2005-05-09 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "demangle.h"
33 #include "language.h"
34 #include "gdbcmd.h"
35 #include "regcache.h"
36 #include "cp-abi.h"
37 #include "block.h"
38 #include "infcall.h"
39 #include "dictionary.h"
40 #include "cp-support.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47
48 extern int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (char *, struct value *, int,
55 struct type *, int);
56
57 static struct value *search_struct_method (char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct type **arg_types, int nargs,
62 const char *func_name,
63 const char *qualified_name,
64 struct symbol ***oload_syms,
65 struct badness_vector **oload_champ_bv);
66
67 static
68 int find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
69 const char *func_name,
70 const char *qualified_name,
71 int namespace_len,
72 struct symbol ***oload_syms,
73 struct badness_vector **oload_champ_bv,
74 int *oload_champ);
75
76 static int find_oload_champ (struct type **arg_types, int nargs, int method,
77 int num_fns,
78 struct fn_field *fns_ptr,
79 struct symbol **oload_syms,
80 struct badness_vector **oload_champ_bv);
81
82 static int oload_method_static (int method, struct fn_field *fns_ptr,
83 int index);
84
85 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
86
87 static enum
88 oload_classification classify_oload_match (struct badness_vector
89 * oload_champ_bv,
90 int nargs,
91 int static_offset);
92
93 static int check_field_in (struct type *, const char *);
94
95 static struct value *value_struct_elt_for_reference (struct type *domain,
96 int offset,
97 struct type *curtype,
98 char *name,
99 struct type *intype,
100 enum noside noside);
101
102 static struct value *value_namespace_elt (const struct type *curtype,
103 char *name,
104 enum noside noside);
105
106 static struct value *value_maybe_namespace_elt (const struct type *curtype,
107 char *name,
108 enum noside noside);
109
110 static CORE_ADDR allocate_space_in_inferior (int);
111
112 static struct value *cast_into_complex (struct type *, struct value *);
113
114 static struct fn_field *find_method_list (struct value ** argp, char *method,
115 int offset,
116 struct type *type, int *num_fns,
117 struct type **basetype,
118 int *boffset);
119
120 void _initialize_valops (void);
121
122 /* Flag for whether we want to abandon failed expression evals by default. */
123
124 #if 0
125 static int auto_abandon = 0;
126 #endif
127
128 int overload_resolution = 0;
129 static void
130 show_overload_resolution (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Overload resolution in evaluating C++ functions is %s.\n"),
135 value);
136 }
137
138 /* Find the address of function name NAME in the inferior. */
139
140 struct value *
141 find_function_in_inferior (const char *name)
142 {
143 struct symbol *sym;
144 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
145 if (sym != NULL)
146 {
147 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
148 {
149 error (_("\"%s\" exists in this program but is not a function."),
150 name);
151 }
152 return value_of_variable (sym, NULL);
153 }
154 else
155 {
156 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
157 if (msymbol != NULL)
158 {
159 struct type *type;
160 CORE_ADDR maddr;
161 type = lookup_pointer_type (builtin_type_char);
162 type = lookup_function_type (type);
163 type = lookup_pointer_type (type);
164 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
165 return value_from_pointer (type, maddr);
166 }
167 else
168 {
169 if (!target_has_execution)
170 error (_("evaluation of this expression requires the target program to be active"));
171 else
172 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
173 }
174 }
175 }
176
177 /* Allocate NBYTES of space in the inferior using the inferior's malloc
178 and return a value that is a pointer to the allocated space. */
179
180 struct value *
181 value_allocate_space_in_inferior (int len)
182 {
183 struct value *blocklen;
184 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
185
186 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
187 val = call_function_by_hand (val, 1, &blocklen);
188 if (value_logical_not (val))
189 {
190 if (!target_has_execution)
191 error (_("No memory available to program now: you need to start the target first"));
192 else
193 error (_("No memory available to program: call to malloc failed"));
194 }
195 return val;
196 }
197
198 static CORE_ADDR
199 allocate_space_in_inferior (int len)
200 {
201 return value_as_long (value_allocate_space_in_inferior (len));
202 }
203
204 /* Cast value ARG2 to type TYPE and return as a value.
205 More general than a C cast: accepts any two types of the same length,
206 and if ARG2 is an lvalue it can be cast into anything at all. */
207 /* In C++, casts may change pointer or object representations. */
208
209 struct value *
210 value_cast (struct type *type, struct value *arg2)
211 {
212 enum type_code code1;
213 enum type_code code2;
214 int scalar;
215 struct type *type2;
216
217 int convert_to_boolean = 0;
218
219 if (value_type (arg2) == type)
220 return arg2;
221
222 CHECK_TYPEDEF (type);
223 code1 = TYPE_CODE (type);
224 arg2 = coerce_ref (arg2);
225 type2 = check_typedef (value_type (arg2));
226
227 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
228 is treated like a cast to (TYPE [N])OBJECT,
229 where N is sizeof(OBJECT)/sizeof(TYPE). */
230 if (code1 == TYPE_CODE_ARRAY)
231 {
232 struct type *element_type = TYPE_TARGET_TYPE (type);
233 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
234 if (element_length > 0
235 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
236 {
237 struct type *range_type = TYPE_INDEX_TYPE (type);
238 int val_length = TYPE_LENGTH (type2);
239 LONGEST low_bound, high_bound, new_length;
240 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
241 low_bound = 0, high_bound = 0;
242 new_length = val_length / element_length;
243 if (val_length % element_length != 0)
244 warning (_("array element type size does not divide object size in cast"));
245 /* FIXME-type-allocation: need a way to free this type when we are
246 done with it. */
247 range_type = create_range_type ((struct type *) NULL,
248 TYPE_TARGET_TYPE (range_type),
249 low_bound,
250 new_length + low_bound - 1);
251 deprecated_set_value_type (arg2, create_array_type ((struct type *) NULL,
252 element_type, range_type));
253 return arg2;
254 }
255 }
256
257 if (current_language->c_style_arrays
258 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
259 arg2 = value_coerce_array (arg2);
260
261 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
262 arg2 = value_coerce_function (arg2);
263
264 type2 = check_typedef (value_type (arg2));
265 code2 = TYPE_CODE (type2);
266
267 if (code1 == TYPE_CODE_COMPLEX)
268 return cast_into_complex (type, arg2);
269 if (code1 == TYPE_CODE_BOOL)
270 {
271 code1 = TYPE_CODE_INT;
272 convert_to_boolean = 1;
273 }
274 if (code1 == TYPE_CODE_CHAR)
275 code1 = TYPE_CODE_INT;
276 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
277 code2 = TYPE_CODE_INT;
278
279 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
280 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
281
282 if (code1 == TYPE_CODE_STRUCT
283 && code2 == TYPE_CODE_STRUCT
284 && TYPE_NAME (type) != 0)
285 {
286 /* Look in the type of the source to see if it contains the
287 type of the target as a superclass. If so, we'll need to
288 offset the object in addition to changing its type. */
289 struct value *v = search_struct_field (type_name_no_tag (type),
290 arg2, 0, type2, 1);
291 if (v)
292 {
293 deprecated_set_value_type (v, type);
294 return v;
295 }
296 }
297 if (code1 == TYPE_CODE_FLT && scalar)
298 return value_from_double (type, value_as_double (arg2));
299 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
300 || code1 == TYPE_CODE_RANGE)
301 && (scalar || code2 == TYPE_CODE_PTR))
302 {
303 LONGEST longest;
304
305 if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */
306 && (code2 == TYPE_CODE_PTR))
307 {
308 unsigned int *ptr;
309 struct value *retvalp;
310
311 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
312 {
313 /* With HP aCC, pointers to data members have a bias */
314 case TYPE_CODE_MEMBER:
315 retvalp = value_from_longest (type, value_as_long (arg2));
316 /* force evaluation */
317 ptr = (unsigned int *) value_contents (retvalp);
318 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
319 return retvalp;
320
321 /* While pointers to methods don't really point to a function */
322 case TYPE_CODE_METHOD:
323 error (_("Pointers to methods not supported with HP aCC"));
324
325 default:
326 break; /* fall out and go to normal handling */
327 }
328 }
329
330 /* When we cast pointers to integers, we mustn't use
331 POINTER_TO_ADDRESS to find the address the pointer
332 represents, as value_as_long would. GDB should evaluate
333 expressions just as the compiler would --- and the compiler
334 sees a cast as a simple reinterpretation of the pointer's
335 bits. */
336 if (code2 == TYPE_CODE_PTR)
337 longest = extract_unsigned_integer (value_contents (arg2),
338 TYPE_LENGTH (type2));
339 else
340 longest = value_as_long (arg2);
341 return value_from_longest (type, convert_to_boolean ?
342 (LONGEST) (longest ? 1 : 0) : longest);
343 }
344 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
345 code2 == TYPE_CODE_ENUM ||
346 code2 == TYPE_CODE_RANGE))
347 {
348 /* TYPE_LENGTH (type) is the length of a pointer, but we really
349 want the length of an address! -- we are really dealing with
350 addresses (i.e., gdb representations) not pointers (i.e.,
351 target representations) here.
352
353 This allows things like "print *(int *)0x01000234" to work
354 without printing a misleading message -- which would
355 otherwise occur when dealing with a target having two byte
356 pointers and four byte addresses. */
357
358 int addr_bit = TARGET_ADDR_BIT;
359
360 LONGEST longest = value_as_long (arg2);
361 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
362 {
363 if (longest >= ((LONGEST) 1 << addr_bit)
364 || longest <= -((LONGEST) 1 << addr_bit))
365 warning (_("value truncated"));
366 }
367 return value_from_longest (type, longest);
368 }
369 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
370 {
371 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
372 {
373 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
374 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
375 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
376 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
377 && !value_logical_not (arg2))
378 {
379 struct value *v;
380
381 /* Look in the type of the source to see if it contains the
382 type of the target as a superclass. If so, we'll need to
383 offset the pointer rather than just change its type. */
384 if (TYPE_NAME (t1) != NULL)
385 {
386 v = search_struct_field (type_name_no_tag (t1),
387 value_ind (arg2), 0, t2, 1);
388 if (v)
389 {
390 v = value_addr (v);
391 deprecated_set_value_type (v, type);
392 return v;
393 }
394 }
395
396 /* Look in the type of the target to see if it contains the
397 type of the source as a superclass. If so, we'll need to
398 offset the pointer rather than just change its type.
