume that the argument to read_memory is in units of
615 host chars. FIXME: Is that correct? */
616 changed_len = (VALUE_BITPOS (toval)
617 + VALUE_BITSIZE (toval)
618 + HOST_CHAR_BIT - 1)
619 / HOST_CHAR_BIT;
620
621 if (changed_len > (int) sizeof (LONGEST))
622 error ("Can't handle bitfields which don't fit in a %d bit word.",
623 sizeof (LONGEST) * HOST_CHAR_BIT);
624
625 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
626 buffer, changed_len);
627 modify_field (buffer, value_as_long (fromval),
628 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
629 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
630 dest_buffer = buffer;
631 }
632 else if (use_buffer)
633 {
634 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
635 changed_len = use_buffer;
636 dest_buffer = raw_buffer;
637 }
638 else
639 {
640 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
641 changed_len = TYPE_LENGTH (type);
642 dest_buffer = VALUE_CONTENTS (fromval);
643 }
644
645 write_memory (changed_addr, dest_buffer, changed_len);
646 if (memory_changed_hook)
647 memory_changed_hook (changed_addr, changed_len);
648 }
649 break;
650
651 case lval_register:
652 if (VALUE_BITSIZE (toval))
653 {
654 char buffer[sizeof (LONGEST)];
655 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
656
657 if (len > (int) sizeof (LONGEST))
658 error ("Can't handle bitfields in registers larger than %d bits.",
659 sizeof (LONGEST) * HOST_CHAR_BIT);
660
661 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
662 > len * HOST_CHAR_BIT)
663 /* Getting this right would involve being very careful about
664 byte order. */
665 error ("\
666 Can't handle bitfield which doesn't fit in a single register.");
667
668 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
669 buffer, len);
670 modify_field (buffer, value_as_long (fromval),
671 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
672 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 buffer, len);
674 }
675 else if (use_buffer)
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 raw_buffer, use_buffer);
678 else
679 {
680 /* Do any conversion necessary when storing this type to more
681 than one register. */
682 #ifdef REGISTER_CONVERT_FROM_TYPE
683 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
684 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
685 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
686 raw_buffer, TYPE_LENGTH (type));
687 #else
688 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
689 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
690 #endif
691 }
692 /* Assigning to the stack pointer, frame pointer, and other
693 (architecture and calling convention specific) registers may
694 cause the frame cache to be out of date. We just do this
695 on all assignments to registers for simplicity; I doubt the slowdown
696 matters. */
697 reinit_frame_cache ();
698 break;
699
700 case lval_reg_frame_relative:
701 {
702 /* value is stored in a series of registers in the frame
703 specified by the structure. Copy that value out, modify
704 it, and copy it back in. */
705 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
706 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
707 int byte_offset = VALUE_OFFSET (toval) % reg_size;
708 int reg_offset = VALUE_OFFSET (toval) / reg_size;
709 int amount_copied;
710
711 /* Make the buffer large enough in all cases. */
712 char *buffer = (char *) alloca (amount_to_copy
713 + sizeof (LONGEST)
714 + MAX_REGISTER_RAW_SIZE);
715
716 int regno;
717 struct frame_info *frame;
718
719 /* Figure out which frame this is in currently. */
720 for (frame = get_current_frame ();
721 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
722 frame = get_prev_frame (frame))
723 ;
724
725 if (!frame)
726 error ("Value being assigned to is no longer active.");
727
728 amount_to_copy += (reg_size - amount_to_copy % reg_size);
729
730 /* Copy it out. */
731 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
732 amount_copied = 0);
733 amount_copied < amount_to_copy;
734 amount_copied += reg_size, regno++)
735 {
736 get_saved_register (buffer + amount_copied,
737 (int *) NULL, (CORE_ADDR *) NULL,
738 frame, regno, (enum lval_type *) NULL);
739 }
740
741 /* Modify what needs to be modified. */
742 if (VALUE_BITSIZE (toval))
743 modify_field (buffer + byte_offset,
744 value_as_long (fromval),
745 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
746 else if (use_buffer)
747 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
748 else
749 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
750 TYPE_LENGTH (type));
751
752 /* Copy it back. */
753 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
754 amount_copied = 0);
755 amount_copied < amount_to_copy;
756 amount_copied += reg_size, regno++)
757 {
758 enum lval_type lval;
759 CORE_ADDR addr;
760 int optim;
761
762 /* Just find out where to put it. */
763 get_saved_register ((char *) NULL,
764 &optim, &addr, frame, regno, &lval);
765
766 if (optim)
767 error ("Attempt to assign to a value that was optimized out.");
768 if (lval == lval_memory)
769 write_memory (addr, buffer + amount_copied, reg_size);
770 else if (lval == lval_register)
771 write_register_bytes (addr, buffer + amount_copied, reg_size);
772 else
773 error ("Attempt to assign to an unmodifiable value.");
774 }
775
776 if (register_changed_hook)
777 register_changed_hook (-1);
778 }
779 break;
780
781
782 default:
783 error ("Left operand of assignment is not an lvalue.");
784 }
785
786 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
787 If the field is signed, and is negative, then sign extend. */
788 if ((VALUE_BITSIZE (toval) > 0)
789 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
790 {
791 LONGEST fieldval = value_as_long (fromval);
792 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
793
794 fieldval &= valmask;
795 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
796 fieldval |= ~valmask;
797
798 fromval = value_from_longest (type, fieldval);
799 }
800
801 val = value_copy (toval);
802 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
803 TYPE_LENGTH (type));
804 VALUE_TYPE (val) = type;
805 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
806 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
807 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
808
809 return val;
810 }
811
812 /* Extend a value VAL to COUNT repetitions of its type. */
813
814 value_ptr
815 value_repeat (arg1, count)
816 value_ptr arg1;
817 int count;
818 {
819 register value_ptr val;
820
821 if (VALUE_LVAL (arg1) != lval_memory)
822 error ("Only values in memory can be extended with '@'.");
823 if (count < 1)
824 error ("Invalid number %d of repetitions.", count);
825
826 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
827
828 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
829 VALUE_CONTENTS_ALL_RAW (val),
830 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
831 VALUE_LVAL (val) = lval_memory;
832 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
833
834 return val;
835 }
836
837 value_ptr
838 value_of_variable (var, b)
839 struct symbol *var;
840 struct block *b;
841 {
842 value_ptr val;
843 struct frame_info *frame = NULL;
844
845 if (!b)
846 frame = NULL; /* Use selected frame. */
847 else if (symbol_read_needs_frame (var))
848 {
849 frame = block_innermost_frame (b);
850 if (!frame)
851 {
852 if (BLOCK_FUNCTION (b)
853 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
854 error ("No frame is currently executing in block %s.",
855 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
856 else
857 error ("No frame is currently executing in specified block");
858 }
859 }
860
861 val = read_var_value (var, frame);
862 if (!val)
863 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
864
865 return val;
866 }
867
868 /* Given a value which is an array, return a value which is a pointer to its
869 first element, regardless of whether or not the array has a nonzero lower
870 bound.
871
872 FIXME: A previous comment here indicated that this routine should be
873 substracting the array's lower bound. It's not clear to me that this
874 is correct. Given an array subscripting operation, it would certainly
875 work to do the adjustment here, essentially computing:
876
877 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
878
879 However I believe a more appropriate and logical place to account for
880 the lower bound is to do so in value_subscript, essentially computing:
881
882 (&array[0] + ((index - lowerbound) * sizeof array[0]))
883
884 As further evidence consider what would happen with operations other
885 than array subscripting, where the caller would get back a value that
886 had an address somewhere before the actual first element of the array,
887 and the information about the lower bound would be lost because of
888 the coercion to pointer type.
889 */
890
891 value_ptr
892 value_coerce_array (arg1)
893 value_ptr arg1;
894 {
895 register struct type *type = check_typedef (VALUE_TYPE (arg1));
896
897 if (VALUE_LVAL (arg1) != lval_memory)
898 error ("Attempt to take address of value not located in memory.");
899
900 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
901 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
902 }
903
904 /* Given a value which is a function, return a value which is a pointer
905 to it. */
906
907 value_ptr
908 value_coerce_function (arg1)
909 value_ptr arg1;
910 {
911 value_ptr retval;
912
913 if (VALUE_LVAL (arg1) != lval_memory)
914 error ("Attempt to take address of value not located in memory.");
915
916 retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
917 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
918 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
919 return retval;
920 }
921
922 /* Return a pointer value for the object for which ARG1 is the contents. */
923
924 value_ptr
925 value_addr (arg1)
926 value_ptr arg1;
927 {
928 value_ptr arg2;
929
930 struct type *type = check_typedef (VALUE_TYPE (arg1));
931 if (TYPE_CODE (type) == TYPE_CODE_REF)
932 {
933 /* Copy the value, but change the type from (T&) to (T*).
934 We keep the same location information, which is efficient,
935 and allows &(&X) to get the location containing the reference. */
936 arg2 = value_copy (arg1);
937 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
938 return arg2;
939 }
940 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
941 return value_coerce_function (arg1);
942
943 if (VALUE_LVAL (arg1) != lval_memory)
944 error ("Attempt to take address of value not located in memory.");
945
946 /* Get target memory address */
947 arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
948 (LONGEST) (VALUE_ADDRESS (arg1)
949 + VALUE_OFFSET (arg1)
950 + VALUE_EMBEDDED_OFFSET (arg1)));
951
952 /* This may be a pointer to a base subobject; so remember the
953 full derived object's type ... */
954 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
955 /* ... and also the relative position of the subobject in the full object */
956 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
957 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
958 return arg2;
959 }
960
961 /* Given a value of a pointer type, apply the C unary * operator to it. */
962
963 value_ptr
964 value_ind (arg1)
965 value_ptr arg1;
966 {
967 struct type *base_type;
968 value_ptr arg2;
969
970 COERCE_ARRAY (arg1);
971
972 base_type = check_typedef (VALUE_TYPE (arg1));
973
974 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
975 error ("not implemented: member types in value_ind");
976
977 /* Allow * on an integer so we can cast it to whatever we want.
