748ba8fee08bb1243e34ec25747407779c279151
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39
40 /* Flag indicating HP compilers were used; needed to correctly handle some
41 value operations with HP aCC code/runtime. */
42 extern int hp_som_som_object_present;
43
44 extern int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, struct type *t1[], struct value *t2[]);
48
49 static CORE_ADDR find_function_addr (struct value *, struct type **);
50 static struct value *value_arg_coerce (struct value *, struct type *, int);
51
52
53 static CORE_ADDR value_push (CORE_ADDR, struct value *);
54
55 static struct value *search_struct_field (char *, struct value *, int,
56 struct type *, int);
57
58 static struct value *search_struct_method (char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int check_field_in (struct type *, const char *);
63
64 static CORE_ADDR allocate_space_in_inferior (int);
65
66 static struct value *cast_into_complex (struct type *, struct value *);
67
68 static struct fn_field *find_method_list (struct value ** argp, char *method,
69 int offset, int *static_memfuncp,
70 struct type *type, int *num_fns,
71 struct type **basetype,
72 int *boffset);
73
74 void _initialize_valops (void);
75
76 /* Flag for whether we want to abandon failed expression evals by default. */
77
78 #if 0
79 static int auto_abandon = 0;
80 #endif
81
82 int overload_resolution = 0;
83
84 /* This boolean tells what gdb should do if a signal is received while in
85 a function called from gdb (call dummy). If set, gdb unwinds the stack
86 and restore the context to what as it was before the call.
87 The default is to stop in the frame where the signal was received. */
88
89 int unwind_on_signal_p = 0;
90 \f
91
92
93 /* Find the address of function name NAME in the inferior. */
94
95 struct value *
96 find_function_in_inferior (char *name)
97 {
98 register struct symbol *sym;
99 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
100 if (sym != NULL)
101 {
102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
103 {
104 error ("\"%s\" exists in this program but is not a function.",
105 name);
106 }
107 return value_of_variable (sym, NULL);
108 }
109 else
110 {
111 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
112 if (msymbol != NULL)
113 {
114 struct type *type;
115 CORE_ADDR maddr;
116 type = lookup_pointer_type (builtin_type_char);
117 type = lookup_function_type (type);
118 type = lookup_pointer_type (type);
119 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 return value_from_pointer (type, maddr);
121 }
122 else
123 {
124 if (!target_has_execution)
125 error ("evaluation of this expression requires the target program to be active");
126 else
127 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
128 }
129 }
130 }
131
132 /* Allocate NBYTES of space in the inferior using the inferior's malloc
133 and return a value that is a pointer to the allocated space. */
134
135 struct value *
136 value_allocate_space_in_inferior (int len)
137 {
138 struct value *blocklen;
139 struct value *val = find_function_in_inferior ("malloc");
140
141 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
142 val = call_function_by_hand (val, 1, &blocklen);
143 if (value_logical_not (val))
144 {
145 if (!target_has_execution)
146 error ("No memory available to program now: you need to start the target first");
147 else
148 error ("No memory available to program: call to malloc failed");
149 }
150 return val;
151 }
152
153 static CORE_ADDR
154 allocate_space_in_inferior (int len)
155 {
156 return value_as_long (value_allocate_space_in_inferior (len));
157 }
158
159 /* Cast value ARG2 to type TYPE and return as a value.
160 More general than a C cast: accepts any two types of the same length,
161 and if ARG2 is an lvalue it can be cast into anything at all. */
162 /* In C++, casts may change pointer or object representations. */
163
164 struct value *
165 value_cast (struct type *type, struct value *arg2)
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 struct value *v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 struct value *retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 /* force evaluation */
273 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
274 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
275 return retvalp;
276
277 /* While pointers to methods don't really point to a function */
278 case TYPE_CODE_METHOD:
279 error ("Pointers to methods not supported with HP aCC");
280
281 default:
282 break; /* fall out and go to normal handling */
283 }
284 }
285
286 /* When we cast pointers to integers, we mustn't use
287 POINTER_TO_ADDRESS to find the address the pointer
288 represents, as value_as_long would. GDB should evaluate
289 expressions just as the compiler would --- and the compiler
290 sees a cast as a simple reinterpretation of the pointer's
291 bits. */
292 if (code2 == TYPE_CODE_PTR)
293 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
294 TYPE_LENGTH (type2));
295 else
296 longest = value_as_long (arg2);
297 return value_from_longest (type, convert_to_boolean ?
298 (LONGEST) (longest ? 1 : 0) : longest);
299 }
300 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
301 code2 == TYPE_CODE_ENUM ||
302 code2 == TYPE_CODE_RANGE))
303 {
304 /* TYPE_LENGTH (type) is the length of a pointer, but we really
305 want the length of an address! -- we are really dealing with
306 addresses (i.e., gdb representations) not pointers (i.e.,
307 target representations) here.
308
309 This allows things like "print *(int *)0x01000234" to work
310 without printing a misleading message -- which would
311 otherwise occur when dealing with a target having two byte
312 pointers and four byte addresses. */
313
314 int addr_bit = TARGET_ADDR_BIT;
315
316 LONGEST longest = value_as_long (arg2);
317 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
318 {
319 if (longest >= ((LONGEST) 1 << addr_bit)
320 || longest <= -((LONGEST) 1 << addr_bit))
321 warning ("value truncated");
322 }
323 return value_from_longest (type, longest);
324 }
325 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
326 {
327 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
328 {
329 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
330 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
331 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
332 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
333 && !value_logical_not (arg2))
334 {
335 struct value *v;
336
337 /* Look in the type of the source to see if it contains the
338 type of the target as a superclass. If so, we'll need to
339 offset the pointer rather than just change its type. */
340 if (TYPE_NAME (t1) != NULL)
341 {
342 v = search_struct_field (type_name_no_tag (t1),
343 value_ind (arg2), 0, t2, 1);
344 if (v)
345 {
346 v = value_addr (v);
347 VALUE_TYPE (v) = type;
348 return v;
349 }
350 }
351
352 /* Look in the type of the target to see if it contains the
353 type of the source as a superclass. If so, we'll need to
354 offset the pointer rather than just change its type.
355 FIXME: This fails silently with virtual inheritance. */
356 if (TYPE_NAME (t2) != NULL)
357 {
358 v = search_struct_field (type_name_no_tag (t2),
359 value_zero (t1, not_lval), 0, t1, 1);
360 if (v)
361 {
362 struct value *v2 = value_ind (arg2);
363 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
364 + VALUE_OFFSET (v);
365
366 /* JYG: adjust the new pointer value and
367 embedded offset. */
368 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
369 VALUE_EMBEDDED_OFFSET (v2) = 0;
370
371 v2 = value_addr (v2);
372 VALUE_TYPE (v2) = type;
373 return v2;
374 }
375 }
376 }
377 /* No superclass found, just fall through to change ptr type. */
378 }
379 VALUE_TYPE (arg2) = type;
380 arg2 = value_change_enclosing_type (arg2, type);
381 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
382 return arg2;
383 }
384 else if (chill_varying_type (type))
385 {
386 struct type *range1, *range2, *eltype1, *eltype2;
387 struct value *val;
388 int count1, count2;
389 LONGEST low_bound, high_bound;
390 char *valaddr, *valaddr_data;
391 /* For lint warning about eltype2 possibly uninitialized: */
392 eltype2 = NULL;
393 if (code2 == TYPE_CODE_BITSTRING)
394 error ("not implemented: converting bitstring to varying type");
395 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
396 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
397 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
398 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
399 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
400 error ("Invalid conversion to varying type");
401 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
402 range2 = TYPE_FIELD_TYPE (type2, 0);
403 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
404 count1 = -1;
405 else
406 count1 = high_bound - low_bound + 1;
407 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
408 count1 = -1, count2 = 0; /* To force error before */
409 else
410 count2 = high_bound - low_bound + 1;
411 if (count2 > count1)
412 error ("target varying type is too small");
413 val = allocate_value (type);
414 valaddr = VALUE_CONTENTS_RAW (val);
415 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
416 /* Set val's __var_length field to count2. */
417 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
418 count2);
419 /* Set the __var_data field to count2 elements copied from arg2. */
420 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
421 count2 * TYPE_LENGTH (eltype2));
422 /* Zero the rest of the __var_data field of val. */
423 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
424 (count1 - count2) * TYPE_LENGTH (eltype2));
425 return val;
426 }
427 else if (VALUE_LVAL (arg2) == lval_memory)
428 {
429 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
430 VALUE_BFD_SECTION (arg2));
431 }
432 else if (code1 == TYPE_CODE_VOID)
433 {
434 return value_zero (builtin_type_void, not_lval);
435 }
436 else
437 {
438 error ("Invalid cast.");
439 return 0;
440 }
441 }
442
443 /* Create a value of type TYPE that is zero, and return it. */
444
445 struct value *
446 value_zero (struct type *type, enum lval_type lv)
447 {
448 struct value *val = allocate_value (type);
449
450 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
451 VALUE_LVAL (val) = lv;
452
453 return val;
454 }
455
456 /* Return a value with type TYPE located at ADDR.
457
458 Call value_at only if the data needs to be fetched immediately;
459 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
460 value_at_lazy instead. value_at_lazy simply records the address of
461 the data and sets the lazy-evaluation-required flag. The lazy flag
462 is tested in the VALUE_CONTENTS macro, which is used if and when
463 the contents are actually required.
464
465 Note: value_at does *NOT* handle embedded offsets; perform such
466 adjustments before or after calling it. */
467
468 struct value *
469 value_at (struct type *type, CORE_ADDR addr, asection *sect)
470 {
471 struct value *val;
472
473 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
474 error ("Attempt to dereference a generic pointer.");
475
476 val = allocate_value (type);
477
478 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_BFD_SECTION (val) = sect;
483
484 return val;
485 }
486
487 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
488
489 struct value *
490 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
491 {
492 struct value *val;
493
494 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
495 error ("Attempt to dereference a generic pointer.");
496
497 val = allocate_value (type);
498
499 VALUE_LVAL (val) = lval_memory;
500 VALUE_ADDRESS (val) = addr;
501 VALUE_LAZY (val) = 1;
502 VALUE_BFD_SECTION (val) = sect;
503
504 return val;
505 }
506
507 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
508 if the current data for a variable needs to be loaded into
509 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
510 clears the lazy flag to indicate that the data in the buffer is valid.
511
512 If the value is zero-length, we avoid calling read_memory, which would
513 abort. We mark the value as fetched anyway -- all 0 bytes of it.
514
515 This function returns a value because it is used in the VALUE_CONTENTS
516 macro as part of an expression, where a void would not work. The
517 value is ignored. */
518
519 int
520 value_fetch_lazy (struct value *val)
521 {
522 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
523 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
524
525 struct type *type = VALUE_TYPE (val);
526 if (length)
527 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
528
529 VALUE_LAZY (val) = 0;
530 return 0;
531 }
532
533
534 /* Store the contents of FROMVAL into the location of TOVAL.