399 FIXME: This fails silently with virtual inheritance. */
400 if (TYPE_NAME (t2) != NULL)
401 {
402 v = search_struct_field (type_name_no_tag (t2),
403 value_zero (t1, not_lval), 0, t1, 1);
404 if (v)
405 {
406 CORE_ADDR addr2 = value_as_address (arg2);
407 addr2 -= (VALUE_ADDRESS (v)
408 + value_offset (v)
409 + value_embedded_offset (v));
410 return value_from_pointer (type, addr2);
411 }
412 }
413 }
414 /* No superclass found, just fall through to change ptr type. */
415 }
416 deprecated_set_value_type (arg2, type);
417 arg2 = value_change_enclosing_type (arg2, type);
418 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
419 return arg2;
420 }
421 else if (VALUE_LVAL (arg2) == lval_memory)
422 return value_at_lazy (type, VALUE_ADDRESS (arg2) + value_offset (arg2));
423 else if (code1 == TYPE_CODE_VOID)
424 {
425 return value_zero (builtin_type_void, not_lval);
426 }
427 else
428 {
429 error (_("Invalid cast."));
430 return 0;
431 }
432 }
433
434 /* Create a value of type TYPE that is zero, and return it. */
435
436 struct value *
437 value_zero (struct type *type, enum lval_type lv)
438 {
439 struct value *val = allocate_value (type);
440 VALUE_LVAL (val) = lv;
441
442 return val;
443 }
444
445 /* Return a value with type TYPE located at ADDR.
446
447 Call value_at only if the data needs to be fetched immediately;
448 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
449 value_at_lazy instead. value_at_lazy simply records the address of
450 the data and sets the lazy-evaluation-required flag. The lazy flag
451 is tested in the value_contents macro, which is used if and when
452 the contents are actually required.
453
454 Note: value_at does *NOT* handle embedded offsets; perform such
455 adjustments before or after calling it. */
456
457 struct value *
458 value_at (struct type *type, CORE_ADDR addr)
459 {
460 struct value *val;
461
462 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
463 error (_("Attempt to dereference a generic pointer."));
464
465 val = allocate_value (type);
466
467 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
468
469 VALUE_LVAL (val) = lval_memory;
470 VALUE_ADDRESS (val) = addr;
471
472 return val;
473 }
474
475 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
476
477 struct value *
478 value_at_lazy (struct type *type, CORE_ADDR addr)
479 {
480 struct value *val;
481
482 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
483 error (_("Attempt to dereference a generic pointer."));
484
485 val = allocate_value (type);
486
487 VALUE_LVAL (val) = lval_memory;
488 VALUE_ADDRESS (val) = addr;
489 set_value_lazy (val, 1);
490
491 return val;
492 }
493
494 /* Called only from the value_contents and value_contents_all()
495 macros, if the current data for a variable needs to be loaded into
496 value_contents(VAL). Fetches the data from the user's process, and
497 clears the lazy flag to indicate that the data in the buffer is
498 valid.
499
500 If the value is zero-length, we avoid calling read_memory, which would
501 abort. We mark the value as fetched anyway -- all 0 bytes of it.
502
503 This function returns a value because it is used in the value_contents
504 macro as part of an expression, where a void would not work. The
505 value is ignored. */
506
507 int
508 value_fetch_lazy (struct value *val)
509 {
510 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
511 int length = TYPE_LENGTH (value_enclosing_type (val));
512
513 struct type *type = value_type (val);
514 if (length)
515 read_memory (addr, value_contents_all_raw (val), length);
516
517 set_value_lazy (val, 0);
518 return 0;
519 }
520
521
522 /* Store the contents of FROMVAL into the location of TOVAL.
523 Return a new value with the location of TOVAL and contents of FROMVAL. */
524
525 struct value *
526 value_assign (struct value *toval, struct value *fromval)
527 {
528 struct type *type;
529 struct value *val;
530 struct frame_id old_frame;
531
532 if (!deprecated_value_modifiable (toval))
533 error (_("Left operand of assignment is not a modifiable lvalue."));
534
535 toval = coerce_ref (toval);
536
537 type = value_type (toval);
538 if (VALUE_LVAL (toval) != lval_internalvar)
539 fromval = value_cast (type, fromval);
540 else
541 fromval = coerce_array (fromval);
542 CHECK_TYPEDEF (type);
543
544 /* Since modifying a register can trash the frame chain, and modifying memory
545 can trash the frame cache, we save the old frame and then restore the new
546 frame afterwards. */
547 old_frame = get_frame_id (deprecated_selected_frame);
548
549 switch (VALUE_LVAL (toval))
550 {
551 case lval_internalvar:
552 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
553 val = value_copy (VALUE_INTERNALVAR (toval)->value);
554 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
555 set_value_embedded_offset (val, value_embedded_offset (fromval));
556 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
557 return val;
558
559 case lval_internalvar_component:
560 set_internalvar_component (VALUE_INTERNALVAR (toval),
561 value_offset (toval),
562 value_bitpos (toval),
563 value_bitsize (toval),
564 fromval);
565 break;
566
567 case lval_memory:
568 {
569 const gdb_byte *dest_buffer;
570 CORE_ADDR changed_addr;
571 int changed_len;
572 char buffer[sizeof (LONGEST)];
573
574 if (value_bitsize (toval))
575 {
576 /* We assume that the argument to read_memory is in units of
577 host chars. FIXME: Is that correct? */
578 changed_len = (value_bitpos (toval)
579 + value_bitsize (toval)
580 + HOST_CHAR_BIT - 1)
581 / HOST_CHAR_BIT;
582
583 if (changed_len > (int) sizeof (LONGEST))
584 error (_("Can't handle bitfields which don't fit in a %d bit word."),
585 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
586
587 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
588 buffer, changed_len);
589 modify_field (buffer, value_as_long (fromval),
590 value_bitpos (toval), value_bitsize (toval));
591 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
592 dest_buffer = buffer;
593 }
594 else
595 {
596 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
597 changed_len = TYPE_LENGTH (type);
598 dest_buffer = value_contents (fromval);
599 }
600
601 write_memory (changed_addr, dest_buffer, changed_len);
602 if (deprecated_memory_changed_hook)
603 deprecated_memory_changed_hook (changed_addr, changed_len);
604 }
605 break;
606
607 case lval_register:
608 {
609 struct frame_info *frame;
610 int value_reg;
611
612 /* Figure out which frame this is in currently. */
613 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
614 value_reg = VALUE_REGNUM (toval);
615
616 if (!frame)
617 error (_("Value being assigned to is no longer active."));
618
619 if (VALUE_LVAL (toval) == lval_register
620 && CONVERT_REGISTER_P (VALUE_REGNUM (toval), type))
621 {
622 /* If TOVAL is a special machine register requiring
623 conversion of program values to a special raw format. */
624 VALUE_TO_REGISTER (frame, VALUE_REGNUM (toval),
625 type, value_contents (fromval));
626 }
627 else
628 {
629 /* TOVAL is stored in a series of registers in the frame
630 specified by the structure. Copy that value out,
631 modify it, and copy it back in. */
632 int amount_copied;
633 int amount_to_copy;
634 char *buffer;
635 int reg_offset;
636 int byte_offset;
637 int regno;
638
639 /* Locate the first register that falls in the value that
640 needs to be transfered. Compute the offset of the
641 value in that register. */
642 {
643 int offset;
644 for (reg_offset = value_reg, offset = 0;
645 offset + register_size (current_gdbarch, reg_offset) <= value_offset (toval);
646 reg_offset++);
647 byte_offset = value_offset (toval) - offset;
648 }
649
650 /* Compute the number of register aligned values that need
651 to be copied. */
652 if (value_bitsize (toval))
653 amount_to_copy = byte_offset + 1;
654 else
655 amount_to_copy = byte_offset + TYPE_LENGTH (type);
656
657 /* And a bounce buffer. Be slightly over generous. */
658 buffer = (char *) alloca (amount_to_copy + MAX_REGISTER_SIZE);
659
660 /* Copy it in. */
661 for (regno = reg_offset, amount_copied = 0;
662 amount_copied < amount_to_copy;
663 amount_copied += register_size (current_gdbarch, regno), regno++)
664 frame_register_read (frame, regno, buffer + amount_copied);
665
666 /* Modify what needs to be modified. */
667 if (value_bitsize (toval))
668 modify_field (buffer + byte_offset,
669 value_as_long (fromval),
670 value_bitpos (toval), value_bitsize (toval));
671 else
672 memcpy (buffer + byte_offset, value_contents (fromval),
673 TYPE_LENGTH (type));
674
675 /* Copy it out. */
676 for (regno = reg_offset, amount_copied = 0;
677 amount_copied < amount_to_copy;
678 amount_copied += register_size (current_gdbarch, regno), regno++)
679 put_frame_register (frame, regno, buffer + amount_copied);
680
681 }
682 if (deprecated_register_changed_hook)
683 deprecated_register_changed_hook (-1);
684 observer_notify_target_changed (&current_target);
685 break;
686 }
687
688 default:
689 error (_("Left operand of assignment is not an lvalue."));
690 }
691
692 /* Assigning to the stack pointer, frame pointer, and other
693 (architecture and calling convention specific) registers may
694 cause the frame cache to be out of date. Assigning to memory
695 also can. We just do this on all assignments to registers or
696 memory, for simplicity's sake; I doubt the slowdown matters. */
697 switch (VALUE_LVAL (toval))
698 {
699 case lval_memory:
700 case lval_register:
701
702 reinit_frame_cache ();
703
704 /* Having destoroyed the frame cache, restore the selected frame. */
705
706 /* FIXME: cagney/2002-11-02: There has to be a better way of
707 doing this. Instead of constantly saving/restoring the
708 frame. Why not create a get_selected_frame() function that,
709 having saved the selected frame's ID can automatically
710 re-find the previously selected frame automatically. */
711
712 {
713 struct frame_info *fi = frame_find_by_id (old_frame);
714 if (fi != NULL)
715 select_frame (fi);
716 }
717
718 break;
719 default:
720 break;
721 }
722
723 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
724 If the field is signed, and is negative, then sign extend. */
725 if ((value_bitsize (toval) > 0)
726 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
727 {
728 LONGEST fieldval = value_as_long (fromval);
729 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
730
731 fieldval &= valmask;
732 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
733 fieldval |= ~valmask;
734
735 fromval = value_from_longest (type, fieldval);
736 }
737
738 val = value_copy (toval);
739 memcpy (value_contents_raw (val), value_contents (fromval),
740 TYPE_LENGTH (type));
741 deprecated_set_value_type (val, type);
742 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
743 set_value_embedded_offset (val, value_embedded_offset (fromval));
744 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
745
746 return val;
747 }
748
749 /* Extend a value VAL to COUNT repetitions of its type. */
750
751 struct value *
752 value_repeat (struct value *arg1, int count)
753 {
754 struct value *val;
755
756 if (VALUE_LVAL (arg1) != lval_memory)
757 error (_("Only values in memory can be extended with '@'."));
758 if (count < 1)
759 error (_("Invalid number %d of repetitions."), count);
760
761 val = allocate_repeat_value (value_enclosing_type (arg1), count);
762
763 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
764 value_contents_all_raw (val),
765 TYPE_LENGTH (value_enclosing_type (val)));
766 VALUE_LVAL (val) = lval_memory;
767 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
768
769 return val;
770 }
771
772 struct value *
773 value_of_variable (struct symbol *var, struct block *b)
774 {
775 struct value *val;
776 struct frame_info *frame = NULL;
777
778 if (!b)
779 frame = NULL; /* Use selected frame. */
780 else if (symbol_read_needs_frame (var))
781 {
782 frame = block_innermost_frame (b);
783 if (!frame)
784 {
785 if (BLOCK_FUNCTION (b)
786 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
787 error (_("No frame is currently executing in block %s."),
788 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
789 else
790 error (_("No frame is currently executing in specified block"));
791 }
792 }
793
794 val = read_var_value (var, frame);
795 if (!val)
796 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
797
798 return val;
799 }
800
801 /* Given a value which is an array, return a value which is a pointer to its
802 first element, regardless of whether or not the array has a nonzero lower
803 bound.