978 This returns an int, which seems like the most C-like thing
979 to do. "long long" variables are rare enough that
980 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
981 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
982 return value_at (builtin_type_int,
983 (CORE_ADDR) value_as_long (arg1),
984 VALUE_BFD_SECTION (arg1));
985 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
986 {
987 struct type *enc_type;
988 /* We may be pointing to something embedded in a larger object */
989 /* Get the real type of the enclosing object */
990 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
991 enc_type = TYPE_TARGET_TYPE (enc_type);
992 /* Retrieve the enclosing object pointed to */
993 arg2 = value_at_lazy (enc_type,
994 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
995 VALUE_BFD_SECTION (arg1));
996 /* Re-adjust type */
997 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
998 /* Add embedding info */
999 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1000 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1001
1002 /* We may be pointing to an object of some derived type */
1003 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1004 return arg2;
1005 }
1006
1007 error ("Attempt to take contents of a non-pointer value.");
1008 return 0; /* For lint -- never reached */
1009 }
1010 \f
1011 /* Pushing small parts of stack frames. */
1012
1013 /* Push one word (the size of object that a register holds). */
1014
1015 CORE_ADDR
1016 push_word (sp, word)
1017 CORE_ADDR sp;
1018 ULONGEST word;
1019 {
1020 register int len = REGISTER_SIZE;
1021 char buffer[MAX_REGISTER_RAW_SIZE];
1022
1023 store_unsigned_integer (buffer, len, word);
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038 }
1039
1040 /* Push LEN bytes with data at BUFFER. */
1041
1042 CORE_ADDR
1043 push_bytes (sp, buffer, len)
1044 CORE_ADDR sp;
1045 char *buffer;
1046 int len;
1047 {
1048 if (INNER_THAN (1, 2))
1049 {
1050 /* stack grows downward */
1051 sp -= len;
1052 write_memory (sp, buffer, len);
1053 }
1054 else
1055 {
1056 /* stack grows upward */
1057 write_memory (sp, buffer, len);
1058 sp += len;
1059 }
1060
1061 return sp;
1062 }
1063
1064 #ifndef PARM_BOUNDARY
1065 #define PARM_BOUNDARY (0)
1066 #endif
1067
1068 /* Push onto the stack the specified value VALUE. Pad it correctly for
1069 it to be an argument to a function. */
1070
1071 static CORE_ADDR
1072 value_push (sp, arg)
1073 register CORE_ADDR sp;
1074 value_ptr arg;
1075 {
1076 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1077 register int container_len = len;
1078 register int offset;
1079
1080 /* How big is the container we're going to put this value in? */
1081 if (PARM_BOUNDARY)
1082 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1083 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1084
1085 /* Are we going to put it at the high or low end of the container? */
1086 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1087 offset = container_len - len;
1088 else
1089 offset = 0;
1090
1091 if (INNER_THAN (1, 2))
1092 {
1093 /* stack grows downward */
1094 sp -= container_len;
1095 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1096 }
1097 else
1098 {
1099 /* stack grows upward */
1100 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1101 sp += container_len;
1102 }
1103
1104 return sp;
1105 }
1106
1107 #ifndef PUSH_ARGUMENTS
1108 #define PUSH_ARGUMENTS default_push_arguments
1109 #endif
1110
1111 CORE_ADDR
1112 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1113 int nargs;
1114 value_ptr *args;
1115 CORE_ADDR sp;
1116 int struct_return;
1117 CORE_ADDR struct_addr;
1118 {
1119 /* ASSERT ( !struct_return); */
1120 int i;
1121 for (i = nargs - 1; i >= 0; i--)
1122 sp = value_push (sp, args[i]);
1123 return sp;
1124 }
1125
1126
1127 /* Perform the standard coercions that are specified
1128 for arguments to be passed to C functions.
1129
1130 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1131 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1132
1133 static value_ptr
1134 value_arg_coerce (arg, param_type, is_prototyped)
1135 value_ptr arg;
1136 struct type *param_type;
1137 int is_prototyped;
1138 {
1139 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1140 register struct type *type
1141 = param_type ? check_typedef (param_type) : arg_type;
1142
1143 switch (TYPE_CODE (type))
1144 {
1145 case TYPE_CODE_REF:
1146 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1147 {
1148 arg = value_addr (arg);
1149 VALUE_TYPE (arg) = param_type;
1150 return arg;
1151 }
1152 break;
1153 case TYPE_CODE_INT:
1154 case TYPE_CODE_CHAR:
1155 case TYPE_CODE_BOOL:
1156 case TYPE_CODE_ENUM:
1157 /* If we don't have a prototype, coerce to integer type if necessary. */
1158 if (!is_prototyped)
1159 {
1160 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1161 type = builtin_type_int;
1162 }
1163 /* Currently all target ABIs require at least the width of an integer
1164 type for an argument. We may have to conditionalize the following
1165 type coercion for future targets. */
1166 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1167 type = builtin_type_int;
1168 break;
1169 case TYPE_CODE_FLT:
1170 /* FIXME: We should always convert floats to doubles in the
1171 non-prototyped case. As many debugging formats include
1172 no information about prototyping, we have to live with
1173 COERCE_FLOAT_TO_DOUBLE for now. */
1174 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE)
1175 {
1176 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1177 type = builtin_type_double;
1178 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1179 type = builtin_type_long_double;
1180 }
1181 break;
1182 case TYPE_CODE_FUNC:
1183 type = lookup_pointer_type (type);
1184 break;
1185 case TYPE_CODE_ARRAY:
1186 if (current_language->c_style_arrays)
1187 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1188 break;
1189 case TYPE_CODE_UNDEF:
1190 case TYPE_CODE_PTR:
1191 case TYPE_CODE_STRUCT:
1192 case TYPE_CODE_UNION:
1193 case TYPE_CODE_VOID:
1194 case TYPE_CODE_SET:
1195 case TYPE_CODE_RANGE:
1196 case TYPE_CODE_STRING:
1197 case TYPE_CODE_BITSTRING:
1198 case TYPE_CODE_ERROR:
1199 case TYPE_CODE_MEMBER:
1200 case TYPE_CODE_METHOD:
1201 case TYPE_CODE_COMPLEX:
1202 default:
1203 break;
1204 }
1205
1206 return value_cast (type, arg);
1207 }
1208
1209 /* Determine a function's address and its return type from its value.
1210 Calls error() if the function is not valid for calling. */
1211
1212 static CORE_ADDR
1213 find_function_addr (function, retval_type)
1214 value_ptr function;
1215 struct type **retval_type;
1216 {
1217 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1218 register enum type_code code = TYPE_CODE (ftype);
1219 struct type *value_type;
1220 CORE_ADDR funaddr;
1221
1222 /* If it's a member function, just look at the function
1223 part of it. */
1224
1225 /* Determine address to call. */
1226 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1227 {
1228 funaddr = VALUE_ADDRESS (function);
1229 value_type = TYPE_TARGET_TYPE (ftype);
1230 }
1231 else if (code == TYPE_CODE_PTR)
1232 {
1233 funaddr = value_as_pointer (function);
1234 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1235 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1236 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1237 {
1238 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1239 /* FIXME: This is a workaround for the unusual function
1240 pointer representation on the RS/6000, see comment
1241 in config/rs6000/tm-rs6000.h */
1242 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1243 #endif
1244 value_type = TYPE_TARGET_TYPE (ftype);
1245 }
1246 else
1247 value_type = builtin_type_int;
1248 }
1249 else if (code == TYPE_CODE_INT)
1250 {
1251 /* Handle the case of functions lacking debugging info.
1252 Their values are characters since their addresses are char */
1253 if (TYPE_LENGTH (ftype) == 1)
1254 funaddr = value_as_pointer (value_addr (function));
1255 else
1256 /* Handle integer used as address of a function. */
1257 funaddr = (CORE_ADDR) value_as_long (function);
1258
1259 value_type = builtin_type_int;
1260 }
1261 else
1262 error ("Invalid data type for function to be called.");
1263
1264 *retval_type = value_type;
1265 return funaddr;
1266 }
1267
1268 /* All this stuff with a dummy frame may seem unnecessarily complicated
1269 (why not just save registers in GDB?). The purpose of pushing a dummy
1270 frame which looks just like a real frame is so that if you call a
1271 function and then hit a breakpoint (get a signal, etc), "backtrace"
1272 will look right. Whether the backtrace needs to actually show the
1273 stack at the time the inferior function was called is debatable, but
1274 it certainly needs to not display garbage. So if you are contemplating
1275 making dummy frames be different from normal frames, consider that. */
1276
1277 /* Perform a function call in the inferior.
1278 ARGS is a vector of values of arguments (NARGS of them).
1279 FUNCTION is a value, the function to be called.
1280 Returns a value representing what the function returned.
1281 May fail to return, if a breakpoint or signal is hit
1282 during the execution of the function.
1283
1284 ARGS is modified to contain coerced values. */
1285
1286 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
1287 static value_ptr
1288 hand_function_call (function, nargs, args)
1289 value_ptr function;
1290 int nargs;
1291 value_ptr *args;
1292 {
1293 register CORE_ADDR sp;
1294 register int i;
1295 CORE_ADDR start_sp;
1296 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1297 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1298 and remove any extra bytes which might exist because ULONGEST is
1299 bigger than REGISTER_SIZE.