535 Return a new value with the location of TOVAL and contents of FROMVAL. */
536
537 struct value *
538 value_assign (struct value *toval, struct value *fromval)
539 {
540 register struct type *type;
541 struct value *val;
542 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
543 int use_buffer = 0;
544
545 if (!toval->modifiable)
546 error ("Left operand of assignment is not a modifiable lvalue.");
547
548 COERCE_REF (toval);
549
550 type = VALUE_TYPE (toval);
551 if (VALUE_LVAL (toval) != lval_internalvar)
552 fromval = value_cast (type, fromval);
553 else
554 COERCE_ARRAY (fromval);
555 CHECK_TYPEDEF (type);
556
557 /* If TOVAL is a special machine register requiring conversion
558 of program values to a special raw format,
559 convert FROMVAL's contents now, with result in `raw_buffer',
560 and set USE_BUFFER to the number of bytes to write. */
561
562 if (VALUE_REGNO (toval) >= 0)
563 {
564 int regno = VALUE_REGNO (toval);
565 if (REGISTER_CONVERTIBLE (regno))
566 {
567 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
568 REGISTER_CONVERT_TO_RAW (fromtype, regno,
569 VALUE_CONTENTS (fromval), raw_buffer);
570 use_buffer = REGISTER_RAW_SIZE (regno);
571 }
572 }
573
574 switch (VALUE_LVAL (toval))
575 {
576 case lval_internalvar:
577 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
578 val = value_copy (VALUE_INTERNALVAR (toval)->value);
579 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
580 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
581 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
582 return val;
583
584 case lval_internalvar_component:
585 set_internalvar_component (VALUE_INTERNALVAR (toval),
586 VALUE_OFFSET (toval),
587 VALUE_BITPOS (toval),
588 VALUE_BITSIZE (toval),
589 fromval);
590 break;
591
592 case lval_memory:
593 {
594 char *dest_buffer;
595 CORE_ADDR changed_addr;
596 int changed_len;
597
598 if (VALUE_BITSIZE (toval))
599 {
600 char buffer[sizeof (LONGEST)];
601 /* We assume that the argument to read_memory is in units of
602 host chars. FIXME: Is that correct? */
603 changed_len = (VALUE_BITPOS (toval)
604 + VALUE_BITSIZE (toval)
605 + HOST_CHAR_BIT - 1)
606 / HOST_CHAR_BIT;
607
608 if (changed_len > (int) sizeof (LONGEST))
609 error ("Can't handle bitfields which don't fit in a %d bit word.",
610 sizeof (LONGEST) * HOST_CHAR_BIT);
611
612 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
613 buffer, changed_len);
614 modify_field (buffer, value_as_long (fromval),
615 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
616 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
617 dest_buffer = buffer;
618 }
619 else if (use_buffer)
620 {
621 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
622 changed_len = use_buffer;
623 dest_buffer = raw_buffer;
624 }
625 else
626 {
627 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
628 changed_len = TYPE_LENGTH (type);
629 dest_buffer = VALUE_CONTENTS (fromval);
630 }
631
632 write_memory (changed_addr, dest_buffer, changed_len);
633 if (memory_changed_hook)
634 memory_changed_hook (changed_addr, changed_len);
635 }
636 break;
637
638 case lval_register:
639 if (VALUE_BITSIZE (toval))
640 {
641 char buffer[sizeof (LONGEST)];
642 int len =
643 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
644
645 if (len > (int) sizeof (LONGEST))
646 error ("Can't handle bitfields in registers larger than %d bits.",
647 sizeof (LONGEST) * HOST_CHAR_BIT);
648
649 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
650 > len * HOST_CHAR_BIT)
651 /* Getting this right would involve being very careful about
652 byte order. */
653 error ("Can't assign to bitfields that cross register "
654 "boundaries.");
655
656 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
657 buffer, len);
658 modify_field (buffer, value_as_long (fromval),
659 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
660 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
661 buffer, len);
662 }
663 else if (use_buffer)
664 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
665 raw_buffer, use_buffer);
666 else
667 {
668 /* Do any conversion necessary when storing this type to more
669 than one register. */
670 #ifdef REGISTER_CONVERT_FROM_TYPE
671 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
672 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
673 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
674 raw_buffer, TYPE_LENGTH (type));
675 #else
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
678 #endif
679 }
680 /* Assigning to the stack pointer, frame pointer, and other
681 (architecture and calling convention specific) registers may
682 cause the frame cache to be out of date. We just do this
683 on all assignments to registers for simplicity; I doubt the slowdown
684 matters. */
685 reinit_frame_cache ();
686 break;
687
688 case lval_reg_frame_relative:
689 {
690 /* value is stored in a series of registers in the frame
691 specified by the structure. Copy that value out, modify
692 it, and copy it back in. */
693 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
694 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
695 int byte_offset = VALUE_OFFSET (toval) % reg_size;
696 int reg_offset = VALUE_OFFSET (toval) / reg_size;
697 int amount_copied;
698
699 /* Make the buffer large enough in all cases. */
700 /* FIXME (alloca): Not safe for very large data types. */
701 char *buffer = (char *) alloca (amount_to_copy
702 + sizeof (LONGEST)
703 + MAX_REGISTER_RAW_SIZE);
704
705 int regno;
706 struct frame_info *frame;
707
708 /* Figure out which frame this is in currently. */
709 for (frame = get_current_frame ();
710 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
711 frame = get_prev_frame (frame))
712 ;
713
714 if (!frame)
715 error ("Value being assigned to is no longer active.");
716
717 amount_to_copy += (reg_size - amount_to_copy % reg_size);
718
719 /* Copy it out. */
720 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
721 amount_copied = 0);
722 amount_copied < amount_to_copy;
723 amount_copied += reg_size, regno++)
724 {
725 get_saved_register (buffer + amount_copied,
726 (int *) NULL, (CORE_ADDR *) NULL,
727 frame, regno, (enum lval_type *) NULL);
728 }
729
730 /* Modify what needs to be modified. */
731 if (VALUE_BITSIZE (toval))
732 modify_field (buffer + byte_offset,
733 value_as_long (fromval),
734 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
735 else if (use_buffer)
736 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
737 else
738 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
739 TYPE_LENGTH (type));
740
741 /* Copy it back. */
742 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
743 amount_copied = 0);
744 amount_copied < amount_to_copy;
745 amount_copied += reg_size, regno++)
746 {
747 enum lval_type lval;
748 CORE_ADDR addr;
749 int optim;
750
751 /* Just find out where to put it. */
752 get_saved_register ((char *) NULL,
753 &optim, &addr, frame, regno, &lval);
754
755 if (optim)
756 error ("Attempt to assign to a value that was optimized out.");
757 if (lval == lval_memory)
758 write_memory (addr, buffer + amount_copied, reg_size);
759 else if (lval == lval_register)
760 write_register_bytes (addr, buffer + amount_copied, reg_size);
761 else
762 error ("Attempt to assign to an unmodifiable value.");
763 }
764
765 if (register_changed_hook)
766 register_changed_hook (-1);
767 }
768 break;
769
770
771 default:
772 error ("Left operand of assignment is not an lvalue.");
773 }
774
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
797
798 return val;
799 }
800
801 /* Extend a value VAL to COUNT repetitions of its type. */
802
803 struct value *
804 value_repeat (struct value *arg1, int count)
805 {
806 struct value *val;
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822 }
823
824 struct value *
825 value_of_variable (struct symbol *var, struct block *b)
826 {
827 struct value *val;
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
836 {
837 if (BLOCK_FUNCTION (b)
838 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
839 error ("No frame is currently executing in block %s.",
840 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
841 else
842 error ("No frame is currently executing in specified block");
843 }
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
849
850 return val;
851 }
852
853 /* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
874 */
875
876 struct value *
877 value_coerce_array (struct value *arg1)
878 {
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
886 }
887
888 /* Given a value which is a function, return a value which is a pointer
889 to it. */
890
891 struct value *
892 value_coerce_function (struct value *arg1)
893 {
894 struct value *retval;
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
903 }
904
905 /* Return a pointer value for the object for which ARG1 is the contents. */
906
907 struct value *
908 value_addr (struct value *arg1)
909 {
910 struct value *arg2;
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
928 /* Get target memory address */
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
933
934 /* This may be a pointer to a base subobject; so remember the
935 full derived object's type ... */
936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941 }
942
943 /* Given a value of a pointer type, apply the C unary * operator to it. */
944
945 struct value *
946 value_ind (struct value *arg1)
947 {
948 struct type *base_type;
949 struct value *arg2;
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
963 return value_at (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
970 /* Get the real type of the enclosing object */
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
980 arg2 = value_change_enclosing_type (arg2, enc_type);
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
989 return 0; /* For lint -- never reached */
990 }
991 \f
992 /* Pushing small parts of stack frames. */
993
994 /* Push one word (the size of object that a register holds). */
995
996 CORE_ADDR
997 push_word (CORE_ADDR sp, ULONGEST word)
998 {
999 register int len = REGISTER_SIZE;
1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017 }
1018
1019 /* Push LEN bytes with data at BUFFER. */
1020
1021 CORE_ADDR
1022 push_bytes (CORE_ADDR sp, char *buffer, int len)
1023 {
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038 }
1039
1040 #ifndef PARM_BOUNDARY
1041 #define PARM_BOUNDARY (0)
1042 #endif
1043
1044 /* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
1046
1047 static CORE_ADDR
1048 value_push (register CORE_ADDR sp, struct value *arg)
1049 {
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1051 register int container_len = len;
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1061 offset = container_len - len;
1062 else
1063 offset = 0;
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1070 }
1071 else
1072 {
1073 /* stack grows upward */
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
1076 }
1077
1078 return sp;
1079 }
1080
1081 CORE_ADDR
1082 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
1084 {
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090 }
1091
1092
1093 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1094
1095 How you should pass arguments to a function depends on whether it
1096 was defined in K&R style or prototype style. If you define a
1097 function using the K&R syntax that takes a `float' argument, then
1098 callers must pass that argument as a `double'. If you define the
1099 function using the prototype syntax, then you must pass the
1100 argument as a `float', with no promotion.
1101
1102 Unfortunately, on certain older platforms, the debug info doesn't
1103 indicate reliably how each function was defined. A function type's
1104 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1105 defined in prototype style. When calling a function whose
1106 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1107 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1108
1109 For modern targets, it is proper to assume that, if the prototype
1110 flag is clear, that can be trusted: `float' arguments should be
1111 promoted to `double'. You should register the function
1112 `standard_coerce_float_to_double' to get this behavior.
1113
1114 For some older targets, if the prototype flag is clear, that
1115 doesn't tell us anything. So we guess that, if we don't have a
1116 type for the formal parameter (i.e., the first argument to
1117 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1118 otherwise, we should leave it alone. The function
1119 `default_coerce_float_to_double' provides this behavior; it is the
1120 default value, for compatibility with older configurations. */
1121 int
1122 default_coerce_float_to_double (struct type *formal, struct type *actual)
1123 {
1124 return formal == NULL;
1125 }
1126
1127
1128 int
1129 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1130 {
1131 return 1;
1132 }
1133
1134
1135 /* Perform the standard coercions that are specified
1136 for arguments to be passed to C functions.