804
805 FIXME: A previous comment here indicated that this routine should be
806 substracting the array's lower bound. It's not clear to me that this
807 is correct. Given an array subscripting operation, it would certainly
808 work to do the adjustment here, essentially computing:
809
810 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
811
812 However I believe a more appropriate and logical place to account for
813 the lower bound is to do so in value_subscript, essentially computing:
814
815 (&array[0] + ((index - lowerbound) * sizeof array[0]))
816
817 As further evidence consider what would happen with operations other
818 than array subscripting, where the caller would get back a value that
819 had an address somewhere before the actual first element of the array,
820 and the information about the lower bound would be lost because of
821 the coercion to pointer type.
822 */
823
824 struct value *
825 value_coerce_array (struct value *arg1)
826 {
827 struct type *type = check_typedef (value_type (arg1));
828
829 if (VALUE_LVAL (arg1) != lval_memory)
830 error (_("Attempt to take address of value not located in memory."));
831
832 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
833 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
834 }
835
836 /* Given a value which is a function, return a value which is a pointer
837 to it. */
838
839 struct value *
840 value_coerce_function (struct value *arg1)
841 {
842 struct value *retval;
843
844 if (VALUE_LVAL (arg1) != lval_memory)
845 error (_("Attempt to take address of value not located in memory."));
846
847 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
848 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
849 return retval;
850 }
851
852 /* Return a pointer value for the object for which ARG1 is the contents. */
853
854 struct value *
855 value_addr (struct value *arg1)
856 {
857 struct value *arg2;
858
859 struct type *type = check_typedef (value_type (arg1));
860 if (TYPE_CODE (type) == TYPE_CODE_REF)
861 {
862 /* Copy the value, but change the type from (T&) to (T*).
863 We keep the same location information, which is efficient,
864 and allows &(&X) to get the location containing the reference. */
865 arg2 = value_copy (arg1);
866 deprecated_set_value_type (arg2, lookup_pointer_type (TYPE_TARGET_TYPE (type)));
867 return arg2;
868 }
869 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
870 return value_coerce_function (arg1);
871
872 if (VALUE_LVAL (arg1) != lval_memory)
873 error (_("Attempt to take address of value not located in memory."));
874
875 /* Get target memory address */
876 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
877 (VALUE_ADDRESS (arg1)
878 + value_offset (arg1)
879 + value_embedded_offset (arg1)));
880
881 /* This may be a pointer to a base subobject; so remember the
882 full derived object's type ... */
883 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
884 /* ... and also the relative position of the subobject in the full object */
885 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
886 return arg2;
887 }
888
889 /* Given a value of a pointer type, apply the C unary * operator to it. */
890
891 struct value *
892 value_ind (struct value *arg1)
893 {
894 struct type *base_type;
895 struct value *arg2;
896
897 arg1 = coerce_array (arg1);
898
899 base_type = check_typedef (value_type (arg1));
900
901 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
902 error (_("not implemented: member types in value_ind"));
903
904 /* Allow * on an integer so we can cast it to whatever we want.
905 This returns an int, which seems like the most C-like thing
906 to do. "long long" variables are rare enough that
907 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
908 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
909 return value_at_lazy (builtin_type_int,
910 (CORE_ADDR) value_as_long (arg1));
911 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
912 {
913 struct type *enc_type;
914 /* We may be pointing to something embedded in a larger object */
915 /* Get the real type of the enclosing object */
916 enc_type = check_typedef (value_enclosing_type (arg1));
917 enc_type = TYPE_TARGET_TYPE (enc_type);
918 /* Retrieve the enclosing object pointed to */
919 arg2 = value_at_lazy (enc_type, (value_as_address (arg1)
920 - value_pointed_to_offset (arg1)));
921 /* Re-adjust type */
922 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
923 /* Add embedding info */
924 arg2 = value_change_enclosing_type (arg2, enc_type);
925 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
926
927 /* We may be pointing to an object of some derived type */
928 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
929 return arg2;
930 }
931
932 error (_("Attempt to take contents of a non-pointer value."));
933 return 0; /* For lint -- never reached */
934 }
935 \f
936 /* Pushing small parts of stack frames. */
937
938 /* Push one word (the size of object that a register holds). */
939
940 CORE_ADDR
941 push_word (CORE_ADDR sp, ULONGEST word)
942 {
943 int len = DEPRECATED_REGISTER_SIZE;
944 char buffer[MAX_REGISTER_SIZE];
945
946 store_unsigned_integer (buffer, len, word);
947 if (INNER_THAN (1, 2))
948 {
949 /* stack grows downward */
950 sp -= len;
951 write_memory (sp, buffer, len);
952 }
953 else
954 {
955 /* stack grows upward */
956 write_memory (sp, buffer, len);
957 sp += len;
958 }
959
960 return sp;
961 }
962
963 /* Push LEN bytes with data at BUFFER. */
964
965 CORE_ADDR
966 push_bytes (CORE_ADDR sp, char *buffer, int len)
967 {
968 if (INNER_THAN (1, 2))
969 {
970 /* stack grows downward */
971 sp -= len;
972 write_memory (sp, buffer, len);
973 }
974 else
975 {
976 /* stack grows upward */
977 write_memory (sp, buffer, len);
978 sp += len;
979 }
980
981 return sp;
982 }
983
984 /* Create a value for an array by allocating space in the inferior, copying
985 the data into that space, and then setting up an array value.
986
987 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
988 populated from the values passed in ELEMVEC.
989
990 The element type of the array is inherited from the type of the
991 first element, and all elements must have the same size (though we
992 don't currently enforce any restriction on their types). */
993
994 struct value *
995 value_array (int lowbound, int highbound, struct value **elemvec)
996 {
997 int nelem;
998 int idx;
999 unsigned int typelength;
1000 struct value *val;
1001 struct type *rangetype;
1002 struct type *arraytype;
1003 CORE_ADDR addr;
1004
1005 /* Validate that the bounds are reasonable and that each of the elements
1006 have the same size. */
1007
1008 nelem = highbound - lowbound + 1;
1009 if (nelem <= 0)
1010 {
1011 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1012 }
1013 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1014 for (idx = 1; idx < nelem; idx++)
1015 {
1016 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1017 {
1018 error (_("array elements must all be the same size"));
1019 }
1020 }
1021
1022 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1023 lowbound, highbound);
1024 arraytype = create_array_type ((struct type *) NULL,
1025 value_enclosing_type (elemvec[0]), rangetype);
1026
1027 if (!current_language->c_style_arrays)
1028 {
1029 val = allocate_value (arraytype);
1030 for (idx = 0; idx < nelem; idx++)
1031 {
1032 memcpy (value_contents_all_raw (val) + (idx * typelength),
1033 value_contents_all (elemvec[idx]),
1034 typelength);
1035 }
1036 return val;
1037 }
1038
1039 /* Allocate space to store the array in the inferior, and then initialize
1040 it by copying in each element. FIXME: Is it worth it to create a
1041 local buffer in which to collect each value and then write all the
1042 bytes in one operation? */
1043
1044 addr = allocate_space_in_inferior (nelem * typelength);
1045 for (idx = 0; idx < nelem; idx++)
1046 {
1047 write_memory (addr + (idx * typelength),
1048 value_contents_all (elemvec[idx]),
1049 typelength);
1050 }
1051
1052 /* Create the array type and set up an array value to be evaluated lazily. */
1053
1054 val = value_at_lazy (arraytype, addr);
1055 return (val);
1056 }
1057
1058 /* Create a value for a string constant by allocating space in the inferior,
1059 copying the data into that space, and returning the address with type
1060 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1061 of characters.
1062 Note that string types are like array of char types with a lower bound of
1063 zero and an upper bound of LEN - 1. Also note that the string may contain
1064 embedded null bytes. */
1065
1066 struct value *
1067 value_string (char *ptr, int len)
1068 {
1069 struct value *val;
1070 int lowbound = current_language->string_lower_bound;
1071 struct type *rangetype = create_range_type ((struct type *) NULL,
1072 builtin_type_int,
1073 lowbound, len + lowbound - 1);
1074 struct type *stringtype
1075 = create_string_type ((struct type *) NULL, rangetype);
1076 CORE_ADDR addr;
1077
1078 if (current_language->c_style_arrays == 0)
1079 {
1080 val = allocate_value (stringtype);
1081 memcpy (value_contents_raw (val), ptr, len);
1082 return val;
1083 }
1084
1085
1086 /* Allocate space to store the string in the inferior, and then
1087 copy LEN bytes from PTR in gdb to that address in the inferior. */
1088
1089 addr = allocate_space_in_inferior (len);
1090 write_memory (addr, ptr, len);
1091
1092 val = value_at_lazy (stringtype, addr);
1093 return (val);
1094 }
1095
1096 struct value *
1097 value_bitstring (char *ptr, int len)
1098 {
1099 struct value *val;
1100 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1101 0, len - 1);
1102 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1103 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1104 val = allocate_value (type);
1105 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1106 return val;
1107 }
1108 \f
1109 /* See if we can pass arguments in T2 to a function which takes arguments
1110 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1111 vector. If some arguments need coercion of some sort, then the coerced
1112 values are written into T2. Return value is 0 if the arguments could be
1113 matched, or the position at which they differ if not.