1300
1301 NOTE: This is pretty wierd, as the call dummy is actually a
1302 sequence of instructions. But CISC machines will have
1303 to pack the instructions into REGISTER_SIZE units (and
1304 so will RISC machines for which INSTRUCTION_SIZE is not
1305 REGISTER_SIZE).
1306
1307 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1308 target byte order. */
1309
1310 static ULONGEST *dummy;
1311 int sizeof_dummy1;
1312 char *dummy1;
1313 CORE_ADDR old_sp;
1314 struct type *value_type;
1315 unsigned char struct_return;
1316 CORE_ADDR struct_addr = 0;
1317 struct inferior_status *inf_status;
1318 struct cleanup *old_chain;
1319 CORE_ADDR funaddr;
1320 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1321 CORE_ADDR real_pc;
1322 struct type *param_type = NULL;
1323 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1324
1325 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1326 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1327 dummy1 = alloca (sizeof_dummy1);
1328 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1329
1330 if (!target_has_execution)
1331 noprocess ();
1332
1333 inf_status = save_inferior_status (1);
1334 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1335 inf_status);
1336
1337 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1338 (and POP_FRAME for restoring them). (At least on most machines)
1339 they are saved on the stack in the inferior. */
1340 PUSH_DUMMY_FRAME;
1341
1342 old_sp = sp = read_sp ();
1343
1344 if (INNER_THAN (1, 2))
1345 {
1346 /* Stack grows down */
1347 sp -= sizeof_dummy1;
1348 start_sp = sp;
1349 }
1350 else
1351 {
1352 /* Stack grows up */
1353 start_sp = sp;
1354 sp += sizeof_dummy1;
1355 }
1356
1357 funaddr = find_function_addr (function, &value_type);
1358 CHECK_TYPEDEF (value_type);
1359
1360 {
1361 struct block *b = block_for_pc (funaddr);
1362 /* If compiled without -g, assume GCC 2. */
1363 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1364 }
1365
1366 /* Are we returning a value using a structure return or a normal
1367 value return? */
1368
1369 struct_return = using_struct_return (function, funaddr, value_type,
1370 using_gcc);
1371
1372 /* Create a call sequence customized for this function
1373 and the number of arguments for it. */
1374 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1375 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1376 REGISTER_SIZE,
1377 (ULONGEST) dummy[i]);
1378
1379 #ifdef GDB_TARGET_IS_HPPA
1380 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1381 value_type, using_gcc);
1382 #else
1383 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1384 value_type, using_gcc);
1385 real_pc = start_sp;
1386 #endif
1387
1388 if (CALL_DUMMY_LOCATION == ON_STACK)
1389 {
1390 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1391 }
1392
1393 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1394 {
1395 /* Convex Unix prohibits executing in the stack segment. */
1396 /* Hope there is empty room at the top of the text segment. */
1397 extern CORE_ADDR text_end;
1398 static int checked = 0;
1399 if (!checked)
1400 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1401 if (read_memory_integer (start_sp, 1) != 0)
1402 error ("text segment full -- no place to put call");
1403 checked = 1;
1404 sp = old_sp;
1405 real_pc = text_end - sizeof_dummy1;
1406 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1407 }
1408
1409 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1410 {
1411 extern CORE_ADDR text_end;
1412 int errcode;
1413 sp = old_sp;
1414 real_pc = text_end;
1415 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1416 if (errcode != 0)
1417 error ("Cannot write text segment -- call_function failed");
1418 }
1419
1420 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1421 {
1422 real_pc = funaddr;
1423 }
1424
1425 #ifdef lint
1426 sp = old_sp; /* It really is used, for some ifdef's... */
1427 #endif
1428
1429 if (nargs < TYPE_NFIELDS (ftype))
1430 error ("too few arguments in function call");
1431
1432 for (i = nargs - 1; i >= 0; i--)
1433 {
1434 /* If we're off the end of the known arguments, do the standard
1435 promotions. FIXME: if we had a prototype, this should only
1436 be allowed if ... were present. */
1437 if (i >= TYPE_NFIELDS (ftype))
1438 args[i] = value_arg_coerce (args[i], NULL, 0);
1439
1440 else
1441 {
1442 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1443 param_type = TYPE_FIELD_TYPE (ftype, i);
1444
1445 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1446 }
1447
1448 /*elz: this code is to handle the case in which the function to be called
1449 has a pointer to function as parameter and the corresponding actual argument
1450 is the address of a function and not a pointer to function variable.
1451 In aCC compiled code, the calls through pointers to functions (in the body
1452 of the function called by hand) are made via $$dyncall_external which
1453 requires some registers setting, this is taken care of if we call
1454 via a function pointer variable, but not via a function address.
1455 In cc this is not a problem. */
1456
1457 if (using_gcc == 0)
1458 if (param_type)
1459 /* if this parameter is a pointer to function */
1460 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1461 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1462 /* elz: FIXME here should go the test about the compiler used
1463 to compile the target. We want to issue the error
1464 message only if the compiler used was HP's aCC.
1465 If we used HP's cc, then there is no problem and no need
1466 to return at this point */
1467 if (using_gcc == 0) /* && compiler == aCC */
1468 /* go see if the actual parameter is a variable of type
1469 pointer to function or just a function */
1470 if (args[i]->lval == not_lval)
1471 {
1472 char *arg_name;
1473 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1474 error ("\
1475 You cannot use function <%s> as argument. \n\
1476 You must use a pointer to function type variable. Command ignored.", arg_name);
1477 }
1478 }
1479
1480 #if defined (REG_STRUCT_HAS_ADDR)
1481 {
1482 /* This is a machine like the sparc, where we may need to pass a pointer
1483 to the structure, not the structure itself. */
1484 for (i = nargs - 1; i >= 0; i--)
1485 {
1486 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1487 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1488 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1489 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1490 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1491 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1492 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1493 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1494 && TYPE_LENGTH (arg_type) > 8)
1495 )
1496 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1497 {
1498 CORE_ADDR addr;
1499 int len; /* = TYPE_LENGTH (arg_type); */
1500 int aligned_len;
1501 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1502 len = TYPE_LENGTH (arg_type);
1503
1504 #ifdef STACK_ALIGN
1505 /* MVS 11/22/96: I think at least some of this stack_align code is
1506 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1507 a target-defined manner. */
1508 aligned_len = STACK_ALIGN (len);
1509 #else
1510 aligned_len = len;
1511 #endif
1512 if (INNER_THAN (1, 2))
1513 {
1514 /* stack grows downward */
1515 sp -= aligned_len;
1516 }
1517 else
1518 {
1519 /* The stack grows up, so the address of the thing we push
1520 is the stack pointer before we push it. */
1521 addr = sp;
1522 }
1523 /* Push the structure. */
1524 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1525 if (INNER_THAN (1, 2))
1526 {
1527 /* The stack grows down, so the address of the thing we push
1528 is the stack pointer after we push it. */
1529 addr = sp;
1530 }
1531 else
1532 {
1533 /* stack grows upward */
1534 sp += aligned_len;
1535 }
1536 /* The value we're going to pass is the address of the thing
1537 we just pushed. */
1538 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1539 (LONGEST) addr); */
1540 args[i] = value_from_longest (lookup_pointer_type (arg_type),
1541 (LONGEST) addr);
1542 }
1543 }
1544 }
1545 #endif /* REG_STRUCT_HAS_ADDR. */
1546
1547 /* Reserve space for the return structure to be written on the
1548 stack, if necessary */
1549
1550 if (struct_return)
1551 {
1552 int len = TYPE_LENGTH (value_type);
1553 #ifdef STACK_ALIGN
1554 /* MVS 11/22/96: I think at least some of this stack_align code is
1555 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1556 a target-defined manner. */
1557 len = STACK_ALIGN (len);
1558 #endif
1559 if (INNER_THAN (1, 2))
1560 {
1561 /* stack grows downward */
1562 sp -= len;
1563 struct_addr = sp;
1564 }
1565 else
1566 {
1567 /* stack grows upward */
1568 struct_addr = sp;
1569 sp += len;
1570 }
1571 }
1572
1573 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1574 on other architectures. This is because all the alignment is taken care
1575 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1576 hppa_push_arguments */
1577 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1578
1579 #if defined(STACK_ALIGN)
1580 /* MVS 11/22/96: I think at least some of this stack_align code is
1581 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1582 a target-defined manner. */
1583 if (INNER_THAN (1, 2))
1584 {
1585 /* If stack grows down, we must leave a hole at the top. */
1586 int len = 0;
1587
1588 for (i = nargs - 1; i >= 0; i--)
1589 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1590 if (CALL_DUMMY_STACK_ADJUST_P)
1591 len += CALL_DUMMY_STACK_ADJUST;
1592 sp -= STACK_ALIGN (len) - len;
1593 }
1594 #endif /* STACK_ALIGN */
1595 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1596
1597 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1598
1599 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1600 /* There are a number of targets now which actually don't write any
1601 CALL_DUMMY instructions into the target, but instead just save the
1602 machine state, push the arguments, and jump directly to the callee
1603 function. Since this doesn't actually involve executing a JSR/BSR
1604 instruction, the return address must be set up by hand, either by
1605 pushing onto the stack or copying into a return-address register
1606 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1607 but that's overloading its functionality a bit, so I'm making it
1608 explicit to do it here. */
1609 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1610 #endif /* PUSH_RETURN_ADDRESS */
1611
1612 #if defined(STACK_ALIGN)
1613 if (!INNER_THAN (1, 2))
1614 {
1615 /* If stack grows up, we must leave a hole at the bottom, note
1616 that sp already has been advanced for the arguments! */
1617 if (CALL_DUMMY_STACK_ADJUST_P)
1618 sp += CALL_DUMMY_STACK_ADJUST;
1619 sp = STACK_ALIGN (sp);
1620 }
1621 #endif /* STACK_ALIGN */
1622
1623 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1624 anything here! */
1625 /* MVS 11/22/96: I think at least some of this stack_align code is
1626 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1627 a target-defined manner. */
1628 if (CALL_DUMMY_STACK_ADJUST_P)
1629 if (INNER_THAN (1, 2))
1630 {
1631 /* stack grows downward */
1632 sp -= CALL_DUMMY_STACK_ADJUST;
1633 }
1634
1635 /* Store the address at which the structure is supposed to be
1636 written. Note that this (and the code which reserved the space
1637 above) assumes that gcc was used to compile this function. Since
1638 it doesn't cost us anything but space and if the function is pcc
1639 it will ignore this value, we will make that assumption.
1640
1641 Also note that on some machines (like the sparc) pcc uses a
1642 convention like gcc's. */
1643
1644 if (struct_return)
1645 STORE_STRUCT_RETURN (struct_addr, sp);
1646
1647 /* Write the stack pointer. This is here because the statements above
1648 might fool with it. On SPARC, this write also stores the register
1649 window into the right place in the new stack frame, which otherwise
1650 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1651 write_sp (sp);
1652
1653 #ifdef SAVE_DUMMY_FRAME_TOS
1654 SAVE_DUMMY_FRAME_TOS (sp);
1655 #endif
1656
1657 {
1658 char retbuf[REGISTER_BYTES];
1659 char *name;
1660 struct symbol *symbol;
1661
1662 name = NULL;
1663 symbol = find_pc_function (funaddr);
1664 if (symbol)
1665 {
1666 name = SYMBOL_SOURCE_NAME (symbol);
1667 }
1668 else
1669 {
1670 /* Try the minimal symbols. */
1671 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1672
1673 if (msymbol)
1674 {
1675 name = SYMBOL_SOURCE_NAME (msymbol);
1676 }
1677 }
1678 if (name == NULL)
1679 {
1680 char format[80];
1681 sprintf (format, "at %s", local_hex_format ());
1682 name = alloca (80);
1683 /* FIXME-32x64: assumes funaddr fits in a long. */
1684 sprintf (name, format, (unsigned long) funaddr);
1685 }
1686
1687 /* Execute the stack dummy routine, calling FUNCTION.