1137
1138 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1139 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1140
1141 static struct value *
1142 value_arg_coerce (struct value *arg, struct type *param_type,
1143 int is_prototyped)
1144 {
1145 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1146 register struct type *type
1147 = param_type ? check_typedef (param_type) : arg_type;
1148
1149 switch (TYPE_CODE (type))
1150 {
1151 case TYPE_CODE_REF:
1152 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1153 {
1154 arg = value_addr (arg);
1155 VALUE_TYPE (arg) = param_type;
1156 return arg;
1157 }
1158 break;
1159 case TYPE_CODE_INT:
1160 case TYPE_CODE_CHAR:
1161 case TYPE_CODE_BOOL:
1162 case TYPE_CODE_ENUM:
1163 /* If we don't have a prototype, coerce to integer type if necessary. */
1164 if (!is_prototyped)
1165 {
1166 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1167 type = builtin_type_int;
1168 }
1169 /* Currently all target ABIs require at least the width of an integer
1170 type for an argument. We may have to conditionalize the following
1171 type coercion for future targets. */
1172 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1173 type = builtin_type_int;
1174 break;
1175 case TYPE_CODE_FLT:
1176 /* FIXME: We should always convert floats to doubles in the
1177 non-prototyped case. As many debugging formats include
1178 no information about prototyping, we have to live with
1179 COERCE_FLOAT_TO_DOUBLE for now. */
1180 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1181 {
1182 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1183 type = builtin_type_double;
1184 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1185 type = builtin_type_long_double;
1186 }
1187 break;
1188 case TYPE_CODE_FUNC:
1189 type = lookup_pointer_type (type);
1190 break;
1191 case TYPE_CODE_ARRAY:
1192 if (current_language->c_style_arrays)
1193 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1194 break;
1195 case TYPE_CODE_UNDEF:
1196 case TYPE_CODE_PTR:
1197 case TYPE_CODE_STRUCT:
1198 case TYPE_CODE_UNION:
1199 case TYPE_CODE_VOID:
1200 case TYPE_CODE_SET:
1201 case TYPE_CODE_RANGE:
1202 case TYPE_CODE_STRING:
1203 case TYPE_CODE_BITSTRING:
1204 case TYPE_CODE_ERROR:
1205 case TYPE_CODE_MEMBER:
1206 case TYPE_CODE_METHOD:
1207 case TYPE_CODE_COMPLEX:
1208 default:
1209 break;
1210 }
1211
1212 return value_cast (type, arg);
1213 }
1214
1215 /* Determine a function's address and its return type from its value.
1216 Calls error() if the function is not valid for calling. */
1217
1218 static CORE_ADDR
1219 find_function_addr (struct value *function, struct type **retval_type)
1220 {
1221 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1222 register enum type_code code = TYPE_CODE (ftype);
1223 struct type *value_type;
1224 CORE_ADDR funaddr;
1225
1226 /* If it's a member function, just look at the function
1227 part of it. */
1228
1229 /* Determine address to call. */
1230 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1231 {
1232 funaddr = VALUE_ADDRESS (function);
1233 value_type = TYPE_TARGET_TYPE (ftype);
1234 }
1235 else if (code == TYPE_CODE_PTR)
1236 {
1237 funaddr = value_as_address (function);
1238 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1239 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1240 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1241 {
1242 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1243 value_type = TYPE_TARGET_TYPE (ftype);
1244 }
1245 else
1246 value_type = builtin_type_int;
1247 }
1248 else if (code == TYPE_CODE_INT)
1249 {
1250 /* Handle the case of functions lacking debugging info.
1251 Their values are characters since their addresses are char */
1252 if (TYPE_LENGTH (ftype) == 1)
1253 funaddr = value_as_address (value_addr (function));
1254 else
1255 /* Handle integer used as address of a function. */
1256 funaddr = (CORE_ADDR) value_as_long (function);
1257
1258 value_type = builtin_type_int;
1259 }
1260 else
1261 error ("Invalid data type for function to be called.");
1262
1263 *retval_type = value_type;
1264 return funaddr;
1265 }
1266
1267 /* All this stuff with a dummy frame may seem unnecessarily complicated
1268 (why not just save registers in GDB?). The purpose of pushing a dummy
1269 frame which looks just like a real frame is so that if you call a
1270 function and then hit a breakpoint (get a signal, etc), "backtrace"
1271 will look right. Whether the backtrace needs to actually show the
1272 stack at the time the inferior function was called is debatable, but
1273 it certainly needs to not display garbage. So if you are contemplating
1274 making dummy frames be different from normal frames, consider that. */
1275
1276 /* Perform a function call in the inferior.
1277 ARGS is a vector of values of arguments (NARGS of them).
1278 FUNCTION is a value, the function to be called.
1279 Returns a value representing what the function returned.
1280 May fail to return, if a breakpoint or signal is hit
1281 during the execution of the function.
1282
1283 ARGS is modified to contain coerced values. */
1284
1285 static struct value *
1286 hand_function_call (struct value *function, int nargs, struct value **args)
1287 {
1288 register CORE_ADDR sp;
1289 register int i;
1290 int rc;
1291 CORE_ADDR start_sp;
1292 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1293 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1294 and remove any extra bytes which might exist because ULONGEST is
1295 bigger than REGISTER_SIZE.
1296
1297 NOTE: This is pretty wierd, as the call dummy is actually a
1298 sequence of instructions. But CISC machines will have
1299 to pack the instructions into REGISTER_SIZE units (and
1300 so will RISC machines for which INSTRUCTION_SIZE is not
1301 REGISTER_SIZE).
1302
1303 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1304 target byte order. */
1305
1306 static ULONGEST *dummy;
1307 int sizeof_dummy1;
1308 char *dummy1;
1309 CORE_ADDR old_sp;
1310 struct type *value_type;
1311 unsigned char struct_return;
1312 CORE_ADDR struct_addr = 0;
1313 struct inferior_status *inf_status;
1314 struct cleanup *old_chain;
1315 CORE_ADDR funaddr;
1316 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1317 CORE_ADDR real_pc;
1318 struct type *param_type = NULL;
1319 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1320 int n_method_args = 0;
1321
1322 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1323 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1324 dummy1 = alloca (sizeof_dummy1);
1325 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1326
1327 if (!target_has_execution)
1328 noprocess ();
1329
1330 inf_status = save_inferior_status (1);
1331 old_chain = make_cleanup_restore_inferior_status (inf_status);
1332
1333 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1334 (and POP_FRAME for restoring them). (At least on most machines)
1335 they are saved on the stack in the inferior. */
1336 PUSH_DUMMY_FRAME;
1337
1338 old_sp = sp = read_sp ();
1339
1340 if (INNER_THAN (1, 2))
1341 {
1342 /* Stack grows down */
1343 sp -= sizeof_dummy1;
1344 start_sp = sp;
1345 }
1346 else
1347 {
1348 /* Stack grows up */
1349 start_sp = sp;
1350 sp += sizeof_dummy1;
1351 }
1352
1353 funaddr = find_function_addr (function, &value_type);
1354 CHECK_TYPEDEF (value_type);
1355
1356 {
1357 struct block *b = block_for_pc (funaddr);
1358 /* If compiled without -g, assume GCC 2. */
1359 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1360 }
1361
1362 /* Are we returning a value using a structure return or a normal
1363 value return? */
1364
1365 struct_return = using_struct_return (function, funaddr, value_type,
1366 using_gcc);
1367
1368 /* Create a call sequence customized for this function
1369 and the number of arguments for it. */
1370 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1371 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1372 REGISTER_SIZE,
1373 (ULONGEST) dummy[i]);
1374
1375 #ifdef GDB_TARGET_IS_HPPA
1376 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1377 value_type, using_gcc);
1378 #else
1379 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1380 value_type, using_gcc);
1381 real_pc = start_sp;
1382 #endif
1383
1384 if (CALL_DUMMY_LOCATION == ON_STACK)
1385 {
1386 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1387 }
1388
1389 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1390 {
1391 /* Convex Unix prohibits executing in the stack segment. */
1392 /* Hope there is empty room at the top of the text segment. */
1393 extern CORE_ADDR text_end;
1394 static int checked = 0;
1395 if (!checked)
1396 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1397 if (read_memory_integer (start_sp, 1) != 0)
1398 error ("text segment full -- no place to put call");
1399 checked = 1;
1400 sp = old_sp;
1401 real_pc = text_end - sizeof_dummy1;
1402 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1403 }
1404
1405 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1406 {
1407 extern CORE_ADDR text_end;
1408 int errcode;
1409 sp = old_sp;
1410 real_pc = text_end;
1411 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1412 if (errcode != 0)
1413 error ("Cannot write text segment -- call_function failed");
1414 }
1415
1416 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1417 {
1418 real_pc = funaddr;
1419 }
1420
1421 #ifdef lint
1422 sp = old_sp; /* It really is used, for some ifdef's... */
1423 #endif
1424
1425 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1426 {
1427 i = 0;
1428 while (TYPE_CODE (TYPE_ARG_TYPES (ftype)[i]) != TYPE_CODE_VOID)
1429 i++;
1430 n_method_args = i;
1431 if (nargs < i)
1432 error ("too few arguments in method call");
1433 }
1434 else if (nargs < TYPE_NFIELDS (ftype))
1435 error ("too few arguments in function call");
1436
1437 for (i = nargs - 1; i >= 0; i--)
1438 {
1439 /* Assume that methods are always prototyped, unless they are off the
1440 end (which we should only be allowing if there is a ``...'').
1441 FIXME. */
1442 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1443 {
1444 if (i < n_method_args)
1445 args[i] = value_arg_coerce (args[i], TYPE_ARG_TYPES (ftype)[i], 1);
1446 else
1447 args[i] = value_arg_coerce (args[i], NULL, 0);
1448 }
1449
1450 /* If we're off the end of the known arguments, do the standard
1451 promotions. FIXME: if we had a prototype, this should only
1452 be allowed if ... were present. */
1453 if (i >= TYPE_NFIELDS (ftype))
1454 args[i] = value_arg_coerce (args[i], NULL, 0);
1455
1456 else
1457 {
1458 param_type = TYPE_FIELD_TYPE (ftype, i);
1459 args[i] = value_arg_coerce (args[i], param_type, TYPE_PROTOTYPED (ftype));
1460 }
1461
1462 /*elz: this code is to handle the case in which the function to be called
1463 has a pointer to function as parameter and the corresponding actual argument
1464 is the address of a function and not a pointer to function variable.
1465 In aCC compiled code, the calls through pointers to functions (in the body
1466 of the function called by hand) are made via $$dyncall_external which
1467 requires some registers setting, this is taken care of if we call
1468 via a function pointer variable, but not via a function address.
1469 In cc this is not a problem. */
1470
1471 if (using_gcc == 0)
1472 if (param_type)
1473 /* if this parameter is a pointer to function */
1474 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1475 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1476 /* elz: FIXME here should go the test about the compiler used
1477 to compile the target. We want to issue the error
1478 message only if the compiler used was HP's aCC.