1114
1115 STATICP is nonzero if the T1 argument list came from a
1116 static member function. T2 will still include the ``this'' pointer,
1117 but it will be skipped.
1118
1119 For non-static member functions, we ignore the first argument,
1120 which is the type of the instance variable. This is because we want
1121 to handle calls with objects from derived classes. This is not
1122 entirely correct: we should actually check to make sure that a
1123 requested operation is type secure, shouldn't we? FIXME. */
1124
1125 static int
1126 typecmp (int staticp, int varargs, int nargs,
1127 struct field t1[], struct value *t2[])
1128 {
1129 int i;
1130
1131 if (t2 == 0)
1132 internal_error (__FILE__, __LINE__, _("typecmp: no argument list"));
1133
1134 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1135 if (staticp)
1136 t2 ++;
1137
1138 for (i = 0;
1139 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1140 i++)
1141 {
1142 struct type *tt1, *tt2;
1143
1144 if (!t2[i])
1145 return i + 1;
1146
1147 tt1 = check_typedef (t1[i].type);
1148 tt2 = check_typedef (value_type (t2[i]));
1149
1150 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1151 /* We should be doing hairy argument matching, as below. */
1152 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1153 {
1154 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1155 t2[i] = value_coerce_array (t2[i]);
1156 else
1157 t2[i] = value_addr (t2[i]);
1158 continue;
1159 }
1160
1161 /* djb - 20000715 - Until the new type structure is in the
1162 place, and we can attempt things like implicit conversions,
1163 we need to do this so you can take something like a map<const
1164 char *>, and properly access map["hello"], because the
1165 argument to [] will be a reference to a pointer to a char,
1166 and the argument will be a pointer to a char. */
1167 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1168 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1169 {
1170 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1171 }
1172 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1173 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1174 TYPE_CODE(tt2) == TYPE_CODE_REF)
1175 {
1176 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1177 }
1178 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1179 continue;
1180 /* Array to pointer is a `trivial conversion' according to the ARM. */
1181
1182 /* We should be doing much hairier argument matching (see section 13.2
1183 of the ARM), but as a quick kludge, just check for the same type
1184 code. */
1185 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1186 return i + 1;
1187 }
1188 if (varargs || t2[i] == NULL)
1189 return 0;
1190 return i + 1;
1191 }
1192
1193 /* Helper function used by value_struct_elt to recurse through baseclasses.
1194 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1195 and search in it assuming it has (class) type TYPE.
1196 If found, return value, else return NULL.
1197
1198 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1199 look for a baseclass named NAME. */
1200
1201 static struct value *
1202 search_struct_field (char *name, struct value *arg1, int offset,
1203 struct type *type, int looking_for_baseclass)
1204 {
1205 int i;
1206 int nbases = TYPE_N_BASECLASSES (type);
1207
1208 CHECK_TYPEDEF (type);
1209
1210 if (!looking_for_baseclass)
1211 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1212 {
1213 char *t_field_name = TYPE_FIELD_NAME (type, i);
1214
1215 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1216 {
1217 struct value *v;
1218 if (TYPE_FIELD_STATIC (type, i))
1219 {
1220 v = value_static_field (type, i);
1221 if (v == 0)
1222 error (_("field %s is nonexistent or has been optimised out"),
1223 name);
1224 }
1225 else
1226 {
1227 v = value_primitive_field (arg1, offset, i, type);
1228 if (v == 0)
1229 error (_("there is no field named %s"), name);
1230 }
1231 return v;
1232 }
1233
1234 if (t_field_name
1235 && (t_field_name[0] == '\0'
1236 || (TYPE_CODE (type) == TYPE_CODE_UNION
1237 && (strcmp_iw (t_field_name, "else") == 0))))
1238 {
1239 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1240 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1241 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1242 {
1243 /* Look for a match through the fields of an anonymous union,
1244 or anonymous struct. C++ provides anonymous unions.
1245
1246 In the GNU Chill (now deleted from GDB)
1247 implementation of variant record types, each
1248 <alternative field> has an (anonymous) union type,
1249 each member of the union represents a <variant
1250 alternative>. Each <variant alternative> is
1251 represented as a struct, with a member for each
1252 <variant field>. */
1253
1254 struct value *v;
1255 int new_offset = offset;
1256
1257 /* This is pretty gross. In G++, the offset in an
1258 anonymous union is relative to the beginning of the
1259 enclosing struct. In the GNU Chill (now deleted
1260 from GDB) implementation of variant records, the
1261 bitpos is zero in an anonymous union field, so we
1262 have to add the offset of the union here. */
1263 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1264 || (TYPE_NFIELDS (field_type) > 0
1265 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1266 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1267
1268 v = search_struct_field (name, arg1, new_offset, field_type,
1269 looking_for_baseclass);
1270 if (v)
1271 return v;
1272 }
1273 }
1274 }
1275
1276 for (i = 0; i < nbases; i++)
1277 {
1278 struct value *v;
1279 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1280 /* If we are looking for baseclasses, this is what we get when we
1281 hit them. But it could happen that the base part's member name
1282 is not yet filled in. */
1283 int found_baseclass = (looking_for_baseclass
1284 && TYPE_BASECLASS_NAME (type, i) != NULL
1285 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
1286
1287 if (BASETYPE_VIA_VIRTUAL (type, i))
1288 {
1289 int boffset;
1290 struct value *v2 = allocate_value (basetype);
1291
1292 boffset = baseclass_offset (type, i,
1293 value_contents (arg1) + offset,
1294 VALUE_ADDRESS (arg1)
1295 + value_offset (arg1) + offset);
1296 if (boffset == -1)
1297 error (_("virtual baseclass botch"));
1298
1299 /* The virtual base class pointer might have been clobbered by the
1300 user program. Make sure that it still points to a valid memory
1301 location. */
1302
1303 boffset += offset;
1304 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1305 {
1306 CORE_ADDR base_addr;
1307
1308 base_addr = VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1309 if (target_read_memory (base_addr, value_contents_raw (v2),
1310 TYPE_LENGTH (basetype)) != 0)
1311 error (_("virtual baseclass botch"));
1312 VALUE_LVAL (v2) = lval_memory;
1313 VALUE_ADDRESS (v2) = base_addr;
1314 }
1315 else
1316 {
1317 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1318 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1319 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1320 set_value_offset (v2, value_offset (arg1) + boffset);
1321 if (value_lazy (arg1))
1322 set_value_lazy (v2, 1);
1323 else
1324 memcpy (value_contents_raw (v2),
1325 value_contents_raw (arg1) + boffset,
1326 TYPE_LENGTH (basetype));
1327 }
1328
1329 if (found_baseclass)
1330 return v2;
1331 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1332 looking_for_baseclass);
1333 }
1334 else if (found_baseclass)
1335 v = value_primitive_field (arg1, offset, i, type);
1336 else
1337 v = search_struct_field (name, arg1,
1338 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1339 basetype, looking_for_baseclass);
1340 if (v)
1341 return v;
1342 }
1343 return NULL;
1344 }
1345
1346
1347 /* Return the offset (in bytes) of the virtual base of type BASETYPE
1348 * in an object pointed to by VALADDR (on the host), assumed to be of
1349 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
1350 * looking (in case VALADDR is the contents of an enclosing object).
1351 *
1352 * This routine recurses on the primary base of the derived class because
1353 * the virtual base entries of the primary base appear before the other
1354 * virtual base entries.
1355 *
1356 * If the virtual base is not found, a negative integer is returned.
1357 * The magnitude of the negative integer is the number of entries in
1358 * the virtual table to skip over (entries corresponding to various
1359 * ancestral classes in the chain of primary bases).
1360 *
1361 * Important: This assumes the HP / Taligent C++ runtime
1362 * conventions. Use baseclass_offset() instead to deal with g++
1363 * conventions. */
1364
1365 void
1366 find_rt_vbase_offset (struct type *type, struct type *basetype,
1367 const gdb_byte *valaddr, int offset, int *boffset_p,
1368 int *skip_p)
1369 {
1370 int boffset; /* offset of virtual base */
1371 int index; /* displacement to use in virtual table */
1372 int skip;
1373
1374 struct value *vp;
1375 CORE_ADDR vtbl; /* the virtual table pointer */
1376 struct type *pbc; /* the primary base class */
1377
1378 /* Look for the virtual base recursively in the primary base, first.
1379 * This is because the derived class object and its primary base
1380 * subobject share the primary virtual table. */
1381
1382 boffset = 0;
1383 pbc = TYPE_PRIMARY_BASE (type);
1384 if (pbc)
1385 {
1386 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
1387 if (skip < 0)
1388 {
1389 *boffset_p = boffset;
1390 *skip_p = -1;
1391 return;
1392 }
1393 }
1394 else
1395 skip = 0;
1396
1397
1398 /* Find the index of the virtual base according to HP/Taligent
1399 runtime spec. (Depth-first, left-to-right.) */
1400 index = virtual_base_index_skip_primaries (basetype, type);
1401
1402 if (index < 0)
1403 {
1404 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
1405 *boffset_p = 0;
1406 return;
1407 }
1408
1409 /* pai: FIXME -- 32x64 possible problem */
1410 /* First word (4 bytes) in object layout is the vtable pointer */
1411 vtbl = *(CORE_ADDR *) (valaddr + offset);
1412
1413 /* Before the constructor is invoked, things are usually zero'd out. */
1414 if (vtbl == 0)
1415 error (_("Couldn't find virtual table -- object may not be constructed yet."));
1416
1417
1418 /* Find virtual base's offset -- jump over entries for primary base
1419 * ancestors, then use the index computed above. But also adjust by
1420 * HP_ACC_VBASE_START for the vtable slots before the start of the
1421 * virtual base entries. Offset is negative -- virtual base entries
1422 * appear _before_ the address point of the virtual table. */
1423
1424 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
1425 & use long type */
1426
1427 /* epstein : FIXME -- added param for overlay section. May not be correct */
1428 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START));
1429 boffset = value_as_long (vp);
1430 *skip_p = -1;
1431 *boffset_p = boffset;
1432 return;
1433 }
1434
1435
1436 /* Helper function used by value_struct_elt to recurse through baseclasses.
1437 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1438 and search in it assuming it has (class) type TYPE.