1688 When it is done, discard the empty frame
1689 after storing the contents of all regs into retbuf. */
1690 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1691 {
1692 /* We stopped somewhere besides the call dummy. */
1693
1694 /* If we did the cleanups, we would print a spurious error
1695 message (Unable to restore previously selected frame),
1696 would write the registers from the inf_status (which is
1697 wrong), and would do other wrong things. */
1698 discard_cleanups (old_chain);
1699 discard_inferior_status (inf_status);
1700
1701 /* The following error message used to say "The expression
1702 which contained the function call has been discarded." It
1703 is a hard concept to explain in a few words. Ideally, GDB
1704 would be able to resume evaluation of the expression when
1705 the function finally is done executing. Perhaps someday
1706 this will be implemented (it would not be easy). */
1707
1708 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1709 a C++ name with arguments and stuff. */
1710 error ("\
1711 The program being debugged stopped while in a function called from GDB.\n\
1712 When the function (%s) is done executing, GDB will silently\n\
1713 stop (instead of continuing to evaluate the expression containing\n\
1714 the function call).", name);
1715 }
1716
1717 do_cleanups (old_chain);
1718
1719 /* Figure out the value returned by the function. */
1720 /* elz: I defined this new macro for the hppa architecture only.
1721 this gives us a way to get the value returned by the function from the stack,
1722 at the same address we told the function to put it.
1723 We cannot assume on the pa that r28 still contains the address of the returned
1724 structure. Usually this will be overwritten by the callee.
1725 I don't know about other architectures, so I defined this macro
1726 */
1727
1728 #ifdef VALUE_RETURNED_FROM_STACK
1729 if (struct_return)
1730 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1731 #endif
1732
1733 return value_being_returned (value_type, retbuf, struct_return);
1734 }
1735 }
1736
1737 value_ptr
1738 call_function_by_hand (function, nargs, args)
1739 value_ptr function;
1740 int nargs;
1741 value_ptr *args;
1742 {
1743 if (CALL_DUMMY_P)
1744 {
1745 return hand_function_call (function, nargs, args);
1746 }
1747 else
1748 {
1749 error ("Cannot invoke functions on this machine.");
1750 }
1751 }
1752 \f
1753
1754
1755 /* Create a value for an array by allocating space in the inferior, copying
1756 the data into that space, and then setting up an array value.
1757
1758 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1759 populated from the values passed in ELEMVEC.
1760
1761 The element type of the array is inherited from the type of the
1762 first element, and all elements must have the same size (though we
1763 don't currently enforce any restriction on their types). */
1764
1765 value_ptr
1766 value_array (lowbound, highbound, elemvec)
1767 int lowbound;
1768 int highbound;
1769 value_ptr *elemvec;
1770 {
1771 int nelem;
1772 int idx;
1773 unsigned int typelength;
1774 value_ptr val;
1775 struct type *rangetype;
1776 struct type *arraytype;
1777 CORE_ADDR addr;
1778
1779 /* Validate that the bounds are reasonable and that each of the elements
1780 have the same size. */
1781
1782 nelem = highbound - lowbound + 1;
1783 if (nelem <= 0)
1784 {
1785 error ("bad array bounds (%d, %d)", lowbound, highbound);
1786 }
1787 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1788 for (idx = 1; idx < nelem; idx++)
1789 {
1790 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1791 {
1792 error ("array elements must all be the same size");
1793 }
1794 }
1795
1796 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1797 lowbound, highbound);
1798 arraytype = create_array_type ((struct type *) NULL,
1799 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1800
1801 if (!current_language->c_style_arrays)
1802 {
1803 val = allocate_value (arraytype);
1804 for (idx = 0; idx < nelem; idx++)
1805 {
1806 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1807 VALUE_CONTENTS_ALL (elemvec[idx]),
1808 typelength);
1809 }
1810 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1811 return val;
1812 }
1813
1814 /* Allocate space to store the array in the inferior, and then initialize
1815 it by copying in each element. FIXME: Is it worth it to create a
1816 local buffer in which to collect each value and then write all the
1817 bytes in one operation? */
1818
1819 addr = allocate_space_in_inferior (nelem * typelength);
1820 for (idx = 0; idx < nelem; idx++)
1821 {
1822 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1823 typelength);
1824 }
1825
1826 /* Create the array type and set up an array value to be evaluated lazily. */
1827
1828 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1829 return (val);
1830 }
1831
1832 /* Create a value for a string constant by allocating space in the inferior,
1833 copying the data into that space, and returning the address with type
1834 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1835 of characters.
1836 Note that string types are like array of char types with a lower bound of
1837 zero and an upper bound of LEN - 1. Also note that the string may contain
1838 embedded null bytes. */
1839
1840 value_ptr
1841 value_string (ptr, len)
1842 char *ptr;
1843 int len;
1844 {
1845 value_ptr val;
1846 int lowbound = current_language->string_lower_bound;
1847 struct type *rangetype = create_range_type ((struct type *) NULL,
1848 builtin_type_int,
1849 lowbound, len + lowbound - 1);
1850 struct type *stringtype
1851 = create_string_type ((struct type *) NULL, rangetype);
1852 CORE_ADDR addr;
1853
1854 if (current_language->c_style_arrays == 0)
1855 {
1856 val = allocate_value (stringtype);
1857 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1858 return val;
1859 }
1860
1861
1862 /* Allocate space to store the string in the inferior, and then
1863 copy LEN bytes from PTR in gdb to that address in the inferior. */
1864
1865 addr = allocate_space_in_inferior (len);
1866 write_memory (addr, ptr, len);
1867
1868 val = value_at_lazy (stringtype, addr, NULL);
1869 return (val);
1870 }
1871
1872 value_ptr
1873 value_bitstring (ptr, len)
1874 char *ptr;
1875 int len;
1876 {
1877 value_ptr val;
1878 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1879 0, len - 1);
1880 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1881 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1882 val = allocate_value (type);
1883 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1884 return val;
1885 }
1886 \f
1887 /* See if we can pass arguments in T2 to a function which takes arguments
1888 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1889 arguments need coercion of some sort, then the coerced values are written
1890 into T2. Return value is 0 if the arguments could be matched, or the
1891 position at which they differ if not.
1892
1893 STATICP is nonzero if the T1 argument list came from a
1894 static member function.
1895
1896 For non-static member functions, we ignore the first argument,
1897 which is the type of the instance variable. This is because we want
1898 to handle calls with objects from derived classes. This is not
1899 entirely correct: we should actually check to make sure that a
1900 requested operation is type secure, shouldn't we? FIXME. */
1901
1902 static int
1903 typecmp (staticp, t1, t2)
1904 int staticp;
1905 struct type *t1[];
1906 value_ptr t2[];
1907 {
1908 int i;
1909
1910 if (t2 == 0)
1911 return 1;
1912 if (staticp && t1 == 0)
1913 return t2[1] != 0;
1914 if (t1 == 0)
1915 return 1;
1916 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1917 return 0;
1918 if (t1[!staticp] == 0)
1919 return 0;
1920 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1921 {
1922 struct type *tt1, *tt2;
1923 if (!t2[i])
1924 return i + 1;
1925 tt1 = check_typedef (t1[i]);
1926 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1927 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1928 /* We should be doing hairy argument matching, as below. */
1929 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1930 {
1931 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1932 t2[i] = value_coerce_array (t2[i]);
1933 else
1934 t2[i] = value_addr (t2[i]);
1935 continue;
1936 }
1937
1938 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1939 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
1940 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
1941 {
1942 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
1943 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1944 }
1945 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1946 continue;
1947 /* Array to pointer is a `trivial conversion' according to the ARM. */
1948
1949 /* We should be doing much hairier argument matching (see section 13.2
1950 of the ARM), but as a quick kludge, just check for the same type
1951 code. */
1952 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1953 return i + 1;
1954 }
1955 if (!t1[i])
1956 return 0;
1957 return t2[i] ? i + 1 : 0;
1958 }
1959
1960 /* Helper function used by value_struct_elt to recurse through baseclasses.
1961 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1962 and search in it assuming it has (class) type TYPE.
1963 If found, return value, else return NULL.
1964
1965 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1966 look for a baseclass named NAME. */
1967
1968 static value_ptr
1969 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1970 char *name;
1971 register value_ptr arg1;
1972 int offset;
1973 register struct type *type;
1974 int looking_for_baseclass;
1975 {
1976 int i;
1977 int nbases = TYPE_N_BASECLASSES (type);
1978
1979 CHECK_TYPEDEF (type);
1980
1981 if (!looking_for_baseclass)
1982 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1983 {
1984 char *t_field_name = TYPE_FIELD_NAME (type, i);
1985
1986 if (t_field_name && STREQ (t_field_name, name))
1987 {
1988 value_ptr v;
1989 if (TYPE_FIELD_STATIC (type, i))
1990 v = value_static_field (type, i);
1991 else
1992 v = value_primitive_field (arg1, offset, i, type);
1993 if (v == 0)
1994 error ("there is no field named %s", name);
1995 return v;
1996 }
1997
1998 if (t_field_name
1999 && (t_field_name[0] == '\0'
2000 || (TYPE_CODE (type) == TYPE_CODE_UNION
2001 && STREQ (t_field_name, "else"))))
2002 {
2003 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2004 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2005 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2006 {
2007 /* Look for a match through the fields of an anonymous union,
2008 or anonymous struct. C++ provides anonymous unions.
2009
2010 In the GNU Chill implementation of variant record types,
2011 each <alternative field> has an (anonymous) union type,
2012 each member of the union represents a <variant alternative>.
2013 Each <variant alternative> is represented as a struct,
2014 with a member for each <variant field>. */
2015
2016 value_ptr v;
2017 int new_offset = offset;
2018
2019 /* This is pretty gross. In G++, the offset in an anonymous
2020 union is relative to the beginning of the enclosing struct.