1479 If we used HP's cc, then there is no problem and no need
1480 to return at this point */
1481 if (using_gcc == 0) /* && compiler == aCC */
1482 /* go see if the actual parameter is a variable of type
1483 pointer to function or just a function */
1484 if (args[i]->lval == not_lval)
1485 {
1486 char *arg_name;
1487 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1488 error ("\
1489 You cannot use function <%s> as argument. \n\
1490 You must use a pointer to function type variable. Command ignored.", arg_name);
1491 }
1492 }
1493
1494 if (REG_STRUCT_HAS_ADDR_P ())
1495 {
1496 /* This is a machine like the sparc, where we may need to pass a
1497 pointer to the structure, not the structure itself. */
1498 for (i = nargs - 1; i >= 0; i--)
1499 {
1500 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1501 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1502 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1503 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1504 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1505 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1506 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1507 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1508 && TYPE_LENGTH (arg_type) > 8)
1509 )
1510 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1511 {
1512 CORE_ADDR addr;
1513 int len; /* = TYPE_LENGTH (arg_type); */
1514 int aligned_len;
1515 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1516 len = TYPE_LENGTH (arg_type);
1517
1518 if (STACK_ALIGN_P ())
1519 /* MVS 11/22/96: I think at least some of this
1520 stack_align code is really broken. Better to let
1521 PUSH_ARGUMENTS adjust the stack in a target-defined
1522 manner. */
1523 aligned_len = STACK_ALIGN (len);
1524 else
1525 aligned_len = len;
1526 if (INNER_THAN (1, 2))
1527 {
1528 /* stack grows downward */
1529 sp -= aligned_len;
1530 /* ... so the address of the thing we push is the
1531 stack pointer after we push it. */
1532 addr = sp;
1533 }
1534 else
1535 {
1536 /* The stack grows up, so the address of the thing
1537 we push is the stack pointer before we push it. */
1538 addr = sp;
1539 sp += aligned_len;
1540 }
1541 /* Push the structure. */
1542 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1543 /* The value we're going to pass is the address of the
1544 thing we just pushed. */
1545 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1546 (LONGEST) addr); */
1547 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1548 addr);
1549 }
1550 }
1551 }
1552
1553
1554 /* Reserve space for the return structure to be written on the
1555 stack, if necessary */
1556
1557 if (struct_return)
1558 {
1559 int len = TYPE_LENGTH (value_type);
1560 if (STACK_ALIGN_P ())
1561 /* MVS 11/22/96: I think at least some of this stack_align
1562 code is really broken. Better to let PUSH_ARGUMENTS adjust
1563 the stack in a target-defined manner. */
1564 len = STACK_ALIGN (len);
1565 if (INNER_THAN (1, 2))
1566 {
1567 /* stack grows downward */
1568 sp -= len;
1569 struct_addr = sp;
1570 }
1571 else
1572 {
1573 /* stack grows upward */
1574 struct_addr = sp;
1575 sp += len;
1576 }
1577 }
1578
1579 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1580 on other architectures. This is because all the alignment is
1581 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1582 in hppa_push_arguments */
1583 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1584 {
1585 /* MVS 11/22/96: I think at least some of this stack_align code
1586 is really broken. Better to let PUSH_ARGUMENTS adjust the
1587 stack in a target-defined manner. */
1588 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1589 {
1590 /* If stack grows down, we must leave a hole at the top. */
1591 int len = 0;
1592
1593 for (i = nargs - 1; i >= 0; i--)
1594 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1595 if (CALL_DUMMY_STACK_ADJUST_P)
1596 len += CALL_DUMMY_STACK_ADJUST;
1597 sp -= STACK_ALIGN (len) - len;
1598 }
1599 }
1600
1601 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1602
1603 if (PUSH_RETURN_ADDRESS_P ())
1604 /* for targets that use no CALL_DUMMY */
1605 /* There are a number of targets now which actually don't write
1606 any CALL_DUMMY instructions into the target, but instead just
1607 save the machine state, push the arguments, and jump directly
1608 to the callee function. Since this doesn't actually involve
1609 executing a JSR/BSR instruction, the return address must be set
1610 up by hand, either by pushing onto the stack or copying into a
1611 return-address register as appropriate. Formerly this has been
1612 done in PUSH_ARGUMENTS, but that's overloading its
1613 functionality a bit, so I'm making it explicit to do it here. */
1614 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1615
1616 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1617 {
1618 /* If stack grows up, we must leave a hole at the bottom, note
1619 that sp already has been advanced for the arguments! */
1620 if (CALL_DUMMY_STACK_ADJUST_P)
1621 sp += CALL_DUMMY_STACK_ADJUST;
1622 sp = STACK_ALIGN (sp);
1623 }
1624
1625 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1626 anything here! */
1627 /* MVS 11/22/96: I think at least some of this stack_align code is
1628 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1629 a target-defined manner. */
1630 if (CALL_DUMMY_STACK_ADJUST_P)
1631 if (INNER_THAN (1, 2))
1632 {
1633 /* stack grows downward */
1634 sp -= CALL_DUMMY_STACK_ADJUST;
1635 }
1636
1637 /* Store the address at which the structure is supposed to be
1638 written. Note that this (and the code which reserved the space
1639 above) assumes that gcc was used to compile this function. Since
1640 it doesn't cost us anything but space and if the function is pcc
1641 it will ignore this value, we will make that assumption.
1642
1643 Also note that on some machines (like the sparc) pcc uses a
1644 convention like gcc's. */
1645
1646 if (struct_return)
1647 STORE_STRUCT_RETURN (struct_addr, sp);
1648
1649 /* Write the stack pointer. This is here because the statements above
1650 might fool with it. On SPARC, this write also stores the register
1651 window into the right place in the new stack frame, which otherwise
1652 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1653 write_sp (sp);
1654
1655 if (SAVE_DUMMY_FRAME_TOS_P ())
1656 SAVE_DUMMY_FRAME_TOS (sp);
1657
1658 {
1659 char *retbuf = (char*) alloca (REGISTER_BYTES);
1660 char *name;
1661 struct symbol *symbol;
1662
1663 name = NULL;
1664 symbol = find_pc_function (funaddr);
1665 if (symbol)
1666 {
1667 name = SYMBOL_SOURCE_NAME (symbol);
1668 }
1669 else
1670 {
1671 /* Try the minimal symbols. */
1672 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1673
1674 if (msymbol)
1675 {
1676 name = SYMBOL_SOURCE_NAME (msymbol);
1677 }
1678 }
1679 if (name == NULL)
1680 {
1681 char format[80];
1682 sprintf (format, "at %s", local_hex_format ());
1683 name = alloca (80);
1684 /* FIXME-32x64: assumes funaddr fits in a long. */
1685 sprintf (name, format, (unsigned long) funaddr);
1686 }
1687
1688 /* Execute the stack dummy routine, calling FUNCTION.
1689 When it is done, discard the empty frame
1690 after storing the contents of all regs into retbuf. */
1691 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1692
1693 if (rc == 1)
1694 {
1695 /* We stopped inside the FUNCTION because of a random signal.
1696 Further execution of the FUNCTION is not allowed. */
1697
1698 if (unwind_on_signal_p)
1699 {
1700 /* The user wants the context restored. */
1701
1702 /* We must get back to the frame we were before the dummy call. */
1703 POP_FRAME;
1704
1705 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1706 a C++ name with arguments and stuff. */
1707 error ("\
1708 The program being debugged was signaled while in a function called from GDB.\n\
1709 GDB has restored the context to what it was before the call.\n\
1710 To change this behavior use \"set unwindonsignal off\"\n\
1711 Evaluation of the expression containing the function (%s) will be abandoned.",
1712 name);
1713 }
1714 else
1715 {
1716 /* The user wants to stay in the frame where we stopped (default).*/
1717
1718 /* If we did the cleanups, we would print a spurious error
1719 message (Unable to restore previously selected frame),
1720 would write the registers from the inf_status (which is
1721 wrong), and would do other wrong things. */
1722 discard_cleanups (old_chain);
1723 discard_inferior_status (inf_status);
1724
1725 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1726 a C++ name with arguments and stuff. */
1727 error ("\
1728 The program being debugged was signaled while in a function called from GDB.\n\
1729 GDB remains in the frame where the signal was received.\n\
1730 To change this behavior use \"set unwindonsignal on\"\n\
1731 Evaluation of the expression containing the function (%s) will be abandoned.",
1732 name);
1733 }
1734 }
1735
1736 if (rc == 2)
1737 {
1738 /* We hit a breakpoint inside the FUNCTION. */
1739
1740 /* If we did the cleanups, we would print a spurious error
1741 message (Unable to restore previously selected frame),
1742 would write the registers from the inf_status (which is
1743 wrong), and would do other wrong things. */
1744 discard_cleanups (old_chain);
1745 discard_inferior_status (inf_status);
1746
1747 /* The following error message used to say "The expression
1748 which contained the function call has been discarded." It
1749 is a hard concept to explain in a few words. Ideally, GDB
1750 would be able to resume evaluation of the expression when
1751 the function finally is done executing. Perhaps someday
1752 this will be implemented (it would not be easy). */
1753
1754 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1755 a C++ name with arguments and stuff. */
1756 error ("\
1757 The program being debugged stopped while in a function called from GDB.\n\
1758 When the function (%s) is done executing, GDB will silently\n\
1759 stop (instead of continuing to evaluate the expression containing\n\
1760 the function call).", name);
1761 }
1762
1763 /* If we get here the called FUNCTION run to completion. */
1764 do_cleanups (old_chain);
1765
1766 /* Figure out the value returned by the function. */
1767 /* elz: I defined this new macro for the hppa architecture only.
1768 this gives us a way to get the value returned by the function from the stack,
1769 at the same address we told the function to put it.
1770 We cannot assume on the pa that r28 still contains the address of the returned
1771 structure. Usually this will be overwritten by the callee.
1772 I don't know about other architectures, so I defined this macro
1773 */
1774
1775 #ifdef VALUE_RETURNED_FROM_STACK
1776 if (struct_return)
1777 return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1778 #endif
1779
1780 return value_being_returned (value_type, retbuf, struct_return);
1781 }
1782 }
1783
1784 struct value *
1785 call_function_by_hand (struct value *function, int nargs, struct value **args)
1786 {
1787 if (CALL_DUMMY_P)
1788 {
1789 return hand_function_call (function, nargs, args);
1790 }
1791 else
1792 {
1793 error ("Cannot invoke functions on this machine.");
1794 }
1795 }
1796 \f
1797
1798
1799 /* Create a value for an array by allocating space in the inferior, copying
1800 the data into that space, and then setting up an array value.
1801
1802 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1803 populated from the values passed in ELEMVEC.
1804
1805 The element type of the array is inherited from the type of the
1806 first element, and all elements must have the same size (though we
1807 don't currently enforce any restriction on their types). */
1808
1809 struct value *
1810 value_array (int lowbound, int highbound, struct value **elemvec)
1811 {
1812 int nelem;
1813 int idx;
1814 unsigned int typelength;
1815 struct value *val;
1816 struct type *rangetype;
1817 struct type *arraytype;
1818 CORE_ADDR addr;
1819
1820 /* Validate that the bounds are reasonable and that each of the elements
1821 have the same size. */
1822
1823 nelem = highbound - lowbound + 1;
1824 if (nelem <= 0)
1825 {
1826 error ("bad array bounds (%d, %d)", lowbound, highbound);
1827 }
1828 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1829 for (idx = 1; idx < nelem; idx++)
1830 {
1831 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1832 {
1833 error ("array elements must all be the same size");
1834 }
1835 }
1836
1837 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1838 lowbound, highbound);
1839 arraytype = create_array_type ((struct type *) NULL,
1840 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1841
1842 if (!current_language->c_style_arrays)
1843 {
1844 val = allocate_value (arraytype);
1845 for (idx = 0; idx < nelem; idx++)
1846 {
1847 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1848 VALUE_CONTENTS_ALL (elemvec[idx]),
1849 typelength);
1850 }
1851 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1852 return val;
1853 }
1854
1855 /* Allocate space to store the array in the inferior, and then initialize
1856 it by copying in each element. FIXME: Is it worth it to create a
1857 local buffer in which to collect each value and then write all the
1858 bytes in one operation? */
1859
1860 addr = allocate_space_in_inferior (nelem * typelength);
1861 for (idx = 0; idx < nelem; idx++)
1862 {
1863 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1864 typelength);
1865 }
1866
1867 /* Create the array type and set up an array value to be evaluated lazily. */
1868
1869 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1870 return (val);
1871 }
1872
1873 /* Create a value for a string constant by allocating space in the inferior,
1874 copying the data into that space, and returning the address with type
1875 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1876 of characters.