1439 If found, return value, else if name matched and args not return (value)-1,
1440 else return NULL. */
1441
1442 static struct value *
1443 search_struct_method (char *name, struct value **arg1p,
1444 struct value **args, int offset,
1445 int *static_memfuncp, struct type *type)
1446 {
1447 int i;
1448 struct value *v;
1449 int name_matched = 0;
1450 char dem_opname[64];
1451
1452 CHECK_TYPEDEF (type);
1453 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1454 {
1455 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1456 /* FIXME! May need to check for ARM demangling here */
1457 if (strncmp (t_field_name, "__", 2) == 0 ||
1458 strncmp (t_field_name, "op", 2) == 0 ||
1459 strncmp (t_field_name, "type", 4) == 0)
1460 {
1461 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1462 t_field_name = dem_opname;
1463 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1464 t_field_name = dem_opname;
1465 }
1466 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1467 {
1468 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1469 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1470 name_matched = 1;
1471
1472 check_stub_method_group (type, i);
1473 if (j > 0 && args == 0)
1474 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1475 else if (j == 0 && args == 0)
1476 {
1477 v = value_fn_field (arg1p, f, j, type, offset);
1478 if (v != NULL)
1479 return v;
1480 }
1481 else
1482 while (j >= 0)
1483 {
1484 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1485 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1486 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1487 TYPE_FN_FIELD_ARGS (f, j), args))
1488 {
1489 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1490 return value_virtual_fn_field (arg1p, f, j, type, offset);
1491 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1492 *static_memfuncp = 1;
1493 v = value_fn_field (arg1p, f, j, type, offset);
1494 if (v != NULL)
1495 return v;
1496 }
1497 j--;
1498 }
1499 }
1500 }
1501
1502 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1503 {
1504 int base_offset;
1505
1506 if (BASETYPE_VIA_VIRTUAL (type, i))
1507 {
1508 if (TYPE_HAS_VTABLE (type))
1509 {
1510 /* HP aCC compiled type, search for virtual base offset
1511 according to HP/Taligent runtime spec. */
1512 int skip;
1513 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1514 value_contents_all (*arg1p),
1515 offset + value_embedded_offset (*arg1p),
1516 &base_offset, &skip);
1517 if (skip >= 0)
1518 error (_("Virtual base class offset not found in vtable"));
1519 }
1520 else
1521 {
1522 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1523 const gdb_byte *base_valaddr;
1524
1525 /* The virtual base class pointer might have been clobbered by the
1526 user program. Make sure that it still points to a valid memory
1527 location. */
1528
1529 if (offset < 0 || offset >= TYPE_LENGTH (type))
1530 {
1531 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1532 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1533 + value_offset (*arg1p) + offset,
1534 tmp, TYPE_LENGTH (baseclass)) != 0)
1535 error (_("virtual baseclass botch"));
1536 base_valaddr = tmp;
1537 }
1538 else
1539 base_valaddr = value_contents (*arg1p) + offset;
1540
1541 base_offset =
1542 baseclass_offset (type, i, base_valaddr,
1543 VALUE_ADDRESS (*arg1p)
1544 + value_offset (*arg1p) + offset);
1545 if (base_offset == -1)
1546 error (_("virtual baseclass botch"));
1547 }
1548 }
1549 else
1550 {
1551 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1552 }
1553 v = search_struct_method (name, arg1p, args, base_offset + offset,
1554 static_memfuncp, TYPE_BASECLASS (type, i));
1555 if (v == (struct value *) - 1)
1556 {
1557 name_matched = 1;
1558 }
1559 else if (v)
1560 {
1561 /* FIXME-bothner: Why is this commented out? Why is it here? */
1562 /* *arg1p = arg1_tmp; */
1563 return v;
1564 }
1565 }
1566 if (name_matched)
1567 return (struct value *) - 1;
1568 else
1569 return NULL;
1570 }
1571
1572 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1573 extract the component named NAME from the ultimate target structure/union
1574 and return it as a value with its appropriate type.
1575 ERR is used in the error message if *ARGP's type is wrong.
1576
1577 C++: ARGS is a list of argument types to aid in the selection of
1578 an appropriate method. Also, handle derived types.
1579
1580 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1581 where the truthvalue of whether the function that was resolved was
1582 a static member function or not is stored.
1583
1584 ERR is an error message to be printed in case the field is not found. */
1585
1586 struct value *
1587 value_struct_elt (struct value **argp, struct value **args,
1588 char *name, int *static_memfuncp, char *err)
1589 {
1590 struct type *t;
1591 struct value *v;
1592
1593 *argp = coerce_array (*argp);
1594
1595 t = check_typedef (value_type (*argp));
1596
1597 /* Follow pointers until we get to a non-pointer. */
1598
1599 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1600 {
1601 *argp = value_ind (*argp);
1602 /* Don't coerce fn pointer to fn and then back again! */
1603 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1604 *argp = coerce_array (*argp);
1605 t = check_typedef (value_type (*argp));
1606 }
1607
1608 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1609 error (_("not implemented: member type in value_struct_elt"));
1610
1611 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1612 && TYPE_CODE (t) != TYPE_CODE_UNION)
1613 error (_("Attempt to extract a component of a value that is not a %s."), err);
1614
1615 /* Assume it's not, unless we see that it is. */
1616 if (static_memfuncp)
1617 *static_memfuncp = 0;
1618
1619 if (!args)
1620 {
1621 /* if there are no arguments ...do this... */
1622
1623 /* Try as a field first, because if we succeed, there
1624 is less work to be done. */
1625 v = search_struct_field (name, *argp, 0, t, 0);
1626 if (v)
1627 return v;
1628
1629 /* C++: If it was not found as a data field, then try to
1630 return it as a pointer to a method. */
1631
1632 if (destructor_name_p (name, t))
1633 error (_("Cannot get value of destructor"));
1634
1635 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1636
1637 if (v == (struct value *) - 1)
1638 error (_("Cannot take address of a method"));
1639 else if (v == 0)
1640 {
1641 if (TYPE_NFN_FIELDS (t))
1642 error (_("There is no member or method named %s."), name);
1643 else
1644 error (_("There is no member named %s."), name);
1645 }
1646 return v;
1647 }
1648
1649 if (destructor_name_p (name, t))
1650 {
1651 if (!args[1])
1652 {
1653 /* Destructors are a special case. */
1654 int m_index, f_index;
1655
1656 v = NULL;
1657 if (get_destructor_fn_field (t, &m_index, &f_index))
1658 {
1659 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
1660 f_index, NULL, 0);
1661 }
1662 if (v == NULL)
1663 error (_("could not find destructor function named %s."), name);
1664 else
1665 return v;
1666 }
1667 else
1668 {
1669 error (_("destructor should not have any argument"));
1670 }
1671 }
1672 else
1673 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1674
1675 if (v == (struct value *) - 1)
1676 {
1677 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1678 }
1679 else if (v == 0)
1680 {
1681 /* See if user tried to invoke data as function. If so,
1682 hand it back. If it's not callable (i.e., a pointer to function),
1683 gdb should give an error. */
1684 v = search_struct_field (name, *argp, 0, t, 0);
1685 }
1686
1687 if (!v)
1688 error (_("Structure has no component named %s."), name);
1689 return v;
1690 }
1691
1692 /* Search through the methods of an object (and its bases)
1693 * to find a specified method. Return the pointer to the
1694 * fn_field list of overloaded instances.
1695 * Helper function for value_find_oload_list.
1696 * ARGP is a pointer to a pointer to a value (the object)
1697 * METHOD is a string containing the method name
1698 * OFFSET is the offset within the value
1699 * TYPE is the assumed type of the object
1700 * NUM_FNS is the number of overloaded instances
1701 * BASETYPE is set to the actual type of the subobject where the method is found
1702 * BOFFSET is the offset of the base subobject where the method is found */
1703
1704 static struct fn_field *
1705 find_method_list (struct value **argp, char *method, int offset,
1706 struct type *type, int *num_fns,
1707 struct type **basetype, int *boffset)
1708 {
1709 int i;
1710 struct fn_field *f;
1711 CHECK_TYPEDEF (type);
1712
1713 *num_fns = 0;
1714
1715 /* First check in object itself */
1716 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1717 {
1718 /* pai: FIXME What about operators and type conversions? */
1719 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1720 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1721 {
1722 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1723 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1724
1725 *num_fns = len;
1726 *basetype = type;
1727 *boffset = offset;
1728
1729 /* Resolve any stub methods. */
1730 check_stub_method_group (type, i);
1731
1732 return f;
1733 }
1734 }
1735
1736 /* Not found in object, check in base subobjects */
1737 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1738 {
1739 int base_offset;
1740 if (BASETYPE_VIA_VIRTUAL (type, i))
1741 {
1742 if (TYPE_HAS_VTABLE (type))
1743 {
1744 /* HP aCC compiled type, search for virtual base offset
1745 * according to HP/Taligent runtime spec. */
1746 int skip;
1747 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1748 value_contents_all (*argp),
1749 offset + value_embedded_offset (*argp),
1750 &base_offset, &skip);
1751 if (skip >= 0)
1752 error (_("Virtual base class offset not found in vtable"));
1753 }
1754 else
1755 {
1756 /* probably g++ runtime model */
1757 base_offset = value_offset (*argp) + offset;
1758 base_offset =
1759 baseclass_offset (type, i,
1760 value_contents (*argp) + base_offset,
1761 VALUE_ADDRESS (*argp) + base_offset);
1762 if (base_offset == -1)
1763 error (_("virtual baseclass botch"));
1764 }
1765 }
1766 else
1767 /* non-virtual base, simply use bit position from debug info */
1768 {
1769 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1770 }
1771 f = find_method_list (argp, method, base_offset + offset,
1772 TYPE_BASECLASS (type, i), num_fns, basetype,
1773 boffset);
1774 if (f)
1775 return f;
1776 }
1777 return NULL;
1778 }
1779
1780 /* Return the list of overloaded methods of a specified name.