2021 In the GNU Chill implementation of variant records,
2022 the bitpos is zero in an anonymous union field, so we
2023 have to add the offset of the union here. */
2024 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2025 || (TYPE_NFIELDS (field_type) > 0
2026 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2027 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2028
2029 v = search_struct_field (name, arg1, new_offset, field_type,
2030 looking_for_baseclass);
2031 if (v)
2032 return v;
2033 }
2034 }
2035 }
2036
2037 for (i = 0; i < nbases; i++)
2038 {
2039 value_ptr v;
2040 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2041 /* If we are looking for baseclasses, this is what we get when we
2042 hit them. But it could happen that the base part's member name
2043 is not yet filled in. */
2044 int found_baseclass = (looking_for_baseclass
2045 && TYPE_BASECLASS_NAME (type, i) != NULL
2046 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
2047
2048 if (BASETYPE_VIA_VIRTUAL (type, i))
2049 {
2050 int boffset;
2051 value_ptr v2 = allocate_value (basetype);
2052
2053 boffset = baseclass_offset (type, i,
2054 VALUE_CONTENTS (arg1) + offset,
2055 VALUE_ADDRESS (arg1)
2056 + VALUE_OFFSET (arg1) + offset);
2057 if (boffset == -1)
2058 error ("virtual baseclass botch");
2059
2060 /* The virtual base class pointer might have been clobbered by the
2061 user program. Make sure that it still points to a valid memory
2062 location. */
2063
2064 boffset += offset;
2065 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2066 {
2067 CORE_ADDR base_addr;
2068
2069 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2070 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2071 TYPE_LENGTH (basetype)) != 0)
2072 error ("virtual baseclass botch");
2073 VALUE_LVAL (v2) = lval_memory;
2074 VALUE_ADDRESS (v2) = base_addr;
2075 }
2076 else
2077 {
2078 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2079 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2080 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2081 if (VALUE_LAZY (arg1))
2082 VALUE_LAZY (v2) = 1;
2083 else
2084 memcpy (VALUE_CONTENTS_RAW (v2),
2085 VALUE_CONTENTS_RAW (arg1) + boffset,
2086 TYPE_LENGTH (basetype));
2087 }
2088
2089 if (found_baseclass)
2090 return v2;
2091 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2092 looking_for_baseclass);
2093 }
2094 else if (found_baseclass)
2095 v = value_primitive_field (arg1, offset, i, type);
2096 else
2097 v = search_struct_field (name, arg1,
2098 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2099 basetype, looking_for_baseclass);
2100 if (v)
2101 return v;
2102 }
2103 return NULL;
2104 }
2105
2106
2107 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2108 * in an object pointed to by VALADDR (on the host), assumed to be of
2109 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2110 * looking (in case VALADDR is the contents of an enclosing object).
2111 *
2112 * This routine recurses on the primary base of the derived class because
2113 * the virtual base entries of the primary base appear before the other
2114 * virtual base entries.
2115 *
2116 * If the virtual base is not found, a negative integer is returned.
2117 * The magnitude of the negative integer is the number of entries in
2118 * the virtual table to skip over (entries corresponding to various
2119 * ancestral classes in the chain of primary bases).
2120 *
2121 * Important: This assumes the HP / Taligent C++ runtime
2122 * conventions. Use baseclass_offset() instead to deal with g++
2123 * conventions. */
2124
2125 void
2126 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2127 struct type *type;
2128 struct type *basetype;
2129 char *valaddr;
2130 int offset;
2131 int *boffset_p;
2132 int *skip_p;
2133 {
2134 int boffset; /* offset of virtual base */
2135 int index; /* displacement to use in virtual table */
2136 int skip;
2137
2138 value_ptr vp;
2139 CORE_ADDR vtbl; /* the virtual table pointer */
2140 struct type *pbc; /* the primary base class */
2141
2142 /* Look for the virtual base recursively in the primary base, first.
2143 * This is because the derived class object and its primary base
2144 * subobject share the primary virtual table. */
2145
2146 boffset = 0;
2147 pbc = TYPE_PRIMARY_BASE (type);
2148 if (pbc)
2149 {
2150 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2151 if (skip < 0)
2152 {
2153 *boffset_p = boffset;
2154 *skip_p = -1;
2155 return;
2156 }
2157 }
2158 else
2159 skip = 0;
2160
2161
2162 /* Find the index of the virtual base according to HP/Taligent
2163 runtime spec. (Depth-first, left-to-right.) */
2164 index = virtual_base_index_skip_primaries (basetype, type);
2165
2166 if (index < 0)
2167 {
2168 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2169 *boffset_p = 0;
2170 return;
2171 }
2172
2173 /* pai: FIXME -- 32x64 possible problem */
2174 /* First word (4 bytes) in object layout is the vtable pointer */
2175 vtbl = *(CORE_ADDR *) (valaddr + offset);
2176
2177 /* Before the constructor is invoked, things are usually zero'd out. */
2178 if (vtbl == 0)
2179 error ("Couldn't find virtual table -- object may not be constructed yet.");
2180
2181
2182 /* Find virtual base's offset -- jump over entries for primary base
2183 * ancestors, then use the index computed above. But also adjust by
2184 * HP_ACC_VBASE_START for the vtable slots before the start of the
2185 * virtual base entries. Offset is negative -- virtual base entries
2186 * appear _before_ the address point of the virtual table. */
2187
2188 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2189 & use long type */
2190
2191 /* epstein : FIXME -- added param for overlay section. May not be correct */
2192 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2193 boffset = value_as_long (vp);
2194 *skip_p = -1;
2195 *boffset_p = boffset;
2196 return;
2197 }
2198
2199
2200 /* Helper function used by value_struct_elt to recurse through baseclasses.
2201 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2202 and search in it assuming it has (class) type TYPE.
2203 If found, return value, else if name matched and args not return (value)-1,
2204 else return NULL. */
2205
2206 static value_ptr
2207 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2208 char *name;
2209 register value_ptr *arg1p, *args;
2210 int offset, *static_memfuncp;
2211 register struct type *type;
2212 {
2213 int i;
2214 value_ptr v;
2215 int name_matched = 0;
2216 char dem_opname[64];
2217
2218 CHECK_TYPEDEF (type);
2219 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2220 {
2221 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2222 /* FIXME! May need to check for ARM demangling here */
2223 if (strncmp (t_field_name, "__", 2) == 0 ||
2224 strncmp (t_field_name, "op", 2) == 0 ||
2225 strncmp (t_field_name, "type", 4) == 0)
2226 {
2227 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2228 t_field_name = dem_opname;
2229 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2230 t_field_name = dem_opname;
2231 }
2232 if (t_field_name && STREQ (t_field_name, name))
2233 {
2234 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2235 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2236 name_matched = 1;
2237
2238 if (j > 0 && args == 0)
2239 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2240 while (j >= 0)
2241 {
2242 if (TYPE_FN_FIELD_STUB (f, j))
2243 check_stub_method (type, i, j);
2244 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2245 TYPE_FN_FIELD_ARGS (f, j), args))
2246 {
2247 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2248 return value_virtual_fn_field (arg1p, f, j, type, offset);
2249 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2250 *static_memfuncp = 1;
2251 v = value_fn_field (arg1p, f, j, type, offset);
2252 if (v != NULL)
2253 return v;
2254 }
2255 j--;
2256 }
2257 }
2258 }
2259
2260 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2261 {
2262 int base_offset;
2263
2264 if (BASETYPE_VIA_VIRTUAL (type, i))
2265 {
2266 if (TYPE_HAS_VTABLE (type))
2267 {
2268 /* HP aCC compiled type, search for virtual base offset
2269 according to HP/Taligent runtime spec. */
2270 int skip;
2271 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2272 VALUE_CONTENTS_ALL (*arg1p),
2273 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2274 &base_offset, &skip);
2275 if (skip >= 0)
2276 error ("Virtual base class offset not found in vtable");
2277 }
2278 else
2279 {
2280 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2281 char *base_valaddr;
2282
2283 /* The virtual base class pointer might have been clobbered by the
2284 user program. Make sure that it still points to a valid memory
2285 location. */
2286
2287 if (offset < 0 || offset >= TYPE_LENGTH (type))
2288 {
2289 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2290 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2291 + VALUE_OFFSET (*arg1p) + offset,
2292 base_valaddr,
2293 TYPE_LENGTH (baseclass)) != 0)
2294 error ("virtual baseclass botch");
2295 }
2296 else
2297 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2298
2299 base_offset =
2300 baseclass_offset (type, i, base_valaddr,
2301 VALUE_ADDRESS (*arg1p)
2302 + VALUE_OFFSET (*arg1p) + offset);
2303 if (base_offset == -1)
2304 error ("virtual baseclass botch");
2305 }
2306 }
2307 else
2308 {
2309 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2310 }
2311 v = search_struct_method (name, arg1p, args, base_offset + offset,
2312 static_memfuncp, TYPE_BASECLASS (type, i));
2313 if (v == (value_ptr) - 1)
2314 {
2315 name_matched = 1;
2316 }
2317 else if (v)
2318 {
2319 /* FIXME-bothner: Why is this commented out? Why is it here? */
2320 /* *arg1p = arg1_tmp; */
2321 return v;
2322 }
2323 }
2324 if (name_matched)
2325 return (value_ptr) - 1;
2326 else
2327 return NULL;
2328 }
2329
2330 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2331 extract the component named NAME from the ultimate target structure/union
2332 and return it as a value with its appropriate type.
2333 ERR is used in the error message if *ARGP's type is wrong.
2334
2335 C++: ARGS is a list of argument types to aid in the selection of
2336 an appropriate method. Also, handle derived types.
2337
2338 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2339 where the truthvalue of whether the function that was resolved was
2340 a static member function or not is stored.
2341
2342 ERR is an error message to be printed in case the field is not found. */
2343
2344 value_ptr
2345 value_struct_elt (argp, args, name, static_memfuncp, err)
2346 register value_ptr *argp, *args;
2347 char *name;
2348 int *static_memfuncp;
2349 char *err;
2350 {
2351 register struct type *t;
2352 value_ptr v;
2353
2354 COERCE_ARRAY (*argp);
2355
2356 t = check_typedef (VALUE_TYPE (*argp));
2357
2358 /* Follow pointers until we get to a non-pointer. */
2359
2360 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2361 {
2362 *argp = value_ind (*argp);
2363 /* Don't coerce fn pointer to fn and then back again! */
2364 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2365 COERCE_ARRAY (*argp);
2366 t = check_typedef (VALUE_TYPE (*argp));
2367 }
2368
2369 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2370 error ("not implemented: member type in value_struct_elt");
2371
2372 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2373 && TYPE_CODE (t) != TYPE_CODE_UNION)
2374 error ("Attempt to extract a component of a value that is not a %s.", err);
2375
2376 /* Assume it's not, unless we see that it is. */
2377 if (static_memfuncp)
2378 *static_memfuncp = 0;
2379
2380 if (!args)
2381 {
2382 /* if there are no arguments ...do this... */
2383
2384 /* Try as a field first, because if we succeed, there
2385 is less work to be done. */
2386 v = search_struct_field (name, *argp, 0, t, 0);
2387 if (v)
2388 return v;
2389
2390 /* C++: If it was not found as a data field, then try to
2391 return it as a pointer to a method. */
2392
2393 if (destructor_name_p (name, t))
2394 error ("Cannot get value of destructor");
2395
2396 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2397
2398 if (v == (value_ptr) - 1)
2399 error ("Cannot take address of a method");
2400 else if (v == 0)
2401 {
2402 if (TYPE_NFN_FIELDS (t))
2403 error ("There is no member or method named %s.", name);
2404 else
2405 error ("There is no member named %s.", name);
2406 }
2407 return v;
2408 }
2409
2410 if (destructor_name_p (name, t))
2411 {
2412 if (!args[1])
2413 {
2414 /* Destructors are a special case. */
2415 int m_index, f_index;
2416
2417 v = NULL;
2418 if (get_destructor_fn_field (t, &m_index, &f_index))
2419 {
2420 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2421 f_index, NULL, 0);
2422 }
2423 if (v == NULL)
2424 error ("could not find destructor function named %s.", name);
2425 else
2426 return v;
2427 }
2428 else
2429 {
2430 error ("destructor should not have any argument");
2431 }
2432 }
2433 else
2434 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2435
2436 if (v == (value_ptr) - 1)
2437 {
2438 error ("Argument list of %s mismatch with component in the structure.", name);
2439 }
2440 else if (v == 0)
2441 {
2442 /* See if user tried to invoke data as function. If so,
2443 hand it back. If it's not callable (i.e., a pointer to function),
2444 gdb should give an error. */
2445 v = search_struct_field (name, *argp, 0, t, 0);
2446 }
2447
2448 if (!v)
2449 error ("Structure has no component named %s.", name);
2450 return v;
2451 }
2452
2453 /* Search through the methods of an object (and its bases)
2454 * to find a specified method. Return the pointer to the
2455 * fn_field list of overloaded instances.