1877 Note that string types are like array of char types with a lower bound of
1878 zero and an upper bound of LEN - 1. Also note that the string may contain
1879 embedded null bytes. */
1880
1881 struct value *
1882 value_string (char *ptr, int len)
1883 {
1884 struct value *val;
1885 int lowbound = current_language->string_lower_bound;
1886 struct type *rangetype = create_range_type ((struct type *) NULL,
1887 builtin_type_int,
1888 lowbound, len + lowbound - 1);
1889 struct type *stringtype
1890 = create_string_type ((struct type *) NULL, rangetype);
1891 CORE_ADDR addr;
1892
1893 if (current_language->c_style_arrays == 0)
1894 {
1895 val = allocate_value (stringtype);
1896 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1897 return val;
1898 }
1899
1900
1901 /* Allocate space to store the string in the inferior, and then
1902 copy LEN bytes from PTR in gdb to that address in the inferior. */
1903
1904 addr = allocate_space_in_inferior (len);
1905 write_memory (addr, ptr, len);
1906
1907 val = value_at_lazy (stringtype, addr, NULL);
1908 return (val);
1909 }
1910
1911 struct value *
1912 value_bitstring (char *ptr, int len)
1913 {
1914 struct value *val;
1915 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1916 0, len - 1);
1917 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1918 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1919 val = allocate_value (type);
1920 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1921 return val;
1922 }
1923 \f
1924 /* See if we can pass arguments in T2 to a function which takes arguments
1925 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1926 arguments need coercion of some sort, then the coerced values are written
1927 into T2. Return value is 0 if the arguments could be matched, or the
1928 position at which they differ if not.
1929
1930 STATICP is nonzero if the T1 argument list came from a
1931 static member function.
1932
1933 For non-static member functions, we ignore the first argument,
1934 which is the type of the instance variable. This is because we want
1935 to handle calls with objects from derived classes. This is not
1936 entirely correct: we should actually check to make sure that a
1937 requested operation is type secure, shouldn't we? FIXME. */
1938
1939 static int
1940 typecmp (int staticp, struct type *t1[], struct value *t2[])
1941 {
1942 int i;
1943
1944 if (t2 == 0)
1945 return 1;
1946 if (staticp && t1 == 0)
1947 return t2[1] != 0;
1948 if (t1 == 0)
1949 return 1;
1950 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1951 return 0;
1952 if (t1[!staticp] == 0)
1953 return 0;
1954 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1955 {
1956 struct type *tt1, *tt2;
1957 if (!t2[i])
1958 return i + 1;
1959 tt1 = check_typedef (t1[i]);
1960 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1961 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1962 /* We should be doing hairy argument matching, as below. */
1963 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1964 {
1965 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1966 t2[i] = value_coerce_array (t2[i]);
1967 else
1968 t2[i] = value_addr (t2[i]);
1969 continue;
1970 }
1971
1972 /* djb - 20000715 - Until the new type structure is in the
1973 place, and we can attempt things like implicit conversions,
1974 we need to do this so you can take something like a map<const
1975 char *>, and properly access map["hello"], because the
1976 argument to [] will be a reference to a pointer to a char,
1977 and the argument will be a pointer to a char. */
1978 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1979 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1980 {
1981 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1982 }
1983 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1984 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1985 TYPE_CODE(tt2) == TYPE_CODE_REF)
1986 {
1987 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1988 }
1989 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1990 continue;
1991 /* Array to pointer is a `trivial conversion' according to the ARM. */
1992
1993 /* We should be doing much hairier argument matching (see section 13.2
1994 of the ARM), but as a quick kludge, just check for the same type
1995 code. */
1996 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1997 return i + 1;
1998 }
1999 if (!t1[i])
2000 return 0;
2001 return t2[i] ? i + 1 : 0;
2002 }
2003
2004 /* Helper function used by value_struct_elt to recurse through baseclasses.
2005 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2006 and search in it assuming it has (class) type TYPE.
2007 If found, return value, else return NULL.
2008
2009 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2010 look for a baseclass named NAME. */
2011
2012 static struct value *
2013 search_struct_field (char *name, struct value *arg1, int offset,
2014 register struct type *type, int looking_for_baseclass)
2015 {
2016 int i;
2017 int nbases = TYPE_N_BASECLASSES (type);
2018
2019 CHECK_TYPEDEF (type);
2020
2021 if (!looking_for_baseclass)
2022 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2023 {
2024 char *t_field_name = TYPE_FIELD_NAME (type, i);
2025
2026 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2027 {
2028 struct value *v;
2029 if (TYPE_FIELD_STATIC (type, i))
2030 v = value_static_field (type, i);
2031 else
2032 v = value_primitive_field (arg1, offset, i, type);
2033 if (v == 0)
2034 error ("there is no field named %s", name);
2035 return v;
2036 }
2037
2038 if (t_field_name
2039 && (t_field_name[0] == '\0'
2040 || (TYPE_CODE (type) == TYPE_CODE_UNION
2041 && (strcmp_iw (t_field_name, "else") == 0))))
2042 {
2043 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2044 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2045 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2046 {
2047 /* Look for a match through the fields of an anonymous union,
2048 or anonymous struct. C++ provides anonymous unions.
2049
2050 In the GNU Chill implementation of variant record types,
2051 each <alternative field> has an (anonymous) union type,
2052 each member of the union represents a <variant alternative>.
2053 Each <variant alternative> is represented as a struct,
2054 with a member for each <variant field>. */
2055
2056 struct value *v;
2057 int new_offset = offset;
2058
2059 /* This is pretty gross. In G++, the offset in an anonymous
2060 union is relative to the beginning of the enclosing struct.
2061 In the GNU Chill implementation of variant records,
2062 the bitpos is zero in an anonymous union field, so we
2063 have to add the offset of the union here. */
2064 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2065 || (TYPE_NFIELDS (field_type) > 0
2066 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2067 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2068
2069 v = search_struct_field (name, arg1, new_offset, field_type,
2070 looking_for_baseclass);
2071 if (v)
2072 return v;
2073 }
2074 }
2075 }
2076
2077 for (i = 0; i < nbases; i++)
2078 {
2079 struct value *v;
2080 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2081 /* If we are looking for baseclasses, this is what we get when we
2082 hit them. But it could happen that the base part's member name
2083 is not yet filled in. */
2084 int found_baseclass = (looking_for_baseclass
2085 && TYPE_BASECLASS_NAME (type, i) != NULL
2086 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2087
2088 if (BASETYPE_VIA_VIRTUAL (type, i))
2089 {
2090 int boffset;
2091 struct value *v2 = allocate_value (basetype);
2092
2093 boffset = baseclass_offset (type, i,
2094 VALUE_CONTENTS (arg1) + offset,
2095 VALUE_ADDRESS (arg1)
2096 + VALUE_OFFSET (arg1) + offset);
2097 if (boffset == -1)
2098 error ("virtual baseclass botch");
2099
2100 /* The virtual base class pointer might have been clobbered by the
2101 user program. Make sure that it still points to a valid memory
2102 location. */
2103
2104 boffset += offset;
2105 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2106 {
2107 CORE_ADDR base_addr;
2108
2109 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2110 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2111 TYPE_LENGTH (basetype)) != 0)
2112 error ("virtual baseclass botch");
2113 VALUE_LVAL (v2) = lval_memory;
2114 VALUE_ADDRESS (v2) = base_addr;
2115 }
2116 else
2117 {
2118 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2119 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2120 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2121 if (VALUE_LAZY (arg1))
2122 VALUE_LAZY (v2) = 1;
2123 else
2124 memcpy (VALUE_CONTENTS_RAW (v2),
2125 VALUE_CONTENTS_RAW (arg1) + boffset,
2126 TYPE_LENGTH (basetype));
2127 }
2128
2129 if (found_baseclass)
2130 return v2;
2131 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2132 looking_for_baseclass);
2133 }
2134 else if (found_baseclass)
2135 v = value_primitive_field (arg1, offset, i, type);
2136 else
2137 v = search_struct_field (name, arg1,
2138 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2139 basetype, looking_for_baseclass);
2140 if (v)
2141 return v;
2142 }
2143 return NULL;
2144 }
2145
2146
2147 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2148 * in an object pointed to by VALADDR (on the host), assumed to be of
2149 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2150 * looking (in case VALADDR is the contents of an enclosing object).
2151 *
2152 * This routine recurses on the primary base of the derived class because
2153 * the virtual base entries of the primary base appear before the other
2154 * virtual base entries.
2155 *
2156 * If the virtual base is not found, a negative integer is returned.
2157 * The magnitude of the negative integer is the number of entries in
2158 * the virtual table to skip over (entries corresponding to various
2159 * ancestral classes in the chain of primary bases).
2160 *
2161 * Important: This assumes the HP / Taligent C++ runtime
2162 * conventions. Use baseclass_offset() instead to deal with g++
2163 * conventions. */
2164
2165 void
2166 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2167 int offset, int *boffset_p, int *skip_p)
2168 {
2169 int boffset; /* offset of virtual base */
2170 int index; /* displacement to use in virtual table */
2171 int skip;
2172
2173 struct value *vp;
2174 CORE_ADDR vtbl; /* the virtual table pointer */
2175 struct type *pbc; /* the primary base class */
2176
2177 /* Look for the virtual base recursively in the primary base, first.
2178 * This is because the derived class object and its primary base
2179 * subobject share the primary virtual table. */
2180
2181 boffset = 0;
2182 pbc = TYPE_PRIMARY_BASE (type);
2183 if (pbc)
2184 {
2185 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2186 if (skip < 0)
2187 {
2188 *boffset_p = boffset;
2189 *skip_p = -1;
2190 return;
2191 }
2192 }
2193 else
2194 skip = 0;
2195
2196
2197 /* Find the index of the virtual base according to HP/Taligent
2198 runtime spec. (Depth-first, left-to-right.) */
2199 index = virtual_base_index_skip_primaries (basetype, type);
2200
2201 if (index < 0)
2202 {
2203 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2204 *boffset_p = 0;
2205 return;
2206 }
2207
2208 /* pai: FIXME -- 32x64 possible problem */
2209 /* First word (4 bytes) in object layout is the vtable pointer */
2210 vtbl = *(CORE_ADDR *) (valaddr + offset);
2211
2212 /* Before the constructor is invoked, things are usually zero'd out. */
2213 if (vtbl == 0)
2214 error ("Couldn't find virtual table -- object may not be constructed yet.");
2215
2216
2217 /* Find virtual base's offset -- jump over entries for primary base
2218 * ancestors, then use the index computed above. But also adjust by
2219 * HP_ACC_VBASE_START for the vtable slots before the start of the
2220 * virtual base entries. Offset is negative -- virtual base entries
2221 * appear _before_ the address point of the virtual table. */
2222
2223 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2224 & use long type */
2225
2226 /* epstein : FIXME -- added param for overlay section. May not be correct */
2227 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2228 boffset = value_as_long (vp);
2229 *skip_p = -1;
2230 *boffset_p = boffset;
2231 return;
2232 }
2233
2234
2235 /* Helper function used by value_struct_elt to recurse through baseclasses.