1781 * ARGP is a pointer to a pointer to a value (the object)
1782 * METHOD is the method name
1783 * OFFSET is the offset within the value contents
1784 * NUM_FNS is the number of overloaded instances
1785 * BASETYPE is set to the type of the base subobject that defines the method
1786 * BOFFSET is the offset of the base subobject which defines the method */
1787
1788 struct fn_field *
1789 value_find_oload_method_list (struct value **argp, char *method, int offset,
1790 int *num_fns, struct type **basetype,
1791 int *boffset)
1792 {
1793 struct type *t;
1794
1795 t = check_typedef (value_type (*argp));
1796
1797 /* code snarfed from value_struct_elt */
1798 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1799 {
1800 *argp = value_ind (*argp);
1801 /* Don't coerce fn pointer to fn and then back again! */
1802 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1803 *argp = coerce_array (*argp);
1804 t = check_typedef (value_type (*argp));
1805 }
1806
1807 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1808 error (_("Not implemented: member type in value_find_oload_lis"));
1809
1810 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1811 && TYPE_CODE (t) != TYPE_CODE_UNION)
1812 error (_("Attempt to extract a component of a value that is not a struct or union"));
1813
1814 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
1815 }
1816
1817 /* Given an array of argument types (ARGTYPES) (which includes an
1818 entry for "this" in the case of C++ methods), the number of
1819 arguments NARGS, the NAME of a function whether it's a method or
1820 not (METHOD), and the degree of laxness (LAX) in conforming to
1821 overload resolution rules in ANSI C++, find the best function that
1822 matches on the argument types according to the overload resolution
1823 rules.
1824
1825 In the case of class methods, the parameter OBJ is an object value
1826 in which to search for overloaded methods.
1827
1828 In the case of non-method functions, the parameter FSYM is a symbol
1829 corresponding to one of the overloaded functions.
1830
1831 Return value is an integer: 0 -> good match, 10 -> debugger applied
1832 non-standard coercions, 100 -> incompatible.
1833
1834 If a method is being searched for, VALP will hold the value.
1835 If a non-method is being searched for, SYMP will hold the symbol for it.
1836
1837 If a method is being searched for, and it is a static method,
1838 then STATICP will point to a non-zero value.
1839
1840 Note: This function does *not* check the value of
1841 overload_resolution. Caller must check it to see whether overload
1842 resolution is permitted.
1843 */
1844
1845 int
1846 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
1847 int lax, struct value **objp, struct symbol *fsym,
1848 struct value **valp, struct symbol **symp, int *staticp)
1849 {
1850 struct value *obj = (objp ? *objp : NULL);
1851
1852 int oload_champ; /* Index of best overloaded function */
1853
1854 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
1855
1856 struct value *temp = obj;
1857 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
1858 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
1859 int num_fns = 0; /* Number of overloaded instances being considered */
1860 struct type *basetype = NULL;
1861 int boffset;
1862 int ix;
1863 int static_offset;
1864 struct cleanup *old_cleanups = NULL;
1865
1866 const char *obj_type_name = NULL;
1867 char *func_name = NULL;
1868 enum oload_classification match_quality;
1869
1870 /* Get the list of overloaded methods or functions */
1871 if (method)
1872 {
1873 obj_type_name = TYPE_NAME (value_type (obj));
1874 /* Hack: evaluate_subexp_standard often passes in a pointer
1875 value rather than the object itself, so try again */
1876 if ((!obj_type_name || !*obj_type_name) &&
1877 (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
1878 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
1879
1880 fns_ptr = value_find_oload_method_list (&temp, name, 0,
1881 &num_fns,
1882 &basetype, &boffset);
1883 if (!fns_ptr || !num_fns)
1884 error (_("Couldn't find method %s%s%s"),
1885 obj_type_name,
1886 (obj_type_name && *obj_type_name) ? "::" : "",
1887 name);
1888 /* If we are dealing with stub method types, they should have
1889 been resolved by find_method_list via value_find_oload_method_list
1890 above. */
1891 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1892 oload_champ = find_oload_champ (arg_types, nargs, method, num_fns,
1893 fns_ptr, oload_syms, &oload_champ_bv);
1894 }
1895 else
1896 {
1897 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1898 func_name = cp_func_name (qualified_name);
1899
1900 /* If the name is NULL this must be a C-style function.
1901 Just return the same symbol. */
1902 if (func_name == NULL)
1903 {
1904 *symp = fsym;
1905 return 0;
1906 }
1907
1908 old_cleanups = make_cleanup (xfree, func_name);
1909 make_cleanup (xfree, oload_syms);
1910 make_cleanup (xfree, oload_champ_bv);
1911
1912 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1913 func_name,
1914 qualified_name,
1915 &oload_syms,
1916 &oload_champ_bv);
1917 }
1918
1919 /* Check how bad the best match is. */
1920
1921 match_quality
1922 = classify_oload_match (oload_champ_bv, nargs,
1923 oload_method_static (method, fns_ptr,
1924 oload_champ));
1925
1926 if (match_quality == INCOMPATIBLE)
1927 {
1928 if (method)
1929 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
1930 obj_type_name,
1931 (obj_type_name && *obj_type_name) ? "::" : "",
1932 name);
1933 else
1934 error (_("Cannot resolve function %s to any overloaded instance"),
1935 func_name);
1936 }
1937 else if (match_quality == NON_STANDARD)
1938 {
1939 if (method)
1940 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
1941 obj_type_name,
1942 (obj_type_name && *obj_type_name) ? "::" : "",
1943 name);
1944 else
1945 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
1946 func_name);
1947 }
1948
1949 if (method)
1950 {
1951 if (staticp != NULL)
1952 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1953 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1954 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1955 else
1956 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1957 }
1958 else
1959 {
1960 *symp = oload_syms[oload_champ];
1961 }
1962
1963 if (objp)
1964 {
1965 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
1966 && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR)
1967 {
1968 temp = value_addr (temp);
1969 }
1970 *objp = temp;
1971 }
1972 if (old_cleanups != NULL)
1973 do_cleanups (old_cleanups);
1974
1975 switch (match_quality)
1976 {
1977 case INCOMPATIBLE:
1978 return 100;
1979 case NON_STANDARD:
1980 return 10;
1981 default: /* STANDARD */
1982 return 0;
1983 }
1984 }
1985
1986 /* Find the best overload match, searching for FUNC_NAME in namespaces
1987 contained in QUALIFIED_NAME until it either finds a good match or
1988 runs out of namespaces. It stores the overloaded functions in
1989 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1990 calling function is responsible for freeing *OLOAD_SYMS and
1991 *OLOAD_CHAMP_BV. */
1992
1993 static int
1994 find_oload_champ_namespace (struct type **arg_types, int nargs,
1995 const char *func_name,
1996 const char *qualified_name,
1997 struct symbol ***oload_syms,
1998 struct badness_vector **oload_champ_bv)
1999 {
2000 int oload_champ;
2001
2002 find_oload_champ_namespace_loop (arg_types, nargs,
2003 func_name,
2004 qualified_name, 0,
2005 oload_syms, oload_champ_bv,
2006 &oload_champ);
2007
2008 return oload_champ;
2009 }
2010
2011 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2012 how deep we've looked for namespaces, and the champ is stored in
2013 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2014 if it isn't.
2015
2016 It is the caller's responsibility to free *OLOAD_SYMS and
2017 *OLOAD_CHAMP_BV. */
2018
2019 static int
2020 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2021 const char *func_name,
2022 const char *qualified_name,
2023 int namespace_len,
2024 struct symbol ***oload_syms,
2025 struct badness_vector **oload_champ_bv,
2026 int *oload_champ)
2027 {
2028 int next_namespace_len = namespace_len;
2029 int searched_deeper = 0;
2030 int num_fns = 0;
2031 struct cleanup *old_cleanups;
2032 int new_oload_champ;
2033 struct symbol **new_oload_syms;
2034 struct badness_vector *new_oload_champ_bv;
2035 char *new_namespace;
2036
2037 if (next_namespace_len != 0)
2038 {
2039 gdb_assert (qualified_name[next_namespace_len] == ':');
2040 next_namespace_len += 2;
2041 }
2042 next_namespace_len
2043 += cp_find_first_component (qualified_name + next_namespace_len);
2044
2045 /* Initialize these to values that can safely be xfree'd. */
2046 *oload_syms = NULL;
2047 *oload_champ_bv = NULL;
2048
2049 /* First, see if we have a deeper namespace we can search in. If we
2050 get a good match there, use it. */
2051
2052 if (qualified_name[next_namespace_len] == ':')
2053 {
2054 searched_deeper = 1;
2055
2056 if (find_oload_champ_namespace_loop (arg_types, nargs,
2057 func_name, qualified_name,
2058 next_namespace_len,
2059 oload_syms, oload_champ_bv,
2060 oload_champ))
2061 {
2062 return 1;
2063 }
2064 };
2065
2066 /* If we reach here, either we're in the deepest namespace or we
2067 didn't find a good match in a deeper namespace. But, in the
2068 latter case, we still have a bad match in a deeper namespace;
2069 note that we might not find any match at all in the current
2070 namespace. (There's always a match in the deepest namespace,
2071 because this overload mechanism only gets called if there's a
2072 function symbol to start off with.) */
2073
2074 old_cleanups = make_cleanup (xfree, *oload_syms);
2075 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2076 new_namespace = alloca (namespace_len + 1);
2077 strncpy (new_namespace, qualified_name, namespace_len);
2078 new_namespace[namespace_len] = '\0';
2079 new_oload_syms = make_symbol_overload_list (func_name,
2080 new_namespace);
2081 while (new_oload_syms[num_fns])
2082 ++num_fns;
2083
2084 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2085 NULL, new_oload_syms,
2086 &new_oload_champ_bv);
2087
2088 /* Case 1: We found a good match. Free earlier matches (if any),
2089 and return it. Case 2: We didn't find a good match, but we're
2090 not the deepest function. Then go with the bad match that the
2091 deeper function found. Case 3: We found a bad match, and we're
2092 the deepest function. Then return what we found, even though
2093 it's a bad match. */
2094
2095 if (new_oload_champ != -1
2096 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2097 {
2098 *oload_syms = new_oload_syms;
2099 *oload_champ = new_oload_champ;
2100 *oload_champ_bv = new_oload_champ_bv;
2101 do_cleanups (old_cleanups);
2102 return 1;
2103 }
2104 else if (searched_deeper)
2105 {
2106 xfree (new_oload_syms);
2107 xfree (new_oload_champ_bv);
2108 discard_cleanups (old_cleanups);
2109 return 0;
2110 }
2111 else
2112 {
2113 gdb_assert (new_oload_champ != -1);
2114 *oload_syms = new_oload_syms;
2115 *oload_champ = new_oload_champ;
2116 *oload_champ_bv = new_oload_champ_bv;
2117 discard_cleanups (old_cleanups);
2118 return 0;
2119 }
2120 }
2121
2122 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2123 the best match from among the overloaded methods or functions
2124 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2125 The number of methods/functions in the list is given by NUM_FNS.
2126 Return the index of the best match; store an indication of the
2127 quality of the match in OLOAD_CHAMP_BV.