2456 * Helper function for value_find_oload_list.
2457 * ARGP is a pointer to a pointer to a value (the object)
2458 * METHOD is a string containing the method name
2459 * OFFSET is the offset within the value
2460 * STATIC_MEMFUNCP is set if the method is static
2461 * TYPE is the assumed type of the object
2462 * NUM_FNS is the number of overloaded instances
2463 * BASETYPE is set to the actual type of the subobject where the method is found
2464 * BOFFSET is the offset of the base subobject where the method is found */
2465
2466 static struct fn_field *
2467 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2468 value_ptr *argp;
2469 char *method;
2470 int offset;
2471 int *static_memfuncp;
2472 struct type *type;
2473 int *num_fns;
2474 struct type **basetype;
2475 int *boffset;
2476 {
2477 int i;
2478 struct fn_field *f;
2479 CHECK_TYPEDEF (type);
2480
2481 *num_fns = 0;
2482
2483 /* First check in object itself */
2484 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2485 {
2486 /* pai: FIXME What about operators and type conversions? */
2487 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2488 if (fn_field_name && STREQ (fn_field_name, method))
2489 {
2490 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2491 *basetype = type;
2492 *boffset = offset;
2493 return TYPE_FN_FIELDLIST1 (type, i);
2494 }
2495 }
2496
2497 /* Not found in object, check in base subobjects */
2498 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2499 {
2500 int base_offset;
2501 if (BASETYPE_VIA_VIRTUAL (type, i))
2502 {
2503 if (TYPE_HAS_VTABLE (type))
2504 {
2505 /* HP aCC compiled type, search for virtual base offset
2506 * according to HP/Taligent runtime spec. */
2507 int skip;
2508 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2509 VALUE_CONTENTS_ALL (*argp),
2510 offset + VALUE_EMBEDDED_OFFSET (*argp),
2511 &base_offset, &skip);
2512 if (skip >= 0)
2513 error ("Virtual base class offset not found in vtable");
2514 }
2515 else
2516 {
2517 /* probably g++ runtime model */
2518 base_offset = VALUE_OFFSET (*argp) + offset;
2519 base_offset =
2520 baseclass_offset (type, i,
2521 VALUE_CONTENTS (*argp) + base_offset,
2522 VALUE_ADDRESS (*argp) + base_offset);
2523 if (base_offset == -1)
2524 error ("virtual baseclass botch");
2525 }
2526 }
2527 else
2528 /* non-virtual base, simply use bit position from debug info */
2529 {
2530 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2531 }
2532 f = find_method_list (argp, method, base_offset + offset,
2533 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2534 if (f)
2535 return f;
2536 }
2537 return NULL;
2538 }
2539
2540 /* Return the list of overloaded methods of a specified name.
2541 * ARGP is a pointer to a pointer to a value (the object)
2542 * METHOD is the method name
2543 * OFFSET is the offset within the value contents
2544 * STATIC_MEMFUNCP is set if the method is static
2545 * NUM_FNS is the number of overloaded instances
2546 * BASETYPE is set to the type of the base subobject that defines the method
2547 * BOFFSET is the offset of the base subobject which defines the method */
2548
2549 struct fn_field *
2550 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2551 value_ptr *argp;
2552 char *method;
2553 int offset;
2554 int *static_memfuncp;
2555 int *num_fns;
2556 struct type **basetype;
2557 int *boffset;
2558 {
2559 struct type *t;
2560
2561 t = check_typedef (VALUE_TYPE (*argp));
2562
2563 /* code snarfed from value_struct_elt */
2564 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2565 {
2566 *argp = value_ind (*argp);
2567 /* Don't coerce fn pointer to fn and then back again! */
2568 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2569 COERCE_ARRAY (*argp);
2570 t = check_typedef (VALUE_TYPE (*argp));
2571 }
2572
2573 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2574 error ("Not implemented: member type in value_find_oload_lis");
2575
2576 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2577 && TYPE_CODE (t) != TYPE_CODE_UNION)
2578 error ("Attempt to extract a component of a value that is not a struct or union");
2579
2580 /* Assume it's not static, unless we see that it is. */
2581 if (static_memfuncp)
2582 *static_memfuncp = 0;
2583
2584 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2585
2586 }
2587
2588 /* Given an array of argument types (ARGTYPES) (which includes an
2589 entry for "this" in the case of C++ methods), the number of
2590 arguments NARGS, the NAME of a function whether it's a method or
2591 not (METHOD), and the degree of laxness (LAX) in conforming to
2592 overload resolution rules in ANSI C++, find the best function that
2593 matches on the argument types according to the overload resolution
2594 rules.
2595
2596 In the case of class methods, the parameter OBJ is an object value
2597 in which to search for overloaded methods.
2598
2599 In the case of non-method functions, the parameter FSYM is a symbol
2600 corresponding to one of the overloaded functions.
2601
2602 Return value is an integer: 0 -> good match, 10 -> debugger applied
2603 non-standard coercions, 100 -> incompatible.
2604
2605 If a method is being searched for, VALP will hold the value.
2606 If a non-method is being searched for, SYMP will hold the symbol for it.
2607
2608 If a method is being searched for, and it is a static method,
2609 then STATICP will point to a non-zero value.
2610
2611 Note: This function does *not* check the value of
2612 overload_resolution. Caller must check it to see whether overload
2613 resolution is permitted.
2614 */
2615
2616 int
2617 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2618 struct type **arg_types;
2619 int nargs;
2620 char *name;
2621 int method;
2622 int lax;
2623 value_ptr obj;
2624 struct symbol *fsym;
2625 value_ptr *valp;
2626 struct symbol **symp;
2627 int *staticp;
2628 {
2629 int nparms;
2630 struct type **parm_types;
2631 int champ_nparms = 0;
2632
2633 short oload_champ = -1; /* Index of best overloaded function */
2634 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2635 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2636 short oload_ambig_champ = -1; /* 2nd contender for best match */
2637 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2638 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2639
2640 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2641 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2642
2643 value_ptr temp = obj;
2644 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2645 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2646 int num_fns = 0; /* Number of overloaded instances being considered */
2647 struct type *basetype = NULL;
2648 int boffset;
2649 register int jj;
2650 register int ix;
2651
2652 char *obj_type_name = NULL;
2653 char *func_name = NULL;
2654
2655 /* Get the list of overloaded methods or functions */
2656 if (method)
2657 {
2658 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2659 /* Hack: evaluate_subexp_standard often passes in a pointer
2660 value rather than the object itself, so try again */
2661 if ((!obj_type_name || !*obj_type_name) &&
2662 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2663 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2664
2665 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2666 staticp,
2667 &num_fns,
2668 &basetype, &boffset);
2669 if (!fns_ptr || !num_fns)
2670 error ("Couldn't find method %s%s%s",
2671 obj_type_name,
2672 (obj_type_name && *obj_type_name) ? "::" : "",
2673 name);
2674 }
2675 else
2676 {
2677 int i = -1;
2678 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2679
2680 /* If the name is NULL this must be a C-style function.