2236 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2237 and search in it assuming it has (class) type TYPE.
2238 If found, return value, else if name matched and args not return (value)-1,
2239 else return NULL. */
2240
2241 static struct value *
2242 search_struct_method (char *name, struct value **arg1p,
2243 struct value **args, int offset,
2244 int *static_memfuncp, register struct type *type)
2245 {
2246 int i;
2247 struct value *v;
2248 int name_matched = 0;
2249 char dem_opname[64];
2250
2251 CHECK_TYPEDEF (type);
2252 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2253 {
2254 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2255 /* FIXME! May need to check for ARM demangling here */
2256 if (strncmp (t_field_name, "__", 2) == 0 ||
2257 strncmp (t_field_name, "op", 2) == 0 ||
2258 strncmp (t_field_name, "type", 4) == 0)
2259 {
2260 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2261 t_field_name = dem_opname;
2262 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2263 t_field_name = dem_opname;
2264 }
2265 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2266 {
2267 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2269 name_matched = 1;
2270
2271 if (j > 0 && args == 0)
2272 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2273 else if (j == 0 && args == 0)
2274 {
2275 if (TYPE_FN_FIELD_STUB (f, j))
2276 check_stub_method (type, i, j);
2277 v = value_fn_field (arg1p, f, j, type, offset);
2278 if (v != NULL)
2279 return v;
2280 }
2281 else
2282 while (j >= 0)
2283 {
2284 if (TYPE_FN_FIELD_STUB (f, j))
2285 check_stub_method (type, i, j);
2286 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2287 TYPE_FN_FIELD_ARGS (f, j), args))
2288 {
2289 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2290 return value_virtual_fn_field (arg1p, f, j, type, offset);
2291 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2292 *static_memfuncp = 1;
2293 v = value_fn_field (arg1p, f, j, type, offset);
2294 if (v != NULL)
2295 return v;
2296 }
2297 j--;
2298 }
2299 }
2300 }
2301
2302 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2303 {
2304 int base_offset;
2305
2306 if (BASETYPE_VIA_VIRTUAL (type, i))
2307 {
2308 if (TYPE_HAS_VTABLE (type))
2309 {
2310 /* HP aCC compiled type, search for virtual base offset
2311 according to HP/Taligent runtime spec. */
2312 int skip;
2313 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2314 VALUE_CONTENTS_ALL (*arg1p),
2315 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2316 &base_offset, &skip);
2317 if (skip >= 0)
2318 error ("Virtual base class offset not found in vtable");
2319 }
2320 else
2321 {
2322 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2323 char *base_valaddr;
2324
2325 /* The virtual base class pointer might have been clobbered by the
2326 user program. Make sure that it still points to a valid memory
2327 location. */
2328
2329 if (offset < 0 || offset >= TYPE_LENGTH (type))
2330 {
2331 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2332 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2333 + VALUE_OFFSET (*arg1p) + offset,
2334 base_valaddr,
2335 TYPE_LENGTH (baseclass)) != 0)
2336 error ("virtual baseclass botch");
2337 }
2338 else
2339 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2340
2341 base_offset =
2342 baseclass_offset (type, i, base_valaddr,
2343 VALUE_ADDRESS (*arg1p)
2344 + VALUE_OFFSET (*arg1p) + offset);
2345 if (base_offset == -1)
2346 error ("virtual baseclass botch");
2347 }
2348 }
2349 else
2350 {
2351 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2352 }
2353 v = search_struct_method (name, arg1p, args, base_offset + offset,
2354 static_memfuncp, TYPE_BASECLASS (type, i));
2355 if (v == (struct value *) - 1)
2356 {
2357 name_matched = 1;
2358 }
2359 else if (v)
2360 {
2361 /* FIXME-bothner: Why is this commented out? Why is it here? */
2362 /* *arg1p = arg1_tmp; */
2363 return v;
2364 }
2365 }
2366 if (name_matched)
2367 return (struct value *) - 1;
2368 else
2369 return NULL;
2370 }
2371
2372 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2373 extract the component named NAME from the ultimate target structure/union
2374 and return it as a value with its appropriate type.
2375 ERR is used in the error message if *ARGP's type is wrong.
2376
2377 C++: ARGS is a list of argument types to aid in the selection of
2378 an appropriate method. Also, handle derived types.
2379
2380 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2381 where the truthvalue of whether the function that was resolved was
2382 a static member function or not is stored.
2383
2384 ERR is an error message to be printed in case the field is not found. */
2385
2386 struct value *
2387 value_struct_elt (struct value **argp, struct value **args,
2388 char *name, int *static_memfuncp, char *err)
2389 {
2390 register struct type *t;
2391 struct value *v;
2392
2393 COERCE_ARRAY (*argp);
2394
2395 t = check_typedef (VALUE_TYPE (*argp));
2396
2397 /* Follow pointers until we get to a non-pointer. */
2398
2399 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2400 {
2401 *argp = value_ind (*argp);
2402 /* Don't coerce fn pointer to fn and then back again! */
2403 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2404 COERCE_ARRAY (*argp);
2405 t = check_typedef (VALUE_TYPE (*argp));
2406 }
2407
2408 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2409 error ("not implemented: member type in value_struct_elt");
2410
2411 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2412 && TYPE_CODE (t) != TYPE_CODE_UNION)
2413 error ("Attempt to extract a component of a value that is not a %s.", err);
2414
2415 /* Assume it's not, unless we see that it is. */
2416 if (static_memfuncp)
2417 *static_memfuncp = 0;
2418
2419 if (!args)
2420 {
2421 /* if there are no arguments ...do this... */
2422
2423 /* Try as a field first, because if we succeed, there
2424 is less work to be done. */
2425 v = search_struct_field (name, *argp, 0, t, 0);
2426 if (v)
2427 return v;
2428
2429 /* C++: If it was not found as a data field, then try to
2430 return it as a pointer to a method. */
2431
2432 if (destructor_name_p (name, t))
2433 error ("Cannot get value of destructor");
2434
2435 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2436
2437 if (v == (struct value *) - 1)
2438 error ("Cannot take address of a method");
2439 else if (v == 0)
2440 {
2441 if (TYPE_NFN_FIELDS (t))
2442 error ("There is no member or method named %s.", name);
2443 else
2444 error ("There is no member named %s.", name);
2445 }
2446 return v;
2447 }
2448
2449 if (destructor_name_p (name, t))
2450 {
2451 if (!args[1])
2452 {
2453 /* Destructors are a special case. */
2454 int m_index, f_index;
2455
2456 v = NULL;
2457 if (get_destructor_fn_field (t, &m_index, &f_index))
2458 {
2459 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2460 f_index, NULL, 0);
2461 }
2462 if (v == NULL)
2463 error ("could not find destructor function named %s.", name);
2464 else
2465 return v;
2466 }
2467 else
2468 {
2469 error ("destructor should not have any argument");
2470 }
2471 }
2472 else
2473 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2474
2475 if (v == (struct value *) - 1)
2476 {
2477 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2478 }
2479 else if (v == 0)
2480 {
2481 /* See if user tried to invoke data as function. If so,
2482 hand it back. If it's not callable (i.e., a pointer to function),
2483 gdb should give an error. */
2484 v = search_struct_field (name, *argp, 0, t, 0);
2485 }
2486
2487 if (!v)
2488 error ("Structure has no component named %s.", name);
2489 return v;
2490 }
2491
2492 /* Search through the methods of an object (and its bases)
2493 * to find a specified method. Return the pointer to the
2494 * fn_field list of overloaded instances.
2495 * Helper function for value_find_oload_list.
2496 * ARGP is a pointer to a pointer to a value (the object)
2497 * METHOD is a string containing the method name
2498 * OFFSET is the offset within the value
2499 * STATIC_MEMFUNCP is set if the method is static
2500 * TYPE is the assumed type of the object
2501 * NUM_FNS is the number of overloaded instances
2502 * BASETYPE is set to the actual type of the subobject where the method is found
2503 * BOFFSET is the offset of the base subobject where the method is found */
2504
2505 static struct fn_field *
2506 find_method_list (struct value **argp, char *method, int offset,
2507 int *static_memfuncp, struct type *type, int *num_fns,
2508 struct type **basetype, int *boffset)
2509 {
2510 int i;
2511 struct fn_field *f;
2512 CHECK_TYPEDEF (type);
2513
2514 *num_fns = 0;
2515
2516 /* First check in object itself */
2517 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2518 {
2519 /* pai: FIXME What about operators and type conversions? */
2520 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2521 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2522 {
2523 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2524 *basetype = type;
2525 *boffset = offset;
2526 return TYPE_FN_FIELDLIST1 (type, i);
2527 }
2528 }
2529
2530 /* Not found in object, check in base subobjects */
2531 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2532 {
2533 int base_offset;
2534 if (BASETYPE_VIA_VIRTUAL (type, i))
2535 {
2536 if (TYPE_HAS_VTABLE (type))
2537 {
2538 /* HP aCC compiled type, search for virtual base offset
2539 * according to HP/Taligent runtime spec. */
2540 int skip;
2541 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2542 VALUE_CONTENTS_ALL (*argp),
2543 offset + VALUE_EMBEDDED_OFFSET (*argp),
2544 &base_offset, &skip);
2545 if (skip >= 0)
2546 error ("Virtual base class offset not found in vtable");
2547 }
2548 else
2549 {
2550 /* probably g++ runtime model */
2551 base_offset = VALUE_OFFSET (*argp) + offset;
2552 base_offset =
2553 baseclass_offset (type, i,
2554 VALUE_CONTENTS (*argp) + base_offset,
2555 VALUE_ADDRESS (*argp) + base_offset);
2556 if (base_offset == -1)
2557 error ("virtual baseclass botch");
2558 }
2559 }
2560 else
2561 /* non-virtual base, simply use bit position from debug info */
2562 {
2563 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2564 }
2565 f = find_method_list (argp, method, base_offset + offset,
2566 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2567 if (f)
2568 return f;
2569 }
2570 return NULL;
2571 }
2572
2573 /* Return the list of overloaded methods of a specified name.
2574 * ARGP is a pointer to a pointer to a value (the object)
2575 * METHOD is the method name
2576 * OFFSET is the offset within the value contents
2577 * STATIC_MEMFUNCP is set if the method is static
2578 * NUM_FNS is the number of overloaded instances
2579 * BASETYPE is set to the type of the base subobject that defines the method
2580 * BOFFSET is the offset of the base subobject which defines the method */
2581
2582 struct fn_field *
2583 value_find_oload_method_list (struct value **argp, char *method, int offset,
2584 int *static_memfuncp, int *num_fns,
2585 struct type **basetype, int *boffset)
2586 {
2587 struct type *t;
2588
2589 t = check_typedef (VALUE_TYPE (*argp));
2590
2591 /* code snarfed from value_struct_elt */
2592 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2593 {
2594 *argp = value_ind (*argp);
2595 /* Don't coerce fn pointer to fn and then back again! */
2596 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2597 COERCE_ARRAY (*argp);
2598 t = check_typedef (VALUE_TYPE (*argp));
2599 }
2600
2601 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2602 error ("Not implemented: member type in value_find_oload_lis");
2603
2604 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2605 && TYPE_CODE (t) != TYPE_CODE_UNION)
2606 error ("Attempt to extract a component of a value that is not a struct or union");
2607
2608 /* Assume it's not static, unless we see that it is. */
2609 if (static_memfuncp)
2610 *static_memfuncp = 0;
2611
2612 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2613
2614 }
2615
2616 /* Given an array of argument types (ARGTYPES) (which includes an
2617 entry for "this" in the case of C++ methods), the number of
2618 arguments NARGS, the NAME of a function whether it's a method or
2619 not (METHOD), and the degree of laxness (LAX) in conforming to
2620 overload resolution rules in ANSI C++, find the best function that
2621 matches on the argument types according to the overload resolution
2622 rules.