2128
2129 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2130
2131 static int
2132 find_oload_champ (struct type **arg_types, int nargs, int method,
2133 int num_fns, struct fn_field *fns_ptr,
2134 struct symbol **oload_syms,
2135 struct badness_vector **oload_champ_bv)
2136 {
2137 int ix;
2138 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2139 int oload_champ = -1; /* Index of best overloaded function */
2140 int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2141 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2142
2143 *oload_champ_bv = NULL;
2144
2145 /* Consider each candidate in turn */
2146 for (ix = 0; ix < num_fns; ix++)
2147 {
2148 int jj;
2149 int static_offset = oload_method_static (method, fns_ptr, ix);
2150 int nparms;
2151 struct type **parm_types;
2152
2153 if (method)
2154 {
2155 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2156 }
2157 else
2158 {
2159 /* If it's not a method, this is the proper place */
2160 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2161 }
2162
2163 /* Prepare array of parameter types */
2164 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2165 for (jj = 0; jj < nparms; jj++)
2166 parm_types[jj] = (method
2167 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2168 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2169
2170 /* Compare parameter types to supplied argument types. Skip THIS for
2171 static methods. */
2172 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2173 nargs - static_offset);
2174
2175 if (!*oload_champ_bv)
2176 {
2177 *oload_champ_bv = bv;
2178 oload_champ = 0;
2179 }
2180 else
2181 /* See whether current candidate is better or worse than previous best */
2182 switch (compare_badness (bv, *oload_champ_bv))
2183 {
2184 case 0:
2185 oload_ambiguous = 1; /* top two contenders are equally good */
2186 break;
2187 case 1:
2188 oload_ambiguous = 2; /* incomparable top contenders */
2189 break;
2190 case 2:
2191 *oload_champ_bv = bv; /* new champion, record details */
2192 oload_ambiguous = 0;
2193 oload_champ = ix;
2194 break;
2195 case 3:
2196 default:
2197 break;
2198 }
2199 xfree (parm_types);
2200 if (overload_debug)
2201 {
2202 if (method)
2203 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2204 else
2205 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2206 for (jj = 0; jj < nargs - static_offset; jj++)
2207 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2208 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2209 }
2210 }
2211
2212 return oload_champ;
2213 }
2214
2215 /* Return 1 if we're looking at a static method, 0 if we're looking at
2216 a non-static method or a function that isn't a method. */
2217
2218 static int
2219 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2220 {
2221 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2222 return 1;
2223 else
2224 return 0;
2225 }
2226
2227 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2228
2229 static enum oload_classification
2230 classify_oload_match (struct badness_vector *oload_champ_bv,
2231 int nargs,
2232 int static_offset)
2233 {
2234 int ix;
2235
2236 for (ix = 1; ix <= nargs - static_offset; ix++)
2237 {
2238 if (oload_champ_bv->rank[ix] >= 100)
2239 return INCOMPATIBLE; /* truly mismatched types */
2240 else if (oload_champ_bv->rank[ix] >= 10)
2241 return NON_STANDARD; /* non-standard type conversions needed */
2242 }
2243
2244 return STANDARD; /* Only standard conversions needed. */
2245 }
2246
2247 /* C++: return 1 is NAME is a legitimate name for the destructor
2248 of type TYPE. If TYPE does not have a destructor, or
2249 if NAME is inappropriate for TYPE, an error is signaled. */
2250 int
2251 destructor_name_p (const char *name, const struct type *type)
2252 {
2253 /* destructors are a special case. */
2254
2255 if (name[0] == '~')
2256 {
2257 char *dname = type_name_no_tag (type);
2258 char *cp = strchr (dname, '<');
2259 unsigned int len;
2260
2261 /* Do not compare the template part for template classes. */
2262 if (cp == NULL)
2263 len = strlen (dname);
2264 else
2265 len = cp - dname;
2266 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2267 error (_("name of destructor must equal name of class"));
2268 else
2269 return 1;
2270 }
2271 return 0;
2272 }
2273
2274 /* Helper function for check_field: Given TYPE, a structure/union,
2275 return 1 if the component named NAME from the ultimate
2276 target structure/union is defined, otherwise, return 0. */
2277
2278 static int
2279 check_field_in (struct type *type, const char *name)
2280 {
2281 int i;
2282
2283 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2284 {
2285 char *t_field_name = TYPE_FIELD_NAME (type, i);
2286 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2287 return 1;
2288 }
2289
2290 /* C++: If it was not found as a data field, then try to
2291 return it as a pointer to a method. */
2292
2293 /* Destructors are a special case. */
2294 if (destructor_name_p (name, type))
2295 {
2296 int m_index, f_index;
2297
2298 return get_destructor_fn_field (type, &m_index, &f_index);
2299 }
2300
2301 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2302 {
2303 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2304 return 1;
2305 }
2306
2307 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2308 if (check_field_in (TYPE_BASECLASS (type, i), name))
2309 return 1;
2310
2311 return 0;
2312 }
2313
2314
2315 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2316 return 1 if the component named NAME from the ultimate
2317 target structure/union is defined, otherwise, return 0. */
2318
2319 int
2320 check_field (struct value *arg1, const gdb_byte *name)
2321 {
2322 struct type *t;
2323
2324 arg1 = coerce_array (arg1);
2325
2326 t = value_type (arg1);
2327
2328 /* Follow pointers until we get to a non-pointer. */
2329
2330 for (;;)
2331 {
2332 CHECK_TYPEDEF (t);
2333 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2334 break;
2335 t = TYPE_TARGET_TYPE (t);
2336 }
2337
2338 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2339 error (_("not implemented: member type in check_field"));
2340
2341 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2342 && TYPE_CODE (t) != TYPE_CODE_UNION)
2343 error (_("Internal error: `this' is not an aggregate"));
2344
2345 return check_field_in (t, name);
2346 }
2347
2348 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2349 return the appropriate member. This function is used to resolve
2350 user expressions of the form "DOMAIN::NAME". For more details on
2351 what happens, see the comment before
2352 value_struct_elt_for_reference. */
2353
2354 struct value *
2355 value_aggregate_elt (struct type *curtype,
2356 char *name,
2357 enum noside noside)
2358 {
2359 switch (TYPE_CODE (curtype))
2360 {
2361 case TYPE_CODE_STRUCT:
2362 case TYPE_CODE_UNION:
2363 return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL,
2364 noside);
2365 case TYPE_CODE_NAMESPACE:
2366 return value_namespace_elt (curtype, name, noside);
2367 default:
2368 internal_error (__FILE__, __LINE__,
2369 _("non-aggregate type in value_aggregate_elt"));
2370 }
2371 }
2372
2373 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2374 return the address of this member as a "pointer to member"
2375 type. If INTYPE is non-null, then it will be the type
2376 of the member we are looking for. This will help us resolve
2377 "pointers to member functions". This function is used
2378 to resolve user expressions of the form "DOMAIN::NAME". */
2379
2380 static struct value *
2381 value_struct_elt_for_reference (struct type *domain, int offset,
2382 struct type *curtype, char *name,
2383 struct type *intype,
2384 enum noside noside)
2385 {
2386 struct type *t = curtype;
2387 int i;
2388 struct value *v;
2389
2390 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2391 && TYPE_CODE (t) != TYPE_CODE_UNION)
2392 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2393
2394 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2395 {
2396 char *t_field_name = TYPE_FIELD_NAME (t, i);
2397
2398 if (t_field_name && strcmp (t_field_name, name) == 0)
2399 {
2400 if (TYPE_FIELD_STATIC (t, i))
2401 {
2402 v = value_static_field (t, i);
2403 if (v == NULL)
2404 error (_("static field %s has been optimized out"),
2405 name);
2406 return v;
2407 }
2408 if (TYPE_FIELD_PACKED (t, i))
2409 error (_("pointers to bitfield members not allowed"));
2410
2411 return value_from_longest
2412 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2413 domain)),
2414 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2415 }
2416 }
2417
2418 /* C++: If it was not found as a data field, then try to
2419 return it as a pointer to a method. */
2420
2421 /* Destructors are a special case. */
2422 if (destructor_name_p (name, t))
2423 {
2424 error (_("member pointers to destructors not implemented yet"));
2425 }
2426
2427 /* Perform all necessary dereferencing. */
2428 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2429 intype = TYPE_TARGET_TYPE (intype);
2430
2431 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2432 {
2433 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2434 char dem_opname[64];
2435
2436 if (strncmp (t_field_name, "__", 2) == 0 ||
2437 strncmp (t_field_name, "op", 2) == 0 ||
2438 strncmp (t_field_name, "type", 4) == 0)
2439 {
2440 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2441 t_field_name = dem_opname;
2442 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2443 t_field_name = dem_opname;
2444 }
2445 if (t_field_name && strcmp (t_field_name, name) == 0)
2446 {
2447 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2448 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2449
2450 check_stub_method_group (t, i);
2451
2452 if (intype == 0 && j > 1)
2453 error (_("non-unique member `%s' requires type instantiation"), name);
2454 if (intype)
2455 {
2456 while (j--)
2457 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2458 break;
2459 if (j < 0)
2460 error (_("no member function matches that type instantiation"));
2461 }
2462 else
2463 j = 0;
2464
2465 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2466 {
2467 return value_from_longest
2468 (lookup_reference_type
2469 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2470 domain)),
2471 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2472 }
2473 else
2474 {
2475 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2476 0, VAR_DOMAIN, 0, NULL);
2477 if (s == NULL)
2478 {
2479 v = 0;
2480 }
2481 else
2482 {
2483 v = read_var_value (s, 0);
2484 #if 0
2485 VALUE_TYPE (v) = lookup_reference_type
2486 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2487 domain));
2488 #endif
2489 }
2490 return v;
2491 }
2492 }
2493 }
2494 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2495 {
2496 struct value *v;
2497 int base_offset;
2498
2499 if (BASETYPE_VIA_VIRTUAL (t, i))
2500 base_offset = 0;
2501 else
2502 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2503 v = value_struct_elt_for_reference (domain,
2504 offset + base_offset,
2505 TYPE_BASECLASS (t, i),
2506 name,
2507 intype,
2508 noside);
2509 if (v)
2510 return v;
2511 }
2512
2513 /* As a last chance, pretend that CURTYPE is a namespace, and look
2514 it up that way; this (frequently) works for types nested inside
2515 classes. */
2516
2517 return value_maybe_namespace_elt (curtype, name, noside);
2518 }
2519
2520 /* C++: Return the member NAME of the namespace given by the type
2521 CURTYPE. */
2522
2523 static struct value *
2524 value_namespace_elt (const struct type *curtype,
2525 char *name,
2526 enum noside noside)
2527 {
2528 struct value *retval = value_maybe_namespace_elt (curtype, name,
2529 noside);
2530
2531 if (retval == NULL)
2532 error (_("No symbol \"%s\" in namespace \"%s\"."), name,
2533 TYPE_TAG_NAME (curtype));
2534
2535 return retval;
2536 }
2537
2538 /* A helper function used by value_namespace_elt and
2539 value_struct_elt_for_reference. It looks up NAME inside the
2540 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2541 is a class and NAME refers to a type in CURTYPE itself (as opposed
2542 to, say, some base class of CURTYPE). */
2543
2544 static struct value *
2545 value_maybe_namespace_elt (const struct type *curtype,
2546 char *name,
2547 enum noside noside)
2548 {
2549 const char *namespace_name = TYPE_TAG_NAME (curtype);
2550 struct symbol *sym;
2551
2552 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2553 get_selected_block (0), VAR_DOMAIN,
2554 NULL);
2555
2556 if (sym == NULL)
2557 return NULL;
2558 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2559 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2560 return allocate_value (SYMBOL_TYPE (sym));
2561 else
2562 return value_of_variable (sym, get_selected_block (0));
2563 }
2564
2565 /* Given a pointer value V, find the real (RTTI) type
2566 of the object it points to.