2681 Just return the same symbol. */
2682 if (!func_name)
2683 {
2684 *symp = fsym;
2685 return 0;
2686 }
2687
2688 oload_syms = make_symbol_overload_list (fsym);
2689 while (oload_syms[++i])
2690 num_fns++;
2691 if (!num_fns)
2692 error ("Couldn't find function %s", func_name);
2693 }
2694
2695 oload_champ_bv = NULL;
2696
2697 /* Consider each candidate in turn */
2698 for (ix = 0; ix < num_fns; ix++)
2699 {
2700 /* Number of parameters for current candidate */
2701 nparms = method ? TYPE_NFIELDS (fns_ptr[ix].type)
2702 : TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2703
2704 /* Prepare array of parameter types */
2705 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2706 for (jj = 0; jj < nparms; jj++)
2707 parm_types[jj] = method ? TYPE_FIELD_TYPE (fns_ptr[ix].type, jj)
2708 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj);
2709
2710 /* Compare parameter types to supplied argument types */
2711 bv = rank_function (parm_types, nparms, arg_types, nargs);
2712
2713 if (!oload_champ_bv)
2714 {
2715 oload_champ_bv = bv;
2716 oload_champ = 0;
2717 champ_nparms = nparms;
2718 }
2719 else
2720 /* See whether current candidate is better or worse than previous best */
2721 switch (compare_badness (bv, oload_champ_bv))
2722 {
2723 case 0:
2724 oload_ambiguous = 1; /* top two contenders are equally good */
2725 oload_ambig_champ = ix;
2726 break;
2727 case 1:
2728 oload_ambiguous = 2; /* incomparable top contenders */
2729 oload_ambig_champ = ix;
2730 break;
2731 case 2:
2732 oload_champ_bv = bv; /* new champion, record details */
2733 oload_ambiguous = 0;
2734 oload_champ = ix;
2735 oload_ambig_champ = -1;
2736 champ_nparms = nparms;
2737 break;
2738 case 3:
2739 default:
2740 break;
2741 }
2742 free (parm_types);
2743 #ifdef DEBUG_OLOAD
2744 if (method)
2745 printf ("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2746 else
2747 printf ("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2748 for (jj = 0; jj <= nargs; jj++)
2749 printf ("...Badness @ %d : %d\n", jj, bv->rank[jj]);
2750 printf ("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2751 #endif
2752 } /* end loop over all candidates */
2753
2754 if (oload_ambiguous)
2755 {
2756 if (method)
2757 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2758 obj_type_name,
2759 (obj_type_name && *obj_type_name) ? "::" : "",
2760 name);
2761 else
2762 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2763 func_name);
2764 }
2765
2766 /* Check how bad the best match is */
2767 for (ix = 1; ix <= nargs; ix++)
2768 {
2769 switch (oload_champ_bv->rank[ix])
2770 {
2771 case 10:
2772 oload_non_standard = 1; /* non-standard type conversions needed */
2773 break;
2774 case 100:
2775 oload_incompatible = 1; /* truly mismatched types */
2776 break;
2777 }
2778 }
2779 if (oload_incompatible)
2780 {
2781 if (method)
2782 error ("Cannot resolve method %s%s%s to any overloaded instance",
2783 obj_type_name,
2784 (obj_type_name && *obj_type_name) ? "::" : "",
2785 name);
2786 else
2787 error ("Cannot resolve function %s to any overloaded instance",
2788 func_name);
2789 }
2790 else if (oload_non_standard)
2791 {
2792 if (method)
2793 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2794 obj_type_name,
2795 (obj_type_name && *obj_type_name) ? "::" : "",
2796 name);
2797 else
2798 warning ("Using non-standard conversion to match function %s to supplied arguments",
2799 func_name);
2800 }
2801
2802 if (method)
2803 {
2804 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2805 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2806 else
2807 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2808 }
2809 else
2810 {
2811 *symp = oload_syms[oload_champ];
2812 free (func_name);
2813 }
2814
2815 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2816 }
2817
2818 /* C++: return 1 is NAME is a legitimate name for the destructor
2819 of type TYPE. If TYPE does not have a destructor, or
2820 if NAME is inappropriate for TYPE, an error is signaled. */
2821 int
2822 destructor_name_p (name, type)
2823 const char *name;
2824 const struct type *type;
2825 {
2826 /* destructors are a special case. */
2827
2828 if (name[0] == '~')
2829 {
2830 char *dname = type_name_no_tag (type);
2831 char *cp = strchr (dname, '<');
2832 unsigned int len;
2833
2834 /* Do not compare the template part for template classes. */
2835 if (cp == NULL)
2836 len = strlen (dname);
2837 else
2838 len = cp - dname;
2839 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2840 error ("name of destructor must equal name of class");
2841 else
2842 return 1;
2843 }
2844 return 0;
2845 }
2846
2847 /* Helper function for check_field: Given TYPE, a structure/union,
2848 return 1 if the component named NAME from the ultimate
2849 target structure/union is defined, otherwise, return 0. */
2850
2851 static int
2852 check_field_in (type, name)
2853 register struct type *type;
2854 const char *name;
2855 {
2856 register int i;
2857
2858 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2859 {
2860 char *t_field_name = TYPE_FIELD_NAME (type, i);
2861 if (t_field_name && STREQ (t_field_name, name))
2862 return 1;
2863 }
2864
2865 /* C++: If it was not found as a data field, then try to
2866 return it as a pointer to a method. */
2867
2868 /* Destructors are a special case. */
2869 if (destructor_name_p (name, type))
2870 {
2871 int m_index, f_index;
2872
2873 return get_destructor_fn_field (type, &m_index, &f_index);
2874 }
2875
2876 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2877 {
2878 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
2879 return 1;
2880 }
2881
2882 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2883 if (check_field_in (TYPE_BASECLASS (type, i), name))
2884 return 1;
2885
2886 return 0;
2887 }
2888
2889
2890 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2891 return 1 if the component named NAME from the ultimate
2892 target structure/union is defined, otherwise, return 0. */
2893
2894 int
2895 check_field (arg1, name)
2896 register value_ptr arg1;
2897 const char *name;
2898 {
2899 register struct type *t;
2900
2901 COERCE_ARRAY (arg1);
2902
2903 t = VALUE_TYPE (arg1);
2904
2905 /* Follow pointers until we get to a non-pointer. */
2906
2907 for (;;)
2908 {
2909 CHECK_TYPEDEF (t);
2910 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2911 break;
2912 t = TYPE_TARGET_TYPE (t);
2913 }
2914
2915 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2916 error ("not implemented: member type in check_field");
2917
2918 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2919 && TYPE_CODE (t) != TYPE_CODE_UNION)
2920 error ("Internal error: `this' is not an aggregate");
2921
2922 return check_field_in (t, name);
2923 }
2924
2925 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2926 return the address of this member as a "pointer to member"
2927 type. If INTYPE is non-null, then it will be the type
2928 of the member we are looking for. This will help us resolve
2929 "pointers to member functions". This function is used
2930 to resolve user expressions of the form "DOMAIN::NAME". */
2931
2932 value_ptr
2933 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
2934 struct type *domain, *curtype, *intype;
2935 int offset;
2936 char *name;
2937 {
2938 register struct type *t = curtype;
2939 register int i;
2940 value_ptr v;
2941
2942 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2943 && TYPE_CODE (t) != TYPE_CODE_UNION)
2944 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2945
2946 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2947 {
2948 char *t_field_name = TYPE_FIELD_NAME (t, i);
2949
2950 if (t_field_name && STREQ (t_field_name, name))
2951 {
2952 if (TYPE_FIELD_STATIC (t, i))
2953 {
2954 v = value_static_field (t, i);
2955 if (v == NULL)
2956 error ("Internal error: could not find static variable %s",
2957 name);
2958 return v;
2959 }
2960 if (TYPE_FIELD_PACKED (t, i))
2961 error ("pointers to bitfield members not allowed");
2962
2963 return value_from_longest
2964 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2965 domain)),
2966 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2967 }
2968 }
2969
2970 /* C++: If it was not found as a data field, then try to
2971 return it as a pointer to a method. */
2972
2973 /* Destructors are a special case. */
2974 if (destructor_name_p (name, t))
2975 {
2976 error ("member pointers to destructors not implemented yet");
2977 }
2978
2979 /* Perform all necessary dereferencing. */
2980 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2981 intype = TYPE_TARGET_TYPE (intype);
2982
2983 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2984 {
2985 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2986 char dem_opname[64];
2987
2988 if (strncmp (t_field_name, "__", 2) == 0 ||
2989 strncmp (t_field_name, "op", 2) == 0 ||
2990 strncmp (t_field_name, "type", 4) == 0)
2991 {
2992 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2993 t_field_name = dem_opname;
2994 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2995 t_field_name = dem_opname;
2996 }
2997 if (t_field_name && STREQ (t_field_name, name))
2998 {
2999 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3000 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3001
3002 if (intype == 0 && j > 1)
3003 error ("non-unique member `%s' requires type instantiation", name);
3004 if (intype)
3005 {
3006 while (j--)
3007 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3008 break;
3009 if (j < 0)
3010 error ("no member function matches that type instantiation");
3011 }
3012 else
3013 j = 0;
3014
3015 if (TYPE_FN_FIELD_STUB (f, j))
3016 check_stub_method (t, i, j);
3017 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3018 {
3019 return value_from_longest
3020 (lookup_reference_type
3021 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3022 domain)),
3023 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3024 }
3025 else
3026 {
3027 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3028 0, VAR_NAMESPACE, 0, NULL);
3029 if (s == NULL)
3030 {
3031 v = 0;
3032 }
3033 else
3034 {
3035 v = read_var_value (s, 0);
3036 #if 0
3037 VALUE_TYPE (v) = lookup_reference_type
3038 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3039 domain));
3040 #endif
3041 }
3042 return v;
3043 }
3044 }
3045 }
3046 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3047 {
3048 value_ptr v;
3049 int base_offset;
3050
3051 if (BASETYPE_VIA_VIRTUAL (t, i))
3052 base_offset = 0;
3053 else
3054 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3055 v = value_struct_elt_for_reference (domain,
3056 offset + base_offset,
3057 TYPE_BASECLASS (t, i),
3058 name,
3059 intype);
3060 if (v)
3061 return v;
3062 }
3063 return 0;
3064 }
3065
3066
3067 /* Find the real run-time type of a value using RTTI.
3068 * V is a pointer to the value.
3069 * A pointer to the struct type entry of the run-time type
3070 * is returneed.
3071 * FULL is a flag that is set only if the value V includes
3072 * the entire contents of an object of the RTTI type.
3073 * TOP is the offset to the top of the enclosing object of
3074 * the real run-time type. This offset may be for the embedded
3075 * object, or for the enclosing object of V.
3076 * USING_ENC is the flag that distinguishes the two cases.
3077 * If it is 1, then the offset is for the enclosing object,
3078 * otherwise for the embedded object.
3079 *
3080 * This currently works only for RTTI information generated
3081 * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10)
3082 * does not appear to support RTTI. This function returns a
3083 * NULL value for objects in the g++ runtime model. */
3084
3085 struct type *
3086 value_rtti_type (v, full, top, using_enc)
3087 value_ptr v;
3088 int *full;
3089 int *top;
3090 int *using_enc;
3091 {
3092 struct type *known_type;
3093 struct type *rtti_type;
3094 CORE_ADDR coreptr;
3095 value_ptr vp;
3096 int using_enclosing = 0;
3097 long top_offset = 0;
3098 char rtti_type_name[256];
3099
3100 if (full)
3101 *full = 0;
3102 if (top)
3103 *top = -1;
3104 if (using_enc)
3105 *using_enc = 0;
3106
3107 /* Get declared type */
3108 known_type = VALUE_TYPE (v);
3109 CHECK_TYPEDEF (known_type);
3110 /* RTTI works only or class objects */
3111 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3112 return NULL;
3113
3114 /* If neither the declared type nor the enclosing type of the
3115 * value structure has a HP ANSI C++ style virtual table,
3116 * we can't do anything. */
3117 if (!TYPE_HAS_VTABLE (known_type))
3118 {
3119 known_type = VALUE_ENCLOSING_TYPE (v);
3120 CHECK_TYPEDEF (known_type);
3121 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3122 !TYPE_HAS_VTABLE (known_type))
3123 return NULL; /* No RTTI, or not HP-compiled types */
3124 CHECK_TYPEDEF (known_type);
3125 using_enclosing = 1;
3126 }
3127
3128 if (using_enclosing && using_enc)
3129 *using_enc = 1;
3130
3131 /* First get the virtual table address */
3132 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3133 + VALUE_OFFSET (v)
3134 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3135 if (coreptr == 0)
3136 return NULL; /* return silently -- maybe called on gdb-generated value */
3137
3138 /* Fetch the top offset of the object */
3139 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3140 vp = value_at (builtin_type_int,
3141 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3142 VALUE_BFD_SECTION (v));
3143 top_offset = value_as_long (vp);
3144 if (top)
3145 *top = top_offset;
3146
3147 /* Fetch the typeinfo pointer */
3148 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3149 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3150 /* Indirect through the typeinfo pointer and retrieve the pointer
3151 * to the string name */
3152 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3153 if (!coreptr)
3154 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3155 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3156 /* FIXME possible 32x64 problem */
3157
3158 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3159
3160 read_memory_string (coreptr, rtti_type_name, 256);
3161
3162 if (strlen (rtti_type_name) == 0)
3163 error ("Retrieved null type name from typeinfo");
3164
3165 /* search for type */
3166 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3167
3168 if (!rtti_type)
3169 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3170 CHECK_TYPEDEF (rtti_type);
3171
3172 #if 0 /* debugging */
3173 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3174 #endif
3175
3176 /* Check whether we have the entire object */
3177 if (full /* Non-null pointer passed */
3178
3179 &&
3180 /* Either we checked on the whole object in hand and found the
3181 top offset to be zero */
3182 (((top_offset == 0) &&
3183 using_enclosing &&
3184 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3185 ||
3186 /* Or we checked on the embedded object and top offset was the
3187 same as the embedded offset */
3188 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3189 !using_enclosing &&
3190 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3191
3192 *full = 1;
3193
3194 return rtti_type;
3195 }
3196
3197 /* Given a pointer value V, find the real (RTTI) type
3198 of the object it points to.