2623
2624 In the case of class methods, the parameter OBJ is an object value
2625 in which to search for overloaded methods.
2626
2627 In the case of non-method functions, the parameter FSYM is a symbol
2628 corresponding to one of the overloaded functions.
2629
2630 Return value is an integer: 0 -> good match, 10 -> debugger applied
2631 non-standard coercions, 100 -> incompatible.
2632
2633 If a method is being searched for, VALP will hold the value.
2634 If a non-method is being searched for, SYMP will hold the symbol for it.
2635
2636 If a method is being searched for, and it is a static method,
2637 then STATICP will point to a non-zero value.
2638
2639 Note: This function does *not* check the value of
2640 overload_resolution. Caller must check it to see whether overload
2641 resolution is permitted.
2642 */
2643
2644 int
2645 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2646 int lax, struct value **objp, struct symbol *fsym,
2647 struct value **valp, struct symbol **symp, int *staticp)
2648 {
2649 int nparms;
2650 struct type **parm_types;
2651 int champ_nparms = 0;
2652 struct value *obj = (objp ? *objp : NULL);
2653
2654 short oload_champ = -1; /* Index of best overloaded function */
2655 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2656 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2657 short oload_ambig_champ = -1; /* 2nd contender for best match */
2658 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2659 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2660
2661 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2662 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2663
2664 struct value *temp = obj;
2665 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2666 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2667 int num_fns = 0; /* Number of overloaded instances being considered */
2668 struct type *basetype = NULL;
2669 int boffset;
2670 register int jj;
2671 register int ix;
2672
2673 char *obj_type_name = NULL;
2674 char *func_name = NULL;
2675
2676 /* Get the list of overloaded methods or functions */
2677 if (method)
2678 {
2679 int i;
2680 int len;
2681 struct type *domain;
2682 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2683 /* Hack: evaluate_subexp_standard often passes in a pointer
2684 value rather than the object itself, so try again */
2685 if ((!obj_type_name || !*obj_type_name) &&
2686 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2687 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2688
2689 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2690 staticp,
2691 &num_fns,
2692 &basetype, &boffset);
2693 if (!fns_ptr || !num_fns)
2694 error ("Couldn't find method %s%s%s",
2695 obj_type_name,
2696 (obj_type_name && *obj_type_name) ? "::" : "",
2697 name);
2698 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2699 len = TYPE_NFN_FIELDS (domain);
2700 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2701 give us the info we need directly in the types. We have to
2702 use the method stub conversion to get it. Be aware that this
2703 is by no means perfect, and if you use STABS, please move to
2704 DWARF-2, or something like it, because trying to improve
2705 overloading using STABS is really a waste of time. */
2706 for (i = 0; i < len; i++)
2707 {
2708 int j;
2709 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2710 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2711
2712 for (j = 0; j < len2; j++)
2713 {
2714 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2715 check_stub_method (domain, i, j);
2716 }
2717 }
2718 }
2719 else
2720 {
2721 int i = -1;
2722 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2723
2724 /* If the name is NULL this must be a C-style function.
2725 Just return the same symbol. */
2726 if (!func_name)
2727 {
2728 *symp = fsym;
2729 return 0;
2730 }
2731
2732 oload_syms = make_symbol_overload_list (fsym);
2733 while (oload_syms[++i])
2734 num_fns++;
2735 if (!num_fns)
2736 error ("Couldn't find function %s", func_name);
2737 }
2738
2739 oload_champ_bv = NULL;
2740
2741 /* Consider each candidate in turn */
2742 for (ix = 0; ix < num_fns; ix++)
2743 {
2744 if (method)
2745 {
2746 /* For static member functions, we won't have a this pointer, but nothing
2747 else seems to handle them right now, so we just pretend ourselves */
2748 nparms=0;
2749
2750 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2751 {
2752 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2753 nparms++;
2754 }
2755 }
2756 else
2757 {
2758 /* If it's not a method, this is the proper place */
2759 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2760 }
2761
2762 /* Prepare array of parameter types */
2763 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2764 for (jj = 0; jj < nparms; jj++)
2765 parm_types[jj] = (method
2766 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2767 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2768
2769 /* Compare parameter types to supplied argument types */
2770 bv = rank_function (parm_types, nparms, arg_types, nargs);
2771
2772 if (!oload_champ_bv)
2773 {
2774 oload_champ_bv = bv;
2775 oload_champ = 0;
2776 champ_nparms = nparms;
2777 }
2778 else
2779 /* See whether current candidate is better or worse than previous best */
2780 switch (compare_badness (bv, oload_champ_bv))
2781 {
2782 case 0:
2783 oload_ambiguous = 1; /* top two contenders are equally good */
2784 oload_ambig_champ = ix;
2785 break;
2786 case 1:
2787 oload_ambiguous = 2; /* incomparable top contenders */
2788 oload_ambig_champ = ix;
2789 break;
2790 case 2:
2791 oload_champ_bv = bv; /* new champion, record details */
2792 oload_ambiguous = 0;
2793 oload_champ = ix;
2794 oload_ambig_champ = -1;
2795 champ_nparms = nparms;
2796 break;
2797 case 3:
2798 default:
2799 break;
2800 }
2801 xfree (parm_types);
2802 if (overload_debug)
2803 {
2804 if (method)
2805 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2806 else
2807 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2808 for (jj = 0; jj < nargs; jj++)
2809 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2810 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2811 }
2812 } /* end loop over all candidates */
2813 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2814 if they have the exact same goodness. This is because there is no
2815 way to differentiate based on return type, which we need to in
2816 cases like overloads of .begin() <It's both const and non-const> */
2817 #if 0
2818 if (oload_ambiguous)
2819 {
2820 if (method)
2821 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2822 obj_type_name,
2823 (obj_type_name && *obj_type_name) ? "::" : "",
2824 name);
2825 else
2826 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2827 func_name);
2828 }
2829 #endif
2830
2831 /* Check how bad the best match is */
2832 for (ix = 1; ix <= nargs; ix++)
2833 {
2834 if (oload_champ_bv->rank[ix] >= 100)
2835 oload_incompatible = 1; /* truly mismatched types */
2836
2837 else if (oload_champ_bv->rank[ix] >= 10)
2838 oload_non_standard = 1; /* non-standard type conversions needed */
2839 }
2840 if (oload_incompatible)
2841 {
2842 if (method)
2843 error ("Cannot resolve method %s%s%s to any overloaded instance",
2844 obj_type_name,
2845 (obj_type_name && *obj_type_name) ? "::" : "",
2846 name);
2847 else
2848 error ("Cannot resolve function %s to any overloaded instance",
2849 func_name);
2850 }
2851 else if (oload_non_standard)
2852 {
2853 if (method)
2854 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2855 obj_type_name,
2856 (obj_type_name && *obj_type_name) ? "::" : "",
2857 name);
2858 else
2859 warning ("Using non-standard conversion to match function %s to supplied arguments",
2860 func_name);
2861 }
2862
2863 if (method)
2864 {
2865 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2866 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2867 else
2868 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2869 }
2870 else
2871 {
2872 *symp = oload_syms[oload_champ];
2873 xfree (func_name);
2874 }
2875
2876 if (objp)
2877 {
2878 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2879 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2880 {
2881 temp = value_addr (temp);
2882 }
2883 *objp = temp;
2884 }
2885 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2886 }
2887
2888 /* C++: return 1 is NAME is a legitimate name for the destructor
2889 of type TYPE. If TYPE does not have a destructor, or
2890 if NAME is inappropriate for TYPE, an error is signaled. */
2891 int
2892 destructor_name_p (const char *name, const struct type *type)
2893 {
2894 /* destructors are a special case. */
2895
2896 if (name[0] == '~')
2897 {
2898 char *dname = type_name_no_tag (type);
2899 char *cp = strchr (dname, '<');
2900 unsigned int len;
2901
2902 /* Do not compare the template part for template classes. */
2903 if (cp == NULL)
2904 len = strlen (dname);
2905 else
2906 len = cp - dname;
2907 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2908 error ("name of destructor must equal name of class");
2909 else
2910 return 1;
2911 }
2912 return 0;
2913 }
2914
2915 /* Helper function for check_field: Given TYPE, a structure/union,
2916 return 1 if the component named NAME from the ultimate
2917 target structure/union is defined, otherwise, return 0. */
2918
2919 static int
2920 check_field_in (register struct type *type, const char *name)
2921 {
2922 register int i;
2923
2924 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2925 {
2926 char *t_field_name = TYPE_FIELD_NAME (type, i);
2927 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2928 return 1;
2929 }
2930
2931 /* C++: If it was not found as a data field, then try to
2932 return it as a pointer to a method. */
2933
2934 /* Destructors are a special case. */
2935 if (destructor_name_p (name, type))
2936 {
2937 int m_index, f_index;
2938
2939 return get_destructor_fn_field (type, &m_index, &f_index);
2940 }
2941
2942 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2943 {
2944 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2945 return 1;
2946 }
2947
2948 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2949 if (check_field_in (TYPE_BASECLASS (type, i), name))
2950 return 1;
2951
2952 return 0;
2953 }
2954
2955
2956 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2957 return 1 if the component named NAME from the ultimate
2958 target structure/union is defined, otherwise, return 0. */
2959
2960 int
2961 check_field (struct value *arg1, const char *name)
2962 {
2963 register struct type *t;
2964
2965 COERCE_ARRAY (arg1);
2966
2967 t = VALUE_TYPE (arg1);
2968
2969 /* Follow pointers until we get to a non-pointer. */
2970
2971 for (;;)
2972 {
2973 CHECK_TYPEDEF (t);
2974 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2975 break;
2976 t = TYPE_TARGET_TYPE (t);
2977 }
2978
2979 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2980 error ("not implemented: member type in check_field");
2981
2982 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2983 && TYPE_CODE (t) != TYPE_CODE_UNION)
2984 error ("Internal error: `this' is not an aggregate");
2985
2986 return check_field_in (t, name);
2987 }
2988
2989 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2990 return the address of this member as a "pointer to member"
2991 type. If INTYPE is non-null, then it will be the type
2992 of the member we are looking for. This will help us resolve
2993 "pointers to member functions". This function is used
2994 to resolve user expressions of the form "DOMAIN::NAME". */
2995
2996 struct value *
2997 value_struct_elt_for_reference (struct type *domain, int offset,
2998 struct type *curtype, char *name,
2999 struct type *intype)
3000 {
3001 register struct type *t = curtype;
3002 register int i;
3003 struct value *v;
3004
3005 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3006 && TYPE_CODE (t) != TYPE_CODE_UNION)
3007 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3008
3009 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3010 {
3011 char *t_field_name = TYPE_FIELD_NAME (t, i);
3012
3013 if (t_field_name && STREQ (t_field_name, name))
3014 {
3015 if (TYPE_FIELD_STATIC (t, i))
3016 {
3017 v = value_static_field (t, i);
3018 if (v == NULL)
3019 error ("Internal error: could not find static variable %s",
3020 name);
3021 return v;
3022 }
3023 if (TYPE_FIELD_PACKED (t, i))
3024 error ("pointers to bitfield members not allowed");
3025
3026 return value_from_longest
3027 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3028 domain)),
3029 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3030 }
3031 }
3032
3033 /* C++: If it was not found as a data field, then try to
3034 return it as a pointer to a method. */
3035
3036 /* Destructors are a special case. */
3037 if (destructor_name_p (name, t))
3038 {
3039 error ("member pointers to destructors not implemented yet");
3040 }
3041
3042 /* Perform all necessary dereferencing. */
3043 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3044 intype = TYPE_TARGET_TYPE (intype);
3045
3046 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3047 {
3048 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3049 char dem_opname[64];
3050
3051 if (strncmp (t_field_name, "__", 2) == 0 ||
3052 strncmp (t_field_name, "op", 2) == 0 ||
3053 strncmp (t_field_name, "type", 4) == 0)
3054 {
3055 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3056 t_field_name = dem_opname;
3057 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3058 t_field_name = dem_opname;
3059 }
3060 if (t_field_name && STREQ (t_field_name, name))
3061 {
3062 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3063 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3064
3065 if (intype == 0 && j > 1)
3066 error ("non-unique member `%s' requires type instantiation", name);
3067 if (intype)
3068 {
3069 while (j--)
3070 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3071 break;
3072 if (j < 0)
3073 error ("no member function matches that type instantiation");
3074 }
3075 else
3076 j = 0;
3077
3078 if (TYPE_FN_FIELD_STUB (f, j))
3079 check_stub_method (t, i, j);
3080 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3081 {
3082 return value_from_longest
3083 (lookup_reference_type
3084 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3085 domain)),
3086 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3087 }
3088 else
3089 {
3090 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3091 0, VAR_NAMESPACE, 0, NULL);
3092 if (s == NULL)
3093 {
3094 v = 0;
3095 }
3096 else
3097 {
3098 v = read_var_value (s, 0);
3099 #if 0
3100 VALUE_TYPE (v) = lookup_reference_type
3101 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3102 domain));
3103 #endif
3104 }
3105 return v;
3106 }
3107 }
3108 }
3109 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3110 {
3111 struct value *v;
3112 int base_offset;
3113
3114 if (BASETYPE_VIA_VIRTUAL (t, i))
3115 base_offset = 0;
3116 else
3117 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3118 v = value_struct_elt_for_reference (domain,
3119 offset + base_offset,
3120 TYPE_BASECLASS (t, i),
3121 name,
3122 intype);
3123 if (v)
3124 return v;
3125 }
3126 return 0;
3127 }
3128
3129
3130 /* Given a pointer value V, find the real (RTTI) type
3131 of the object it points to.