2567 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2568 and refer to the values computed for the object pointed to. */
2569
2570 struct type *
2571 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
2572 {
2573 struct value *target;
2574
2575 target = value_ind (v);
2576
2577 return value_rtti_type (target, full, top, using_enc);
2578 }
2579
2580 /* Given a value pointed to by ARGP, check its real run-time type, and
2581 if that is different from the enclosing type, create a new value
2582 using the real run-time type as the enclosing type (and of the same
2583 type as ARGP) and return it, with the embedded offset adjusted to
2584 be the correct offset to the enclosed object
2585 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
2586 parameters, computed by value_rtti_type(). If these are available,
2587 they can be supplied and a second call to value_rtti_type() is avoided.
2588 (Pass RTYPE == NULL if they're not available */
2589
2590 struct value *
2591 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
2592 int xusing_enc)
2593 {
2594 struct type *real_type;
2595 int full = 0;
2596 int top = -1;
2597 int using_enc = 0;
2598 struct value *new_val;
2599
2600 if (rtype)
2601 {
2602 real_type = rtype;
2603 full = xfull;
2604 top = xtop;
2605 using_enc = xusing_enc;
2606 }
2607 else
2608 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2609
2610 /* If no RTTI data, or if object is already complete, do nothing */
2611 if (!real_type || real_type == value_enclosing_type (argp))
2612 return argp;
2613
2614 /* If we have the full object, but for some reason the enclosing
2615 type is wrong, set it *//* pai: FIXME -- sounds iffy */
2616 if (full)
2617 {
2618 argp = value_change_enclosing_type (argp, real_type);
2619 return argp;
2620 }
2621
2622 /* Check if object is in memory */
2623 if (VALUE_LVAL (argp) != lval_memory)
2624 {
2625 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), TYPE_NAME (real_type));
2626
2627 return argp;
2628 }
2629
2630 /* All other cases -- retrieve the complete object */
2631 /* Go back by the computed top_offset from the beginning of the object,
2632 adjusting for the embedded offset of argp if that's what value_rtti_type
2633 used for its computation. */
2634 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2635 (using_enc ? 0 : value_embedded_offset (argp)));
2636 deprecated_set_value_type (new_val, value_type (argp));
2637 set_value_embedded_offset (new_val, (using_enc
2638 ? top + value_embedded_offset (argp)
2639 : top));
2640 return new_val;
2641 }
2642
2643
2644
2645
2646 /* Return the value of the local variable, if one exists.
2647 Flag COMPLAIN signals an error if the request is made in an
2648 inappropriate context. */
2649
2650 struct value *
2651 value_of_local (const char *name, int complain)
2652 {
2653 struct symbol *func, *sym;
2654 struct block *b;
2655 struct value * ret;
2656
2657 if (deprecated_selected_frame == 0)
2658 {
2659 if (complain)
2660 error (_("no frame selected"));
2661 else
2662 return 0;
2663 }
2664
2665 func = get_frame_function (deprecated_selected_frame);
2666 if (!func)
2667 {
2668 if (complain)
2669 error (_("no `%s' in nameless context"), name);
2670 else
2671 return 0;
2672 }
2673
2674 b = SYMBOL_BLOCK_VALUE (func);
2675 if (dict_empty (BLOCK_DICT (b)))
2676 {
2677 if (complain)
2678 error (_("no args, no `%s'"), name);
2679 else
2680 return 0;
2681 }
2682
2683 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2684 symbol instead of the LOC_ARG one (if both exist). */
2685 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2686 if (sym == NULL)
2687 {
2688 if (complain)
2689 error (_("current stack frame does not contain a variable named `%s'"), name);
2690 else
2691 return NULL;
2692 }
2693
2694 ret = read_var_value (sym, deprecated_selected_frame);
2695 if (ret == 0 && complain)
2696 error (_("`%s' argument unreadable"), name);
2697 return ret;
2698 }
2699
2700 /* C++/Objective-C: return the value of the class instance variable,
2701 if one exists. Flag COMPLAIN signals an error if the request is
2702 made in an inappropriate context. */
2703
2704 struct value *
2705 value_of_this (int complain)
2706 {
2707 if (current_language->la_language == language_objc)
2708 return value_of_local ("self", complain);
2709 else
2710 return value_of_local ("this", complain);
2711 }
2712
2713 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2714 long, starting at LOWBOUND. The result has the same lower bound as
2715 the original ARRAY. */
2716
2717 struct value *
2718 value_slice (struct value *array, int lowbound, int length)
2719 {
2720 struct type *slice_range_type, *slice_type, *range_type;
2721 LONGEST lowerbound, upperbound;
2722 struct value *slice;
2723 struct type *array_type;
2724 array_type = check_typedef (value_type (array));
2725 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2726 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2727 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2728 error (_("cannot take slice of non-array"));
2729 range_type = TYPE_INDEX_TYPE (array_type);
2730 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2731 error (_("slice from bad array or bitstring"));
2732 if (lowbound < lowerbound || length < 0
2733 || lowbound + length - 1 > upperbound)
2734 error (_("slice out of range"));
2735 /* FIXME-type-allocation: need a way to free this type when we are
2736 done with it. */
2737 slice_range_type = create_range_type ((struct type *) NULL,
2738 TYPE_TARGET_TYPE (range_type),
2739 lowbound, lowbound + length - 1);
2740 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2741 {
2742 int i;
2743 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
2744 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2745 slice = value_zero (slice_type, not_lval);
2746 for (i = 0; i < length; i++)
2747 {
2748 int element = value_bit_index (array_type,
2749 value_contents (array),
2750 lowbound + i);
2751 if (element < 0)
2752 error (_("internal error accessing bitstring"));
2753 else if (element > 0)
2754 {
2755 int j = i % TARGET_CHAR_BIT;
2756 if (BITS_BIG_ENDIAN)
2757 j = TARGET_CHAR_BIT - 1 - j;
2758 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2759 }
2760 }
2761 /* We should set the address, bitssize, and bitspos, so the clice
2762 can be used on the LHS, but that may require extensions to
2763 value_assign. For now, just leave as a non_lval. FIXME. */
2764 }
2765 else
2766 {
2767 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2768 LONGEST offset
2769 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2770 slice_type = create_array_type ((struct type *) NULL, element_type,
2771 slice_range_type);
2772 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2773 slice = allocate_value (slice_type);
2774 if (value_lazy (array))
2775 set_value_lazy (slice, 1);
2776 else
2777 memcpy (value_contents_writeable (slice),
2778 value_contents (array) + offset,
2779 TYPE_LENGTH (slice_type));
2780 if (VALUE_LVAL (array) == lval_internalvar)
2781 VALUE_LVAL (slice) = lval_internalvar_component;
2782 else
2783 VALUE_LVAL (slice) = VALUE_LVAL (array);
2784 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2785 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2786 set_value_offset (slice, value_offset (array) + offset);
2787 }
2788 return slice;
2789 }
2790
2791 /* Create a value for a FORTRAN complex number. Currently most of
2792 the time values are coerced to COMPLEX*16 (i.e. a complex number
2793 composed of 2 doubles. This really should be a smarter routine
2794 that figures out precision inteligently as opposed to assuming
2795 doubles. FIXME: fmb */
2796
2797 struct value *
2798 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
2799 {
2800 struct value *val;
2801 struct type *real_type = TYPE_TARGET_TYPE (type);
2802
2803 val = allocate_value (type);
2804 arg1 = value_cast (real_type, arg1);
2805 arg2 = value_cast (real_type, arg2);
2806
2807 memcpy (value_contents_raw (val),
2808 value_contents (arg1), TYPE_LENGTH (real_type));
2809 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
2810 value_contents (arg2), TYPE_LENGTH (real_type));
2811 return val;
2812 }
2813
2814 /* Cast a value into the appropriate complex data type. */
2815
2816 static struct value *
2817 cast_into_complex (struct type *type, struct value *val)
2818 {
2819 struct type *real_type = TYPE_TARGET_TYPE (type);
2820 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
2821 {
2822 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
2823 struct value *re_val = allocate_value (val_real_type);
2824 struct value *im_val = allocate_value (val_real_type);
2825
2826 memcpy (value_contents_raw (re_val),
2827 value_contents (val), TYPE_LENGTH (val_real_type));
2828 memcpy (value_contents_raw (im_val),
2829 value_contents (val) + TYPE_LENGTH (val_real_type),
2830 TYPE_LENGTH (val_real_type));
2831
2832 return value_literal_complex (re_val, im_val, type);
2833 }
2834 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
2835 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
2836 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2837 else
2838 error (_("cannot cast non-number to complex"));
2839 }
2840
2841 void
2842 _initialize_valops (void)
2843 {
2844 add_setshow_boolean_cmd ("overload-resolution", class_support,
2845 &overload_resolution, _("\
2846 Set overload resolution in evaluating C++ functions."), _("\
2847 Show overload resolution in evaluating C++ functions."), NULL,
2848 NULL,
2849 show_overload_resolution,
2850 &setlist, &showlist);
2851 overload_resolution = 1;
2852 }
This page took 0.144747 seconds and 4 git commands to generate.