3199 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3200 and refer to the values computed for the object pointed to. */
3201
3202 struct type *
3203 value_rtti_target_type (v, full, top, using_enc)
3204 value_ptr v;
3205 int *full;
3206 int *top;
3207 int *using_enc;
3208 {
3209 value_ptr target;
3210
3211 target = value_ind (v);
3212
3213 return value_rtti_type (target, full, top, using_enc);
3214 }
3215
3216 /* Given a value pointed to by ARGP, check its real run-time type, and
3217 if that is different from the enclosing type, create a new value
3218 using the real run-time type as the enclosing type (and of the same
3219 type as ARGP) and return it, with the embedded offset adjusted to
3220 be the correct offset to the enclosed object
3221 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3222 parameters, computed by value_rtti_type(). If these are available,
3223 they can be supplied and a second call to value_rtti_type() is avoided.
3224 (Pass RTYPE == NULL if they're not available */
3225
3226 value_ptr
3227 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3228 value_ptr argp;
3229 struct type *rtype;
3230 int xfull;
3231 int xtop;
3232 int xusing_enc;
3233
3234 {
3235 struct type *real_type;
3236 int full = 0;
3237 int top = -1;
3238 int using_enc = 0;
3239 value_ptr new_val;
3240
3241 if (rtype)
3242 {
3243 real_type = rtype;
3244 full = xfull;
3245 top = xtop;
3246 using_enc = xusing_enc;
3247 }
3248 else
3249 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3250
3251 /* If no RTTI data, or if object is already complete, do nothing */
3252 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3253 return argp;
3254
3255 /* If we have the full object, but for some reason the enclosing
3256 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3257 if (full)
3258 {
3259 VALUE_ENCLOSING_TYPE (argp) = real_type;
3260 return argp;
3261 }
3262
3263 /* Check if object is in memory */
3264 if (VALUE_LVAL (argp) != lval_memory)
3265 {
3266 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3267
3268 return argp;
3269 }
3270
3271 /* All other cases -- retrieve the complete object */
3272 /* Go back by the computed top_offset from the beginning of the object,
3273 adjusting for the embedded offset of argp if that's what value_rtti_type
3274 used for its computation. */
3275 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3276 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3277 VALUE_BFD_SECTION (argp));
3278 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3279 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3280 return new_val;
3281 }
3282
3283
3284
3285
3286 /* C++: return the value of the class instance variable, if one exists.
3287 Flag COMPLAIN signals an error if the request is made in an
3288 inappropriate context. */
3289
3290 value_ptr
3291 value_of_this (complain)
3292 int complain;
3293 {
3294 struct symbol *func, *sym;
3295 struct block *b;
3296 int i;
3297 static const char funny_this[] = "this";
3298 value_ptr this;
3299
3300 if (selected_frame == 0)
3301 {
3302 if (complain)
3303 error ("no frame selected");
3304 else
3305 return 0;
3306 }
3307
3308 func = get_frame_function (selected_frame);
3309 if (!func)
3310 {
3311 if (complain)
3312 error ("no `this' in nameless context");
3313 else
3314 return 0;
3315 }
3316
3317 b = SYMBOL_BLOCK_VALUE (func);
3318 i = BLOCK_NSYMS (b);
3319 if (i <= 0)
3320 {
3321 if (complain)
3322 error ("no args, no `this'");
3323 else
3324 return 0;
3325 }
3326
3327 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3328 symbol instead of the LOC_ARG one (if both exist). */
3329 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3330 if (sym == NULL)
3331 {
3332 if (complain)
3333 error ("current stack frame not in method");
3334 else
3335 return NULL;
3336 }
3337
3338 this = read_var_value (sym, selected_frame);
3339 if (this == 0 && complain)
3340 error ("`this' argument at unknown address");
3341 return this;
3342 }
3343
3344 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3345 long, starting at LOWBOUND. The result has the same lower bound as
3346 the original ARRAY. */
3347
3348 value_ptr
3349 value_slice (array, lowbound, length)
3350 value_ptr array;
3351 int lowbound, length;
3352 {
3353 struct type *slice_range_type, *slice_type, *range_type;
3354 LONGEST lowerbound, upperbound, offset;
3355 value_ptr slice;
3356 struct type *array_type;
3357 array_type = check_typedef (VALUE_TYPE (array));
3358 COERCE_VARYING_ARRAY (array, array_type);
3359 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3360 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3361 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3362 error ("cannot take slice of non-array");
3363 range_type = TYPE_INDEX_TYPE (array_type);
3364 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3365 error ("slice from bad array or bitstring");
3366 if (lowbound < lowerbound || length < 0
3367 || lowbound + length - 1 > upperbound
3368 /* Chill allows zero-length strings but not arrays. */
3369 || (current_language->la_language == language_chill
3370 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3371 error ("slice out of range");
3372 /* FIXME-type-allocation: need a way to free this type when we are
3373 done with it. */
3374 slice_range_type = create_range_type ((struct type *) NULL,
3375 TYPE_TARGET_TYPE (range_type),
3376 lowbound, lowbound + length - 1);
3377 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3378 {
3379 int i;
3380 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3381 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3382 slice = value_zero (slice_type, not_lval);
3383 for (i = 0; i < length; i++)
3384 {
3385 int element = value_bit_index (array_type,
3386 VALUE_CONTENTS (array),
3387 lowbound + i);
3388 if (element < 0)
3389 error ("internal error accessing bitstring");
3390 else if (element > 0)
3391 {
3392 int j = i % TARGET_CHAR_BIT;
3393 if (BITS_BIG_ENDIAN)
3394 j = TARGET_CHAR_BIT - 1 - j;
3395 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3396 }
3397 }
3398 /* We should set the address, bitssize, and bitspos, so the clice
3399 can be used on the LHS, but that may require extensions to
3400 value_assign. For now, just leave as a non_lval. FIXME. */
3401 }
3402 else
3403 {
3404 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3405 offset
3406 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3407 slice_type = create_array_type ((struct type *) NULL, element_type,
3408 slice_range_type);
3409 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3410 slice = allocate_value (slice_type);
3411 if (VALUE_LAZY (array))
3412 VALUE_LAZY (slice) = 1;
3413 else
3414 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3415 TYPE_LENGTH (slice_type));
3416 if (VALUE_LVAL (array) == lval_internalvar)
3417 VALUE_LVAL (slice) = lval_internalvar_component;
3418 else
3419 VALUE_LVAL (slice) = VALUE_LVAL (array);
3420 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3421 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3422 }
3423 return slice;
3424 }
3425
3426 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3427 value as a fixed-length array. */
3428
3429 value_ptr
3430 varying_to_slice (varray)
3431 value_ptr varray;
3432 {
3433 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3434 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3435 VALUE_CONTENTS (varray)
3436 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3437 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3438 }
3439
3440 /* Create a value for a FORTRAN complex number. Currently most of
3441 the time values are coerced to COMPLEX*16 (i.e. a complex number
3442 composed of 2 doubles. This really should be a smarter routine
3443 that figures out precision inteligently as opposed to assuming
3444 doubles. FIXME: fmb */
3445
3446 value_ptr
3447 value_literal_complex (arg1, arg2, type)
3448 value_ptr arg1;
3449 value_ptr arg2;
3450 struct type *type;
3451 {
3452 register value_ptr val;
3453 struct type *real_type = TYPE_TARGET_TYPE (type);
3454
3455 val = allocate_value (type);
3456 arg1 = value_cast (real_type, arg1);
3457 arg2 = value_cast (real_type, arg2);
3458
3459 memcpy (VALUE_CONTENTS_RAW (val),
3460 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3461 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3462 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3463 return val;
3464 }
3465
3466 /* Cast a value into the appropriate complex data type. */
3467
3468 static value_ptr
3469 cast_into_complex (type, val)
3470 struct type *type;
3471 register value_ptr val;
3472 {
3473 struct type *real_type = TYPE_TARGET_TYPE (type);
3474 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3475 {
3476 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3477 value_ptr re_val = allocate_value (val_real_type);
3478 value_ptr im_val = allocate_value (val_real_type);
3479
3480 memcpy (VALUE_CONTENTS_RAW (re_val),
3481 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3482 memcpy (VALUE_CONTENTS_RAW (im_val),
3483 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3484 TYPE_LENGTH (val_real_type));
3485
3486 return value_literal_complex (re_val, im_val, type);
3487 }
3488 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3489 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3490 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3491 else
3492 error ("cannot cast non-number to complex");
3493 }
3494
3495 void
3496 _initialize_valops ()
3497 {
3498 #if 0
3499 add_show_from_set
3500 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3501 "Set automatic abandonment of expressions upon failure.",
3502 &setlist),
3503 &showlist);
3504 #endif
3505
3506 add_show_from_set
3507 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3508 "Set overload resolution in evaluating C++ functions.",
3509 &setlist),
3510 &showlist);
3511 overload_resolution = 1;
3512
3513 }
This page took 0.106652 seconds and 4 git commands to generate.