3132 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3133 and refer to the values computed for the object pointed to. */
3134
3135 struct type *
3136 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3137 {
3138 struct value *target;
3139
3140 target = value_ind (v);
3141
3142 return value_rtti_type (target, full, top, using_enc);
3143 }
3144
3145 /* Given a value pointed to by ARGP, check its real run-time type, and
3146 if that is different from the enclosing type, create a new value
3147 using the real run-time type as the enclosing type (and of the same
3148 type as ARGP) and return it, with the embedded offset adjusted to
3149 be the correct offset to the enclosed object
3150 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3151 parameters, computed by value_rtti_type(). If these are available,
3152 they can be supplied and a second call to value_rtti_type() is avoided.
3153 (Pass RTYPE == NULL if they're not available */
3154
3155 struct value *
3156 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3157 int xusing_enc)
3158 {
3159 struct type *real_type;
3160 int full = 0;
3161 int top = -1;
3162 int using_enc = 0;
3163 struct value *new_val;
3164
3165 if (rtype)
3166 {
3167 real_type = rtype;
3168 full = xfull;
3169 top = xtop;
3170 using_enc = xusing_enc;
3171 }
3172 else
3173 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3174
3175 /* If no RTTI data, or if object is already complete, do nothing */
3176 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3177 return argp;
3178
3179 /* If we have the full object, but for some reason the enclosing
3180 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3181 if (full)
3182 {
3183 argp = value_change_enclosing_type (argp, real_type);
3184 return argp;
3185 }
3186
3187 /* Check if object is in memory */
3188 if (VALUE_LVAL (argp) != lval_memory)
3189 {
3190 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3191
3192 return argp;
3193 }
3194
3195 /* All other cases -- retrieve the complete object */
3196 /* Go back by the computed top_offset from the beginning of the object,
3197 adjusting for the embedded offset of argp if that's what value_rtti_type
3198 used for its computation. */
3199 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3200 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3201 VALUE_BFD_SECTION (argp));
3202 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3203 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3204 return new_val;
3205 }
3206
3207
3208
3209
3210 /* C++: return the value of the class instance variable, if one exists.
3211 Flag COMPLAIN signals an error if the request is made in an
3212 inappropriate context. */
3213
3214 struct value *
3215 value_of_this (int complain)
3216 {
3217 struct symbol *func, *sym;
3218 struct block *b;
3219 int i;
3220 static const char funny_this[] = "this";
3221 struct value *this;
3222
3223 if (selected_frame == 0)
3224 {
3225 if (complain)
3226 error ("no frame selected");
3227 else
3228 return 0;
3229 }
3230
3231 func = get_frame_function (selected_frame);
3232 if (!func)
3233 {
3234 if (complain)
3235 error ("no `this' in nameless context");
3236 else
3237 return 0;
3238 }
3239
3240 b = SYMBOL_BLOCK_VALUE (func);
3241 i = BLOCK_NSYMS (b);
3242 if (i <= 0)
3243 {
3244 if (complain)
3245 error ("no args, no `this'");
3246 else
3247 return 0;
3248 }
3249
3250 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3251 symbol instead of the LOC_ARG one (if both exist). */
3252 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3253 if (sym == NULL)
3254 {
3255 if (complain)
3256 error ("current stack frame not in method");
3257 else
3258 return NULL;
3259 }
3260
3261 this = read_var_value (sym, selected_frame);
3262 if (this == 0 && complain)
3263 error ("`this' argument at unknown address");
3264 return this;
3265 }
3266
3267 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3268 long, starting at LOWBOUND. The result has the same lower bound as
3269 the original ARRAY. */
3270
3271 struct value *
3272 value_slice (struct value *array, int lowbound, int length)
3273 {
3274 struct type *slice_range_type, *slice_type, *range_type;
3275 LONGEST lowerbound, upperbound, offset;
3276 struct value *slice;
3277 struct type *array_type;
3278 array_type = check_typedef (VALUE_TYPE (array));
3279 COERCE_VARYING_ARRAY (array, array_type);
3280 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3281 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3282 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3283 error ("cannot take slice of non-array");
3284 range_type = TYPE_INDEX_TYPE (array_type);
3285 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3286 error ("slice from bad array or bitstring");
3287 if (lowbound < lowerbound || length < 0
3288 || lowbound + length - 1 > upperbound
3289 /* Chill allows zero-length strings but not arrays. */
3290 || (current_language->la_language == language_chill
3291 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3292 error ("slice out of range");
3293 /* FIXME-type-allocation: need a way to free this type when we are
3294 done with it. */
3295 slice_range_type = create_range_type ((struct type *) NULL,
3296 TYPE_TARGET_TYPE (range_type),
3297 lowbound, lowbound + length - 1);
3298 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3299 {
3300 int i;
3301 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3302 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3303 slice = value_zero (slice_type, not_lval);
3304 for (i = 0; i < length; i++)
3305 {
3306 int element = value_bit_index (array_type,
3307 VALUE_CONTENTS (array),
3308 lowbound + i);
3309 if (element < 0)
3310 error ("internal error accessing bitstring");
3311 else if (element > 0)
3312 {
3313 int j = i % TARGET_CHAR_BIT;
3314 if (BITS_BIG_ENDIAN)
3315 j = TARGET_CHAR_BIT - 1 - j;
3316 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3317 }
3318 }
3319 /* We should set the address, bitssize, and bitspos, so the clice
3320 can be used on the LHS, but that may require extensions to
3321 value_assign. For now, just leave as a non_lval. FIXME. */
3322 }
3323 else
3324 {
3325 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3326 offset
3327 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3328 slice_type = create_array_type ((struct type *) NULL, element_type,
3329 slice_range_type);
3330 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3331 slice = allocate_value (slice_type);
3332 if (VALUE_LAZY (array))
3333 VALUE_LAZY (slice) = 1;
3334 else
3335 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3336 TYPE_LENGTH (slice_type));
3337 if (VALUE_LVAL (array) == lval_internalvar)
3338 VALUE_LVAL (slice) = lval_internalvar_component;
3339 else
3340 VALUE_LVAL (slice) = VALUE_LVAL (array);
3341 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3342 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3343 }
3344 return slice;
3345 }
3346
3347 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3348 value as a fixed-length array. */
3349
3350 struct value *
3351 varying_to_slice (struct value *varray)
3352 {
3353 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3354 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3355 VALUE_CONTENTS (varray)
3356 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3357 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3358 }
3359
3360 /* Create a value for a FORTRAN complex number. Currently most of
3361 the time values are coerced to COMPLEX*16 (i.e. a complex number
3362 composed of 2 doubles. This really should be a smarter routine
3363 that figures out precision inteligently as opposed to assuming
3364 doubles. FIXME: fmb */
3365
3366 struct value *
3367 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3368 {
3369 struct value *val;
3370 struct type *real_type = TYPE_TARGET_TYPE (type);
3371
3372 val = allocate_value (type);
3373 arg1 = value_cast (real_type, arg1);
3374 arg2 = value_cast (real_type, arg2);
3375
3376 memcpy (VALUE_CONTENTS_RAW (val),
3377 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3378 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3379 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3380 return val;
3381 }
3382
3383 /* Cast a value into the appropriate complex data type. */
3384
3385 static struct value *
3386 cast_into_complex (struct type *type, struct value *val)
3387 {
3388 struct type *real_type = TYPE_TARGET_TYPE (type);
3389 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3390 {
3391 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3392 struct value *re_val = allocate_value (val_real_type);
3393 struct value *im_val = allocate_value (val_real_type);
3394
3395 memcpy (VALUE_CONTENTS_RAW (re_val),
3396 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3397 memcpy (VALUE_CONTENTS_RAW (im_val),
3398 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3399 TYPE_LENGTH (val_real_type));
3400
3401 return value_literal_complex (re_val, im_val, type);
3402 }
3403 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3404 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3405 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3406 else
3407 error ("cannot cast non-number to complex");
3408 }
3409
3410 void
3411 _initialize_valops (void)
3412 {
3413 #if 0
3414 add_show_from_set
3415 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3416 "Set automatic abandonment of expressions upon failure.",
3417 &setlist),
3418 &showlist);
3419 #endif
3420
3421 add_show_from_set
3422 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3423 "Set overload resolution in evaluating C++ functions.",
3424 &setlist),
3425 &showlist);
3426 overload_resolution = 1;
3427
3428 add_show_from_set (
3429 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3430 (char *) &unwind_on_signal_p,
3431 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3432 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3433 is received while in a function called from gdb (call dummy). If set, gdb\n\
3434 unwinds the stack and restore the context to what as it was before the call.\n\
3435 The default is to stop in the frame where the signal was received.", &setlist),
3436 &showlist);
3437 }
This page took 0.140942 seconds and 4 git commands to generate.